JP2010190008A - Shield machine - Google Patents

Shield machine Download PDF

Info

Publication number
JP2010190008A
JP2010190008A JP2009038216A JP2009038216A JP2010190008A JP 2010190008 A JP2010190008 A JP 2010190008A JP 2009038216 A JP2009038216 A JP 2009038216A JP 2009038216 A JP2009038216 A JP 2009038216A JP 2010190008 A JP2010190008 A JP 2010190008A
Authority
JP
Japan
Prior art keywords
shield
excavated soil
soil
cutter head
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009038216A
Other languages
Japanese (ja)
Inventor
Kazuhiko Matsuzaki
和彦 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toso KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toso KK filed Critical Toso KK
Priority to JP2009038216A priority Critical patent/JP2010190008A/en
Publication of JP2010190008A publication Critical patent/JP2010190008A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shield machine capable of smoothly excavating ground at low cost by a simple facility without requiring the use of bentonite, a cement-based material, or the like and without generating industrial waste irrespective of the type of the ground. <P>SOLUTION: This shield excavator 10 includes a generally cylindrical shield 11, an excavation cutter head 13 for excavating the ground, an agitating blade 15 for agitating excavated soil which has a diameter smaller than the excavation cutter head 13 and is rotatingly driven in the direction reverse to the rotating direction of the excavation cutter head 13, an excavated soil rotating and feeding device 23 which rotates and moves the excavated soil from the lower portion to the upper portion along the inner peripheral surface of the shield 11 and falls the excavated soil rearward when the excavated soil reaches the upper portion, and a conveyor 16 for feeding the excavated soil rearward. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、地下鉄等のトンネルを造成するための地盤掘削用のシールド掘進機に関する。   The present invention relates to a shield excavator for ground excavation for creating a tunnel such as a subway.

従来から、地下鉄等のトンネルを造成する際に、泥水加圧式、泥土圧式等のシールド掘進機が用いられている。
これらのシールド掘進機において、掘削土は、作泥材等を加えて塑性流動化された後に、シールド掘進機の後方に排出される(例えば、特許文献1参照)。
2. Description of the Related Art Conventionally, shield tunneling machines such as a mud pressure type and a mud pressure type have been used when constructing a tunnel such as a subway.
In these shield machines, the excavated soil is plastic fluidized by adding mud and the like, and then discharged to the rear of the shield machine (see, for example, Patent Document 1).

特公平5−12520号公報Japanese Examined Patent Publication No. 5-12520

泥水加圧式のシールド掘進機は、掘削土を塑性流動化させるために、ベントナイト等の比重調整材やカルボキシメチルセルロース(CMC)等の粘性材(以下、塑性流動化を図るための材料を総称して塑性流動化材という。)を用いている。塑性流動化された掘削土は、フィルタープレス等の脱水手段によって脱水された後、産業廃棄物として処理されている。
一方、泥土圧式のシールド掘進機は、掘削土を塑性流動化させるために、加泥材を用いている。塑性流動化された掘削土は、トラック等で運搬し難い性状を有するため、セメントまたは高分子凝集材等の固化材を加えて、運搬し易くした後、産業廃棄物として処理されている。
このように、泥水加圧式と泥土圧式のいずれのシールド掘進機であっても、産業廃棄物の発生という問題があった。
また、泥水加圧式のシールド掘進機では、フィルタープレス等の脱水手段が必要であり、泥土圧式のシールド掘進機では、セメント等の材料を貯留するためのタンク等が必要であり、いずれにしても、これらの設備による工事用地の増大および工事費の増大等の問題があった。
そこで、本発明は、如何なる地盤であっても、ベントナイト等の塑性流動化材やセメント等の固化材を用いる必要がなく、産業廃棄物を発生させずに、簡易な設備でかつ低コストで地盤の掘削を円滑に行なうことができるシールド掘進機を提供することを目的とする。
A mud pressurizing shield machine is a generic term for specific gravity adjusting materials such as bentonite and viscous materials such as carboxymethylcellulose (CMC) (hereinafter referred to as materials for plastic fluidization) in order to plastically fluidize excavated soil. Called plastic fluidizing material). The plastic fluidized excavated soil is dewatered by a dewatering means such as a filter press and then treated as industrial waste.
On the other hand, the mud pressure type shield machine uses a mud material to plastically fluidize the excavated soil. Since the plastic fluidized excavated soil has properties that are difficult to transport with a truck or the like, it is treated as industrial waste after adding a solidifying material such as cement or a polymer aggregate to facilitate transport.
As described above, there is a problem that industrial waste is generated in both the mud pressurizing type and the mud pressure type shield machines.
In addition, the mud pressurizing shield machine requires a dewatering means such as a filter press, and the mud pressure shield machine requires a tank for storing materials such as cement. However, there were problems such as an increase in construction site and an increase in construction costs due to these facilities.
Therefore, the present invention does not require the use of a plastic fluidizing material such as bentonite or a solidifying material such as cement regardless of the ground, and does not generate industrial waste. An object of the present invention is to provide a shield machine that can smoothly perform the excavation.

本発明者は、前記の課題を解決するために検討した結果、地盤を掘削するための掘削カーターヘッドの後方に、特定の撹拌翼、特定の掘削土回転送出装置、及びコンベヤをこの順に配設すれば、如何なる地盤であっても、ベントナイト等の塑性流動化材やセメント等の固化材を用いる必要がなく、産業廃棄物を発生させずに、掘削土を円滑にシールド掘進機の後方に送出し、普通土として埋立材等に利用しうることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[3]を提供するものである。
[1] (a)略円筒形状のシールドと、(b)該シールドの前端付近に配設された、略円盤状で前記シールドと略同一の径を有しかつ回転駆動される、地盤を掘削するための掘削カッターヘッドと、(c)該掘削カッターヘッドの後方に適宜の距離を隔てて配設された、略円盤状で前記掘削カッターヘッドよりも小さな径を有しかつ回転駆動される、掘削土を撹拌するための撹拌翼と、(d)該撹拌翼の後方に配設された掘削土回転送出装置であって、掘削土を前記シールドの内周面に沿って下部から上部に回転移動させかつ当該上部に到達したときに落下させて後方に移動させるように構成した掘削土回転送出装置と、(e)該掘削土回転送出装置によって落下した掘削土を後方に送出するためのコンベヤと、を備えていることを特徴とするシールド掘進機。
[2] 前記シールドの前端の内周面は、前記掘削カッターヘッドの周縁付近から前記撹拌翼の周縁付近に向かって縮径する円錐台形状のガイド面として形成されている前記[1]に記載のシールド掘進機。
[3] 前記掘削土回転送出装置は、(i)前記シールドと同じ軸線を有しかつ前記シールドの内径よりも小さな外径を有する略円筒形状の水平壁と、該水平壁の前端の上端付近から後端の下端付近に跨る傾斜壁とからなり、かつ、前記水平壁の上端及び下端の各々に掘削土落下用孔を有する、前記シールドに固定された隔壁部と、(ii)前記シールドの内周面と前記隔壁部の水平壁の外周面の間に配設された、略ドーナツ状の回転駆動される掘削土回転部であって、前記シールドの軸線の方向に向けて開口した複数の掘削土収容室を有する掘削土回転部と、を備えている前記[1]又は[2]に記載のシールド掘進機。
As a result of studying to solve the above-mentioned problems, the present inventor has arranged a specific agitating blade, a specific excavated soil rotating and feeding device, and a conveyor in this order behind the excavation carter head for excavating the ground. As a result, it is not necessary to use plastic fluidizing materials such as bentonite or solidifying materials such as cement, and any soil can be sent to the back of the shield machine smoothly without generating industrial waste. The present invention was completed by finding that it can be used as landfill material as ordinary soil.
That is, the present invention provides the following [1] to [3].
[1] (a) a substantially cylindrical shield, and (b) excavating the ground disposed in the vicinity of the front end of the shield, having a substantially disk shape, having substantially the same diameter as the shield, and driven to rotate. An excavation cutter head for carrying out, and (c) disposed at an appropriate distance behind the excavation cutter head, having a substantially disk shape, having a smaller diameter than the excavation cutter head, and being driven to rotate. An agitating blade for agitating the excavated soil, and (d) a rotating excavator rotating and feeding device disposed behind the agitating blade, wherein the excavated soil rotates from the lower part to the upper part along the inner peripheral surface of the shield. Excavated soil rotation and delivery device configured to move and fall backward when it reaches the upper part, and (e) a conveyor for delivering the excavated soil dropped by the excavated soil rotation and delivery device to the rear It is characterized by having Shield machine.
[2] The inner peripheral surface of the front end of the shield is formed as a frustoconical guide surface whose diameter decreases from the vicinity of the periphery of the excavation cutter head toward the periphery of the stirring blade. Shield machine.
[3] The excavated soil rotation and delivery device includes: (i) a substantially cylindrical horizontal wall having the same axis as the shield and having an outer diameter smaller than the inner diameter of the shield, and the vicinity of the upper end of the front end of the horizontal wall A partition wall fixed to the shield, and having a hole for excavating soil at each of the upper and lower ends of the horizontal wall; and (ii) An approximately donut-shaped rotationally driven excavation soil rotating portion disposed between an inner peripheral surface and the outer peripheral surface of the horizontal wall of the partition wall portion, and a plurality of openings that open toward the axis of the shield A shield excavator according to [1] or [2], further comprising: an excavated soil rotating unit having an excavated soil accommodating chamber.

本発明のシールド掘進機によると、如何なる地盤であっても、ベントナイト等の塑性流動化材や、セメント等の固化材を用いる必要がなく、産業廃棄物を発生させずに、掘削土を円滑にシールド掘進機の後方に送出させ、その後、掘削土を普通土(セメント系材料等が含まれていない通常の土砂)として埋立用の土砂等に利用することができる。
また、シールド掘進機を含む工事設備全体の簡素化及び小型化、及び、工事費の削減を図ることができる。
According to the shield machine of the present invention, it is not necessary to use a plastic fluidizing material such as bentonite or a solidifying material such as cement in any ground, and it is possible to smoothly excavate soil without generating industrial waste. The excavated soil can be sent to the rear of the shield machine and then used as ordinary soil (ordinary soil containing no cementitious material) for landfill.
In addition, the entire construction facility including the shield machine can be simplified and reduced in size, and the construction cost can be reduced.

図1は、本発明のシールド掘進機の一例の要部の断面図である。FIG. 1 is a cross-sectional view of a main part of an example of a shield machine according to the present invention. 図2は、図1中のA−A線で切断したシールド掘進機の掘削土回転送出装置の断面図である。FIG. 2 is a cross-sectional view of the excavated soil rotation and delivery device of the shield machine cut along the line AA in FIG.

本発明のシールド掘進機の一例について、以下、図面を参照して説明する。
図1中、シールド掘進機10は、シールド11と、シールド11の前端付近に配設された掘削カッターヘッド13と、掘削カッターヘッド13の後方に配設された撹拌翼15と、撹拌翼15の後方に配設された掘削土回転送出装置23と、掘削土回転送出装置23の後方に配設されたコンベヤ16を備えている。なお、本明細書において、シールド掘進機が進む方向を「前方」といい、その逆の方向を「後方」という。
シールド11は、地盤を掘削して造成された一次覆工されていないトンネルの内周面からの土圧等に対してシールド掘進機を保護するためのものであり、略円筒形状に形成されている。シールド11は、シールド掘進機10の本体の一部であり、回転せずに前進する。なお、シールド11は、シールド本体、スキンプレート等と称されることもある。
掘削カッターヘッド13は、略円盤状でシールド11と略同一の径を有しかつシールド11と同じ軸線を有する回転軸12によって回転駆動される。掘削カッターヘッド13は、その前方側の面に多数の掘削カッター18を有し、この掘削カッター18によって、地盤を掘削することができる。なお、掘削カッター18は、カッタービット等と称されることもある。
掘削カッターヘッド13は、平板状に形成することもできるが、中央部が前方に膨湾した略ドーム状に形成させると、地盤が掘削されて生じる土砂(掘削土)が、掘削カッターヘッド13の周縁から掘削土取込口19を通じてチャンバー14内に入り易くなり、好ましい。
回転軸12に代えて、掘削カッターヘッド13の周縁に当接する駆動手段を用いることもできる。
Hereinafter, an example of the shield machine of the present invention will be described with reference to the drawings.
In FIG. 1, the shield machine 10 includes a shield 11, an excavation cutter head 13 disposed near the front end of the shield 11, an agitation blade 15 disposed behind the excavation cutter head 13, The excavated soil rotation and delivery device 23 is provided behind, and the conveyor 16 is provided behind the excavated soil rotation and delivery device 23. In the present specification, the direction in which the shield machine advances is called “front”, and the opposite direction is called “rear”.
The shield 11 is for protecting the shield machine against earth pressure or the like from the inner peripheral surface of the tunnel that is formed by excavating the ground and is not primary-covered, and is formed in a substantially cylindrical shape. Yes. The shield 11 is a part of the main body of the shield machine 10 and moves forward without rotating. The shield 11 may be referred to as a shield body, a skin plate, or the like.
The excavation cutter head 13 is rotationally driven by a rotary shaft 12 having a substantially disk shape, substantially the same diameter as the shield 11, and having the same axis as the shield 11. The excavation cutter head 13 has a large number of excavation cutters 18 on its front surface, and the excavation cutter 18 can excavate the ground. The excavation cutter 18 may be referred to as a cutter bit or the like.
The excavation cutter head 13 can be formed in a flat plate shape. However, when the excavation cutter head 13 is formed in a substantially dome shape with the center portion bulging forward, the earth and sand (excavation soil) generated by excavating the ground is It becomes easy to enter the chamber 14 through the excavated soil intake 19 from the periphery, which is preferable.
Instead of the rotary shaft 12, driving means that abuts on the peripheral edge of the excavation cutter head 13 can also be used.

撹拌翼15は、掘削カッターヘッド13の後方に、内部空間であるチャンバー14を介して、配設されている。撹拌翼15は、略円盤状で掘削カッターヘッド13よりも小さな径を有しかつ掘削カッターヘッド13と同じ軸線を中心に回転駆動される。
撹拌翼15は、図1に示す例では平板状に形成されているが、掘削カッターヘッド13と同様に、中央部が前方に膨湾した略ドーム状に形成させてもよい。
撹拌翼15は、その前方側の面に多数の撹拌カッター21を有し、この撹拌カッター21によって、チャンバー14内の掘削土を撹拌して、凝縮及び塑性流動化を図ることができる。一般に、掘削カッターヘッド13による掘削後の掘削土は、土粒子間の空隙が増大するため、掘削前に比べて1.3倍程度の体積に膨らむ。このように膨らんだ掘削土を膨らんだままの状態にしておくと、地盤の掘削面(切羽)の土圧に対抗することができず、切羽の崩壊のおそれがあるため、チャンバー14内で掘削土を凝縮させて密度を高め、これによって切羽の土圧に対抗させ、切羽の崩壊を防止するものである。
なお、撹拌翼15の後方側の面にも、複数の撹拌カッター(図示せず)を設けることができる。この場合、撹拌翼15と傾斜壁17dの間の空間内の掘削土を撹拌して、塑性流動化の程度を高めることができる。
撹拌翼15は、掘削カッターヘッド13の回転とは逆方向に回転させることが好ましい。逆方向に回転させることによって、チャンバー14内における掘削土の凝縮の程度を高めることができるとともに、チャンバー14内における掘削土の撹拌作用を高めて、掘削土の塑性流動化の程度をより高めることができる。
撹拌翼15の回転速度は、掘削カッターヘッド13の回転速度とは独立して、掘削土の凝集及び塑性流動化の観点から、適宜、定めればよい。
The stirring blade 15 is disposed behind the excavation cutter head 13 via a chamber 14 that is an internal space. The stirring blade 15 is substantially disk-shaped and has a smaller diameter than the excavation cutter head 13 and is driven to rotate about the same axis as the excavation cutter head 13.
In the example shown in FIG. 1, the stirring blade 15 is formed in a flat plate shape. However, similarly to the excavation cutter head 13, the stirring blade 15 may be formed in a substantially dome shape with a central portion expanded forward.
The agitating blade 15 has a large number of agitating cutters 21 on the front surface thereof, and the agitating cutter 21 agitates the excavated soil in the chamber 14 to achieve condensation and plastic fluidization. In general, the excavated soil after excavation by the excavating cutter head 13 swells to a volume about 1.3 times that before excavation because the voids between the soil particles increase. If the swelled excavated soil is left in an inflated state, it cannot resist the earth pressure on the excavation surface (face) of the ground, and the face may collapse, so excavation is performed in the chamber 14. The soil is condensed to increase the density, thereby resisting the earth pressure of the face and preventing the face from collapsing.
A plurality of stirring cutters (not shown) can also be provided on the rear surface of the stirring blade 15. In this case, the excavated soil in the space between the stirring blade 15 and the inclined wall 17d can be stirred to increase the degree of plastic fluidization.
The stirring blade 15 is preferably rotated in the direction opposite to the rotation of the excavation cutter head 13. By rotating in the reverse direction, the degree of condensation of the excavated soil in the chamber 14 can be increased, and the agitation action of the excavated soil in the chamber 14 can be enhanced to further increase the degree of plastic fluidization of the excavated soil. Can do.
The rotational speed of the agitating blade 15 may be determined as appropriate from the viewpoint of agglomeration of the excavated soil and plastic fluidization independently of the rotational speed of the excavating cutter head 13.

撹拌翼15の径は、シールド11の前端部分の形状に合わせて定められる。好ましくは、シールド11の前端部分の内周面は、掘削カッターヘッド13の周縁付近から撹拌翼15の周縁付近に向かって縮径する円錐台形状のガイド面として形成される。この場合、チャンバー14内における掘削土の凝集の程度をより高めて、切羽の土圧に対抗する作用を高めることができる。
撹拌翼15は、例えば、シールド11と同じ軸線を有する回転軸(図示せず)によって回転駆動される。
掘削土回転送出装置23は、撹拌翼15の後方に配設されている。掘削土回転送出装置23は、掘削土をシールド11の前後方向には移動させずにシールド11の内周面に沿って下部から上部に回転移動させかつ当該上部に到達したときに後方に落下させるように構成されている。このように構成することによって、シールド掘進機の小型化(特に全長の増大の回避)を図りつつ、切羽の土圧に対抗するための前方部分と、切羽の土圧から解放され、掘削土をコンベヤ16で送出するための後方部分との境界を形成することができる。
具体的には、掘削土回転送出装置23は、シールド11に固定された隔壁部17と、シールド11の内周面と隔壁部17の間に配設された、略ドーナツ状の回転駆動される掘削土回転部22とから構成されている。
The diameter of the stirring blade 15 is determined according to the shape of the front end portion of the shield 11. Preferably, the inner peripheral surface of the front end portion of the shield 11 is formed as a frustoconical guide surface whose diameter decreases from the vicinity of the periphery of the excavation cutter head 13 toward the vicinity of the periphery of the stirring blade 15. In this case, the degree of agglomeration of the excavated soil in the chamber 14 can be further increased to enhance the action against the earth pressure of the face.
The stirring blade 15 is rotationally driven by a rotating shaft (not shown) having the same axis as that of the shield 11, for example.
The excavated soil rotation delivery device 23 is disposed behind the stirring blade 15. The excavated soil rotation delivery device 23 does not move the excavated soil in the front-rear direction of the shield 11 but rotates it from the lower part to the upper part along the inner peripheral surface of the shield 11 and drops it backward when it reaches the upper part. It is configured as follows. By constructing in this way, while reducing the size of the shield machine (especially avoiding an increase in the overall length), it is freed from the front part for combating the earth pressure of the face and the earth pressure of the face. A boundary with the rear portion for delivery on the conveyor 16 can be formed.
Specifically, the excavated soil rotation and delivery device 23 is driven to rotate in a substantially donut shape disposed between the partition wall 17 fixed to the shield 11 and the inner peripheral surface of the shield 11 and the partition wall 17. It is comprised from the excavated soil rotating part 22.

このうち、隔壁部17は、シールド11の内部空間を前方側の空間と後方側の空間に分けて遮断するためにシールド11の内面に固着されたものであり、シールド11の内周面11aからシールド11の軸線方向に垂直に延びる略円環形状の垂直壁17aと、垂直壁17aの内方側の端またはその近傍で垂直に折曲してシールド11のガイド面11bの内方側の端付近に達する円筒形状の水平壁17bと、水平壁17bの前端の上端付近から後端の下端付近に達する傾斜壁17dとからなるとともに、水平壁17bの上端及び下端の各々に掘削土落下用孔17c、17eを有するものである。
傾斜壁17dの前方側の空間と後方側の空間は、傾斜壁17d及び掘削土回転部22の仕切壁22d(図2参照)によって隔てられている。そのため、傾斜壁17dと撹拌翼15の間の空間に収容された掘削土は、掘削土落下用孔17eにて落下した後、掘削土回転部22によってシールド11内の下部から上部に回転移動し、次いで、当該上部から掘削土落下用孔17cを通じて落下することになる。
Among these, the partition wall portion 17 is fixed to the inner surface of the shield 11 so as to divide the inner space of the shield 11 into a front space and a rear space, and is separated from the inner peripheral surface 11 a of the shield 11. A substantially annular vertical wall 17a extending perpendicularly to the axial direction of the shield 11 and an end on the inner side of the guide surface 11b of the shield 11 by bending vertically at or near the inner end of the vertical wall 17a A cylindrical horizontal wall 17b reaching the vicinity and an inclined wall 17d reaching from the vicinity of the upper end of the front end of the horizontal wall 17b to the vicinity of the lower end of the rear end, and holes for excavating soil fall at the upper end and the lower end of the horizontal wall 17b. 17c and 17e.
The space on the front side and the space on the rear side of the inclined wall 17d are separated by the inclined wall 17d and the partition wall 22d (see FIG. 2) of the excavated soil rotating unit 22. Therefore, the excavated soil accommodated in the space between the inclined wall 17d and the stirring blade 15 falls through the excavated soil dropping hole 17e, and then rotates and moves from the lower portion to the upper portion in the shield 11 by the excavated soil rotating portion 22. Then, it falls from the upper part through the excavation soil dropping hole 17c.

掘削土回転部22は、シールド11の内周面に沿って形成された円筒形状の水平壁22aと、水平壁22aの後端で垂直に折曲して水平壁17bの近傍まで延びる垂直壁22bと、水平壁22aの前端で鈍角に折曲して、シールド11の内面に沿って水平壁17bの近傍まで延びる傾斜壁22cと、水平壁22aと垂直壁22bと傾斜壁22cとで形成された溝を区画して掘削土収容室を形成するための、これら各部22a〜22cに対して垂直に延びる壁である複数の仕切壁22d(図2参照)とからなる略ドーナツ状のものである。掘削土回転部22は、回転軸12と同じ軸線を回転中心として回転駆動される。
複数の仕切壁22dは、水平壁22aを底としてシールド11の軸線の方向に向けて開口した複数の掘削土収容室を形成するためのものである。仕切壁22dの高さは、垂直壁22b及び傾斜壁22cの高さと同じである。なお、垂直壁22b、傾斜壁22c及び仕切壁22dの各部の内方側の端部は、隔壁部17の水平壁17bに当接せずに回転しうるように、水平壁17bの近傍に位置している。
掘削土回転部22を回転駆動させるための回転駆動装置の例としては、シールド11の内周面と水平壁部22aの外周面とに回転駆動用の軌道を設けたものや、垂直壁17aを有さずに水平壁17bのみがシールド11に固着されており、垂直壁22bの後方側の面に取り付けた支持体をシールド11の軸線と同じ軸線を回転中心として回転駆動させるもの等が挙げられる。
掘削土収容室の数は、特に限定されないが、好ましくは4〜20、より好ましくは6〜12である。なお、図2に示す例において、掘削土収容室の数は、8である。
掘削土収容室の底部である水平壁部22aには、外部から圧縮空気を掘削土収容室の中に吹き込むための複数の孔を設けることができる。この場合、掘削土収容室がシールド11内の上端に達したときに圧縮空気を吹き込むように構成することによって、掘削土収容室内の掘削土を速やかに落下させることができる。
掘削土収容部22の回転速度は、単位時間当りの掘削土の生成量を考慮して、適宜調整すればよい。
コンベヤ16は、掘削土落下用孔17cを通じて落下した掘削土を、後方に送出するためのものである。コンベヤ16の例としては、スクリューコンベヤ等が挙げられる。
The excavated soil rotating portion 22 includes a cylindrical horizontal wall 22a formed along the inner peripheral surface of the shield 11, and a vertical wall 22b that is bent vertically at the rear end of the horizontal wall 22a and extends to the vicinity of the horizontal wall 17b. And an inclined wall 22c that is bent at an obtuse angle at the front end of the horizontal wall 22a and extends to the vicinity of the horizontal wall 17b along the inner surface of the shield 11, and a horizontal wall 22a, a vertical wall 22b, and an inclined wall 22c. It is a substantially donut-shaped object composed of a plurality of partition walls 22d (see FIG. 2), which are walls extending perpendicularly to the respective portions 22a to 22c, for dividing the grooves to form excavated soil accommodation chambers. The excavated soil rotating unit 22 is driven to rotate about the same axis as the rotating shaft 12.
The plurality of partition walls 22d are for forming a plurality of excavated soil accommodation chambers that open in the direction of the axis of the shield 11 with the horizontal wall 22a as the bottom. The height of the partition wall 22d is the same as the height of the vertical wall 22b and the inclined wall 22c. The inner end of each part of the vertical wall 22b, the inclined wall 22c, and the partition wall 22d is positioned in the vicinity of the horizontal wall 17b so that it can rotate without contacting the horizontal wall 17b of the partition wall part 17. is doing.
Examples of the rotation driving device for rotating the excavated soil rotating unit 22 include a rotation driving track provided on the inner peripheral surface of the shield 11 and the outer peripheral surface of the horizontal wall portion 22a, or a vertical wall 17a. Only the horizontal wall 17b is fixed to the shield 11 without being provided, and the support attached to the rear surface of the vertical wall 22b is driven to rotate about the same axis as the axis of the shield 11. .
Although the number of excavation soil accommodation chambers is not specifically limited, Preferably it is 4-20, More preferably, it is 6-12. In the example shown in FIG. 2, the number of excavated soil accommodation chambers is eight.
A plurality of holes for blowing compressed air from the outside into the excavated soil accommodation chamber can be provided in the horizontal wall portion 22a which is the bottom of the excavated soil accommodation chamber. In this case, the excavated soil in the excavated soil accommodation chamber can be quickly dropped by configuring so that the compressed air is blown when the excavated soil accommodating chamber reaches the upper end in the shield 11.
The rotational speed of the excavated soil container 22 may be appropriately adjusted in consideration of the amount of excavated soil generated per unit time.
The conveyor 16 is for sending the excavated soil dropped through the excavated soil dropping hole 17c backward. Examples of the conveyor 16 include a screw conveyor.

図1に示すシールド掘進機10における地盤の掘削作業は、次のように行なわれる。
まず、掘削カッターヘッド13の掘削カッター18によって地盤が掘削され、掘削土が生じる。この掘削土は、シールド11の前端と掘削カッターヘッド13の周縁の間の開口部である掘削土取込口19にて、チャンバー14内に取り込まれる。取り込まれた掘削土は、チャンバー14内で撹拌され、凝縮(高密度化)及び塑性流動化(高流動化)される。
その後、チャンバー14内の掘削土は、撹拌翼15とシールド11の間の開口部である取込空間(取込口)20にて、撹拌翼15の後方の空間に取り込まれる。取り込まれた掘削土は、隔壁部17の水平壁17bに設けられた掘削土落下用孔17eを通じて、掘削土回転部22の掘削土収容室の中に落下する。
次いで、図2に示すように、掘削土回転部22の掘削土収容室の中に収容された掘削土24は、図中の矢印で示す方向に掘削土回転部22が回転することによって、シールド11内の下部から上部に回転移動し、該上部に達した時に掘削土落下用孔17c(図1参照)を通じて落下して、傾斜壁17dの上面に沿って滑り落ち、コンベヤ16の構成部分である円筒部に設けた孔である取込口16aに入り、コンベヤ16のスクリューの回転によって後方に送出される。
The ground excavation work in the shield machine 10 shown in FIG. 1 is performed as follows.
First, the ground is excavated by the excavation cutter 18 of the excavation cutter head 13 to generate excavated soil. This excavated soil is taken into the chamber 14 at an excavated soil intake 19 which is an opening between the front end of the shield 11 and the peripheral edge of the excavated cutter head 13. The taken excavated soil is stirred in the chamber 14 and condensed (densified) and plastic fluidized (highly fluidized).
Thereafter, the excavated soil in the chamber 14 is taken into the space behind the stirring blade 15 in the intake space (intake port) 20 that is an opening between the stirring blade 15 and the shield 11. The taken excavated soil falls into the excavated soil accommodating chamber of the excavated soil rotating unit 22 through the excavated soil dropping hole 17e provided in the horizontal wall 17b of the partition wall portion 17.
Next, as shown in FIG. 2, the excavated soil 24 accommodated in the excavated soil accommodating chamber of the excavated soil rotating unit 22 is shielded by the excavated soil rotating unit 22 rotating in the direction indicated by the arrow in the figure. 11 is rotated from the lower part to the upper part, and when it reaches the upper part, it falls through the excavation soil dropping hole 17c (see FIG. 1) and slides down along the upper surface of the inclined wall 17d. It enters the intake port 16a which is a hole provided in a certain cylindrical portion, and is sent backward by the rotation of the screw of the conveyor 16.

シールド掘進機10の内部空間においては、地盤の掘削面(切羽)の土圧に対抗するための凝集した掘削土を収容した部分(凝集土の部分)と、該土圧から解放され後方に送出される、土粒子間の間隔が広がった掘削土を収容した部分(非凝集土の部分)とが存在する。このうち、凝集土の部分は、チャンバー14内の空間と、撹拌翼15と傾斜壁17dの間の空間と、掘削土回転部22で下部から上部に掘削土を移動させる過程の掘削土収容室内の空間とからなる。非凝集土の部分は、掘削土回転部22で上部に達して下方に落下する掘削土を収容している掘削土収容室内の空間と、コンベヤ16内の空間等からなる。本発明では、隔壁部17と掘削土回転部22とからなる掘削土回転送出装置23を設けているため、シールド掘進機10の内部空間に存在する掘削土を凝集土の部分と非凝集土の部分とに分けることができ、切羽の土圧に対抗しつつ、掘削土を均一な供給速度で円滑に
後方に送出することができる。
In the internal space of the shield machine 10, a portion containing the agglomerated excavated soil (a portion of the agglomerated soil) that opposes the earth pressure on the excavation surface (face) of the ground, and released from the earth pressure and sent backward There is a portion (a portion of non-aggregated soil) containing excavated soil in which the interval between the soil particles is widened. Among these, the agglomerated soil part includes the space in the chamber 14, the space between the stirring blade 15 and the inclined wall 17 d, and the excavated soil accommodating chamber in the process of moving the excavated soil from the lower part to the upper part by the excavated earth rotating unit 22. It consists of a space. The portion of the non-aggregated soil includes a space in the excavated soil accommodation chamber that accommodates the excavated soil that reaches the upper portion and falls downward by the excavated soil rotating unit 22, a space in the conveyor 16, and the like. In the present invention, since the excavated soil rotation sending device 23 composed of the partition wall portion 17 and the excavated soil rotating unit 22 is provided, the excavated soil existing in the inner space of the shield machine 10 is divided into the agglomerated soil portion and the non-agglomerated soil portion. The excavated soil can be smoothly fed backward at a uniform supply speed while resisting the earth pressure of the face.

10 シールド掘進機
11 シールド
11a 内周面
11b 円錐台形状のガイド面
12 回転軸
13 掘削カッターヘッド
14 チャンバー(内部空間)
15 撹拌翼
16 コンベヤ
16a 取込口
17 隔壁部
17a 垂直壁
17b 水平壁
17c 掘削土落下用孔
17d 傾斜壁
17e 掘削土落下用孔
18 掘削カッター
19 掘削土取込口
20 取込空間(取込口)
21 撹拌カッター
22 掘削土回転部
23 掘削土回転送出装置
24 掘削土
DESCRIPTION OF SYMBOLS 10 Shield machine 11 Shield 11a Inner peripheral surface 11b Frustum-shaped guide surface 12 Rotating shaft 13 Excavation cutter head 14 Chamber (internal space)
DESCRIPTION OF SYMBOLS 15 Stirring blade 16 Conveyor 16a Intake port 17 Partition part 17a Vertical wall 17b Horizontal wall 17c Excavation soil fall hole 17d Inclined wall 17e Excavation soil fall hole 18 Excavation cutter 19 Excavation soil intake 20 Intake space (intake) )
21 Stirring Cutter 22 Excavating Soil Rotating Unit 23 Excavating Soil Rotating Delivery Device 24 Excavating Soil

Claims (3)

略円筒形状のシールドと、
該シールドの前端付近に配設された、略円盤状で前記シールドと略同一の径を有しかつ回転駆動される、地盤を掘削するための掘削カッターヘッドと、
該掘削カッターヘッドの後方に適宜の距離を隔てて配設された、略円盤状で前記掘削カッターヘッドよりも小さな径を有しかつ回転駆動される、掘削土を撹拌するための撹拌翼と、
該撹拌翼の後方に配設された掘削土回転送出装置であって、掘削土を前記シールドの内周面に沿って下部から上部に回転移動させかつ当該上部に到達したときに落下させて後方に移動させるように構成した掘削土回転送出装置と、
該掘削土回転送出装置によって落下した掘削土を後方に送出するためのコンベヤと、
を備えていることを特徴とするシールド掘進機。
A substantially cylindrical shield;
An excavation cutter head for excavating the ground, which is disposed in the vicinity of the front end of the shield, has a substantially disc shape, has substantially the same diameter as the shield, and is driven to rotate;
An agitating blade for agitating the excavated soil, which is disposed behind the excavating cutter head at an appropriate distance, is substantially disk-shaped and has a smaller diameter than the excavating cutter head, and is driven to rotate;
The excavated soil rotating and feeding device disposed behind the agitating blade, wherein the excavated soil is rotated from the lower part to the upper part along the inner peripheral surface of the shield and dropped when reaching the upper part. Excavating soil rotation and delivery device configured to move to,
A conveyor for delivering the excavated soil dropped by the excavated soil rotation delivery device to the rear;
A shield machine characterized by comprising
前記シールドの前端の内周面は、前記掘削カッターヘッドの周縁付近から前記撹拌翼の周縁付近に向かって縮径する円錐台形状のガイド面として形成されている請求項1に記載のシールド掘進機。   2. The shield machine according to claim 1, wherein an inner peripheral surface of the front end of the shield is formed as a frustoconical guide surface whose diameter decreases from the vicinity of the periphery of the excavation cutter head toward the periphery of the stirring blade. . 前記掘削土回転送出装置は、
前記シールドと同じ軸線を有しかつ前記シールドの内径よりも小さな外径を有する略円筒形状の水平壁と、該水平壁の前端の上端付近から後端の下端付近に跨る傾斜壁とからなり、かつ、前記水平壁の上端及び下端の各々に掘削土落下用孔を有する、前記シールドに固定された隔壁部と、
前記シールドの内周面と前記隔壁部の水平壁の外周面の間に配設された、略ドーナツ状の回転駆動される掘削土回転部であって、前記シールドの軸線の方向に向けて開口した複数の掘削土収容室を有する掘削土回転部と、
を備えている請求項1又は2に記載のシールド掘進機。
The excavated soil rotation delivery device is:
The horizontal wall having a substantially cylindrical shape having the same axis as the shield and having an outer diameter smaller than the inner diameter of the shield, and an inclined wall spanning from the vicinity of the upper end of the front end of the horizontal wall to the vicinity of the lower end of the rear end, And the partition part fixed to the shield which has a hole for excavation soil fall in each of the upper end and the lower end of the horizontal wall,
An excavation soil rotating part, which is disposed between the inner peripheral surface of the shield and the outer peripheral surface of the horizontal wall of the partition wall, and is driven to rotate substantially in a donut shape, and is open toward the axis of the shield. Excavated soil rotating part having a plurality of excavated soil storage chambers,
The shield machine according to claim 1 or 2, further comprising:
JP2009038216A 2009-02-20 2009-02-20 Shield machine Pending JP2010190008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038216A JP2010190008A (en) 2009-02-20 2009-02-20 Shield machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038216A JP2010190008A (en) 2009-02-20 2009-02-20 Shield machine

Publications (1)

Publication Number Publication Date
JP2010190008A true JP2010190008A (en) 2010-09-02

Family

ID=42816328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038216A Pending JP2010190008A (en) 2009-02-20 2009-02-20 Shield machine

Country Status (1)

Country Link
JP (1) JP2010190008A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150051949A (en) * 2015-03-26 2015-05-13 한국생산기술연구원 DTH drilling machine discharging rock particles effectively and, drilling methods using the same
JP2016211198A (en) * 2015-05-02 2016-12-15 株式会社冨士機 Recovery system for sediment and other fallen objects
CN109139024A (en) * 2018-09-29 2019-01-04 华东交通大学 Flap arrangement and its working method in a kind of shield soil cabin
CN110424979A (en) * 2019-08-26 2019-11-08 安徽建筑大学 Simulate the indoor model conduit jacking of earth pressure balanced jacking construction

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150051949A (en) * 2015-03-26 2015-05-13 한국생산기술연구원 DTH drilling machine discharging rock particles effectively and, drilling methods using the same
KR101652991B1 (en) * 2015-03-26 2016-09-09 한국생산기술연구원 DTH drilling machine discharging rock particles effectively and, drilling methods using the same
CN106014261A (en) * 2015-03-26 2016-10-12 韩国生产技术研究院 Dth drilling machine discharging rock particles effectively and, drilling methods using the same
JP2016211198A (en) * 2015-05-02 2016-12-15 株式会社冨士機 Recovery system for sediment and other fallen objects
CN109139024A (en) * 2018-09-29 2019-01-04 华东交通大学 Flap arrangement and its working method in a kind of shield soil cabin
CN109139024B (en) * 2018-09-29 2023-11-14 华东交通大学 Gate device in shield soil cabin and working method thereof
CN110424979A (en) * 2019-08-26 2019-11-08 安徽建筑大学 Simulate the indoor model conduit jacking of earth pressure balanced jacking construction

Similar Documents

Publication Publication Date Title
AU2020200476B2 (en) Hydro excavation vacuum apparatus having deceleration vessels and methods for hydro excavating a site
JP2010190008A (en) Shield machine
JP3399666B2 (en) Ground improvement method and ground improvement equipment used for it
JP2006299759A (en) Crushing mechanism attached shield boring machine
CN210676335U (en) Mining land reclamation restoration breaker
JP2008215044A (en) Soil improving plant and pipe backfill method using soil improving plant
JP4200167B2 (en) Deep mixing method
JPH09276674A (en) Method for dissolving fine powder and aparatus therefor
JP7221887B2 (en) soil improvement equipment
JP3681663B2 (en) Self-propelled soil improvement machine and soil improvement material supply device used therefor
JP2014163218A (en) Shield machine and shield method
JP3375573B2 (en) Soil improvement material supply device and self-propelled soil improvement machine
JP6432771B2 (en) Excavated soil treatment system and shield excavator
JP5155930B2 (en) Underground wall excavator and impermeable wall construction method using the same
JPH0144634Y2 (en)
JP2009150157A (en) Construction device and method for soil cement column
JP3509768B2 (en) Excavator
JP3333463B2 (en) Self-propelled soil improvement machine
JPS5835759Y2 (en) Shield type tunnel excavator
JP3203482B2 (en) Sediment transport equipment
JP3711612B2 (en) The earth removal mechanism of shield machine
JP2000096553A (en) Method of and device for crushing and mixing of soil
JP4451758B2 (en) Soil improvement machine
JP2005313021A (en) Rotary crusher of soil improving machine
JPH0967831A (en) Improvement material supply device and mixer of improvement material and earth and sand