JP2010189574A - Method for producing aqueous dispersion liquid crosslink-curable resin composition, aqueous dispersion liquid crosslink-curable resin composition, method for producing porous material, and porous material - Google Patents

Method for producing aqueous dispersion liquid crosslink-curable resin composition, aqueous dispersion liquid crosslink-curable resin composition, method for producing porous material, and porous material Download PDF

Info

Publication number
JP2010189574A
JP2010189574A JP2009036852A JP2009036852A JP2010189574A JP 2010189574 A JP2010189574 A JP 2010189574A JP 2009036852 A JP2009036852 A JP 2009036852A JP 2009036852 A JP2009036852 A JP 2009036852A JP 2010189574 A JP2010189574 A JP 2010189574A
Authority
JP
Japan
Prior art keywords
resin composition
curable resin
water
producing
porous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009036852A
Other languages
Japanese (ja)
Inventor
Yoshihisa Kato
善久 加藤
Tomiya Abe
富也 阿部
Seikichi Tanno
清吉 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2009036852A priority Critical patent/JP2010189574A/en
Publication of JP2010189574A publication Critical patent/JP2010189574A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an aqueous dispersion liquid crosslink-curable resin composition which is a material formable of a porous thin film layer having fine pores, to provide an aqueous dispersion liquid crosslink-curable resin composition, to provide a method for producing a porous material, and to provide the porous material. <P>SOLUTION: In the method for producing an aqueous dispersion liquid crosslink-curable resin composition, obtained by adding water in an amount of ≥10 mass% to a liquid crosslink-curable resin composition, 0.1-5 mass% of hydrophilic fine particles having an average particle diameter of ≤1 μm is added to the liquid crosslink-curable resin composition and the resulting mixture is stirred. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、親水性微粒子を用いて微細空孔を形成するための水分散液状架橋硬化型樹脂組成物の製造方法及び水分散液状架橋硬化型樹脂組成物、ならびに多孔質物の製造方法および多孔質物に関するものである。   The present invention relates to a method for producing a water-dispersed liquid cross-linked curable resin composition for forming fine pores using hydrophilic fine particles, a water-dispersed liquid cross-linked curable resin composition, a method for producing a porous material, and a porous material It is about.

近年、医療分野をはじめとする精密電子機器類や通信機器類の小型化や高密度実装化が進むなかで、これらに使用される電線・ケーブルもますます細径化が図られている。さらに信号線等では、伝送信号の一層の高速化を求める傾向が顕著であり、これに使用される電線の絶縁体層を薄くかつ可能な限り低誘電率化することにより伝送信号の高速化を図ることが望まれている。   In recent years, with the progress of miniaturization and high-density mounting of precision electronic devices and communication devices such as medical fields, the diameters of electric wires and cables used for these devices have been further reduced. Furthermore, in signal lines and the like, the tendency to further increase the speed of transmission signals is remarkable, and the speed of transmission signals can be increased by reducing the dielectric constant as much as possible and making the insulator layer of the wires used for this thin. It is desired to plan.

この絶縁体には従来、ポリエチレンやふっ素樹脂などの誘電率の低い絶縁材料を発泡させたものが使われている。発泡絶縁体層の形成には、予め発泡させたフィルムを導体上に巻き付ける方法や押出方式が知られており、特に押出方式が広く用いられている。   Conventionally, an insulating material having a low dielectric constant, such as polyethylene or fluorine resin, is used as the insulator. For forming the foamed insulator layer, a method of winding a film previously foamed on a conductor and an extrusion method are known, and the extrusion method is particularly widely used.

発泡を形成する方法としては、大きく物理的な発泡方法と化学的な発泡方法に分けられる。   Methods for forming foaming can be broadly divided into physical foaming methods and chemical foaming methods.

物理的な発泡方法としては、液体フロンのような揮発性発泡用液体を溶融樹脂中に注入し、その気化圧により発泡させる方法や窒素ガス、炭酸ガスなど押出機中の溶融樹脂に直接気泡形成用ガスを圧入させることにより一様に分布した細胞状の微細な独立気泡体を樹脂中に発生させる方法などがある(特許文献1)。   As a physical foaming method, a volatile foaming liquid such as liquid chlorofluorocarbon is injected into the molten resin and foamed by its vaporization pressure, or bubbles are formed directly in the molten resin in the extruder such as nitrogen gas or carbon dioxide gas. For example, there is a method of generating fine cellular closed cells uniformly distributed in a resin by press-fitting a working gas (Patent Document 1).

化学的な発泡方法としては、樹脂中に発泡剤を分散混合した状態で成形し、その後熱を加えることにより発泡剤の分解反応を発生させ、分解により発生するガスを利用して発泡させることがよく知られている(特許文献2)。   As a chemical foaming method, a foaming agent is dispersed and mixed in a resin, and after that, heat is applied to cause a decomposition reaction of the foaming agent, and foaming is performed using a gas generated by the decomposition. It is well known (Patent Document 2).

特開2003−26846号公報JP 2003-26846 A 特開平11−176262号公報JP 11-176262 A

ところで、溶融樹脂中に揮発性発泡用液体を注入する方法では、気化圧が強く、気泡の微細形成が難しく薄肉成形に限界がある。また、揮発性発泡用液体の注入速度が遅いために、高速製造化が難しく、生産性に劣るという問題もある。さらに、押出機中で直接気泡形成用ガスを圧入する方法は、細径薄肉押出形成に限界があること、安全面で特別な設備や技術を必要とするため、生産性に劣ることや製造コストの上昇招いてしまう問題がある。   By the way, in the method of injecting the volatile foaming liquid into the molten resin, the vaporization pressure is strong, and fine formation of bubbles is difficult, and there is a limit to thin-wall molding. Moreover, since the injection | pouring speed | velocity | rate of the volatile foaming liquid is slow, there also exists a problem that high-speed manufacture is difficult and productivity is inferior. Furthermore, the method of directly injecting the gas for forming bubbles in the extruder is limited in the formation of small-diameter and thin-walled extrusion, and requires special equipment and technology for safety, resulting in poor productivity and manufacturing costs. There is a problem that will lead to an increase.

一方、化学発泡方法は、予め樹脂中に発泡剤を混練し、分散混合し、成形加工後に熱により発泡剤を反応分解させて発生したガスにより発泡をさせるため、樹脂の成形加工温度は、発泡剤の分解温度より低く保持しなければならない問題がある。さらに、素線の径が細くなると、押出被覆では樹脂圧により断線が起こりやすく、高速化が難しくなるという別の問題もある。   On the other hand, in the chemical foaming method, the foaming agent is kneaded in advance in the resin, dispersed and mixed, and after the molding process, the foaming agent is reacted with heat to cause foaming by the generated gas. There is a problem that it must be kept below the decomposition temperature of the agent. Furthermore, when the diameter of the wire becomes thin, there is another problem that the extrusion coating tends to cause disconnection due to the resin pressure, and it is difficult to increase the speed.

また、フロン、ブタン、炭酸ガス等を用いる物理発泡は環境負荷が大きい問題や、化学発泡に用いる発泡剤は価格が高いといった問題がある。   In addition, physical foaming using chlorofluorocarbon, butane, carbon dioxide gas and the like has a problem of a large environmental load, and a foaming agent used for chemical foaming has a problem of high cost.

本発明は、上記の問題点を解決するために、種々検討した結果得られたものであり、その目的は、環境にやさしく容易に微細な空孔を有する多孔質薄膜層の形成ができる材料である水分散液状架橋硬化型樹脂組成物の製造方法及び水分散液状架橋硬化型樹脂組成物、ならびに多孔質物の製造方法および多孔質物を提供するものである。   The present invention has been obtained as a result of various studies in order to solve the above-mentioned problems, and the object thereof is a material that can easily form a porous thin film layer having fine pores that is environmentally friendly. The present invention provides a method for producing a certain water-dispersed liquid cross-linked curable resin composition, a water-dispersed liquid cross-linked curable resin composition, a method for producing a porous material, and a porous material.

上記目的を達成するために請求項1の発明は、液状架橋硬化型樹脂組成物に10mass%以上の水を添加してなる水分散液状架橋硬化型樹脂組成物の製造方法において、前記液状架橋硬化型樹脂組成物に、平均粒径1μm以下の親水性微粒子を0.1から5mass%添加して撹拌処理することを特徴とする水分散液状架橋硬化型樹脂組成物の製造方法である。   In order to achieve the above object, the invention according to claim 1 is a method for producing a water-dispersed liquid cross-linked curable resin composition comprising 10% by mass or more of water added to a liquid cross-linked curable resin composition. In this method, 0.1 to 5 mass% of hydrophilic fine particles having an average particle size of 1 μm or less are added to the mold resin composition, followed by stirring treatment.

請求項2の発明は、親水性微粒子が、アクリルアミド、メタクリル酸メチル、アクリル酸エチルなどの親水性モノマを合成した微粒子からなる請求項1記載の水分散液状架橋硬化型樹脂組成物の製造方法である。   The invention according to claim 2 is the method for producing an aqueous dispersion liquid cross-linked curable resin composition according to claim 1, wherein the hydrophilic fine particles are fine particles obtained by synthesizing hydrophilic monomers such as acrylamide, methyl methacrylate, ethyl acrylate and the like. is there.

請求項3の発明は、請求項1又は2の製造方法により製造されたことを特徴とする水分散液状架橋硬化型樹脂組成物である。   The invention of claim 3 is an aqueous dispersion liquid cross-linked curable resin composition produced by the production method of claim 1 or 2.

請求項4の発明は、請求項1又は2より得られる水分散液状架橋硬化型樹脂組成物を架橋硬化した後、加熱により水を除去して形成したことを特徴とする多孔質物である。   The invention of claim 4 is a porous material formed by removing water by heating after crosslinking and curing the water-dispersed liquid cross-linked resin composition obtained from claim 1 or 2.

請求項5の発明は、請求項1又は2より得られる水分散液状架橋硬化型樹脂組成物を架橋硬化した後、加熱により水を除去して形成したことを特徴とする多孔質物の製造方法である。   The invention of claim 5 is a method for producing a porous material, characterized in that it is formed by crosslinking and curing the water-dispersed liquid cross-linked curable resin composition obtained from claim 1 or 2, and then removing water by heating. is there.

請求項6の発明は、加熱にマイクロ波加熱を用いる請求項5記載の多孔質物の製造方法である。   Invention of Claim 6 is a manufacturing method of the porous material of Claim 5 which uses a microwave heating for a heating.

請求項7の発明は、請求項4〜6のいずれかに記載の方法により製造されたことを特徴とする多孔質物である。   The invention according to claim 7 is a porous material produced by the method according to any one of claims 4 to 6.

本発明によれば、水を添加してなる液状架橋硬化型樹脂組成物に親水性微粒子を組み合わせることで、水を微分散させることができ、硬化物を加熱により脱水させることで、容易に微細な空孔をもつ多孔質物が得られるという優れた効果を発揮するものである。   According to the present invention, water can be finely dispersed by combining hydrophilic fine particles with a liquid cross-linking curable resin composition to which water is added, and the cured product can be easily finely dehydrated by heating. It exhibits an excellent effect that a porous material having various pores can be obtained.

本発明の多孔質膜被覆電線の横断面図である。It is a cross-sectional view of the porous membrane-coated electric wire of the present invention. 本発明の多孔質膜被覆電線を用いた多層被覆ケーブルの横断面図である。It is a cross-sectional view of a multilayer coated cable using the porous membrane-coated electric wire of the present invention. 本発明の多孔質膜被覆電線を用いた同軸ケーブルの横断面図である。It is a cross-sectional view of a coaxial cable using the porous membrane-coated electric wire of the present invention. 本発明の実施例1により作製した厚さ200μmのフィルム断面を200倍に拡大した顕微鏡写真である。It is the microscope picture which expanded the 200-micrometer-thick film cross section produced by Example 1 of this invention 200 times. 本発明の実施例2により作製した厚さ200μmのフィルム断面を1000倍に拡大した顕微鏡写真である。It is the microscope picture which expanded the film cross section of 200 micrometers in thickness produced by Example 2 of this invention 1000 times. 本発明の実施例3により作製した厚さ200μmのフィルム断面を1000倍に拡大した顕微鏡写真である。It is the microscope picture which expanded the film cross section of 200 micrometers in thickness produced by Example 3 of this invention 1000 time. 本発明の実施例1により作製した厚さ200μmのフィルム断面の空孔部を5000倍に拡大した顕微鏡写真である。It is the microscope picture which expanded the hole part of the 200-micrometer-thick film cross section produced by Example 1 of this invention 5000 times. 比較例1により作製した厚さ200μmのフィルム断面を100倍に拡大した顕微鏡写真である。2 is a photomicrograph of a cross section of a 200 μm thick film produced in Comparative Example 1 magnified 100 times. 比較例3により作製した厚さ200μmのフィルム断面を100倍に拡大した顕微鏡写真である。4 is a photomicrograph at 100 times magnification of a 200 μm thick film cross section produced by Comparative Example 3. FIG. マイクロ波加熱と120℃オーブン加熱による脱水効率を比較した図である。It is the figure which compared the dehydration efficiency by microwave heating and 120 degreeC oven heating.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

先ず、図1〜図3により、本発明の含水吸水性ポリマ含有樹脂組成物が適用される多孔質膜被覆電線、多層被覆ケーブル、同軸ケーブルを説明する
図1は、多孔質膜被覆電線の横断面図であり、複数本の導体3の外周に微細な空孔2を有する含水吸水性ポリマ含有樹脂組成物からなる絶縁被覆層1を被覆して多孔質膜被覆電線10が形成される。
First, a porous membrane-coated electric wire, a multilayer coated cable, and a coaxial cable to which the water-containing water-absorbing polymer-containing resin composition of the present invention is applied will be described with reference to FIGS. 1 to 3. FIG. FIG. 3 is a plan view, and a porous membrane-covered electric wire 10 is formed by covering an insulating coating layer 1 made of a water-absorbing polymer-containing resin composition having fine pores 2 on the outer periphery of a plurality of conductors 3.

図2は、図1に示した多孔質膜被覆電線10を用いた多層被覆ケーブルの横断面図であり、多孔質膜被覆電線10の外周にスキン層又は被覆層4を形成して多層被覆ケーブル11を形成したものである。   FIG. 2 is a cross-sectional view of a multilayer coated cable using the porous membrane-covered electric wire 10 shown in FIG. 1, in which a skin layer or a coating layer 4 is formed on the outer periphery of the porous membrane-coated electric wire 10. 11 is formed.

図3は、図1に示した多孔質膜被覆電線10を用いた同軸ケーブルの横断面図であり、多孔質膜被覆電線10の導体3を内側導体とし、多孔質膜被覆電線10の外周にシールド線又はシールド層5を形成し、さらにその外周に被覆層6を形成して同軸ケーブル12を形成したものである。   FIG. 3 is a cross-sectional view of a coaxial cable using the porous membrane-covered electric wire 10 shown in FIG. 1. The conductor 3 of the porous membrane-coated electric wire 10 is used as an inner conductor, and the outer periphery of the porous membrane-coated electric wire 10 is A coaxial cable 12 is formed by forming a shield wire or shield layer 5 and further forming a coating layer 6 on the outer periphery thereof.

さて、本発明は、絶縁被覆層として用いる水分散液状架橋硬化型樹脂組成物は、
液状架橋硬化型樹脂組成物に10mass%以上の水を添加してなり、その液状架橋硬化型樹脂組成物に、平均粒径1μm以下の親水性微粒子を0.1から5mass%添加して撹拌処理して水分散液状架橋硬化型樹脂組成物とするものである。
In the present invention, the water-dispersed liquid cross-linked curable resin composition used as the insulating coating layer is
10 mass% or more of water is added to the liquid cross-linkable curable resin composition, and 0.1 to 5 mass% of hydrophilic fine particles having an average particle diameter of 1 μm or less are added to the liquid crosslinkable curable resin composition and stirred. Thus, a water-dispersed liquid cross-linked curable resin composition is obtained.

この水分散液状架橋硬化型樹脂組成物を架橋硬化した後、加熱により水を除去することで、多孔質物が製造できる。   After this water-dispersed liquid cross-linked curable resin composition is cross-linked and cured, the porous material can be produced by removing water by heating.

加熱には、マイクロ波加熱を用いることが好ましい。   For heating, microwave heating is preferably used.

液状架橋硬化型樹脂組成物とは、紫外線、熱、電子線、可視光などにより硬化するもので、特に限定するものではないが、好ましくは紫外線や熱、あるいは併用で架橋硬化する樹脂組成物がよく、さらに好ましくは紫外線架橋硬化型樹脂組成物がよい。   The liquid cross-linking curable resin composition is hardened by ultraviolet rays, heat, electron beam, visible light, etc., and is not particularly limited, but preferably a resin composition that is cross-linked and cured by ultraviolet rays, heat, or combined use. More preferably, an ultraviolet crosslinking curable resin composition is preferable.

樹脂組成物としては、エチレン系、ウレタン系、シリコーン系、ふっ素系、エポキシ系、ポリエステル系、ポリカーボネート系など公知の樹脂組成を選択できるが、樹脂組成物の誘電率として4以下、好ましくは3以下のものが良い。   As the resin composition, known resin compositions such as ethylene-based, urethane-based, silicone-based, fluorine-based, epoxy-based, polyester-based, and polycarbonate-based resins can be selected, but the dielectric constant of the resin composition is 4 or less, preferably 3 or less. Things are good.

液状架橋硬化型樹脂組成物に10mass%以上の水を添加してなるのは、10mass%より少ないと、低誘電率化効果が得にくくなることや、親水性微粒子添加による水の微分散効率が小さいためである。好ましくは20〜40mass%が良い。40mass%より多くなると安定した多孔質膜の形成が著しく困難になることや水の分散サイズが大きいものができ易くなるためである。   The addition of 10 mass% or more of water to the liquid cross-linkable curable resin composition is less than 10 mass%, and it is difficult to obtain a low dielectric constant effect. Because it is small. Preferably 20-40 mass% is good. This is because if it exceeds 40 mass%, it becomes extremely difficult to form a stable porous film, and it becomes easy to make a large dispersion size of water.

親水性微粒子とは、水との親和性が高い粒子で、粒子の周りに水を配位し易いものであれば特に限定するものではない。例えば、アクリルアミド、メタクリル酸メチル、アクリル酸エチルなどの親水性モノマを用いた合成微粒子が挙げられる。   The hydrophilic fine particle is a particle having a high affinity with water and is not particularly limited as long as it can easily coordinate water around the particle. For example, synthetic fine particles using hydrophilic monomers such as acrylamide, methyl methacrylate, ethyl acrylate and the like can be mentioned.

親水性微粒子を用いるのは、液状架橋硬化型樹脂組成物に添加した水を、液状架橋硬化型樹脂中に微細に分散させることができ、また、水の添加量を高めることができるためである。平均粒径を1μm以下とするのは、1μmより大きくなると、水の分散サイズが大きくなることや、水の添加量を高める効果が低下するためである。   The reason why the hydrophilic fine particles are used is that the water added to the liquid cross-linkable curable resin composition can be finely dispersed in the liquid crosslinkable curable resin and the amount of water added can be increased. . The reason why the average particle size is 1 μm or less is that when the average particle size is larger than 1 μm, the dispersion size of water increases and the effect of increasing the amount of water added decreases.

親水性微粒子の添加量を0.1〜5mass%とするのは、0.1mass%より少ないと水の微分散効果が得にくくなるためである。5mass%より多くなると、添加量に対する水の微分散効率が低いことや、硬化物の機械的特性を低下させ易くなるためである。また、予め親水性微粒子を水に分散させて、液状架橋硬化型樹脂組成物に添加することで、より効率よく樹脂中に水を微分散させることができる。   The reason why the addition amount of the hydrophilic fine particles is 0.1 to 5 mass% is that when the amount is less than 0.1 mass%, it is difficult to obtain the fine dispersion effect of water. This is because if it exceeds 5 mass%, the fine dispersion efficiency of water relative to the added amount is low, and the mechanical properties of the cured product are liable to be lowered. Moreover, water can be finely dispersed in the resin more efficiently by previously dispersing hydrophilic fine particles in water and adding them to the liquid cross-linking curable resin composition.

架橋硬化後、加熱により脱水させるのは、脱水による体積収縮による空隙率の低下が防止できるほか、膜厚や外径の変化を防止し、安定したものを得ることができるためである。さらに、予め空孔となる部分をもって被覆を形成できるため、発泡させる必要が無く、従来のガス注入や発泡剤によるガス発泡に生じやすい導体と発泡層間の膨れや剥離による密着力低下がまったくなく安定したものが得られる。   The reason for dehydration by heating after crosslinking and curing is that, in addition to preventing a decrease in porosity due to volume shrinkage due to dehydration, it is possible to prevent changes in film thickness and outer diameter and obtain a stable product. In addition, since the coating can be formed in advance with pores, there is no need to foam, and there is no deterioration in adhesion between the conductor and the foam layer, which is likely to occur in gas foaming with conventional gas injection and foaming agents, and stable. Is obtained.

液状架橋硬化型樹脂組成物には、必要に応じて分散剤、レベリング剤、カップリング剤、着色剤、難燃剤、酸化防止剤、電気絶縁性向上剤、充填剤など公知のものを加えて用いることができる。   For the liquid cross-linking curable resin composition, a dispersant, a leveling agent, a coupling agent, a colorant, a flame retardant, an antioxidant, an electrical insulation improver, a filler, and the like are added as necessary. be able to.

水分散液状架橋硬化型樹脂組成物の水を加熱脱水するのにマイクロ波加熱を利用するのは、水はマイクロ波により、急速に加熱されるため吸水性ポリマや周囲の樹脂などに影響をあたえることなく、短時間で加熱脱水ができ効率よく空孔形成ができるためである。   The reason why microwave heating is used to heat and dehydrate water in a water-dispersed liquid cross-linked curable resin composition is that water is rapidly heated by microwaves and affects water-absorbing polymers and surrounding resins. This is because heat dehydration can be carried out in a short time and vacancies can be efficiently formed.

また、導波管型マイクロ波加熱炉を用いることで、連続的に加熱脱水ができる。さらに通常の加熱炉と組合せて用いてもよい。   Further, by using a waveguide type microwave heating furnace, heat dehydration can be performed continuously. Furthermore, you may use in combination with a normal heating furnace.

図10はマイクロ波加熱と120℃オーブン加熱で、電線の絶縁被覆層中の水を加熱脱水したときの加熱時間と脱水率の関係を示したものである。   FIG. 10 shows the relationship between the heating time and the dehydration rate when water in the insulating coating layer of the wire is heated and dehydrated by microwave heating and 120 ° C. oven heating.

図10より、マイクロ波加熱の方が、通常の電気炉やオーブン加熱に比べ、極めて短時間で効率よく脱水できることがわかる。   From FIG. 10, it can be seen that microwave heating can be efficiently dehydrated in an extremely short time compared to ordinary electric furnace and oven heating.

以上、絶縁電線の絶縁被覆層について説明したが、本発明の親水性微粒子を用いた水分散液状架橋硬化型樹脂組成物により得られる多孔質(発泡状物)は、緩衝材、衝撃吸収フィルム(シート)、光反射板などへの利用もできる。   Although the insulating coating layer of the insulated wire has been described above, the porous material (foamed material) obtained from the water-dispersed liquid cross-linked curable resin composition using the hydrophilic fine particles of the present invention is a buffer material, an impact absorbing film ( Sheet), light reflectors, and the like.

また、液状架橋硬化型樹脂組成物であることから、異形状物表面に多孔質層の形成ができる。   Moreover, since it is a liquid cross-linking curable resin composition, a porous layer can be formed on the surface of the irregular shape.

以下に本発明の実施例と比較例について説明する。   Examples of the present invention and comparative examples will be described below.

液状架橋樹脂組成物(ベース樹脂組成物)として表1に示す樹脂組成物Aを用いた。   The resin composition A shown in Table 1 was used as the liquid cross-linked resin composition (base resin composition).

Figure 2010189574
Figure 2010189574

樹脂組成物A;
15MILブレードを用いて厚さ約200μmのフィルムを窒素雰囲気下にて紫外線照射量500mJ/cm2により硬化させて作製し、空洞共振法(@10GHz)により求めた誘電率は2.65であった。
Resin composition A;
A film having a thickness of approximately 200μm were prepared by curing by ultraviolet irradiation dose 500 mJ / cm 2 under a nitrogen atmosphere using a 15MIL blade, the dielectric constant determined by a cavity resonance method (@ 10 GHz) was 2.65 .

親水性微粒子A;
300mlの三口フラスコにエタノール200gを入れ、これにメタクリル酸0.65g、アクリルアミド11.8g、メチレンビスアクリルアミド0.65g、2,2’−アゾビス(イソブチロニトリル)0.75gを加え、窒素をバブリングしながら常温にて撹拌溶解した後、撹拌しながら60±2℃に昇温させ、2時間重合反応を行った後、エタノールを乾燥除去し、平均粒径0.6μmの親水性微粒子Aを得た。
Hydrophilic fine particles A;
Add 200 g of ethanol to a 300 ml three-necked flask, add 0.65 g of methacrylic acid, 11.8 g of acrylamide, 0.65 g of methylenebisacrylamide, and 0.75 g of 2,2′-azobis (isobutyronitrile), and add nitrogen. After stirring and dissolving at room temperature while bubbling, the temperature was raised to 60 ± 2 ° C. while stirring, and after performing a polymerization reaction for 2 hours, ethanol was dried and removed to obtain hydrophilic fine particles A having an average particle diameter of 0.6 μm. Obtained.

親水性微粒子B;
300mlの三口フラスコにエタノール200gを入れ、これにメタクリル酸0.65g、アクリルアミド11.8g、メチレンビスアクリルアミド0.65g、2,2’−アゾビス(イソブチロニトリル)0.25gを加え、窒素をバブリングしながら常温にて撹拌溶解した後、撹拌しながら60±2℃に昇温させ、4時間重合反応を行った後、エタノールを乾燥除去し、平均粒径15μmの親水性微粒子Bを得た。
Hydrophilic fine particles B;
Add 200 g of ethanol to a 300 ml three-necked flask, add 0.65 g of methacrylic acid, 11.8 g of acrylamide, 0.65 g of methylenebisacrylamide, and 0.25 g of 2,2′-azobis (isobutyronitrile), and add nitrogen. After stirring and dissolving at room temperature while bubbling, the temperature was raised to 60 ± 2 ° C. while stirring, and after performing a polymerization reaction for 4 hours, ethanol was dried and removed to obtain hydrophilic fine particles B having an average particle size of 15 μm. .

実施例1〜4と比較例1〜4は、ベース樹脂組成物100重量部に親水性微粒子と水(蒸留水)の添加量をそれぞれ変えて添加した後、回転数500rpmで1時間撹拌して水分散液状架橋硬化型樹脂組成物(樹脂組成物)としたものである。   In Examples 1 to 4 and Comparative Examples 1 to 4, the addition amount of hydrophilic fine particles and water (distilled water) was changed to 100 parts by weight of the base resin composition, respectively, and then stirred at a rotation speed of 500 rpm for 1 hour. This is a water-dispersed liquid cross-linked curable resin composition (resin composition).

この実施例1〜4と比較例1〜5を表2に示す。   Examples 1 to 4 and Comparative Examples 1 to 5 are shown in Table 2.

Figure 2010189574
Figure 2010189574

表2における実施例及び比較例の評価は以下のようにして行った。   Evaluation of Examples and Comparative Examples in Table 2 was performed as follows.

<フィルム成形性>
樹脂組成物を、ガラス板上に7MIL,15MILのブレードを用いて、幅100mm、長さ200mmの塗膜を形成し、窒素雰囲気下で、紫外線照射コンベア装置を用いて紫外線照射量500mJ/cm2を照射し硬化させ、膜厚約100μm,200μmの平滑なフィルム成形ができるかどうか確認した。
<Film formability>
The resin composition is formed on a glass plate using a 7 MIL, 15 MIL blade to form a coating film having a width of 100 mm and a length of 200 mm, and an ultraviolet irradiation amount of 500 mJ / cm 2 using an ultraviolet irradiation conveyor device in a nitrogen atmosphere. The film was irradiated and cured, and it was confirmed whether or not smooth film formation with a film thickness of about 100 μm or 200 μm was possible.

<空隙率>
次式により空隙率を求めた。
<Porosity>
The porosity was determined by the following formula.

空隙率(%)=[1−(脱水後の試料重量/脱水後の試料体積)/(含水させない場合の樹脂試料の重量/含水させない場合の樹脂試料の体積)]×100
<誘電率>
フィルム試料を幅2mm、長さ100mmの短冊状にし、空洞共振法により、周波数10GHzにて誘電率を3本測定し、その平均値を求めた。
Porosity (%) = [1- (Sample weight after dehydration / Sample volume after dehydration) / (Weight of resin sample without water / Volume of resin sample without water)] × 100
<Dielectric constant>
A film sample was formed into a strip shape having a width of 2 mm and a length of 100 mm, and three dielectric constants were measured at a frequency of 10 GHz by a cavity resonance method, and an average value thereof was obtained.

<空孔径>
フィルム及び電線被覆層断面を電子顕微鏡で撮影(500倍)した5箇所の断面写真から観察される空孔のサイズから求めた。
<Hole diameter>
It calculated | required from the size of the void | hole observed from the cross-sectional photograph of five places which image | photographed (500 times) the cross section of the film and the electric wire coating layer with the electron microscope.

<実施例1>
樹脂組成物A100重量部に親水性微粒子Aを0.5重量部、水15重量部添加した後、回転数500rpmで1時間撹拌して水分散液状架橋硬化型樹脂組成物(樹脂組成物1)を得た。
<Example 1>
After adding 0.5 parts by weight of hydrophilic fine particles A and 15 parts by weight of water to 100 parts by weight of the resin composition A, the mixture is stirred for 1 hour at a rotation speed of 500 rpm and is a water-dispersed liquid cross-linked curable resin composition (resin composition 1). Got.

樹脂組成物についてフィルム成形性が良好なことを確認した。   It was confirmed that the resin composition had good film moldability.

これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、多数の空孔が形成されていることを確認し、各フィルムについて完全脱水後のフィルム体積と重量から求めた空隙率はそれぞれ11.8%,12.3%で含水率に近いことを確認した。また、200μmフィルムにおいて空洞共振法により誘電率を測定したところ2.39(@10GHz)であった。さらに200μmフィルムにおいて電子顕微鏡を用いた5箇所の断面写真(図4参照)より観察される空孔について空孔径について調べたところ3〜12μmであった。また空孔内を拡大観察(図7参照)したところ、空孔壁面に親水性微粒子7が多数確認され、樹脂層内には観察されないことから親水性微粒子が水を効率よく微分散させていることを確認した。   After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), as a result of observing the cross section with an electron microscope, it was confirmed that a large number of holes were formed. It was confirmed that the porosity determined from the film volume and weight after complete dehydration was 11.8% and 12.3%, respectively, close to the water content. The dielectric constant of the 200 μm film measured by the cavity resonance method was 2.39 (@ 10 GHz). Furthermore, when the hole diameter was investigated about the hole observed from the cross-sectional photograph (refer FIG. 4) of five places using an electron microscope in a 200 micrometer film, it was 3-12 micrometers. Further, when the inside of the pores was magnified (see FIG. 7), many hydrophilic fine particles 7 were confirmed on the pore wall surfaces and were not observed in the resin layer, so the hydrophilic fine particles efficiently finely dispersed water. It was confirmed.

<実施例2>
樹脂組成物A100重量部に親水性微粒子Aを1重量部、水30重量部添加した後、回転数500rpmで1時間撹拌して水分散液状架橋硬化型樹脂組成物2(樹脂組成物2)を得た。
<Example 2>
After adding 1 part by weight of hydrophilic fine particles A and 30 parts by weight of water to 100 parts by weight of the resin composition A, the mixture is stirred for 1 hour at a rotation speed of 500 rpm to obtain a water-dispersed liquid cross-linked curable resin composition 2 (resin composition 2). Obtained.

樹脂組成物2についてフィルム成形性が良好なことを確認した。   The resin composition 2 was confirmed to have good film moldability.

これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、多数の空孔が形成されていることを確認し、各フィルムについて完全脱水後のフィルム体積と重量から求めた空隙率はそれぞれ21%,21.4%で含水率に近いことを確認した。   After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), as a result of observing the cross section with an electron microscope, it was confirmed that a large number of holes were formed. It was confirmed that the porosity determined from the film volume and weight after complete dehydration was 21% and 21.4%, respectively, close to the water content.

また、200μmフィルムにおいて空洞共振法により誘電率を測定したところ2.2(@10GHz)であった。   The dielectric constant of the 200 μm film measured by the cavity resonance method was 2.2 (@ 10 GHz).

さらに200μmフィルムにおいて電子顕微鏡を用いた5箇所の断面写真(図5参照)より観察される空孔について空孔径について調べたところ3〜15μmであった。   Furthermore, when the hole diameter was investigated about the hole observed from the cross-sectional photograph (refer FIG. 5) of five places using an electron microscope in a 200 micrometer film, it was 3-15 micrometers.

また空孔内を拡大観察したところ、実施例1と同様に空孔壁面に親水性微粒子が多数確認され、樹脂層内には観察されないことから親水性微粒子が水を効率よく微分散させていることを確認した。   Further, when the inside of the pores was enlarged and observed, many hydrophilic fine particles were confirmed on the pore wall surfaces as in Example 1, and were not observed in the resin layer, so that the hydrophilic fine particles efficiently finely dispersed water. It was confirmed.

<実施例3>
樹脂組成物A100重量部に親水性微粒子Aを3重量部、水30重量部添加した後、回転数500rpmで1時間撹拌して水分散液状架橋硬化型樹脂組成物3(樹脂組成物3)を得た。
<Example 3>
After adding 3 parts by weight of hydrophilic fine particles A and 30 parts by weight of water to 100 parts by weight of the resin composition A, the mixture is stirred for 1 hour at a rotation speed of 500 rpm to obtain a water-dispersed liquid cross-linked curable resin composition 3 (resin composition 3). Obtained.

樹脂組成物3についてフィルム成形性が良好なことを確認した。これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、多数の空孔が形成されていることを確認し、各フィルムについて完全脱水後のフィルム体積と重量から求めた空隙率はそれぞれ21.1%,21.8%で含水率に近いことを確認した。また、200μmフィルムにおいて空洞共振法により誘電率を測定したところ2.19(@10GHz)であった。さらに200μmフィルムにおいて電子顕微鏡を用いた5箇所の断面写真(図6参照)より観察される空孔について空孔径について調べたところ3〜12μmであり、実施例2より空孔径が小さくなっていることが確認された。また空孔内を拡大観察したところ、実施例1と同様に空孔壁面に親水性微粒子が多数確認され、樹脂層内には観察されないことから親水性微粒子が水を効率よく微分散させていることを確認した。   It was confirmed that the resin composition 3 had good film moldability. After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), as a result of observing the cross section with an electron microscope, it was confirmed that a large number of holes were formed. It was confirmed that the porosity determined from the film volume and weight after complete dehydration was 21.1% and 21.8%, respectively, which were close to the water content. The dielectric constant of the 200 μm film measured by the cavity resonance method was 2.19 (@ 10 GHz). Furthermore, when the hole diameter was investigated about the hole observed from the cross-sectional photograph (refer FIG. 6) of five places using an electron microscope in a 200 micrometer film, it is 3-12 micrometers, and the hole diameter is smaller than Example 2. Was confirmed. Further, when the inside of the pores was enlarged and observed, many hydrophilic fine particles were confirmed on the pore wall surfaces as in Example 1, and were not observed in the resin layer, so that the hydrophilic fine particles efficiently finely dispersed water. It was confirmed.

<実施例4>
樹脂組成物A100重量部に親水性微粒子Aを5重量部、水60重量部添加した後、回転数500rpmで1時間撹拌して水分散液状架橋硬化型樹脂組成物4(樹脂組成物4)を得た。
<Example 4>
After adding 5 parts by weight of hydrophilic fine particles A and 60 parts by weight of water to 100 parts by weight of the resin composition A, the mixture is stirred for 1 hour at a rotation speed of 500 rpm to obtain a water-dispersed liquid cross-linked curable resin composition 4 (resin composition 4). Obtained.

樹脂組成物4についてフィルム成形性が良好なことを確認した。これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、多数の空孔が形成されていることを確認し、各フィルムについて完全脱水後のフィルム体積と重量から求めた空隙率はそれぞれ33.4%,34.5%で含水率とほぼ一致することを確認した。また、200μmフィルムにおいて空洞共振法により誘電率を測定したところ1.96(@10GHz)であった。さらに200μmフィルムにおいて電子顕微鏡を用いた5箇所の断面写真より観察される空孔について空孔径について調べたところ3〜40μmであった。また空孔内を拡大観察したところ、実施例と同様に空孔壁面に親水性微粒子が多数確認され、樹脂層内には観察されないことから親水性微粒子が水を効率よく微分散させていることを確認した。   It was confirmed that the resin composition 4 had good film moldability. After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), as a result of observing the cross section with an electron microscope, it was confirmed that a large number of holes were formed. It was confirmed that the porosity determined from the film volume and weight after complete dehydration was 33.4% and 34.5%, respectively, which almost coincided with the water content. The dielectric constant of the 200 μm film measured by the cavity resonance method was 1.96 (@ 10 GHz). Furthermore, when the hole diameter was investigated about the hole observed from the cross-sectional photograph of five places using an electron microscope in a 200 micrometer film, it was 3-40 micrometers. In addition, when the inside of the pores was enlarged and observed, many hydrophilic fine particles were confirmed on the pore wall surface as in the example and were not observed in the resin layer, so that the hydrophilic fine particles efficiently finely dispersed water. It was confirmed.

<比較例1>
実施例1の親水性微粒子を用いない、水分散液状架橋硬化型樹脂組成物5(樹脂組成物5)を得た。
<Comparative Example 1>
An aqueous dispersion liquid crosslinkable curable resin composition 5 (resin composition 5) without using the hydrophilic fine particles of Example 1 was obtained.

樹脂組成物5についてフィルム成形性が良好なことを確認した。これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、多数の空孔が形成されていることを確認し、各フィルムについて完全脱水後のフィルム体積と重量から求めた空隙率はそれぞれ10.1%、11.2%で含水率とほぼ一致することを確認した。また、200μmフィルムにおいて空洞共振法により誘電率を測定したところ2.42(@10GHz)であった。さらに200μmフィルムにおいて電子顕微鏡を用いた5箇所の断面写真(図8参照)より観察される空孔の空孔径について調べたところ5〜150μmで実施例に比べ空孔径が非常に大きく、水が分散されていないことが確認された。   The resin composition 5 was confirmed to have good film moldability. After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), as a result of observing the cross section with an electron microscope, it was confirmed that a large number of holes were formed. It was confirmed that the porosity determined from the film volume and weight after complete dehydration was 10.1% and 11.2%, respectively, almost equal to the water content. The dielectric constant of the 200 μm film measured by the cavity resonance method was 2.42 (@ 10 GHz). Furthermore, when the pore diameters of the pores observed from five cross-sectional photographs using an electron microscope (see FIG. 8) were examined in a 200 μm film, the pore diameter was 5 to 150 μm, which was much larger than that of the example, and water was dispersed. It was confirmed that it was not.

<比較例2>
比較例1の水の添加量を30重量部とした水分散液状架橋硬化型樹脂組成物6(樹脂組成物6)を得た。
<Comparative example 2>
A water-dispersed liquid cross-linked curable resin composition 6 (resin composition 6) in which the amount of water added in Comparative Example 1 was 30 parts by weight was obtained.

樹脂組成物6についてフィルムを作製しようとしたところ、水と樹脂の分離が生じやすくフィルム化がまったくできなかった。   When an attempt was made to produce a film with respect to the resin composition 6, water and resin were easily separated, and no film could be formed.

<比較例3>
実施例1の親水性微粒子の添加量を0.1重量部とした水分散液状架橋硬化型樹脂組成物7(樹脂組成物7)を得た。
<Comparative Example 3>
An aqueous dispersion liquid cross-linked curable resin composition 7 (resin composition 7) was obtained in which the amount of hydrophilic fine particles added in Example 1 was 0.1 parts by weight.

樹脂組成物7についてフィルム成形性が良好なことを確認した。これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、多数の空孔が形成されていることを確認し、各フィルムについて完全脱水後のフィルム体積と重量から求めた空隙率はそれぞれ10.7%,11.8%で含水率とほぼ一致することを確認した。また、200μmフィルムにおいて空洞共振法により誘電率を測定したところ2.4(@10GHz)であった。さらに200μmフィルムにおいて電子顕微鏡を用いた5箇所の断面写真(図9参照)より観察される空孔について空孔径について調べたところ5〜100μmで、比較例1とほとんど変わらないことを確認した。   It was confirmed that the resin composition 7 had good film moldability. After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), as a result of observing the cross section with an electron microscope, it was confirmed that a large number of holes were formed. The porosity determined from the film volume and weight after complete dehydration was 10.7% and 11.8%, respectively. The dielectric constant of the 200 μm film measured by the cavity resonance method was 2.4 (@ 10 GHz). Furthermore, when the hole diameter was investigated about the hole observed from the cross-sectional photograph (refer FIG. 9) of five places using an electron microscope in a 200 micrometer film, it was confirmed that it is 5-100 micrometers and is almost the same as the comparative example 1. FIG.

<比較例4>
樹脂組成物A100重量部に粒径15μmの親水性微粒子Bを5重量部、水60重量部添加した後、回転数500rpmで1時間撹拌して水分散液状架橋硬化型樹脂組成8(樹脂組成物8)を得た。
<Comparative example 4>
After adding 5 parts by weight of hydrophilic fine particles B having a particle size of 15 μm and 60 parts by weight of water to 100 parts by weight of the resin composition A, the mixture is stirred for 1 hour at a rotation speed of 500 rpm, and the water-dispersed liquid cross-linked curable resin composition 8 (resin composition 8) was obtained.

樹脂組成物8についてフィルムを作製したところ、表面に凹凸が生じ、成形性が劣ることを確認した。これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、空孔の形成は確認されたが、200μmフィルムにおいて電子顕微鏡を用いた5箇所の断面写真より観察される空孔について空孔径について調べたところ5〜100μmであり、実施例4に比べ、バラツキが大きいものであった。   When the film was produced about the resin composition 8, the unevenness | corrugation produced on the surface and it confirmed that a moldability was inferior. After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), the cross section was observed with an electron microscope. As a result, formation of vacancies was confirmed, but an electron microscope was used on a 200 μm film. The hole diameter of the holes observed from the five cross-sectional photographs was 5 to 100 μm, and the variation was larger than that of Example 4.

以上、実施例及び比較例で説明したとおり、実施例1、2、3、4より粒径1μm以下の親水性微粒子Aを用いることで液状架橋硬化型樹脂組成物に水を微分散することができ、微細な空孔を形成できる。一方、親水性微粒子を用いない比較例1では、空孔径が大きいものができやすく、水の量を多くした比較例2ではフィルム化がまったくできないものであった。また、親水性微粒子Aの添加量が少ない比較例3では、水の微分散効果がない、よって親水性微粒子Aの添加量は、0.1mass%以上添加するのがよい。また粒径が大きい(15μm)親水性微粒子Bを添加した比較例4では、フィルム成形性が劣り、空孔径のバラツキも大きくなるものであった。よって、親水性微粒子Aの粒径は、できるだけ小さいのがよく0.1μm以下が好ましい。   As described above, as described in Examples and Comparative Examples, water can be finely dispersed in the liquid cross-linkable curable resin composition by using hydrophilic fine particles A having a particle diameter of 1 μm or less from Examples 1, 2, 3, and 4. And fine pores can be formed. On the other hand, in Comparative Example 1 in which no hydrophilic fine particles were used, a film having a large pore diameter was easily formed, and in Comparative Example 2 in which the amount of water was increased, a film could not be formed at all. Further, in Comparative Example 3 in which the amount of hydrophilic fine particles A added is small, there is no fine dispersion effect of water. Therefore, the amount of hydrophilic fine particles A added is preferably 0.1 mass% or more. In Comparative Example 4 in which hydrophilic fine particles B having a large particle size (15 μm) were added, the film moldability was poor and the variation in pore diameter was large. Therefore, the particle size of the hydrophilic fine particles A should be as small as possible, and preferably 0.1 μm or less.

1 絶縁被覆層
2 空孔
3 導体
4 スキン層又は被覆層
5 シールド線又はシールド層
6 被覆層
7 親水性微粒子
DESCRIPTION OF SYMBOLS 1 Insulation coating layer 2 Hole 3 Conductor 4 Skin layer or coating layer 5 Shield wire or shielding layer 6 Coating layer 7 Hydrophilic fine particles

Claims (7)

液状架橋硬化型樹脂組成物に10mass%以上の水を添加してなる水分散液状架橋硬化型樹脂組成物の製造方法において、前記液状架橋硬化型樹脂組成物に、平均粒径1μm以下の親水性微粒子を0.1から5mass%添加して撹拌処理することを特徴とする水分散液状架橋硬化型樹脂組成物の製造方法。   In the method for producing a water-dispersed liquid cross-linked curable resin composition obtained by adding 10 mass% or more of water to the liquid cross-linked curable resin composition, the liquid cross-linked curable resin composition has a hydrophilic property with an average particle size of 1 μm or less. A method for producing a water-dispersed liquid cross-linked curable resin composition, comprising adding 0.1 to 5 mass% of fine particles and stirring. 親水性微粒子が、アクリルアミド、メタクリル酸メチル、アクリル酸エチルなどの親水性モノマを合成した微粒子からなる請求項1記載の水分散液状架橋硬化型樹脂組成物の製造方法。   The method for producing an aqueous dispersion liquid cross-linked curable resin composition according to claim 1, wherein the hydrophilic fine particles are fine particles obtained by synthesizing hydrophilic monomers such as acrylamide, methyl methacrylate, ethyl acrylate and the like. 請求項1又は2の製造方法により製造されたことを特徴とする水分散液状架橋硬化型樹脂組成物。   A water-dispersed liquid cross-linked curable resin composition produced by the production method according to claim 1 or 2. 請求項1又は2より得られる水分散液状架橋硬化型樹脂組成物を架橋硬化した後、加熱により水を除去して形成したことを特徴とする多孔質物。   A porous material formed by crosslinking and curing the water-dispersed liquid cross-linked curable resin composition obtained from claim 1 or 2 and then removing water by heating. 請求項1又は2より得られる水分散液状架橋硬化型樹脂組成物を架橋硬化した後、加熱により水を除去して形成したことを特徴とする多孔質物の製造方法。   A method for producing a porous material, wherein the water-dispersed liquid cross-linked curable resin composition obtained from claim 1 or 2 is cross-linked and cured, and then water is removed by heating. 加熱にマイクロ波加熱を用いる請求項5記載の多孔質物の製造方法。   The method for producing a porous material according to claim 5, wherein microwave heating is used for heating. 請求項4〜6のいずれかに記載の方法により製造されたことを特徴とする多孔質物。   A porous material produced by the method according to claim 4.
JP2009036852A 2009-02-19 2009-02-19 Method for producing aqueous dispersion liquid crosslink-curable resin composition, aqueous dispersion liquid crosslink-curable resin composition, method for producing porous material, and porous material Pending JP2010189574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036852A JP2010189574A (en) 2009-02-19 2009-02-19 Method for producing aqueous dispersion liquid crosslink-curable resin composition, aqueous dispersion liquid crosslink-curable resin composition, method for producing porous material, and porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009036852A JP2010189574A (en) 2009-02-19 2009-02-19 Method for producing aqueous dispersion liquid crosslink-curable resin composition, aqueous dispersion liquid crosslink-curable resin composition, method for producing porous material, and porous material

Publications (1)

Publication Number Publication Date
JP2010189574A true JP2010189574A (en) 2010-09-02

Family

ID=42815943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009036852A Pending JP2010189574A (en) 2009-02-19 2009-02-19 Method for producing aqueous dispersion liquid crosslink-curable resin composition, aqueous dispersion liquid crosslink-curable resin composition, method for producing porous material, and porous material

Country Status (1)

Country Link
JP (1) JP2010189574A (en)

Similar Documents

Publication Publication Date Title
JP5262187B2 (en) Water-containing water-absorbing polymer-containing resin composition
US8309851B2 (en) Insulated wire and manufacturing method of the same
KR920001934B1 (en) Insulated conductor and method of producing the same
US20120090871A1 (en) Hydrous water absorbent polymer dispersed ultraviolet curable resin composition, insulated electric wire using the same, method for producing the wire, and coaxial cable
JPWO2005019320A1 (en) Mixed polytetrafluoroethylene powder, polytetrafluoroethylene porous molded body and production method thereof, polytetrafluoroethylene porous foam molded body, and high-frequency signal transmission product
WO2009051378A2 (en) Highly foamed coaxial cable
TW200535194A (en) A foamed resin composition, a foam using the same and a coaxial cable
US20100096159A1 (en) Method of manufacturing a foam-insulated wire using a porous solid and a foam-insulated wire manufactured thereby
JP2011074311A (en) Ultraviolet-curable resin composition with hydrous water-absorbing polymer dispersed therein, porous material, and insulated electric cable using the porous material
JP5168253B2 (en) Method for producing water-containing water-absorbing polymer-containing resin composition, water-containing water-absorbing polymer-containing resin composition, method for producing porous material and porous material using the same, method for producing insulated wire, insulated wire and coaxial cable
US20120090865A1 (en) Method of manufacturing porous ultraviolet curable resin coated wire, porous ultraviolet curable resin coated wire and coaxial cable
JP2007238829A (en) Foamable resin composition, method for foaming the same and method for producing foamed insulated electric wire
JP2013095822A (en) Porous formed product and manufacturing method for the same, hydrous water-absorbing polymer particle and manufacturing method for the same, method for adjusting water-absorbing rate of hydrous water-absorbing polymer particle, and porous sheathed electric wire
JP2010189574A (en) Method for producing aqueous dispersion liquid crosslink-curable resin composition, aqueous dispersion liquid crosslink-curable resin composition, method for producing porous material, and porous material
US10759887B2 (en) Electric wire, coil and method for producing electric wire
JP5346543B2 (en) Method for producing water-containing water-absorbing polymer-containing resin composition, water-containing water-absorbing polymer-containing resin composition, method for producing porous material and porous material using the same, method for producing insulated wire, insulated wire, and coaxial cable
JP2010095653A (en) Manufacturing method for water-containing thermoplastic water-absorbent polymer-dispersed resin composition and water-containing thermoplastic water-absorbent polymer-dispersed resin composition, manufacturing method for porous substance using this and porous substance, manufacturing method for insulated electric wire and insulated electric wire, and coaxial cable
JP5561387B2 (en) Method for manufacturing insulated wire and coaxial cable
JP2004349160A (en) Insulating material for high-frequency coaxial cable
WO2021100816A1 (en) Boron nitride particles and resin composition
JP2011174039A (en) Hydrated moisture-absorbing polymer dispersion-ultraviolet ray-curable resin composition and porous substance using this, insulated electric wire and manufacturing method therefor, insulated coating electric wire, and coaxial cable
JP2011174040A (en) Hydrated moisture-absorbing polymer dispersion-ultraviolet ray-curable resin composition and porous substance using this, insulated electric wire and manufacturing method therefor, insulated coating electric wire, and coaxial cable
JP2009215375A (en) Hydrate-dispersed resin composition, and porous body and insulated electric wire using the same, and method for manufacturing insulated electric wire
JP2011168645A (en) Method for producing porous body, and insulated electric wire and method for producing the same
WO2022210267A1 (en) Functional material and method for producing functional material