JP2010190749A - Nuclide separation processing method and system - Google Patents

Nuclide separation processing method and system Download PDF

Info

Publication number
JP2010190749A
JP2010190749A JP2009035842A JP2009035842A JP2010190749A JP 2010190749 A JP2010190749 A JP 2010190749A JP 2009035842 A JP2009035842 A JP 2009035842A JP 2009035842 A JP2009035842 A JP 2009035842A JP 2010190749 A JP2010190749 A JP 2010190749A
Authority
JP
Japan
Prior art keywords
liquid
sediment
solid
radioactive
supernatant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009035842A
Other languages
Japanese (ja)
Inventor
Masaaki Kaneko
昌章 金子
Yoshiko Haruguchi
佳子 春口
Eiichi Murata
栄一 村田
Takeo Yamashita
雄生 山下
Michitaka Mikura
通孝 三倉
Masamichi Obata
政道 小畑
Taichi Horimoto
太一 堀本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009035842A priority Critical patent/JP2010190749A/en
Publication of JP2010190749A publication Critical patent/JP2010190749A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nuclide separation processing method and a system allowing easy operation and for further improving removal of nuclides. <P>SOLUTION: An iron cosedimentation of Co, Ni, etc. is produced by introducing an iron ion into a waste liquid treated with high-temperature and high-pressure water of an ion exchange resin used for a reactor water cleanup system and controlling pH, and a magnetic powder is introduced in order to add a coprecipitating ability to the cosedimentation. Then a supernatant and the cosedimentation are subjected to solid-liquid separation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、放射性廃液中の核種分離処理方法およびシステムに関する。   The present invention relates to a method and system for separating nuclides in radioactive liquid waste.

原子力施設の運転廃棄物の1つに、炉水浄化系に用いられたイオン交換樹脂(使用済みイオン交換樹脂)がある。これらは多量の放射性核種を吸着していることから被ばくへの関与が大きく、余裕深度処分対象廃棄物としての処理が検討されている。しかしながら、余裕深度処分対象廃棄体は、処分費用が多くかかるため、使用済みイオン交換樹脂すべてを余裕深度処分対象廃棄体として処分すると、処分費用の増大を招くという問題点がある。   One of the operating wastes of nuclear facilities is ion exchange resin (used ion exchange resin) used in the reactor water purification system. Since these adsorb a large amount of radionuclide, they are greatly involved in exposure, and treatment as waste subject to marginal disposal is being investigated. However, since wastes subject to marginal depth disposal are expensive to dispose of, disposal of all used ion exchange resins as wastes subject to marginal depth disposal causes an increase in disposal costs.

このため、使用済みイオン交換樹脂の処理・処分に当たっては、処分に先立ち、処分対象廃棄物の減容を目的とした技術の開発が行われている。これらの一例として、スチームリフォーマ処理、IC(Inductively Coupled:高周波誘導結合)プラズマによる焼却が挙げられるが、これらの処理技術には、減容後廃棄物のほぼ全量が余裕深度処分対象になるという問題点がある。   For this reason, prior to the disposal of used ion exchange resins, technologies have been developed for the purpose of reducing the volume of waste subject to disposal. Examples of these include steam reformer processing and incineration with IC (Inductively Coupled) plasma, but these processing technologies say that almost all of the waste after volume reduction is subject to marginal disposal. There is a problem.

一方、使用済みイオン交換樹脂を超臨界水(あるいは亜臨界水などの高温高圧水)で完全に分解処理し、放射性核種を溶液の中に閉じ込める技術も開発されている。分解処理液については(アルミナセメントによる)セメント固化の適用も想定できる。この場合、分解処理液中の放射性核種の化学分離操作が可能であるため、分離操作を行った後、余裕深度処分対象廃棄物とそれ以外といった、放射能のレベルごとに分けて処分することが可能であり、この技術は余裕深度処分廃棄物の減容に効果的であると考えられる。   On the other hand, a technology has been developed in which used ion exchange resins are completely decomposed with supercritical water (or high-temperature and high-pressure water such as subcritical water) to confine radionuclides in the solution. Application of cement solidification (by alumina cement) can also be assumed for the decomposition treatment liquid. In this case, chemical separation of the radionuclide in the decomposition treatment liquid is possible, so after performing the separation operation, it is possible to dispose of it separately for each level of radioactivity, such as waste subject to marginal disposal and others. It is possible, and this technology is considered to be effective in reducing the volume of waste disposal at deeper depths.

より合理的、経済的に放射性廃液を処理するために、これまでに分解液中の放射性核種を分離除去する方法が提案されてきた(例えば、特許文献1参照)。しかしながらこの方法では、核種分離プロセスが複雑であることから、機器が大型化・複雑化するなどの問題点があった。また、コバルト(Co)、ニッケル(Ni)などの放射性核種の分離方法として、水酸化鉄を酸化鉄に転換する方法が提案されてきた(例えば、特許文献2参照)。しかしこの方法では、酸化還元電位、pH制御が必要であり、廃液組成が変化した場合の制御が困難であるという問題点があった。   In order to treat the radioactive liquid waste more rationally and economically, a method for separating and removing the radionuclide in the decomposition liquid has been proposed so far (see, for example, Patent Document 1). However, this method has a problem that the nuclide separation process is complicated and the equipment becomes large and complicated. As a method for separating radionuclides such as cobalt (Co) and nickel (Ni), a method of converting iron hydroxide into iron oxide has been proposed (see, for example, Patent Document 2). However, this method requires redox potential and pH control, and it is difficult to control when the waste liquid composition changes.

また、廃水処理に磁性粉体を用いた処理方法が提案されてきた(例えば、特許文献3参照)。しかし、この方法では放射性核種を分離する水酸化鉄の条件と磁性粉体の添加方法については提案されていなかった。   In addition, a treatment method using magnetic powder for wastewater treatment has been proposed (see, for example, Patent Document 3). However, this method has not proposed iron hydroxide conditions for separating radionuclides and a method for adding magnetic powder.

さらに、廃液にpH調整剤、共沈剤、凝集剤を添加して溶離液中に含まれる核種を難溶解性の金属水酸化物に変えて固液分離する方法が提案されてきた(例えば、特許文献4参照)。しかしこの方法では、凝集剤について、具体的な凝集剤名や凝集剤を用いた実施例については提案されていなかった。   Furthermore, a method for solid-liquid separation by adding a pH adjuster, a coprecipitation agent, and a flocculant to the waste liquid and changing the nuclide contained in the eluent to a hardly soluble metal hydroxide has been proposed (for example, (See Patent Document 4). However, in this method, no specific aggregating agent name and examples using the aggregating agent have been proposed for the aggregating agent.

特許第4018253号公報Japanese Patent No. 4018253 特開2007−3270号公報JP 2007-3270 A 特公平6−85918号公報Japanese Patent Publication No. 6-85918 特開平6−130186号公報JP-A-6-130186

本発明は上記問題点を解決するためになされたものであり、本発明の課題は、操作が容易で、核種除去のさらなる向上を図ることが可能な核種分離処理方法およびシステムを提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a nuclide separation processing method and system that is easy to operate and can further improve nuclide removal. is there.

本発明の核種分離処理方法の一態様は、放射性廃液中の放射性核種を分離処理する方法において、前記放射性廃液中の鉄イオンまたは添加された鉄イオンを、前記放射性廃液のpHを9〜12の範囲内に調整することにより前記放射性核種を伴って沈降物として生成させる沈降物生成工程と、前記沈降物の生成された前記放射性廃液に磁性粉からなる凝集剤を添加して前記沈降物に沈降性を付加する凝集剤添加工程と、前記凝集剤の添加された前記放射性廃液を前記沈降物と上澄みとに固液分離する固液分離工程とを具備することを特徴とする。   One aspect of the nuclide separation treatment method of the present invention is a method for separating a radionuclide in a radioactive liquid waste, wherein iron ions in the radioactive liquid waste or added iron ions are used, and the pH of the radioactive liquid waste is adjusted to 9 to 12. A sediment generation step for generating a sediment with the radionuclide by adjusting within a range, and a flocculant made of magnetic powder is added to the radioactive waste liquid in which the sediment is generated, and the sediment is settled on the sediment And a solid-liquid separation step for separating the radioactive waste liquid to which the flocculant has been added into the sediment and supernatant.

本発明の核種分離処理システムの一態様は、放射性廃液を貯留するための放射性廃液受けタンクと、前記放射性廃液受けタンクから前記放射性廃液を受ける反応容器と、前記反応容器に所定量の鉄イオンを含む鉄塩を供給するための鉄イオン用タンクと、前記反応容器にpH調整剤を供給するためのpH調整剤タンクと、前記反応容器に磁性粉からなる所定量の凝集剤を供給するための凝集剤タンクと、前記放射性廃液を受けた前記反応容器に供給される前記鉄塩、前記pH調整剤および前記磁性粉の供給量およびタイミングを制御する制御装置とを具備したことを特徴とする。   One aspect of the nuclide separation processing system of the present invention is a radioactive waste liquid receiving tank for storing radioactive waste liquid, a reaction container for receiving the radioactive waste liquid from the radioactive waste liquid receiving tank, and a predetermined amount of iron ions in the reaction container. An iron ion tank for supplying an iron salt containing, a pH adjusting agent tank for supplying a pH adjusting agent to the reaction vessel, and a predetermined amount of flocculant made of magnetic powder for supplying to the reaction vessel A flocculant tank and a control device for controlling the supply amount and timing of the iron salt, the pH adjuster and the magnetic powder supplied to the reaction vessel that has received the radioactive waste liquid are provided.

本発明によれば、操作が容易で、核種除去のさらなる向上を図ることが可能な核種分離処理方法およびシステムを提供することができる。   According to the present invention, it is possible to provide a nuclide separation processing method and system that are easy to operate and can further improve nuclide removal.

本発明の一実施形態の核種分離処理方法の概念を示す図。The figure which shows the concept of the nuclide separation processing method of one Embodiment of this invention. 分解液pHとDFとの関係を示す図。The figure which shows the relationship between decomposition solution pH and DF. 磁性粉のサイズを示すSEM写真。The SEM photograph which shows the size of magnetic powder. 本発明の一実施形態の核種分離処理システムを示す図。The figure which shows the nuclide separation processing system of one Embodiment of this invention. 本発明の別の一実施形態の核種分離処理システムを示す図。The figure which shows the nuclide separation processing system of another one Embodiment of this invention.

以下、本発明に係る核種分離処理方法およびシステムの実施形態について図面および実施例を参照しながら説明する。   Hereinafter, embodiments of a nuclide separation processing method and system according to the present invention will be described with reference to the drawings and examples.

(実施例1)
図1は、本発明に係る核種(Co−60、Ni−63など)分離処理方法の概念を示す図である。すなわち、この方法は、樹脂の高温高圧水による処理廃液(酸化還元電位(Oxidation-reduction Potential:ORP)約600mV)中のCo、Niなどの分離プロセスを簡素化することにある。なお、この処理廃液は、炉水浄化系に用いられた使用済みイオン交換樹脂を超臨界水・亜臨界水などの高温高圧水を用いて分解または完全分解することにより得られる廃液である。
Example 1
FIG. 1 is a diagram showing the concept of a nuclide (Co-60, Ni-63, etc.) separation method according to the present invention. That is, this method is to simplify the separation process of Co, Ni, etc. in the waste liquid treated with high-temperature and high-pressure water (Oxidation-reduction Potential: ORP) of about 600 mV. In addition, this process waste liquid is a waste liquid obtained by decomposing | disassembling or completely decomposing | disassembling the used ion exchange resin used for the reactor water purification system using high temperature / high pressure water, such as supercritical water and subcritical water.

本実施例は、原子力発電所などから発生する放射能濃度の高い使用済みイオン交換樹脂廃棄物を湿式処理法で分解し、分解で得られた放射性廃液から核種を分離する方法に関するものである。放射性廃液に鉄化合物を添加し、鉄化合物の添加された放射性廃液のpHを調整することにより、Co−60、Ni−63などの放射性核種は鉄共沈降物(水酸化鉄:Fe(OH))を生成し、溶液中から固相に移行する。その廃液に凝集剤(γ−Fe粉、Fe粉、マグネタイトなど)を添加することにより、沈降物が帯磁性化される。なお「帯磁性」とは、本明細書では、磁性を有する酸化鉄系物質を付加された沈降物が、磁石を近づけると吸引される性質を有することをいう。この状態であれば、沈降分離、磁気処理による固液分離などを容易に行うことができると考えられる。この考えに基づいて下記の実験を行った。
樹脂の分解液を模擬した溶液(硫酸(HSO)1質量%、過酸化水素(H)25ppm)を用い鉄共沈と帯磁性化処理を実施した。その実験条件を表1に示す。
The present embodiment relates to a method of decomposing used ion exchange resin waste having a high radioactivity concentration generated from a nuclear power plant or the like by a wet treatment method and separating nuclides from the radioactive liquid waste obtained by the decomposition. By adding an iron compound to the radioactive liquid waste and adjusting the pH of the radioactive liquid waste to which the iron compound is added, the radionuclides such as Co-60 and Ni-63 are converted into iron coprecipitates (iron hydroxide: Fe (OH)). 3 ) is generated and transferred from the solution to the solid phase. By adding a flocculant (γ-Fe 2 O 3 powder, Fe 3 O 4 powder, magnetite, etc.) to the waste liquid, the sediment is magnetized. In the present specification, “magnetism” means that a sediment to which a magnetic iron oxide-based material is added has a property of being attracted when a magnet is brought close thereto. In this state, it is considered that sedimentation separation, solid-liquid separation by magnetic treatment, and the like can be easily performed. Based on this idea, the following experiment was conducted.
Iron coprecipitation and magnetic treatment were performed using a solution simulating a resin decomposition solution (sulfuric acid (H 2 SO 4 ) 1 mass%, hydrogen peroxide (H 2 O 2 ) 25 ppm). The experimental conditions are shown in Table 1.

樹脂分解模擬液(100mL)に、鉄塩として硫酸鉄(II)・7水和物(FeSO・7HO)を50mg添加し、さらにかかる模擬液のpHをアルカリ性に調整することによって、鉄共沈降物を生成させ、その後、凝集剤(電解鉄粉、Fe粉)を添加して鉄共沈降物を帯磁性化させる。これらの反応は、温度60℃で反応1時間、撹拌して行った。得られた実験結果を表2に示す。 By adding 50 mg of iron (II) sulfate heptahydrate (FeSO 4 .7H 2 O) as an iron salt to the resin decomposition simulation liquid (100 mL), and further adjusting the pH of the simulation liquid to alkaline, A coprecipitate is generated, and then a coagulant (electrolytic iron powder, Fe 3 O 4 powder) is added to magnetize the iron coprecipitate. These reactions were carried out with stirring at a temperature of 60 ° C. for 1 hour. The experimental results obtained are shown in Table 2.

表2において、四酸化三鉄(Fe)粉末で処理された沈降物(No.3〜No.6)は、磁石を近づけると着くことから帯磁性化したことが確認された。また、沈降物体積割合については、凝集剤なしの場合(No.1)は10%、電解鉄粉の場合(No.2)は8%であるが、Fe粉を用いpH10以上の場合(No.4〜No.6)は、5%以下と低いことが認められた。なお、沈降物体積割合は次式(1)によって求める。
沈降物体積割合(%)=(沈降物体積/樹脂分解模擬液体積)×100 (1)
In Table 2, it was confirmed that the sediments (No. 3 to No. 6) treated with triiron tetroxide (Fe 3 O 4 ) powder became magnetized because they arrived when the magnet was brought closer. Moreover, about a sediment volume ratio, when there is no flocculant (No. 1), it is 10%, and in the case of electrolytic iron powder (No. 2), it is 8%, but Fe 3 O 4 powder is used and the pH is 10 or more. The cases (No. 4 to No. 6) were found to be as low as 5% or less. In addition, a sediment volume ratio is calculated | required by following Formula (1).
Sediment volume ratio (%) = (sediment volume / resin decomposition simulated liquid volume) × 100 (1)

模擬液pH値に対するDF(除染係数;(Decontamination Factor))値をプロットしたグラフを図2に示す。図2は、模擬液pHと鉄共沈によるCo、NiのDFとの関係を示したものである。図2において、pH調整後、黒丸はCoの1時間静置後のものを、黒四角はNiの1時間静置後のものを、白丸はCoの2日静置後のものを、白四角はNiの2日静置後のものを示しており、さらに、縦軸はDFを、横軸はpHを示している。   A graph plotting the DF (Decontamination Factor) value against the simulated solution pH value is shown in FIG. FIG. 2 shows the relationship between the simulated solution pH and the Co and Ni DF by iron coprecipitation. In FIG. 2, after pH adjustment, black circles are those after 1 hour of Co, black squares are those after 1 hour of Ni, white circles are those after 2 days of Co, white squares. Indicates the Ni after standing for 2 days, and the vertical axis indicates DF and the horizontal axis indicates pH.

図2から、pH9未満ではDF値が10以下になる可能性があるが、pH9以上では、DF値が100以上のものが得られることが確認された。これらのことから、Co、NiのDF値が10以上で、かつ、固液分離の操作性のよい沈降物を得る方法としては、鉄共沈降物を生成させる条件として、放射性廃液のpHを9〜12、好ましくは10〜11の範囲内に制御し、凝集剤として、磁性粉を用いることが有効であることがわかる。なお、磁性粉には、Fe(FeO・Fe)が含まれ、磁性を示すMO・Fe(ただし、式中、Mはゼロ、Mn,Fe,Co,Ni,CuおよびZnからなる群より選ばれる少なくとも1つの金属の2価の金属イオンであり、MがNi−Znのように2種の金属からなる場合には金属の価数は2価ではなく、Mがゼロの場合にはMO・Feはγ−三酸化二鉄(γ−Fe)である。)で表されるフェライト粉などを用いることができる。本発明に使用される磁性粉のサイズは、1μm〜100μmの範囲のものが適している。なお、磁性粉のサイズは、図3に示すように、電子顕微鏡(SEM)によって測定する。 From FIG. 2, it was confirmed that when the pH is less than 9, the DF value may be 10 or less, but when the pH is 9 or more, the DF value is 100 or more. From these facts, as a method for obtaining a sediment having a Co and Ni DF value of 10 or more and having good operability for solid-liquid separation, the pH of the radioactive liquid waste is set to 9 as a condition for producing the iron coprecipitate. It can be seen that it is effective to use magnetic powder as the aggregating agent by controlling within a range of ˜12, preferably 10˜11. The magnetic powder contains Fe 3 O 4 (FeO · Fe 2 O 3 ), and exhibits magnetic properties of MO · Fe 2 O 3 (where M is zero, Mn, Fe, Co, Ni, It is a divalent metal ion of at least one metal selected from the group consisting of Cu and Zn, and when M is composed of two kinds of metals such as Ni—Zn, the valence of the metal is not divalent. In the case of zero, MO · Fe 2 O 3 is γ-diiron trioxide (γ-Fe 2 O 3 ). The size of the magnetic powder used in the present invention is suitably in the range of 1 μm to 100 μm. The size of the magnetic powder is measured with an electron microscope (SEM) as shown in FIG.

また、予めFe粉を模擬液に添加した状態で鉄共沈降物を生成させると、かかる沈降物が帯磁性化することが確認された。 Moreover, it was confirmed that when an iron coprecipitate was generated in a state where Fe 3 O 4 powder was added to the simulated liquid in advance, the precipitate became magnetized.

固形分離によって上澄みを除去した後、帯磁性化した沈降物に、再度、模擬液を添加すると、模擬液にCo、Niが再溶解(回収率90%以上)することが、さらにCo、Niが再溶解された模擬液のpHをアルカリ性にすると、帯磁性の沈降物が生成することが確認された。これらのことから、固液分離後の沈降物に放射性廃液を添加し、上記と同じ操作を繰り返すことで、放射性廃液を処理することが可能であることがわかる。   After removing the supernatant by solid separation, if the simulated liquid is added again to the magnetized precipitate, Co and Ni are dissolved again in the simulated liquid (recovery rate of 90% or more). When the pH of the re-dissolved simulated liquid was made alkaline, it was confirmed that a magnetic precipitate was generated. From these things, it turns out that radioactive waste liquid can be processed by adding radioactive waste liquid to the sediment after solid-liquid separation, and repeating the same operation as the above.

(実施例2)
図4は、実施例1にて述べたプロセスの組み合わせを、システムとして展開した際の説明図である。かかるシステム10の構成を以下に説明する。
(Example 2)
FIG. 4 is an explanatory diagram when the combination of processes described in the first embodiment is developed as a system. The configuration of the system 10 will be described below.

まず、鉄共沈槽11の外底部に設置された磁石13の磁力をなくした状態で、放射性廃液受けタンク15に保管された樹脂分解液を、鉄共沈槽11に移送する。放射性廃液に鉄クラッドなどのスラッジが少量含まれる可能性があることを考えると、この移送処理にはポンプなどの使用を避け、重力圧送などの方式を適用することが望ましい。鉄共沈槽11に分解液を投入し、これをヒーター17で所定温度まで加熱する。鉄イオン(FeSO・7HO)用タンク19から必要量のFeSO・7HOを鉄共沈槽11へ投入し、攪拌機18、21を用い撹拌処理を行う。撹拌処理を継続しながら、pH調整剤(水酸化ナトリウム)貯槽23より水酸化ナトリウムを滴下して鉄共沈槽11内部液の液性をアルカリ性(pH9〜12)とし、水酸化鉄を生成させる。 First, the resin decomposition solution stored in the radioactive waste liquid receiving tank 15 is transferred to the iron coprecipitation tank 11 in a state where the magnetic force of the magnet 13 installed on the outer bottom portion of the iron coprecipitation tank 11 is lost. Considering that radioactive waste liquid may contain a small amount of sludge such as iron clad, it is desirable to avoid the use of a pump or the like and apply a method such as gravity pumping to this transfer process. The decomposition solution is put into the iron coprecipitation tank 11 and heated to a predetermined temperature by the heater 17. A required amount of FeSO 4 .7H 2 O is charged into the iron coprecipitation tank 11 from the iron ion (FeSO 4 .7H 2 O) tank 19, and stirring is performed using the stirrers 18 and 21. While continuing the stirring treatment, sodium hydroxide is dropped from the pH adjusting agent (sodium hydroxide) storage tank 23 to make the liquid of the iron coprecipitation tank 11 internal solution alkaline (pH 9 to 12), and iron hydroxide is generated. .

その上で、凝集剤タンク25から所定量のγ−Fe(以下、本明細書において「酸化鉄」と称する。)粉を鉄共沈槽11に投入し、約1時間、攪拌機18、21を用い撹拌処理を行う。ここで、攪拌機18は空気を鉄共沈槽11内にポンプを介して注入して内部液を注入空気によって攪拌させるものであり、攪拌機21は攪拌翼によって直接鉄共沈槽11内部液を攪拌させるものである。これにより、水酸化鉄スラッジが帯磁性化する。撹拌処理後、磁石13に磁力を付与すると、帯磁性水酸化スラッジ(水酸化スラッジに酸化鉄粉が吸着したもの)は速やかに磁石13に引き寄せられるので、この操作により、スラッジと上澄みとを分離させることができる。なお、鉄塩、pH調整剤および磁性粉を供給する際に、供給量およびタイミングを調節することのできる(電磁)開閉弁や流量調節器、開閉弁を制御する開閉弁コントロール装置などの制御装置を、必要に応じて、タンクから反応容器へ供給する配管にそれぞれ設けることができる。 Then, a predetermined amount of γ-Fe 2 O 3 (hereinafter referred to as “iron oxide”) powder is put into the iron coprecipitation tank 11 from the flocculant tank 25, and the stirrer 18 for about 1 hour. , 21 is used for stirring. Here, the stirrer 18 injects air into the iron coprecipitation tank 11 through a pump to stir the internal liquid with the injected air, and the stirrer 21 stirs the internal liquid of the iron coprecipitation tank 11 directly with the stirring blade. It is something to be made. Thereby, iron hydroxide sludge becomes magnetized. When a magnetic force is applied to the magnet 13 after the stirring treatment, the magnetic sludge and the supernatant are attracted to the magnet 13 promptly, so that the sludge and the supernatant are separated. Can be made. Control devices such as (electromagnetic) on / off valves, flow regulators, and on / off valve control devices for controlling on / off valves that can adjust the supply amount and timing when supplying iron salt, pH adjuster and magnetic powder Can be respectively provided in the piping supplied from the tank to the reaction vessel.

こののちの固液分離方法としては、フィルタを用いたろ過、磁石13の磁力を利用したデカンテーション、あるいは、ポンプによる上澄み移送などの方法が挙げられるが、このうち、磁石13の磁力を利用したデカンテーション法が、廃棄物量の削減に有効な手法である。   As a subsequent solid-liquid separation method, filtration using a filter, decantation using the magnetic force of the magnet 13, or a supernatant transfer using a pump can be mentioned. Among these, the magnetic force of the magnet 13 is used. Decantation is an effective method for reducing the amount of waste.

ここで、Co−60、Ni−59などの放射性核種は、帯磁性水酸化鉄スラッジに取り込まれているので、本スラッジは余裕深度処分対象廃棄物に分類される(L1)。一方、デカンテーションなどによって固液分離されたあとの上澄みには、セシウム−137(Cs−137)が含まれている。これを、KCFC(フェリシアン化コバルトカリウム)などの無機系吸着剤などで取り除くことによって、比較的放射能レベルの低いL2処理対象とすることができる。なお、無機系吸着剤などで取り除かれたCs−137は、余裕深度処分対象廃棄物に分類される(L1)。   Here, since radio nuclides such as Co-60 and Ni-59 are incorporated in the magnetic iron hydroxide sludge, this sludge is classified as a waste subject to disposal at a sufficient depth (L1). On the other hand, the supernatant after solid-liquid separation by decantation or the like contains cesium-137 (Cs-137). By removing this with an inorganic adsorbent such as KCFC (potassium ferricyanide), it is possible to make an L2 treatment target having a relatively low radioactivity level. Note that Cs-137 removed by the inorganic adsorbent and the like is classified as a waste subject to disposal at a marginal depth (L1).

これら廃棄物は、それぞれドラム缶29,33内で適切な固型化材27,31を用いて固型化でき(たとえば、セメント系材料による水和・硬化反応の適用など)、放射能レベルの異なる廃棄体とすることができる。使用可能なセメント系材料としては、アルミニウム−ケイ酸塩系、カルシウム−ケイ酸塩系などが使用可能である。   These wastes can be solidified using appropriate solidification materials 27 and 31 in the drums 29 and 33, respectively (for example, application of hydration / hardening reaction with cement-based materials), and have different radioactivity levels. It can be a waste body. As a usable cementitious material, an aluminum-silicate system, a calcium-silicate system, or the like can be used.

なお、鉄共沈槽11に沈降したスラッジをセメント固化プロセスに移送せず(鉄共沈槽11に残存させたまま)、これに新たな分解液を投入し、そのうえで本実施例に示した処理を続けて行うことも可能である。この場合、沈降したスラッジそのものが酸化鉄粉の機能を備えることが期待されるため、FeSO・7HOの投入量を低減させることが可能となる。また、同一バッチで複数回の鉄共沈プロセスを実施することができるので、スラッジ移送のための操作回数が低減され、操作の合理化を図ることができる。 Note that the sludge settled in the iron coprecipitation tank 11 is not transferred to the cement solidification process (while remaining in the iron coprecipitation tank 11), and a new decomposition solution is added thereto, and then the treatment shown in the present embodiment is performed. It is also possible to continue. In this case, since the settled sludge itself is expected to have the function of iron oxide powder, it is possible to reduce the input amount of FeSO 4 .7H 2 O. Moreover, since the iron coprecipitation process can be performed a plurality of times in the same batch, the number of operations for sludge transfer can be reduced, and the operation can be rationalized.

(実施例3)
図5は、実施例2で述べたシステムをより合理化したシステムを示す図である。なお、図4に示した部分と対応するものには同一の符号を付して重複する説明を一部省略する。
本システム20では、固液分離用に設置される磁石14を、放射性廃液受けタンク15から鉄共沈槽11に分解液を移送するための配管35の周囲に配置する。この配管35は、図5に示すように、次工程(Cs−137除去工程;図示せず)以降への移送配管35も兼ねている。上澄みの移送の際に、帯磁性水酸化スラッジが磁石14の配置された配管35の内部に引き寄せられて付着し、帯磁性水酸化スラッジは上澄みと分離される。このため、次工程以降への帯磁性スラッジの混入を防止することができる。
(Example 3)
FIG. 5 is a diagram illustrating a system in which the system described in the second embodiment is more rationalized. In addition, the same code | symbol is attached | subjected to the part corresponding to the part shown in FIG. 4, and the overlapping description is partially abbreviate | omitted.
In the present system 20, the magnet 14 installed for solid-liquid separation is arranged around a pipe 35 for transferring the decomposition liquid from the radioactive waste liquid receiving tank 15 to the iron coprecipitation tank 11. As shown in FIG. 5, the pipe 35 also serves as a transfer pipe 35 to the subsequent step (Cs-137 removing step; not shown). During the transfer of the supernatant, the banded magnetic hydroxide sludge is attracted and attached to the inside of the pipe 35 where the magnets 14 are arranged, and the banded magnetic hydroxide sludge is separated from the supernatant. For this reason, it is possible to prevent the magnetic sludge from being mixed into the subsequent steps.

なお、このシステム20では、上澄みの移送中に固液分離が行われるので、移送方法としては、ポンプを用いた強制移送方法が望ましい。この場合、分解液の投入用と上澄みの排出用の配管35は一部重なっているが、それ以外の分解液の投入用配管と上澄みの排出用配管には、それぞれ開閉弁(図示せず)が設けられている。分解液の投入の際には、投入用の弁を開、排出用の弁を閉にし、一方、上澄みの排出の際には、投入用の弁を閉、排出用の弁を開の状態にする。   In addition, in this system 20, since solid-liquid separation is performed during the transfer of the supernatant, the forced transfer method using a pump is desirable as the transfer method. In this case, the decomposition solution charging pipe and the supernatant discharging pipe 35 are partially overlapped, but the other decomposition liquid charging pipe and the supernatant discharging pipe are respectively provided with on-off valves (not shown). Is provided. When charging the cracked liquid, the valve for input is opened and the valve for discharge is closed. On the other hand, when the supernatant is discharged, the valve for input is closed and the valve for discharge is opened. To do.

また、磁石14の設置部分の配管35の内部にスラッジが多量に沈積するので、当該部分の配管35の内径を太くすることが望ましい。配管35の内径の変更により、配管35の閉塞を防止することができる。   Further, since a large amount of sludge is deposited inside the pipe 35 at the installation part of the magnet 14, it is desirable to increase the inner diameter of the pipe 35 at the part. The blockage of the pipe 35 can be prevented by changing the inner diameter of the pipe 35.

さらに、配管35の周囲に設置した磁石14に、磁力がオン/オフ(on/off)可能となる機構(例えば、電磁石など)を付与することもできる。上澄みを次工程以降に移送した後、磁力をoffとし、この後に放射性廃液受けタンク15から鉄共沈槽11に分解液を供給すれば、供給される分解液によって配管35の内部を洗浄(逆洗)することができる。これはまた同時に、(実施例2で示したような)FeSO・7HOの投入量の低減化にも寄与するものである。 Furthermore, a mechanism (for example, an electromagnet or the like) that enables magnetic force to be turned on / off can be imparted to the magnet 14 installed around the pipe 35. After the supernatant is transferred to the next step and thereafter, the magnetic force is turned off, and if the decomposition liquid is supplied from the radioactive waste liquid receiving tank 15 to the iron coprecipitation tank 11, the inside of the pipe 35 is washed with the supplied decomposition liquid (reversely Can be washed). This also contributes to a reduction in the amount of FeSO 4 .7H 2 O (as shown in Example 2).

もちろん、分解液の投入用と上澄みの排出用の配管を別々に設け、上澄みの排出用配管の周囲に固液分離のための磁石を設置してもよい。   Of course, it is also possible to separately provide piping for charging the decomposition liquid and discharging the supernatant, and installing a magnet for solid-liquid separation around the piping for discharging the supernatant.

なお、本発明は、上記実施形態のみに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形してもよい。また、上記実施形態に開示されている複数の構成要素を適宜組み合わせることにより、種々の発明を構成できる。例えば実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   In addition, this invention is not limited only to the said embodiment, You may change a component in the range which does not deviate from the summary in an implementation stage. Moreover, various inventions can be configured by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

11…鉄共沈槽、13…磁石、15…放射性廃液受けタンク、19…鉄イオン用タンク、23…pH調整剤タンク、25…凝集剤タンク、35…配管。   DESCRIPTION OF SYMBOLS 11 ... Iron coprecipitation tank, 13 ... Magnet, 15 ... Radioactive waste liquid receiving tank, 19 ... Iron ion tank, 23 ... pH adjuster tank, 25 ... Coagulant tank, 35 ... Piping.

Claims (12)

放射性廃液中の放射性核種を分離処理する方法において、
前記放射性廃液中の鉄イオンまたは添加された鉄イオンを、前記放射性廃液のpHを9〜12の範囲内に調整することにより前記放射性核種を伴って沈降物として生成させる沈降物生成工程と、
前記沈降物の生成された前記放射性廃液に、磁性粉からなる凝集剤を添加して前記沈降物に沈降性を付加する凝集剤添加工程と、
前記凝集剤の添加された前記放射性廃液を前記沈降物と上澄みとに固液分離する固液分離工程と
を具備することを特徴とする核種分離処理方法。
In a method for separating radionuclides in radioactive liquid waste,
A sediment generating step of generating iron ions in the radioactive liquid waste or added iron ions as a sediment with the radionuclide by adjusting the pH of the radioactive liquid waste to a range of 9-12;
A flocculant addition step of adding a flocculant made of magnetic powder to the radioactive waste liquid in which the sediment is generated to add sedimentation to the sediment;
And a solid-liquid separation step of solid-liquid separating the radioactive waste liquid to which the flocculant is added into the sediment and supernatant.
前記磁性粉がγ−三酸化二鉄(γ−Fe)粉または四酸化三鉄(Fe)粉からなることを特徴とする請求項1記載の核種分離処理方法。 The nuclide separation method according to claim 1, wherein the magnetic powder is composed of γ-diiron trioxide (γ-Fe 2 O 3 ) powder or triiron tetroxide (Fe 3 O 4 ) powder. 前記固液分離工程において、固液分離は、磁気分離法によって行われることを特徴とする請求項1または2記載の核種分離処理方法。   3. The nuclide separation method according to claim 1, wherein in the solid-liquid separation step, the solid-liquid separation is performed by a magnetic separation method. 前記凝集剤は、前記沈降物生成工程の前に前記放射性廃液に添加されることを特徴とする請求項1〜3のいずれか1項に記載の核種分離処理方法。   The nuclide separation processing method according to any one of claims 1 to 3, wherein the flocculant is added to the radioactive liquid waste before the sediment generation step. 前記固液分離工程の後に、前記上澄みが分離された前記沈降物に前記放射性廃液を添加し、前記沈降物生成工程、前記凝集剤添加工程および前記固液分離工程を繰り返して行うことを特徴とする請求項1〜4のいずれか1項に記載の核種分離処理方法。   After the solid-liquid separation step, the radioactive waste liquid is added to the sediment from which the supernatant is separated, and the sediment generation step, the flocculant addition step, and the solid-liquid separation step are repeated. The nuclide separation processing method according to any one of claims 1 to 4. 前記固液分離工程において、前記放射性廃液中の放射性核種を分離処理する反応容器を用い、前記反応容器の外底部に第1磁石を設置して前記沈降物を前記反応容器の内底部に引き寄せ、前記上澄みを移送させて固液分離を行うことを特徴とする請求項1〜5のいずれか1項に記載の核種分離処理方法。   In the solid-liquid separation step, using a reaction vessel that separates radionuclides in the radioactive liquid waste, a first magnet is installed on the outer bottom of the reaction vessel, and the sediment is drawn to the inner bottom of the reaction vessel, The nuclide separation treatment method according to claim 1, wherein the supernatant is transferred to perform solid-liquid separation. 前記固液分離工程において、前記上澄みの排出用配管を用い、前記排出用配管の周囲の少なくとも一部に第2磁石を設置し、前記上澄みの排出の際に前記第2磁石の設置された前記排出用配管の内部に前記沈降物を付着させて固液分離を行うことを特徴とする請求項1〜6のいずれか1項に記載の核種分離処理方法。   In the solid-liquid separation step, the supernatant discharge pipe is used, a second magnet is installed on at least a part of the periphery of the discharge pipe, and the second magnet is installed when the supernatant is discharged. The nuclide separation method according to any one of claims 1 to 6, wherein the sediment is adhered to the inside of the discharge pipe to perform solid-liquid separation. 前記固液分離工程において、前記放射性廃液の投入用と前記上澄みの排出用との双方の一部に重なる配管を用い、前記配管の周囲の少なくとも一部に第2磁石を設置し、前記上澄みの排出の際に前記第2磁石の設置された前記配管の内部に前記沈降物を付着させて固液分離を行い、前記放射性廃液を再投入する際に前記第2磁石の磁力をなくし、前記配管の内部に付着された前記沈降物を反応容器内に洗い落とすことを特徴とする請求項1〜7のいずれか1項に記載の核種分離処理方法。   In the solid-liquid separation step, a pipe that overlaps both the input of the radioactive liquid waste and the discharge of the supernatant is used, and a second magnet is installed on at least a part of the periphery of the pipe. The sediment is adhered to the inside of the pipe where the second magnet is installed at the time of discharge to perform solid-liquid separation, and the magnetic force of the second magnet is eliminated when the radioactive liquid waste is reintroduced. The nuclide separation method according to any one of claims 1 to 7, wherein the sediment adhered to the inside of the reactor is washed out in a reaction vessel. 放射性廃液を貯留するための放射性廃液受けタンクと、
前記放射性廃液受けタンクから前記放射性廃液を受ける反応容器と、
前記反応容器に所定量の鉄イオンを含む鉄塩を供給するための鉄イオン用タンクと、
前記反応容器にpH調整剤を供給するためのpH調整剤タンクと、
前記反応容器に磁性粉からなる所定量の凝集剤を供給するための凝集剤タンクと、
前記放射性廃液を受けた前記反応容器に供給される前記鉄塩、前記pH調整剤および前記磁性粉の供給量およびタイミングを制御する制御装置と
を具備したことを特徴とする核種分離処理システム。
A radioactive liquid receiving tank for storing radioactive liquid waste;
A reaction vessel that receives the radioactive liquid waste from the radioactive liquid waste receiving tank;
An iron ion tank for supplying an iron salt containing a predetermined amount of iron ions to the reaction vessel;
A pH adjusting agent tank for supplying a pH adjusting agent to the reaction vessel;
A flocculant tank for supplying a predetermined amount of flocculant made of magnetic powder to the reaction vessel;
A nuclide separation processing system comprising: a control device that controls the supply amount and timing of the iron salt, the pH adjuster, and the magnetic powder supplied to the reaction vessel that has received the radioactive liquid waste.
さらに、沈降物を前記反応容器の内底部に引き寄せ、上澄みを移送させることにより固液分離を行うための前記反応容器の外底部に設置された第1磁石を具備したことを特徴とする請求項9記載の核種分離処理システム。   The method further comprises a first magnet installed on the outer bottom portion of the reaction vessel for solid-liquid separation by drawing sediment to the inner bottom portion of the reaction vessel and transferring the supernatant. 9. The nuclide separation processing system according to 9. さらに、前記反応容器からの上澄みの排出用配管を設け、前記上澄みの排出の際に前記排出用配管の内部に沈降物を付着させて固液分離を行うための前記排出用配管の周囲の少なくとも一部に設置された第2磁石を具備したことを特徴とする請求項9記載の核種分離処理システム。   Furthermore, a discharge pipe for the supernatant from the reaction vessel is provided, and at least around the discharge pipe for performing solid-liquid separation by attaching sediment to the inside of the discharge pipe when discharging the supernatant. The nuclide separation processing system according to claim 9, further comprising a second magnet installed in part. 前記第2磁石は、前記放射性廃液の投入用と前記上澄みの排出用との双方の一部に重なる配管を設けて前記配管の周囲の少なくとも一部に設置され、前記上澄みの排出の際に前記第2磁石の設置された前記配管の内部に沈降物を付着させて固液分離を行い、前記放射性廃液を再投入する際に前記第2磁石の磁力をなくし、前記配管の内部に付着された前記沈降物を前記反応容器内に洗い落とすことを特徴とする請求項11記載の核種分離処理システム。   The second magnet is provided on at least a part of the periphery of the pipe by providing a pipe that overlaps both the input of the radioactive liquid waste and the discharge of the supernatant, and when the supernatant is discharged, Solids and liquids were separated by adhering sediment to the inside of the pipe where the second magnet was installed, and when the radioactive waste liquid was reintroduced, the magnetic force of the second magnet was eliminated and the pipe was attached to the inside of the pipe. 12. The nuclide separation processing system according to claim 11, wherein the sediment is washed out in the reaction vessel.
JP2009035842A 2009-02-18 2009-02-18 Nuclide separation processing method and system Withdrawn JP2010190749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009035842A JP2010190749A (en) 2009-02-18 2009-02-18 Nuclide separation processing method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035842A JP2010190749A (en) 2009-02-18 2009-02-18 Nuclide separation processing method and system

Publications (1)

Publication Number Publication Date
JP2010190749A true JP2010190749A (en) 2010-09-02

Family

ID=42816941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035842A Withdrawn JP2010190749A (en) 2009-02-18 2009-02-18 Nuclide separation processing method and system

Country Status (1)

Country Link
JP (1) JP2010190749A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027403A1 (en) * 2011-08-23 2013-02-28 株式会社 東芝 Cation adsorbent and method for processing solution using same
JP2013148552A (en) * 2012-01-23 2013-08-01 Univ Of Tsukuba Method for removing cesium ion and device for removing cesium ion
JP2013210248A (en) * 2012-03-30 2013-10-10 Sumitomo Osaka Cement Co Ltd Method for recovering radioactive cesium
JP2013242300A (en) * 2013-04-15 2013-12-05 Prefectural Univ Of Hiroshima Method and device for treating radioactive substance contaminant
JP2014064991A (en) * 2012-09-26 2014-04-17 Sumitomo Osaka Cement Co Ltd Method for treating effluent including cesium
JP5497226B1 (en) * 2013-05-07 2014-05-21 住友大阪セメント株式会社 Method and apparatus for treating desalted dust containing cesium
WO2015005392A1 (en) * 2013-07-10 2015-01-15 産機電業株式会社 Method for removing radioactive substance contaminating water from water
JP2015166080A (en) * 2014-02-14 2015-09-24 Jnc株式会社 Method for removing harmful substance in aqueous solution
JP2015531613A (en) * 2012-07-18 2015-11-05 ハー マジェスティー ザ クィーンイン ライト オブ カナダ,アズ リプレゼンテッド バイ ザ ミニスター オブ エンヴァイロメントHER MAJESTY THE QUEENIN RIGHT OF CANADA, as represented by THE MINISTER OF ENVIRONMENT Universal surface decontamination agent
JP2020173130A (en) * 2019-04-09 2020-10-22 日揮株式会社 Method of treating hardly filterable substance
JP2021120661A (en) * 2020-01-31 2021-08-19 日立Geニュークリア・エナジー株式会社 Method for treating radioactive waste liquid
KR20220049377A (en) * 2020-10-14 2022-04-21 한국원자로감시기술 주식회사 Method for separating radiochemical nuclides from radioactive waste samples

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013027403A1 (en) * 2011-08-23 2015-03-05 株式会社東芝 Cation adsorbent and solution treatment method using the same
US10081850B2 (en) 2011-08-23 2018-09-25 Kabushiki Kaisha Toshiba Treatment method for solution containing metal ions using cation adsorbent
WO2013027403A1 (en) * 2011-08-23 2013-02-28 株式会社 東芝 Cation adsorbent and method for processing solution using same
US9409144B2 (en) 2011-08-23 2016-08-09 Kabushiki Kaisha Toshiba Cation adsorbent for solution treatment
JP2013148552A (en) * 2012-01-23 2013-08-01 Univ Of Tsukuba Method for removing cesium ion and device for removing cesium ion
JP2013210248A (en) * 2012-03-30 2013-10-10 Sumitomo Osaka Cement Co Ltd Method for recovering radioactive cesium
JP2015531613A (en) * 2012-07-18 2015-11-05 ハー マジェスティー ザ クィーンイン ライト オブ カナダ,アズ リプレゼンテッド バイ ザ ミニスター オブ エンヴァイロメントHER MAJESTY THE QUEENIN RIGHT OF CANADA, as represented by THE MINISTER OF ENVIRONMENT Universal surface decontamination agent
JP2014064991A (en) * 2012-09-26 2014-04-17 Sumitomo Osaka Cement Co Ltd Method for treating effluent including cesium
JP2013242300A (en) * 2013-04-15 2013-12-05 Prefectural Univ Of Hiroshima Method and device for treating radioactive substance contaminant
JP5497226B1 (en) * 2013-05-07 2014-05-21 住友大阪セメント株式会社 Method and apparatus for treating desalted dust containing cesium
WO2015005392A1 (en) * 2013-07-10 2015-01-15 産機電業株式会社 Method for removing radioactive substance contaminating water from water
JPWO2015005392A1 (en) * 2013-07-10 2017-03-02 産機電業株式会社 How to remove radioactive substances mixed in water from water
JP2015166080A (en) * 2014-02-14 2015-09-24 Jnc株式会社 Method for removing harmful substance in aqueous solution
JP2020173130A (en) * 2019-04-09 2020-10-22 日揮株式会社 Method of treating hardly filterable substance
JP7256061B2 (en) 2019-04-09 2023-04-11 日揮株式会社 Method for treating hard-to-filter substances
JP2021120661A (en) * 2020-01-31 2021-08-19 日立Geニュークリア・エナジー株式会社 Method for treating radioactive waste liquid
JP7284722B2 (en) 2020-01-31 2023-05-31 日立Geニュークリア・エナジー株式会社 Treatment method of radioactive liquid waste
KR20220049377A (en) * 2020-10-14 2022-04-21 한국원자로감시기술 주식회사 Method for separating radiochemical nuclides from radioactive waste samples
KR102464921B1 (en) * 2020-10-14 2022-11-09 한국원자로감시기술 주식회사 Method for separating radiochemical nuclides from radioactive waste samples

Similar Documents

Publication Publication Date Title
JP2010190749A (en) Nuclide separation processing method and system
Li et al. Improving the reactivity of zerovalent iron by taking advantage of its magnetic memory: implications for arsenite removal
RU2713885C1 (en) Method of eluting calcium from steel-smelting slag and method of extracting calcium from steel-smelting slag
Walling et al. Fenton and Fenton-like wet oxidation for degradation and destruction of organic radioactive wastes
JP6049404B2 (en) Decontamination waste liquid treatment method
Sun et al. Treatment of landfill leachate using magnetically attracted zero-valent iron powder electrode in an electric field
JP6392431B2 (en) Decontamination method and kit therefor that can greatly reduce radioactive waste
US8696911B2 (en) Decontamination of radioactive liquid effluent by solid-liquid extraction using a recycle loop
JP2013075252A (en) Treatment method removing cesium and heavy metal from wastewater
CN106683732B (en) Radioactive liquid waste treatment equipment and processing method
Oh et al. Chemical precipitation–based treatment of acidic wastewater generated by chemical decontamination of radioactive concrete
Dahasahastra et al. Turbidity removal from synthetic turbid water using coagulant recovered from water treatment sludge: A potential method to recycle and conserve aluminium
JP2010107450A (en) Method and system for treating used ion exchange resin
WO2016100908A1 (en) Activated hybrid zero-valent iron treatment system and methods for generation and use thereof
JP2012247407A (en) Precipitation removal technology of radioactivity from high-level radiation-contaminated water and purification technology of water
Jung et al. A study on the removal of impurities in a SP-HyBRID decontamination wastewater of the primary coolant system in a pressurized water reactor
JP6049403B2 (en) Decontamination waste liquid treatment method
Tiwari Ferrate (VI) a greener solution: Synthesis, characterization, and multifunctional use in treating metal-complexed species in aqueous solution
JP2008036591A (en) Method and apparatus for decomposing organic acid in waste liquid
CN112908508B (en) Method for treating radioactive analysis waste liquid by one-step method
JP2007003270A (en) Radioactive waste liquid treatment apparatus and method
JP2014163842A (en) Sewage sludge incineration ash processing method and sewage sludge incineration ash processing facility
Shon et al. Targeted separation of radionuclides from contaminated concrete waste generated from decommissioning of nuclear power plants
Lan et al. Efficient removal and transformation of Cr (VI) from alkaline wastewater to form a ferrochromium spinel multiphase via a modified ferrite process
Fan et al. Simply closing the reactor improves the electron efficiency of zerovalent iron toward various metal (loid) s removal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501