JP2010189543A - Method for producing composite material - Google Patents

Method for producing composite material Download PDF

Info

Publication number
JP2010189543A
JP2010189543A JP2009035032A JP2009035032A JP2010189543A JP 2010189543 A JP2010189543 A JP 2010189543A JP 2009035032 A JP2009035032 A JP 2009035032A JP 2009035032 A JP2009035032 A JP 2009035032A JP 2010189543 A JP2010189543 A JP 2010189543A
Authority
JP
Japan
Prior art keywords
composite material
resin
curable resin
filler
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009035032A
Other languages
Japanese (ja)
Inventor
Mitsuharu Suga
満春 菅
Yasuhiro Yamada
泰宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009035032A priority Critical patent/JP2010189543A/en
Priority to PCT/JP2010/001031 priority patent/WO2010095436A1/en
Publication of JP2010189543A publication Critical patent/JP2010189543A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/247Heating methods

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a composite material excellent in molding processability without limiting the type of a curable resin or a filler and the blending ratio, wherein the method can reduce a residual stress causing poor dimensional stability or a crack of the composite material by suppressing the difference of the shrinkage amount produced between the resin and the filler in the production process. <P>SOLUTION: In the method for producing a composite material containing a curable resin and a filler, an uncured curable resin is cured in a temperature atmosphere lower than a service condition temperature of the composite material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、硬化性樹脂と充填材とを含む複合材料の製造方法に関する。   The present invention relates to a method for producing a composite material including a curable resin and a filler.

硬化性樹脂を充填材の強化繊維で補強したFRPは、代表的な複合材料として知られている。このFRPは、軽量、かつ高弾性、高強度の利点を活かして、釣竿、ゴルフシャフト、テニスラケットなどのスポーツ用途から、航空機、船舶、自動車などの構造材料、あるいはロールなどの工業材料といった様々な用途に用いられている。   FRP in which a curable resin is reinforced with reinforcing fibers of a filler is known as a typical composite material. Utilizing the advantages of light weight, high elasticity, and high strength, this FRP is used in various applications such as fishing rods, golf shafts, tennis rackets, and other sports materials, aircraft, ships, automobiles, structural materials, and rolls, etc. Used for applications.

ここで、これらFRPに代表される複合材料の問題点として、成形品に残存する内部応力に起因するヒケや反りなどの寸法安定性の悪さやクラックの発生が挙げられる。成形品に内部応力が残存する原因は2つあり、1つは硬化性樹脂の硬化反応に伴う硬化収縮、もう1つは冷却時の熱収縮である。   Here, as problems of composite materials represented by these FRPs, there are poor dimensional stability such as sink marks and warpage due to internal stress remaining in a molded product, and generation of cracks. There are two causes for the internal stress remaining in the molded product, one is the curing shrinkage accompanying the curing reaction of the curable resin, and the other is the thermal shrinkage during cooling.

硬化収縮は、架橋により分子間の距離が縮まり、体積が小さくなる結果生ずるものであり、この硬化収縮の抑制の観点から、硬化収縮量の比較的小さなエポキシ樹脂が用いられている。このエポキシ樹脂は、硬化後の物性にも優れており、FRP用の樹脂として最適であるとされている。しかしながら、硬化性樹脂の硬化収縮を抑えたとしても、硬化後の冷却時における熱収縮により、内部応力が発生すると寸法安定性が悪化し、クラックが発生する。したがって、成形品に残存する内部応力に起因する寸法安定性の悪さやクラックなどの問題を解消するためには、硬化後の冷却の後に、樹脂内に応力が残存しないようにすることが必要である。   Curing shrinkage occurs as a result of the distance between molecules shortening due to cross-linking and the volume is reduced. From the viewpoint of suppressing the curing shrinkage, an epoxy resin having a relatively small amount of curing shrinkage is used. This epoxy resin is excellent in physical properties after curing, and is said to be optimal as a resin for FRP. However, even if the curing shrinkage of the curable resin is suppressed, if the internal stress is generated due to the thermal shrinkage at the time of cooling after curing, the dimensional stability is deteriorated and a crack is generated. Therefore, in order to eliminate problems such as poor dimensional stability and cracks caused by internal stress remaining in the molded product, it is necessary to prevent stress from remaining in the resin after cooling after curing. is there.

例えば、液状のエポキシ樹脂、硬化剤として平均分子量が270から1800の範囲にあるポリオキシプロピレンジアミン、及び無機系フィラーを特定の量含有する注型用液状エポキシ樹脂組成物が開示されている(特許文献1参照)。この特許文献1の発明によれば、樹脂中に無機フィラーを配合することにより、樹脂の熱収縮を抑制して残留応力を低減できるとされている。   For example, a liquid epoxy resin composition for casting containing a specific amount of a liquid epoxy resin, a polyoxypropylene diamine having an average molecular weight in the range of 270 to 1800 as a curing agent, and an inorganic filler is disclosed (patent) Reference 1). According to the invention of this Patent Document 1, it is said that by blending an inorganic filler in a resin, the thermal stress of the resin can be suppressed and the residual stress can be reduced.

また、特定のゴム微粒子10質量部から50質量部、常温で液状のエポキシ樹脂100質量部、及び常温で液状の硬化剤とから成るエポキシ樹脂組成物が開示されている(特許文献2参照)。この特許文献2の発明によれば、エポキシ樹脂にゴム成分を配合することで、樹脂内の残留応力を吸収することができるとされている。   Also disclosed is an epoxy resin composition comprising 10 to 50 parts by mass of specific rubber fine particles, 100 parts by mass of an epoxy resin that is liquid at normal temperature, and a curing agent that is liquid at normal temperature (see Patent Document 2). According to the invention of Patent Document 2, it is said that residual stress in the resin can be absorbed by blending a rubber component with the epoxy resin.

また、ガラスカプセルを材料中に配合し、ガラスカプセルが破損することにより、複合材料からなる成形品内の残留応力を開放する技術が開示されている(特許文献3参照)。   Moreover, the technique of releasing the residual stress in the molded article which consists of a composite material by mix | blending a glass capsule in material and damaging a glass capsule is disclosed (refer patent document 3).

ところで、硬化性樹脂として透明性のある樹脂を用い、充填材としてガラス繊維などの透明な充填材を用いた複合材料にあっては、樹脂内に残存する内部応力に伴う寸法安定性の悪さやクラックの発生に加えて、本来目的とする透明性のある複合材料が得られないという問題がある。この問題に対しては、屈折率が互いに近似する硬化性樹脂とガラス繊維とを配合することにより、透明性のある複合材料を得る試みがなされている(特許文献4参照)。   By the way, in a composite material using a transparent resin as the curable resin and a transparent filler such as glass fiber as the filler, the dimensional stability associated with the internal stress remaining in the resin is poor. In addition to the generation of cracks, there is a problem that the originally intended composite material with transparency cannot be obtained. In order to solve this problem, an attempt has been made to obtain a transparent composite material by blending a curable resin having refractive indexes close to each other and glass fiber (see Patent Document 4).

特開平06−248059号公報Japanese Patent Laid-Open No. 06-248059 特開平08−27360号公報Japanese Patent Laid-Open No. 08-27360 特開2008−150271号公報JP 2008-150271 A 特開2005−8721号公報Japanese Patent Laid-Open No. 2005-8721

上述の通り、特許文献1〜3に開示されているように、従来から樹脂内に残存する内部応力に伴う寸法安定性の悪さやクラックの発生を改善するための研究が盛んに行われてはいるものの、いまだ多くの課題がある。第一に、従来の方法では、使用可能な硬化性樹脂の種類が限られてしまい、用途に応じて自由に硬化性樹脂を選択することができない。第二に、従来の方法では、硬化性樹脂と充填材以外の成分を配合するため、未硬化の硬化性樹脂の粘度が上昇し、未硬化の硬化性樹脂の充填材への含浸性などに問題が生じるなど、複合材料の成形加工性が悪化する。第三に、従来の方法では、硬化性樹脂と充填材との好ましい配合割合が限定されており、その配合割合以外ではほとんど効果が得られない。これらの課題は、繊維系充填材に限られたものではなく、板状充填材などの充填材を用いた複合材料においても同様である。   As described above, as disclosed in Patent Documents 1 to 3, researches for improving the poor dimensional stability associated with internal stress remaining in the resin and the occurrence of cracks have been actively conducted. However, there are still many challenges. First, in the conventional method, the types of curable resin that can be used are limited, and the curable resin cannot be freely selected according to the application. Secondly, in the conventional method, since components other than the curable resin and the filler are blended, the viscosity of the uncured curable resin is increased, and the impregnation property of the uncured curable resin into the filler is increased. The moldability of the composite material deteriorates, such as problems. Thirdly, in the conventional method, a preferable blending ratio of the curable resin and the filler is limited, and almost no effect can be obtained except for the blending ratio. These problems are not limited to fiber-based fillers, and the same applies to composite materials using fillers such as plate-like fillers.

また、硬化性樹脂として透明性のある樹脂を用い、充填材としてガラス繊維などの透明な充填材を用いた複合材料にあっては、特許文献4に開示されているように単に屈折率が近似する硬化性樹脂とガラス繊維を配合しても、樹脂内部に生ずる屈折率勾配によって光が散乱して透明性が著しく損なわれ、透明性の高い複合材料が得られないのが現状である。   Further, in a composite material using a transparent resin as a curable resin and a transparent filler such as glass fiber as a filler, the refractive index is simply approximated as disclosed in Patent Document 4. Even if the curable resin and the glass fiber to be blended are mixed, light is scattered by the refractive index gradient generated inside the resin, the transparency is significantly impaired, and a highly transparent composite material cannot be obtained.

以上のような課題に鑑み、本発明者らは、上述した樹脂内部の残留応力と樹脂内部の屈折率勾配はいずれも、製造過程において生ずる樹脂と充填材との間に生ずる収縮量の差に起因することを見出した。
したがって、本発明の目的は、製造過程において樹脂と充填材との間に生ずる収縮量の差を抑制することにより、複合材料の寸法安定性の悪さやクラックの原因となる残留応力を低減できる製造方法であって、硬化性樹脂や充填材の種類及び配合割合の制限を受けることなく、成形加工性にも優れた複合材料の製造方法を提供することにある。
加えて、硬化性樹脂として透明性のある樹脂を用い、充填材としてガラス繊維などの透明な充填材を用いた場合にあっては、製造過程において樹脂と充填材との間に生ずる収縮量の差を抑制することにより、透明性低下の原因となる樹脂内部における屈折率勾配を抑制でき、透明性の高い複合材料をも得ることができる製造方法を提供することにある。
In view of the above problems, the present inventors have found that the residual stress inside the resin and the refractive index gradient inside the resin are both due to the difference in shrinkage produced between the resin and the filler that occurs in the manufacturing process. I found out that it was caused.
Accordingly, an object of the present invention is to reduce the residual stress that causes poor dimensional stability and cracks of the composite material by suppressing the difference in shrinkage generated between the resin and the filler during the manufacturing process. It is a method, and it is providing the manufacturing method of the composite material which was excellent also in the moldability, without receiving the restriction | limiting of the kind and compounding ratio of curable resin and a filler.
In addition, when a transparent resin is used as the curable resin and a transparent filler such as glass fiber is used as the filler, the amount of shrinkage generated between the resin and the filler during the manufacturing process is reduced. By suppressing the difference, an object of the present invention is to provide a production method capable of suppressing a refractive index gradient inside a resin that causes a decrease in transparency and also obtaining a highly transparent composite material.

請求項1に記載の複合材料の製造方法は、硬化性樹脂と充填材とを含む複合材料の製造方法であって、未硬化の硬化性樹脂と、前記充填材とを含む複合材料前駆体を調製する前駆体調製工程と、前記複合材料前駆体に含まれる前記未硬化の硬化性樹脂を、前記複合材料の使用環境温度よりも低い温度雰囲気下で硬化させる硬化工程と、を備えることを特徴とする。   The method for producing a composite material according to claim 1 is a method for producing a composite material comprising a curable resin and a filler, and comprising a composite material precursor comprising an uncured curable resin and the filler. A precursor preparing step to be prepared; and a curing step of curing the uncured curable resin contained in the composite material precursor in a temperature atmosphere lower than a use environment temperature of the composite material. And

請求項2に記載の複合材料の製造方法は、請求項1に記載の複合材料の製造方法における前駆体調製工程において、前記充填材としてガラス繊維を用いるとともに、前記硬化性樹脂として、前記複合材料の使用環境温度における屈折率が前記ガラス繊維の屈折率と近似する透明樹脂を用いることを特徴とする。   The method for producing a composite material according to claim 2 uses glass fiber as the filler in the precursor preparation step in the method for producing the composite material according to claim 1, and the composite material as the curable resin. A transparent resin having a refractive index at a use environment temperature of which approximates the refractive index of the glass fiber is used.

請求項3に記載の複合材料の製造方法は、請求項1又は2に記載の複合材料の製造方法における硬化工程において、前記複合材料前駆体に含まれる前記未硬化の硬化性樹脂を、下記の式(1)で表される反応温度±15℃の範囲内で硬化させることを特徴とする。

Figure 2010189543
According to a third aspect of the present invention, there is provided a method for producing the composite material, wherein the uncured curable resin contained in the composite material precursor is the following in the curing step in the method for producing the composite material according to the first or second aspect. It is characterized by curing within the range of reaction temperature ± 15 ° C. represented by the formula (1).
Figure 2010189543

請求項1に記載の発明によれば、複合材料の使用環境温度よりも低い温度雰囲気下で、硬化性樹脂の硬化を行う硬化工程を設けた。これにより、硬化性樹脂の温度は、硬化の際の反応温度から使用環境温度まで上昇する。硬化性樹脂の温度が上昇すると硬化後の硬化性樹脂は熱膨張する。熱膨張すれば、硬化の際に生じた硬化性樹脂の収縮量は低減され、硬化の際の収縮量が樹脂に比して小さい充填材の収縮量に近付く。熱膨張の際には、充填材との界面付近における樹脂は充填材により熱膨張が抑制される一方、界面付近以外の樹脂は自由に熱膨張する結果、硬化収縮の際に生じた樹脂内における収縮量の違いも解消できる。したがって、硬化性樹脂の収縮量と充填材の収縮量との差が消失することにより、残留応力を低減でき、複合材料の寸法安定性が悪化したり、クラックなどが生じることを抑制できる。ひいては、高強度、高耐熱性、高難燃性、高外観の複合材料を提供でき、自動車、電子部品、建築などのあらゆる分野での利用が可能である。
また、本発明によれば、複合材料の使用環境温度よりも低い温度雰囲気下で硬化性樹脂の硬化を行えば上記効果が奏されるため、硬化性樹脂や充填材の種類及び配合割合の制限を受けることがなく、成形加工性にも優れる。
According to invention of Claim 1, the hardening process which hardens | cures curable resin in the temperature atmosphere lower than the use environmental temperature of a composite material was provided. Thereby, the temperature of curable resin rises from the reaction temperature in the case of hardening to use environment temperature. When the temperature of the curable resin increases, the cured curable resin thermally expands. If the thermal expansion occurs, the shrinkage amount of the curable resin generated during curing is reduced, and the shrinkage amount during curing approaches the shrinkage amount of the filler smaller than that of the resin. During thermal expansion, the resin in the vicinity of the interface with the filler is suppressed by the filler, while the resin other than in the vicinity of the interface freely expands freely. The difference in shrinkage can also be eliminated. Therefore, the residual stress can be reduced by eliminating the difference between the shrinkage amount of the curable resin and the shrinkage amount of the filler, and it is possible to suppress the deterioration of the dimensional stability of the composite material and the occurrence of cracks. As a result, a composite material having high strength, high heat resistance, high flame retardancy, and high appearance can be provided, and can be used in various fields such as automobiles, electronic parts, and architecture.
In addition, according to the present invention, the above effect can be achieved by curing the curable resin in a temperature atmosphere lower than the use environment temperature of the composite material. And is excellent in moldability.

請求項2に記載の発明によれば、請求項1に記載の発明と同様の効果が奏されるうえ、従来に比して透明性の高い複合材料が得られる。即ち、複合材料の使用環境温度よりも低い温度雰囲気下で硬化性樹脂の硬化を行うことにより、複合材料中の樹脂の温度は、硬化の際の反応温度から使用環境温度まで上昇する。樹脂の温度が上昇すると樹脂は熱膨張するため、硬化の際に生じた硬化性樹脂の収縮量は低減され、硬化の際の収縮量が樹脂に比して小さい充填材の収縮量に近付くため屈折率も近付く。熱膨張の際には、充填材との界面付近における樹脂は充填材により熱膨張が抑制される一方、界面付近以外の樹脂は自由に熱膨張する結果、硬化収縮の際に生じた樹脂内における収縮量の違いも解消でき、樹脂内部の屈折率勾配も解消できる。したがって、硬化性樹脂の屈折率と充填材の屈折率との差が消失することにより、複合材料の透明性を向上させることができる。   According to the second aspect of the invention, the same effect as that of the first aspect of the invention can be obtained, and a composite material having higher transparency than the conventional one can be obtained. That is, by curing the curable resin in an atmosphere lower than the use environment temperature of the composite material, the temperature of the resin in the composite material rises from the reaction temperature at the time of curing to the use environment temperature. Since the resin expands thermally when the temperature of the resin rises, the shrinkage of the curable resin generated during curing is reduced, and the shrinkage during curing approaches the shrinkage of the filler smaller than that of the resin. The refractive index approaches. During thermal expansion, the resin in the vicinity of the interface with the filler is suppressed by the filler, while the resin other than in the vicinity of the interface freely expands freely. The difference in shrinkage can be eliminated, and the refractive index gradient inside the resin can also be eliminated. Therefore, the difference between the refractive index of the curable resin and the refractive index of the filler disappears, whereby the transparency of the composite material can be improved.

請求項3に記載の発明によれば、上記式(1)を用いて反応温度を決定することで、複合材料の使用環境温度において、硬化性樹脂の収縮量と充填材の収縮量とを容易にかつ確実に近づけることができる。その結果、本発明によれば、請求項1及び2に記載の発明と同様の効果が容易にかつ確実に奏される。   According to the invention described in claim 3, by determining the reaction temperature using the above formula (1), the shrinkage amount of the curable resin and the shrinkage amount of the filler can be easily achieved at the use environment temperature of the composite material. And can be approached reliably. As a result, according to the present invention, the same effects as those of the first and second aspects of the invention can be obtained easily and reliably.

本実施形態の残留応力抑制の原理を説明するための図である。It is a figure for demonstrating the principle of residual stress suppression of this embodiment. 本実施形態の屈折率勾配抑制の原理を説明するための図である。It is a figure for demonstrating the principle of refractive index gradient suppression of this embodiment. 本発明の実施例の硬化工程を示す図である。It is a figure which shows the hardening process of the Example of this invention. 実施例及び比較例の引張強度と曲げ強度の測定結果を示す図である。It is a figure which shows the measurement result of the tensile strength and bending strength of an Example and a comparative example. 実施例及び比較例の複合材料の算術平均うねりを示す図である。It is a figure which shows the arithmetic mean wave | undulation of the composite material of an Example and a comparative example. 硬化後の温度上昇と光透過率との関係を示す図である。It is a figure which shows the relationship between the temperature rise after hardening, and light transmittance.

以下、本発明を実施するための形態について説明する。   Hereinafter, modes for carrying out the present invention will be described.

<複合材料の製造方法>
本実施形態の複合材料の製造方法は、未硬化の硬化性樹脂と、充填材とを含む複合材料前駆体を調製する前駆体調製工程と、複合材料前駆体に含まれる未硬化の硬化性樹脂を、複合材料の使用環境温度よりも低い温度雰囲気下で硬化させる硬化工程と、を備えることを特徴とする。以下、本実施形態の複合材料の製造方法の一例について説明する。
<Production method of composite material>
The method for producing a composite material according to the present embodiment includes a precursor preparation step for preparing a composite material precursor including an uncured curable resin and a filler, and an uncured curable resin contained in the composite material precursor. And a curing step of curing in a temperature atmosphere lower than the use environment temperature of the composite material. Hereinafter, an example of the manufacturing method of the composite material of this embodiment is demonstrated.

[前駆体調製工程]
前駆体調製工程では、未硬化の硬化性樹脂と充填材とを含む複合材料前駆体を調製する。本実施形態の複合材料の製造方法は、様々な硬化性樹脂、様々な充填材を使用可能な点が特徴である。
調製方法としては、例えば、充填材に未硬化の硬化性樹脂を含ませる方法が挙げられる。より具体的には、繊維布に未硬化の硬化性樹脂を含浸させることにより、複合材料前駆体が得られる。
また、未硬化の硬化性樹脂に充填材を含ませる調製方法が挙げられる。より具体的には、未硬化の硬化性樹脂に対して、ガラス繊維などの充填材を混合することにより、複合材料前駆体が得られる。
なお、上述のような含浸、混合が十分可能になるように、充填材の表面を従来公知の方法で予め処理してもよい。
[Precursor preparation step]
In the precursor preparation step, a composite material precursor including an uncured curable resin and a filler is prepared. The manufacturing method of the composite material of this embodiment is characterized in that various curable resins and various fillers can be used.
Examples of the preparation method include a method of including an uncured curable resin in the filler. More specifically, a composite material precursor is obtained by impregnating a fiber cloth with an uncured curable resin.
Moreover, the preparation method which includes a filler in uncured curable resin is mentioned. More specifically, a composite material precursor is obtained by mixing a filler such as glass fiber with an uncured curable resin.
Note that the surface of the filler may be pretreated by a conventionally known method so that the above-described impregnation and mixing can be sufficiently performed.

硬化性樹脂としては、複合材料の使用環境温度よりも低い温度雰囲気下で硬化させることができるものであれば、特に限定されず、従来公知の硬化性樹脂を使用できる。例えば、UV硬化型樹脂、可視光硬化型樹脂、電子線硬化型樹脂、嫌気性の硬化型樹脂、2液硬化型樹脂などが挙げられる。即ち、加熱することなく硬化が可能な硬化性樹脂であればよい。具体的には、エポキシ樹脂、アクリル樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ウレタン樹脂などを使用することができる。また、上記樹脂の種類に応じて、アンチモン化合物、ヨウ素化合物などのカチオン重合開始剤、ベンゾフェノン、有機過酸化物、有機金属塩などのラジカル重合開始剤、ジメチルアニリンなどの嫌気性重合促進剤を適宜使用することができる。   The curable resin is not particularly limited as long as it can be cured in a temperature atmosphere lower than the use environment temperature of the composite material, and a conventionally known curable resin can be used. For example, a UV curable resin, a visible light curable resin, an electron beam curable resin, an anaerobic curable resin, a two-component curable resin, and the like can be given. That is, any curable resin that can be cured without heating may be used. Specifically, an epoxy resin, an acrylic resin, a vinyl ester resin, an unsaturated polyester resin, a urethane resin, or the like can be used. Depending on the type of resin, cationic polymerization initiators such as antimony compounds and iodine compounds, radical polymerization initiators such as benzophenone, organic peroxides and organometallic salts, and anaerobic polymerization accelerators such as dimethylaniline are appropriately used. Can be used.

充填材としては特に限定されず、従来公知の充填材を使用することができる。従来公知の充填材としては、繊維状充填材、粉粒状充填剤、板状充填材が挙げられる。
繊維状充填材としては、例えば、ガラス繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリ繊維、ウォラストナイトの如き珪酸塩の繊維、硫酸マグネシウム繊維、ホウ酸アルミニウム繊維、さらにステンレス、アルミニウム、チタン、銅、真鍮などの金属の繊維状物などの無機質繊維状物質が挙げられる。繊維布を用いることもでき、例えば、ガラスクロス、ガラスペーパー、ガラスマットなどのガラス繊維基材、ガラス短繊維、ガラスフィラー及び合成繊維などからなる織布、不織布、マット類などが挙げられる。繊維布の織り方は特に限定されず、本実施形態の製造方法においては、平織り、ななこ織り、朱子織り、綾織りなど、いずれも適用可能である。
粉粒状充填材としては、例えば、カーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ミルドガラスファイバー、ガラスバルーン、ガラス粉、珪酸カルシウム、珪酸アルミニウム、カオリン、タルク、クレー、珪藻土、ウォラストナイトの如き珪酸塩、酸化鉄、酸化チタン、酸化亜鉛、三酸化アンチモン、アルミナの如き金属の酸化物、炭酸カルシウム、炭酸マグネシウムの如き金属の炭酸塩、硫酸カルシウム、硫酸バリウムの如き金属の硫酸塩、その他フェライト、炭化珪素、窒化珪素、窒化硼素、各種金属粉末などが挙げられる。
板状充填材としては、例えば、マイカ、ガラスフレーク、各種の金属箔などが挙げられる。
上記の各充填材のうち、繊維状充填材が特に好ましく用いられる。
It does not specifically limit as a filler, A conventionally well-known filler can be used. Conventionally known fillers include fibrous fillers, granular fillers, and plate-like fillers.
Examples of the fibrous filler include glass fiber, asbestos fiber, silica fiber, silica / alumina fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, and wollastonite. Examples thereof include inorganic fibrous materials such as silicate fibers, magnesium sulfate fibers, aluminum borate fibers, and metal fibrous materials such as stainless steel, aluminum, titanium, copper, and brass. A fiber cloth can also be used, and examples thereof include glass fiber base materials such as glass cloth, glass paper, and glass mat, woven cloth, non-woven cloth, and mats made of short glass fibers, glass filler, and synthetic fibers. The weaving method of the fiber cloth is not particularly limited, and any of plain weaving, Nanako weaving, satin weaving, twill weaving, and the like can be applied in the manufacturing method of this embodiment.
Examples of the granular filler include carbon black, graphite, silica, quartz powder, glass beads, milled glass fiber, glass balloon, glass powder, calcium silicate, aluminum silicate, kaolin, talc, clay, diatomaceous earth, and wollastonite. Silicates such as silicate, iron oxide, titanium oxide, zinc oxide, antimony trioxide, oxides of metals such as alumina, carbonates of metals such as calcium carbonate and magnesium carbonate, sulfates of metals such as calcium sulfate and barium sulfate, etc. Examples thereof include ferrite, silicon carbide, silicon nitride, boron nitride, and various metal powders.
Examples of the plate-like filler include mica, glass flakes, various metal foils, and the like.
Of the above fillers, fibrous fillers are particularly preferably used.

特に本実施形態の複合材料の製造方法において、充填材としてガラス繊維を用い、硬化性樹脂として、複合材料の使用環境温度における屈折率がガラス繊維の屈折率と近似する透明樹脂を用いた場合には、成形品に残存する内部応力に伴う寸法安定性の悪さやクラックの発生を抑制しつつ、樹脂内部に生ずる屈折率勾配を抑制して、透明性の高い複合材料を得ることができる。なお、残留応力低減の原理と、屈折率勾配低減の原理については、後述する。   In particular, in the composite material manufacturing method of the present embodiment, when glass fiber is used as the filler, and as the curable resin, a transparent resin whose refractive index at the use environment temperature of the composite material approximates the refractive index of the glass fiber is used. Can suppress a refractive index gradient generated in the resin while suppressing poor dimensional stability and generation of cracks due to internal stress remaining in the molded article, thereby obtaining a highly transparent composite material. The principle of reducing the residual stress and the principle of reducing the refractive index gradient will be described later.

上記透明樹脂としては、エポキシ樹脂、アクリル樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂などの透明性のある樹脂を用いることができる。
ここで、屈折率が「近似」するとは、屈折率が同一の他、透明性に影響を与えない範囲内で屈折率に若干の差がある場合も含むことを意味する。
As the transparent resin, a transparent resin such as an epoxy resin, an acrylic resin, a vinyl ester resin, or an unsaturated polyester resin can be used.
Here, “approximate” the refractive index means that the refractive index is the same and includes a case where there is a slight difference in the refractive index within a range that does not affect the transparency.

[硬化工程]
硬化工程では、複合材料前駆体に含まれる未硬化の硬化性樹脂を硬化させる。本実施形態の硬化工程は、複合材料の使用環境温度よりも低い温度雰囲気下で硬化を行う点が特徴である。なお、硬化は、硬化性樹脂の種類に応じて、UVや可視光などを照射することにより行われる。
ここで、本実施形態の製造方法により得られる複合材料は、様々な用途に適用することが可能であり、「複合材料の使用環境温度」とは、これらそれぞれの用途において複合材料が曝される温度のことを意味する。例えば、複合材料を自動車の構造部材に用いる場合には、使用環境温度は−40〜80℃である。
[Curing process]
In the curing step, the uncured curable resin contained in the composite material precursor is cured. The curing step of this embodiment is characterized in that curing is performed in an atmosphere having a temperature lower than the use environment temperature of the composite material. In addition, hardening is performed by irradiating UV, visible light, etc. according to the kind of curable resin.
Here, the composite material obtained by the manufacturing method of the present embodiment can be applied to various uses, and the “use environment temperature of the composite material” means that the composite material is exposed in each of these uses. It means temperature. For example, when the composite material is used for a structural member of an automobile, the use environment temperature is −40 to 80 ° C.

以下、本実施形態の製造方法における残留応力低減の原理を説明しつつ、本実施形態の効果について説明する。
図1(a)は、硬化前における充填材の収縮量と硬化性樹脂の収縮量との関係を模式的に示したものである。図1(a)に示すように、硬化前においては、樹脂が流動性を持つため、全体が均一な状態である。
Hereinafter, the effect of this embodiment will be described while explaining the principle of residual stress reduction in the manufacturing method of this embodiment.
FIG. 1 (a) schematically shows the relationship between the shrinkage of the filler and the shrinkage of the curable resin before curing. As shown to Fig.1 (a), since resin has fluidity | liquidity before hardening, the whole is a uniform state.

図1(b)は、硬化直後における充填材の収縮量と硬化性樹脂の収縮量との関係を模式的に示したものである。図1(b)に示すように、硬化直後には、硬化性樹脂の硬化反応による硬化収縮により、硬化性樹脂の収縮量が増大する。ただし、充填材との界面付近における硬化性樹脂は、充填材により硬化収縮が抑制されるため、収縮量の増大は小さい。   FIG. 1B schematically shows the relationship between the shrinkage of the filler and the shrinkage of the curable resin immediately after curing. As shown in FIG. 1B, immediately after curing, the amount of shrinkage of the curable resin increases due to curing shrinkage due to the curing reaction of the curable resin. However, in the curable resin near the interface with the filler, the shrinkage in curing is suppressed by the filler, and therefore the increase in the shrinkage is small.

図1(c)及び(d)は、硬化後に使用環境温度に置かれた際の充填材の収縮量と硬化性樹脂の収縮量との関係を模式的に示したものである。図1(c)は、使用環境温度よりも高い温度雰囲気下で硬化させた場合、即ち、従来の製造方法により製造した場合の図であり、図1(d)は、使用環境温度よりも低い温度雰囲気下で硬化させた場合、即ち本実施形態の製造方法により製造した場合の図である。
図1(c)に示すように、従来の通り、使用環境温度よりも高い温度雰囲気下で硬化を行った場合には、硬化性樹脂の温度は、硬化の際の反応温度から使用環境温度まで低下する。硬化性樹脂は、この温度低下により熱収縮を生じるため、硬化性樹脂の収縮量はさらに増大する。その結果、充填材の収縮量と硬化性樹脂の収縮量との差はさらに大きくなるうえ、樹脂内部においても充填材との界面付近とそれ以外とで収縮の度合いが違うために収縮量に大きな違いが生じ、樹脂中に残存する内部応力はさらに増大する。このため、寸法安定性が悪化してクラックが発生し、高強度の複合材料が得られないうえ、表面の凹凸が目立つようになり、外観も悪化する。
一方、図1(d)に示すように、本実施形態の通り、使用環境温度よりも低い温度雰囲気下で硬化を行った場合には、硬化性樹脂の温度は、硬化の際の反応温度から使用環境温度まで上昇する。硬化性樹脂の温度が上昇すると硬化後の硬化性樹脂は熱膨張する。熱膨張すれば、硬化の際に生じた硬化性樹脂の収縮量は低減され、硬化の際の収縮量が樹脂に比して小さい充填材の収縮量に近付く。熱膨張の際には、充填材との界面付近における樹脂は充填材により熱膨張が抑制される一方、界面付近以外の樹脂は自由に熱膨張する結果、硬化収縮の際に生じた樹脂内における収縮量の違いも解消できる。したがって、硬化性樹脂の収縮量と充填材の収縮量との差が消失することにより、残留応力を低減でき、複合材料の寸法安定性が悪化したり、クラックなどが生じることを抑制できる。ひいては、高強度、高耐熱性、高難燃性、高外観の複合材料を提供でき、自動車、電子部品、建築などのあらゆる分野での利用が可能である。
また、本実施形態によれば、複合材料の使用環境温度よりも低い温度雰囲気下で硬化性樹脂の硬化を行えば上記効果が奏されるため、硬化性樹脂や充填材の種類及び配合割合の制限を受けることがなく、成形加工性にも優れる。
FIGS. 1C and 1D schematically show the relationship between the shrinkage of the filler and the shrinkage of the curable resin when placed at the use environment temperature after curing. FIG.1 (c) is a figure when it hardens | cures in temperature atmosphere higher than use environment temperature, ie, the case where it manufactures with the conventional manufacturing method, FIG.1 (d) is lower than use environment temperature. It is a figure at the time of making it harden | cure in a temperature atmosphere, ie, the case where it manufactures with the manufacturing method of this embodiment.
As shown in FIG. 1 (c), when curing is performed in a temperature atmosphere higher than the use environment temperature as in the past, the temperature of the curable resin is from the reaction temperature during the cure to the use environment temperature. descend. Since the curable resin causes thermal shrinkage due to this temperature decrease, the shrinkage amount of the curable resin further increases. As a result, the difference between the amount of shrinkage of the filler and the amount of shrinkage of the curable resin is further increased, and the amount of shrinkage is also large because the degree of shrinkage is different between the vicinity of the interface with the filler inside the resin and the rest. Differences occur and the internal stress remaining in the resin further increases. For this reason, the dimensional stability is deteriorated and cracks are generated, and a high-strength composite material cannot be obtained. Further, surface irregularities become conspicuous, and the appearance is also deteriorated.
On the other hand, as shown in FIG. 1 (d), when curing is performed in a temperature atmosphere lower than the use environment temperature as in this embodiment, the temperature of the curable resin is determined from the reaction temperature at the time of curing. It rises to the operating environment temperature. When the temperature of the curable resin increases, the cured curable resin thermally expands. If the thermal expansion occurs, the shrinkage amount of the curable resin generated during the curing is reduced, and the shrinkage amount during the curing approaches the shrinkage amount of the filler smaller than that of the resin. During thermal expansion, the resin in the vicinity of the interface with the filler is suppressed by the filler, while the resin other than in the vicinity of the interface freely expands freely. The difference in shrinkage can also be eliminated. Therefore, the difference between the shrinkage amount of the curable resin and the shrinkage amount of the filler disappears, so that the residual stress can be reduced, and the deterioration of the dimensional stability of the composite material and the occurrence of cracks can be suppressed. As a result, it is possible to provide a composite material having high strength, high heat resistance, high flame retardancy, and high appearance, and can be used in various fields such as automobiles, electronic parts, and architecture.
In addition, according to the present embodiment, since the above effect can be achieved by curing the curable resin under a temperature atmosphere lower than the use environment temperature of the composite material, the type and blending ratio of the curable resin and the filler There is no restriction, and the moldability is excellent.

次に、本実施形態の製造方法において、充填材としてガラス繊維を用い、硬化性樹脂として、複合材料の使用環境温度における屈折率がガラス繊維の屈折率と近似する透明樹脂を用いた場合の屈折率勾配低減の原理を説明しつつ、本実施形態の効果について説明する。
図2(a)は、硬化前におけるガラス繊維の屈折率と硬化性樹脂の屈折率との関係を模式的に示したものである。図2(a)に示すように、硬化前においては、樹脂が流動性を持つため、全体の屈折率が均一な状態である。
Next, in the manufacturing method of the present embodiment, refraction when glass fiber is used as a filler and a transparent resin whose refractive index at the use environment temperature of the composite material approximates the refractive index of the glass fiber is used as the curable resin. The effect of this embodiment will be described while explaining the principle of rate gradient reduction.
FIG. 2 (a) schematically shows the relationship between the refractive index of the glass fiber and the refractive index of the curable resin before curing. As shown in FIG. 2 (a), since the resin has fluidity before curing, the entire refractive index is in a uniform state.

図2(b)は、硬化直後におけるガラス繊維の屈折率と硬化性樹脂の屈折率との関係を模式的に示したものである。図2(b)に示すように、硬化直後には、硬化性樹脂の硬化反応による硬化収縮により、硬化性樹脂の収縮量が増大して密度が高くなるため、屈折率が高くなる。ただし、充填材との界面付近における硬化性樹脂は、充填材により硬化収縮が抑制されるため、収縮量の増大は小さく、屈折率もそれほど高くはならない。   FIG. 2B schematically shows the relationship between the refractive index of the glass fiber and the refractive index of the curable resin immediately after curing. As shown in FIG. 2 (b), immediately after curing, the shrinkage due to the curing reaction of the curable resin increases the amount of shrinkage of the curable resin and increases the density, so that the refractive index increases. However, in the curable resin near the interface with the filler, the shrinkage in curing is suppressed by the filler, so that the increase in shrinkage is small and the refractive index is not so high.

図2(c)及び(d)は、硬化後に使用環境温度に置かれた際のガラス繊維の屈折率と硬化性樹脂の屈折率との関係を模式的に示したものである。図2(c)は、使用環境温度より高い温度雰囲気下で硬化させた場合、即ち従来の製造方法により製造した場合の図であり、図2(d)は、使用環境温度よりも低い温度雰囲気下で硬化させた場合、即ち本実施形態の製造方法により製造した場合の図である。
図2(c)に示すように、従来の通り、使用環境温度よりも高い温度雰囲気下で硬化を行った場合には、硬化性樹脂の温度は、硬化の際の温度から使用環境温度まで低下する。硬化性樹脂は、この温度低下により熱収縮を生じるため、硬化性樹脂の屈折率はさらに高くなる。その結果、ガラス繊維の屈折率と硬化性樹脂の屈折率との差は、さらに大きくなるうえ、樹脂内部においても充填材との界面付近とそれ以外とで収縮の度合いが違うために収縮量に大きな違いが生じてより大きな屈折率勾配が発生し、複合材料の透明性は著しく低下する。
一方、図2(d)に示すように、本実施形態の通り、使用環境温度より低い温度雰囲気下で硬化工程を行った場合には、硬化の際の反応温度から使用環境温度まで硬化性樹脂の温度は上昇する。硬化性樹脂の温度が上昇すると硬化後の硬化性樹脂は、熱膨張する。硬化性樹脂が熱膨張すれば、硬化の際に生じた硬化性樹脂の収縮量は低減され、硬化の際の収縮量が樹脂に比して小さい充填材の収縮量に近付くため屈折率も近付く。熱膨張の際には、充填材との界面付近における樹脂は充填材により熱膨張が抑制される一方、界面付近以外の樹脂は自由に熱膨張する結果、硬化収縮の際に生じた樹脂内における収縮量の違いも解消でき、樹脂内部の屈折率勾配も解消できる。したがって、硬化性樹脂の屈折率と充填材の屈折率との差が消失することにより、複合材料の透明性を向上させることができる。
FIGS. 2C and 2D schematically show the relationship between the refractive index of the glass fiber and the refractive index of the curable resin when placed at the use environment temperature after curing. FIG. 2 (c) is a diagram in the case of curing in a temperature atmosphere higher than the use environment temperature, that is, a case where it is produced by a conventional production method, and FIG. 2 (d) is a temperature atmosphere lower than the use environment temperature. It is a figure at the time of making it harden under, ie, the case where it manufactures with the manufacturing method of this embodiment.
As shown in FIG. 2 (c), when curing is performed in a temperature atmosphere higher than the use environment temperature as in the past, the temperature of the curable resin is decreased from the temperature at the time of curing to the use environment temperature. To do. Since the curable resin causes thermal shrinkage due to this temperature decrease, the refractive index of the curable resin is further increased. As a result, the difference between the refractive index of the glass fiber and the refractive index of the curable resin is further increased, and the amount of shrinkage is also different because the degree of shrinkage is different between the vicinity of the interface with the filler inside the resin and other areas. A large difference will result in a larger refractive index gradient and the transparency of the composite will be significantly reduced.
On the other hand, as shown in FIG. 2 (d), when the curing step is performed in a temperature atmosphere lower than the use environment temperature as in this embodiment, the curable resin is used from the reaction temperature during the cure to the use environment temperature. Temperature rises. When the temperature of the curable resin rises, the cured curable resin thermally expands. If the curable resin thermally expands, the amount of shrinkage of the curable resin that occurs during curing is reduced, and the amount of shrinkage during curing approaches the amount of shrinkage of the filler smaller than that of the resin, so the refractive index also approaches. . During thermal expansion, the resin in the vicinity of the interface with the filler is suppressed by the filler, while the resin other than in the vicinity of the interface freely expands freely. The difference in shrinkage can be eliminated, and the refractive index gradient inside the resin can also be eliminated. Therefore, the difference between the refractive index of the curable resin and the refractive index of the filler disappears, whereby the transparency of the composite material can be improved.

なお、本実施形態の製造方法においては、硬化性樹脂の硬化を、複合材料の使用環境温度よりも低い温度雰囲気下で行うものであるが、さらに、下記式(1)により算出される反応温度±15℃の範囲内で硬化を行うことが好ましい。下記式(1)から得られる反応温度±15℃の範囲内であれば、複合材料の光透過率にあまり差が見られず、高い透明性が得られる。

Figure 2010189543
In addition, in the manufacturing method of this embodiment, although hardening of curable resin is performed in the temperature atmosphere lower than the use environment temperature of a composite material, moreover, reaction temperature computed by following formula (1) Curing is preferably performed within a range of ± 15 ° C. When the reaction temperature is within the range of ± 15 ° C. obtained from the following formula (1), there is not much difference in the light transmittance of the composite material, and high transparency is obtained.

Figure 2010189543

式(1)は、樹脂の収縮、膨張に影響を及ぼす物性は、硬化収縮量と線膨張係数であることに着目するとともに、硬化収縮に際しては半硬化の状態も含まれることに配慮して、係数を設定して導かれたものである。
式(1)において、使用環境温度には、実際に複合材料が使用されるときの温度を代入する。硬化性樹脂の硬化収縮率、及び線膨張係数は樹脂特有のものであり、測定方法は特に限定されない。例えば、後述する実施例に記載される方法で測定された値を代入することができる。
In consideration of the fact that the physical properties that affect the shrinkage and expansion of the resin are the amount of cure shrinkage and the linear expansion coefficient, the formula (1) takes into account that a semi-cured state is also included in the cure shrinkage. It is derived by setting a coefficient.
In Equation (1), the temperature at which the composite material is actually used is substituted for the use environment temperature. The curing shrinkage rate and linear expansion coefficient of the curable resin are specific to the resin, and the measurement method is not particularly limited. For example, the value measured by the method described in the Example mentioned later can be substituted.

上記式(1)を用いて反応温度を決定することにより、複合材料の使用環境温度において、硬化性樹脂の収縮量と充填材の収縮量とを容易にかつ確実に近付けることができる。したがって、上述した効果が容易にかつ確実に奏される。   By determining the reaction temperature using the above equation (1), the shrinkage amount of the curable resin and the shrinkage amount of the filler can be easily and reliably brought close to each other at the use environment temperature of the composite material. Therefore, the effects described above are easily and reliably achieved.

なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。   It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例における各種の測定項目は、下記のようにして求めた。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples. The various measurement items in the examples were determined as follows.

本実施例では、充填材として、下記のガラス繊維を用いた。
<充填材>
ガラス繊維1:ガラスクロス(旭化成エレクトロニクス社製「7628/1260/AS891AW」、目付け=200g/m×9ply)
ガラス繊維2:ノンクリンプファブリック(「S32EX010−00600−01270−250000」、SEATEX社製)、目付け(600g/m×3ply)
ガラス繊維3:不織布、目付け(600g/m×3ply)
ガラス繊維4:ガラスクロス(「1080/1060/AS891MSW」、旭化成エレクトロニクス社製)
ガラス繊維5:ガラスクロス(「1080/1060/AS891AW」、旭化成エレクトロニクス社製)
ガラス繊維6:ガラスクロス(「1080/1270/AS750」、旭化成エレクトロニクス社製)
ガラス繊維7:ガラスクロス(「WLA 180 M 110 H974」、日東紡社製)
ガラス繊維8:ガラスクロス(「WF230 100 BS6」、日東紡社製)
In this example, the following glass fiber was used as the filler.
<Filler>
Glass fiber 1: Glass cloth ("7628/1260 / AS891AW" manufactured by Asahi Kasei Electronics Co., Ltd., basis weight = 200 g / m 2 × 9 ply)
Glass fiber 2: Non-crimp fabric (“S32EX010-00600-01270-250,000”, manufactured by SEATEX), basis weight (600 g / m 2 × 3ply)
Glass fiber 3: Non-woven fabric, basis weight (600 g / m 2 × 3 ply)
Glass fiber 4: Glass cloth (“1080/1060 / AS891MSW”, manufactured by Asahi Kasei Microdevices Corporation)
Glass fiber 5: Glass cloth (“1080/1060 / AS891AW”, manufactured by Asahi Kasei Electronics)
Glass fiber 6: Glass cloth (“1080/1270 / AS750”, manufactured by Asahi Kasei Electronics)
Glass fiber 7: Glass cloth ("WLA 180 M 110 H974", manufactured by Nittobo)
Glass fiber 8: Glass cloth (“WF230 100 BS6”, manufactured by Nittobo)

本実施例では、硬化性樹脂として、下記の樹脂を用いた。なお、硬化収縮量及び線膨張係数は、後述する測定方法にしたがって測定された値である。また、下記のアクリル樹脂及びエポキシ樹脂は、硬化物の状態で、常温(25℃)下における屈折率がガラス繊維の屈折率と一致するように調整したものである。
<硬化性樹脂>
アクリル樹脂:UV硬化型アクリル樹脂(三菱レイヨン社製「ダイヤビーム」、硬化収縮率6.7%、線膨張係数345×10−6/K)
エポキシ樹脂:UV硬化型エポキシ樹脂(NTTアドバンステクノロジ社製、硬化収縮率3.8%、線膨張係数107×10−6/K)
In this example, the following resin was used as the curable resin. The amount of cure shrinkage and the linear expansion coefficient are values measured according to the measurement method described later. Moreover, the following acrylic resin and epoxy resin are adjusted so that the refractive index at room temperature (25 ° C.) matches the refractive index of the glass fiber in the state of a cured product.
<Curable resin>
Acrylic resin: UV curable acrylic resin (“Diabeam” manufactured by Mitsubishi Rayon Co., Ltd., curing shrinkage 6.7%, linear expansion coefficient 345 × 10 −6 / K)
Epoxy resin: UV curable epoxy resin (manufactured by NTT Advanced Technology, cure shrinkage 3.8%, linear expansion coefficient 107 × 10 −6 / K)

[硬化収縮率の測定]
硬化性樹脂の硬化収縮率は、次のようにして求めた。
先ず、未硬化で液状の硬化性樹脂の比重を測定した。測定には振動式液体密度計(Antompaar社製「DAM48」)を用いた。この未硬化で液状の硬化性樹脂を、後述する実施例(アクリル樹脂では実施例1、エポキシ樹脂では実施例2)と同様の条件・方法で硬化させた。得られた厚さ2mmの樹脂板をダイヤモンドカッターにより30mm×30mmに切り出し、この切り出した樹脂片の比重を測定した。測定には、比重計(島津製作所社製「AUW−D−SGM」)を用いた。次いで、下記の式(2)に未硬化の樹脂の比重、硬化後の樹脂の比重を代入し硬化収縮率を求めた。

Figure 2010189543
[Measurement of cure shrinkage]
The cure shrinkage rate of the curable resin was determined as follows.
First, the specific gravity of the uncured and liquid curable resin was measured. For the measurement, a vibrating liquid density meter (“DAM48” manufactured by Antompaar) was used. This uncured and liquid curable resin was cured under the same conditions and method as those described later (Example 1 for acrylic resin, Example 2 for epoxy resin). The obtained resin plate having a thickness of 2 mm was cut into 30 mm × 30 mm with a diamond cutter, and the specific gravity of the cut resin pieces was measured. A specific gravity meter (“AUW-D-SGM” manufactured by Shimadzu Corporation) was used for the measurement. Then, the specific gravity of the uncured resin and the specific gravity of the cured resin were substituted into the following formula (2) to determine the cure shrinkage.
Figure 2010189543

[線膨張係数の測定]
硬化性樹脂の線膨張係数は、次のようにして求めた。
上記硬化収縮率の測定と同様にして得られた厚さ2mmの樹脂板を、ダイヤモンドカッターによって5mm×5mmに切り出した。次いで、切り出した樹脂片の線膨張係数を、TMA測定装置(エスアイアイ・ナノテクノロジー社製「TMA/SS6300」)を用いて測定した。
[Measurement of linear expansion coefficient]
The linear expansion coefficient of the curable resin was determined as follows.
A resin plate having a thickness of 2 mm obtained in the same manner as the measurement of the curing shrinkage rate was cut out to 5 mm × 5 mm with a diamond cutter. Subsequently, the linear expansion coefficient of the cut resin piece was measured using a TMA measuring apparatus (“TMA / SS6300” manufactured by SII Nano Technology).

<実施例1>
[前駆体調製工程]
先ず、上記ガラスクロスの前処理を実施した。具体的には、ガラスクロスを400℃で30時間加熱し、ガラスクロスの表面の有機成分を除去した。その後、シランカップリング剤(信越シリコン社製「KBM−503」)をエタノールで100倍に希釈した溶液中に、ガラスクロスを浸漬した。浸漬後、ガラスクロスを溶液中から取り出し、100℃で1時間乾燥させた。
次いで、上記の未硬化のアクリル樹脂中に、前処理済みのガラスクロスを浸漬し、真空脱泡することで、上記ガラスクロスに未硬化のアクリル樹脂を含浸させた。重ね合わせ時の間隔が2mmになるように調節した2枚のガラス板に、上記未硬化のアクリル樹脂を含浸させたガラスクロスを挟み込み、余分な未硬化のアクリル樹脂をガラスクロスから取り除いた。その結果、繊維の体積含有率が45%のガラス板に挟まれた複合材料前駆体1を得た。
<Example 1>
[Precursor preparation step]
First, pretreatment of the glass cloth was performed. Specifically, the glass cloth was heated at 400 ° C. for 30 hours to remove organic components on the surface of the glass cloth. Thereafter, a glass cloth was immersed in a solution obtained by diluting a silane coupling agent (“KBM-503” manufactured by Shin-Etsu Silicon Co., Ltd.) 100 times with ethanol. After immersion, the glass cloth was taken out from the solution and dried at 100 ° C. for 1 hour.
Next, the glass cloth was impregnated with the uncured acrylic resin by immersing the pretreated glass cloth in the uncured acrylic resin and vacuum degassing. The glass cloth impregnated with the uncured acrylic resin was sandwiched between two glass plates adjusted so that the interval at the time of superposition was 2 mm, and excess uncured acrylic resin was removed from the glass cloth. As a result, a composite material precursor 1 sandwiched between glass plates having a fiber volume content of 45% was obtained.

[硬化工程]
水を透過させないポリ袋内に上記複合材料前駆体1を入れ、図3に示すように、このポリ袋を5℃の水で満たされた水槽に沈め、上記複合材料前駆体1を冷却した。冷却後、水、ポリ袋、ガラス板を介して上記複合材料前駆体1にUVを照射し、未硬化のアクリル樹脂を硬化させた。なお、UV照射には、UV照射器(セン特殊光源社製「ハンディ・キュアラブ」)を用い、照射強度50mW/cm、照射時間30分で照射を行った。照射後、ポリ袋からガラス板に挟まれた複合材料1を取り出し、ガラス板を取り外して板厚2mmの複合材料1を得た。
なお、硬化反応の反応温度5℃は、複合材料の使用環境温度を25℃に想定し、上記式(1)に、上記アクリル樹脂の硬化収縮率及び線膨張係数を代入することにより算出した。
[Curing process]
The composite material precursor 1 was put in a plastic bag that did not allow water to pass through, and as shown in FIG. 3, the plastic bag was submerged in a water tank filled with 5 ° C. water, and the composite material precursor 1 was cooled. After cooling, the composite material precursor 1 was irradiated with UV through water, a plastic bag, and a glass plate to cure the uncured acrylic resin. For UV irradiation, a UV irradiator (“Handy Cure” manufactured by Sen Special Light Source Co., Ltd.) was used, and irradiation was performed with an irradiation intensity of 50 mW / cm 2 and an irradiation time of 30 minutes. After the irradiation, the composite material 1 sandwiched between the glass plates was taken out from the plastic bag, and the glass plate was removed to obtain a composite material 1 having a thickness of 2 mm.
The reaction temperature of 5 ° C. for the curing reaction was calculated by substituting the curing shrinkage rate and linear expansion coefficient of the acrylic resin into the above formula (1), assuming that the use environment temperature of the composite material is 25 ° C.

<比較例1>
実施例1と同様の方法で、ガラス板に挟まれた複合材料前駆体1を作製した。この複合材料前駆体1を、ホットプレートを用いて100℃に加熱保持した。次いで、複合材料前駆体1にUVを照射し、未硬化のアクリル樹脂を硬化させた。なお、UV照射には実施例1と同様の装置を用い、照射強度50mW/cm、照射時間10分の条件で照射を行った。照射後、試料を冷却し、ガラス板を取り外して板厚2mmの複合材料2を得た。
<Comparative Example 1>
A composite material precursor 1 sandwiched between glass plates was produced by the same method as in Example 1. The composite material precursor 1 was heated and held at 100 ° C. using a hot plate. Next, the composite material precursor 1 was irradiated with UV to cure the uncured acrylic resin. In addition, the apparatus similar to Example 1 was used for UV irradiation, and irradiation was performed on the conditions of irradiation intensity 50mW / cm < 2 > and irradiation time 10 minutes. After irradiation, the sample was cooled, and the glass plate was removed to obtain a composite material 2 having a plate thickness of 2 mm.

<実施例2>
アクリル樹脂を上記エポキシ樹脂に変更し、硬化工程における水槽中の水温を20℃に変更した以外は実施例1と同様にして、複合材料前駆体2を作製し、複合材料3を得た。ただし、上記ガラスクロスには、エポキシ用表面処理が施されているため、前処理は省いた。
なお、硬化反応の反応温度20℃は、複合材料の使用環境温度を25℃に想定し、上記式(1)に、上記エポキシ樹脂の硬化収縮率及び線膨張係数を代入することにより算出した。
<Example 2>
A composite material precursor 2 was produced in the same manner as in Example 1 except that the acrylic resin was changed to the epoxy resin and the water temperature in the water tank in the curing step was changed to 20 ° C., and a composite material 3 was obtained. However, since the glass cloth was subjected to a surface treatment for epoxy, pretreatment was omitted.
The reaction temperature of 20 ° C. for the curing reaction was calculated by substituting the curing shrinkage rate and the linear expansion coefficient of the epoxy resin into the above formula (1), assuming that the use environment temperature of the composite material is 25 ° C.

<比較例2>
実施例2と同様の方法で複合材料前駆体2を作製した。複合材料前駆体2に対して、室温状態でUVを照射した。UV照射には、実施例1と同様の装置を用い、照射強度50mW/cm、照射時間10分の条件で照射を行った。照射後、80℃に保たれた恒温槽にて1時間加熱することで複合材料前駆体2をさらに硬化させた。次いで、試料を冷却し、ガラス板を取り外して板厚2mmの複合材料4を得た。
<Comparative example 2>
A composite material precursor 2 was produced in the same manner as in Example 2. The composite material precursor 2 was irradiated with UV at room temperature. For UV irradiation, the same apparatus as in Example 1 was used, and irradiation was performed under conditions of an irradiation intensity of 50 mW / cm 2 and an irradiation time of 10 minutes. After the irradiation, the composite material precursor 2 was further cured by heating in a thermostat kept at 80 ° C. for 1 hour. Next, the sample was cooled, and the glass plate was removed to obtain a composite material 4 having a plate thickness of 2 mm.

<実施例3>
ガラスクロスを上記ノンクリンプファブリック(以下、NCFともいう)に変更した以外は、実施例2と同様にして複合材料5を得た。
<Example 3>
A composite material 5 was obtained in the same manner as in Example 2 except that the glass cloth was changed to the non-crimp fabric (hereinafter also referred to as NCF).

<比較例3>
ガラスクロスを上記NCFに変更した以外は、比較例2と同様にして複合材料6を得た。
<Comparative Example 3>
A composite material 6 was obtained in the same manner as in Comparative Example 2 except that the glass cloth was changed to the NCF.

<実施例4>
ガラスクロスを上記不織布に変更した以外は、実施例2と同様にして複合材料7を得た。
<Example 4>
A composite material 7 was obtained in the same manner as in Example 2 except that the glass cloth was changed to the nonwoven fabric.

<比較例4>
ガラスクロスを上記不織布に変更した以外は、比較例2と同様にして複合材料8を得た。
<Comparative example 4>
A composite material 8 was obtained in the same manner as in Comparative Example 2 except that the glass cloth was changed to the nonwoven fabric.

<実施例5>
実施例2で用いたガラスクロスの繊維束の厚みを変更した以外は、実施例2と同様にして複合材料9−1〜9−4を得た。9−1はガラス繊維4を用いて作製し、9−2はガラス繊維1を用いて作製し、9−3はガラス繊維7を用いて作製し、9−4はガラス繊維8を用いて作製した。
<Example 5>
Composite materials 9-1 to 9-4 were obtained in the same manner as in Example 2 except that the thickness of the fiber bundle of the glass cloth used in Example 2 was changed. 9-1 is produced using glass fiber 4, 9-2 is produced using glass fiber 1, 9-3 is produced using glass fiber 7, and 9-4 is produced using glass fiber 8. did.

<比較例5>
比較例2で用いたガラスクロスの繊維束の厚みを変更した以外は、比較例2と同様にして複合材料10−1〜10−5を得た。10−1はガラス繊維4を用いて作製し、10−2はガラス繊維5を用いて作製し、10−3はガラス繊維6を用いて作製し、10−4はガラス繊維1を用いて作製し、10−5はガラス繊維7を用いて作製した。
<Comparative Example 5>
Composite materials 10-1 to 10-5 were obtained in the same manner as in Comparative Example 2, except that the thickness of the fiber bundle of the glass cloth used in Comparative Example 2 was changed. 10-1 is produced using glass fiber 4, 10-2 is produced using glass fiber 5, 10-3 is produced using glass fiber 6, and 10-4 is produced using glass fiber 1. And 10-5 was produced using the glass fiber 7.

<引張強度の評価>
実施例1〜2、比較例1〜2の各複合材料について、引張試験機(INSTRON社製「5567」)を用い、JIS K7054に準拠し、試験片形状が200mm×10mm×2mm、速度が1mm/分の測定条件で引張強度を測定した。測定結果を図4(a)に示した。
<Evaluation of tensile strength>
About each composite material of Examples 1-2 and Comparative Examples 1-2, using a tensile tester ("5567" manufactured by INSTRON), in accordance with JIS K7054, the test piece shape is 200 mm x 10 mm x 2 mm, and the speed is 1 mm. The tensile strength was measured under the measurement conditions per minute. The measurement results are shown in FIG.

図4(a)に示すように、アクリル樹脂を5℃で硬化させた実施例1の引張強度は、アクリル樹脂を100℃で硬化させた比較例1の引張強度に対して、16%向上することが確認された。また、エポキシ樹脂を20℃で硬化させた実施例2の引張強度は、エポキシ樹脂を100℃で硬化させた比較例2の引張強度に対して、5%向上することが確認された。したがって、本実施例の製造方法により得られた複合材料は、従来の複合材料に比して引張強度が向上することが確認された。   As shown in FIG. 4A, the tensile strength of Example 1 in which the acrylic resin was cured at 5 ° C. was improved by 16% relative to the tensile strength of Comparative Example 1 in which the acrylic resin was cured at 100 ° C. It was confirmed. Further, it was confirmed that the tensile strength of Example 2 in which the epoxy resin was cured at 20 ° C. was improved by 5% relative to the tensile strength of Comparative Example 2 in which the epoxy resin was cured at 100 ° C. Therefore, it was confirmed that the composite material obtained by the manufacturing method of this example has improved tensile strength as compared with the conventional composite material.

<曲げ強度の評価>
実施例1〜2、比較例1〜2の各複合材料について、曲げ試験機(INSTRON社製「5567」)を用い、JIS K7017に準拠し、試験片形状が60mm×15mm×2mm、速度が5mm/分の測定条件で曲げ強度を測定した。測定結果を図4(b)に示した。
<Evaluation of bending strength>
About each composite material of Examples 1-2 and Comparative Examples 1-2, using a bending tester ("5567" manufactured by INSTRON), in accordance with JIS K7017, the test piece shape is 60 mm x 15 mm x 2 mm, and the speed is 5 mm. The bending strength was measured under the measurement conditions per minute. The measurement results are shown in FIG.

図4(b)に示すように、アクリル樹脂を5℃で硬化させた実施例1の曲げ強度は、アクリル樹脂を100℃で硬化させた比較例1の曲げ強度に対して、28%向上することが確認された。また、エポキシ樹脂を20℃で硬化させた実施例2の曲げ強度は、エポキシ樹脂を100℃で硬化させた比較例2の曲げ強度に対して、10%向上することが確認された。したがって、本実施例の製造方法により得られた複合材料は、従来の複合材料に比して曲げ強度が向上することが確認された。   As shown in FIG. 4B, the bending strength of Example 1 in which the acrylic resin was cured at 5 ° C. was improved by 28% relative to the bending strength of Comparative Example 1 in which the acrylic resin was cured at 100 ° C. It was confirmed. Further, it was confirmed that the bending strength of Example 2 in which the epoxy resin was cured at 20 ° C. was improved by 10% with respect to the bending strength of Comparative Example 2 in which the epoxy resin was cured at 100 ° C. Therefore, it was confirmed that the composite material obtained by the manufacturing method of this example has improved bending strength as compared with the conventional composite material.

<表面うねりの評価>
実施例5の複合材料9−1〜9−4、比較例5の複合材料10−1〜10−5について、表面うねりの評価を行った。具体的には、各複合材料について、表面粗さ測定機
(ミツトヨ社製「SV−3000CNC」)を用い、JIS B0601に準拠する方法で表面うねりを測定し、算術平均うねりWaを求めた。結果を図5に示した。
<Evaluation of surface swell>
The surface waviness of the composite materials 9-1 to 9-4 of Example 5 and the composite materials 10-1 to 10-5 of Comparative Example 5 was evaluated. Specifically, for each composite material, the surface waviness was measured by a method according to JIS B0601 using a surface roughness measuring machine (“SV-3000CNC” manufactured by Mitutoyo Corporation), and the arithmetic average waviness Wa was obtained. The results are shown in FIG.

図5に示すように、エポキシ樹脂を20℃で硬化させた実施例5は、エポキシ樹脂を80℃で硬化させた比較例5に比して、複合材料表面のうねりが大幅に低減されていることが確認された。これにより、本実施例の製造方法によれば、ガラス繊維の繊維束が太くても複合材料表面のうねりを抑制でき、繊維束の本数を減らして成形加工性を向上させることができることが判った。図5中の番号は使用したガラス繊維が表1に示すガラス繊維であることを表す。   As shown in FIG. 5, in Example 5 in which the epoxy resin was cured at 20 ° C., the swell of the composite material surface was significantly reduced as compared with Comparative Example 5 in which the epoxy resin was cured at 80 ° C. It was confirmed. Thereby, according to the manufacturing method of the present example, it was found that even when the fiber bundle of glass fibers is thick, the undulation of the surface of the composite material can be suppressed, and the number of fiber bundles can be reduced to improve the moldability. . The numbers in FIG. 5 indicate that the glass fibers used are those shown in Table 1.

<透明性の評価>
実施例1〜4、比較例1〜4の各複合材料について、ヘーズメーター(スガ試験機社製「HGM−2DP」)を用い、測定環境温度25℃でヘーズ値を測定した。測定結果を表1に示した。
<Evaluation of transparency>
About each composite material of Examples 1-4 and Comparative Examples 1-4, the haze value was measured at the measurement environment temperature of 25 degreeC using the haze meter ("HGM-2DP" by Suga Test Instruments Co., Ltd.). The measurement results are shown in Table 1.

Figure 2010189543
Figure 2010189543

表1から明らかなように、本実施例の製造方法によれば、比較例に比して複合材料の透明性が著しく向上することが確認された。具体的には、比較例に対して本実施例ではヘーズ値は50%前後低減でき、従来では狙えなかったレベルの透明度(板厚2mm、繊維体積含有率45%で9.1%のヘーズ値(実施例2))が得られることが判った。
特に、実施例1〜2と比較例1〜2の結果から、樹脂の種類によらずに透明性が向上することが確認された。また、実施例2〜4と比較例2〜4の結果から、ガラス繊維などの充填材の形態によらずに透明性が向上することが確認された。
As is clear from Table 1, it was confirmed that the transparency of the composite material was remarkably improved according to the production method of this example as compared with the comparative example. Specifically, the haze value can be reduced by about 50% in the present embodiment compared to the comparative example, and the transparency (level haze value of 9.1% when the plate thickness is 2 mm and the fiber volume content is 45% is not possible in the past). (Example 2)) was obtained.
In particular, from the results of Examples 1 and 2 and Comparative Examples 1 and 2, it was confirmed that the transparency was improved regardless of the type of resin. Moreover, from the results of Examples 2 to 4 and Comparative Examples 2 to 4, it was confirmed that the transparency was improved regardless of the form of the filler such as glass fiber.

<反応温度の評価>
以下の手順にしたがって、比較例1及び比較例2の複合材料を用いて、それぞれの樹脂に最適な反応温度の評価、即ち上記式(1)の妥当性について評価を行った。
先ず、アクリル樹脂を100℃で硬化させた比較例1とエポキシ樹脂を80℃で硬化させた比較例2の複合材料について、分光光度計(日立ハイテク社製「U−4000」)を用いて光透過率の測定を行った。測定は、測定温度を変化させて各測定温度における光透過率を計測した。測定結果をそれぞれ図6(a)、(b)に示す。いずれの図も、横軸が温度上昇(K)、縦軸が光透過率を示している。図6において、光透過率が最大の点を、硬化性樹脂の屈折率勾配が消失したところと定義した。
<Evaluation of reaction temperature>
According to the following procedure, the composite materials of Comparative Example 1 and Comparative Example 2 were used to evaluate the optimum reaction temperature for each resin, that is, the validity of the above formula (1).
First, a composite material of Comparative Example 1 in which an acrylic resin was cured at 100 ° C. and Comparative Example 2 in which an epoxy resin was cured at 80 ° C. was measured using a spectrophotometer (“U-4000” manufactured by Hitachi High-Tech). The transmittance was measured. In the measurement, the light transmittance at each measurement temperature was measured by changing the measurement temperature. The measurement results are shown in FIGS. 6 (a) and 6 (b), respectively. In each figure, the horizontal axis indicates the temperature rise (K) and the vertical axis indicates the light transmittance. In FIG. 6, the point with the highest light transmittance was defined as the point where the refractive index gradient of the curable resin disappeared.

図6(a)から、上記アクリル樹脂を用いた複合材料において最も光透過率を高くするためには、硬化後20℃の温度上昇が必要であることが判る。即ち、使用環境温度を25℃としたときには、反応温度を5℃としたときに最も高い光透過率が得られることを意味する。これは、上記式(1)で得られる最適な反応温度と一致し、式(1)の妥当性が証明された。
また、アクリル樹脂については、温度上昇20℃±15℃の範囲では、光透過率の差も小さく、透明性に影響はあまり無いことが確認された。
一方、図6(b)から、上記エポキシ樹脂を用いた複合材料において最も光透過率を高くするためには、硬化後5℃の温度上昇が必要であることが判る。即ち、使用環境温度を25℃としたときには、反応温度を20℃としたときに最も高い光透過率が得られることを意味する。これは、上記式(1)で得られる最適な反応温度と一致し、式(1)の妥当性が証明された。
From FIG. 6A, it can be seen that a temperature increase of 20 ° C. is necessary after curing in order to obtain the highest light transmittance in the composite material using the acrylic resin. That is, when the use environment temperature is 25 ° C., it means that the highest light transmittance is obtained when the reaction temperature is 5 ° C. This coincided with the optimum reaction temperature obtained by the above formula (1), and the validity of the formula (1) was proved.
For acrylic resins, it was confirmed that the difference in light transmittance was small in the range of temperature rise of 20 ° C. ± 15 ° C. and the transparency was not significantly affected.
On the other hand, FIG. 6 (b) shows that a temperature increase of 5 ° C. is necessary after curing in order to obtain the highest light transmittance in the composite material using the epoxy resin. That is, when the use environment temperature is 25 ° C., it means that the highest light transmittance is obtained when the reaction temperature is 20 ° C. This coincided with the optimum reaction temperature obtained by the above formula (1), and the validity of the formula (1) was proved.

Claims (3)

硬化性樹脂と充填材とを含む複合材料の製造方法であって、
未硬化の硬化性樹脂と、前記充填材とを含む複合材料前駆体を調製する前駆体調製工程と、
前記複合材料前駆体に含まれる前記未硬化の硬化性樹脂を、前記複合材料の使用環境温度よりも低い温度雰囲気下で硬化させる硬化工程と、を備えることを特徴とする複合材料の製造方法。
A method for producing a composite material including a curable resin and a filler,
A precursor preparation step of preparing a composite precursor including an uncured curable resin and the filler;
A curing step of curing the uncured curable resin contained in the composite material precursor in a temperature atmosphere lower than a use environment temperature of the composite material.
前記前駆体調製工程において、
前記充填材としてガラス繊維を用いるとともに、前記硬化性樹脂として、前記複合材料の使用環境温度における屈折率が前記ガラス繊維の屈折率と近似する透明樹脂を用いることを特徴とする請求項1に記載の複合材料の製造方法。
In the precursor preparation step,
The glass fiber is used as the filler, and a transparent resin having a refractive index at a use environment temperature of the composite material approximate to a refractive index of the glass fiber is used as the curable resin. A method for producing a composite material.
前記硬化工程において、
前記複合材料前駆体に含まれる前記未硬化の硬化性樹脂を、下記の式(1)で表される反応温度±15℃の範囲内で硬化させることを特徴とする請求項1又は2に記載の複合材料の製造方法。
Figure 2010189543
In the curing step,
The said uncured curable resin contained in the said composite material precursor is hardened within the range of reaction temperature +/- 15 degreeC represented by following formula (1), It is characterized by the above-mentioned. A method for producing a composite material.
Figure 2010189543
JP2009035032A 2009-02-18 2009-02-18 Method for producing composite material Pending JP2010189543A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009035032A JP2010189543A (en) 2009-02-18 2009-02-18 Method for producing composite material
PCT/JP2010/001031 WO2010095436A1 (en) 2009-02-18 2010-02-18 Process for the production of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035032A JP2010189543A (en) 2009-02-18 2009-02-18 Method for producing composite material

Publications (1)

Publication Number Publication Date
JP2010189543A true JP2010189543A (en) 2010-09-02

Family

ID=42633723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035032A Pending JP2010189543A (en) 2009-02-18 2009-02-18 Method for producing composite material

Country Status (2)

Country Link
JP (1) JP2010189543A (en)
WO (1) WO2010095436A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140416A (en) * 2014-01-30 2015-08-03 凸版印刷株式会社 Transparent antiblocking resin composition, film laminate and roll state-film laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570627A (en) * 1991-09-11 1993-03-23 Asahi Chem Ind Co Ltd Transparent and tough plate-shaped molding
JPH08157735A (en) * 1994-12-07 1996-06-18 Hoya Corp Production of organic/inorganic composite polymer
JP2005008721A (en) * 2003-06-18 2005-01-13 Sumitomo Bakelite Co Ltd Transparent frp
JP2009019160A (en) * 2007-07-13 2009-01-29 Teijin Ltd Optical film, and optical display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570627A (en) * 1991-09-11 1993-03-23 Asahi Chem Ind Co Ltd Transparent and tough plate-shaped molding
JPH08157735A (en) * 1994-12-07 1996-06-18 Hoya Corp Production of organic/inorganic composite polymer
JP2005008721A (en) * 2003-06-18 2005-01-13 Sumitomo Bakelite Co Ltd Transparent frp
JP2009019160A (en) * 2007-07-13 2009-01-29 Teijin Ltd Optical film, and optical display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140416A (en) * 2014-01-30 2015-08-03 凸版印刷株式会社 Transparent antiblocking resin composition, film laminate and roll state-film laminate

Also Published As

Publication number Publication date
WO2010095436A1 (en) 2010-08-26

Similar Documents

Publication Publication Date Title
Arshad et al. Effect of coir fiber and TiC nanoparticles on basalt fiber reinforced epoxy hybrid composites: physico–mechanical characteristics
JP5874840B2 (en) Metal resin composite and method for producing metal resin composite
JP6699127B2 (en) Fiber-reinforced composite material manufacturing method, resin base material and preform
CN105829096B (en) Metal-resin composite
JP5874841B2 (en) Metal resin composite and method for producing metal resin composite
Li et al. Fabrication and investigations of G-POSS/cyanate ester resin composites reinforced by silane-treated silica fibers
KR20140094549A (en) Nanosilica Containing Bismaleimide Compositions
CN105122089A (en) Hard coat film and method for manufacturing same
JPWO2015093260A1 (en) Thermosetting resin composition and metal resin composite
Shahapurkar et al. Effect of crump rubber on the solid particle erosion response of epoxy composites
Song et al. Aramid fiber coated with aramid nanofiber coating to improve its interfacial properties with polycarbonate
WO2010095436A1 (en) Process for the production of composite material
ES2378466T3 (en) Composition of radiation curable resin and prepreg
Lu et al. Fracture toughness of three-dimensional stereolithography printed polymer reinforced with continuous carbon fibers
JPWO2015087722A1 (en) Metal resin composite
Kandpal et al. Mechanical properties of multifunctional epoxy resin/glass fiber reinforced composites modified with poly (ether imide)
TWI739973B (en) A liquid crystalline resin composition for outer panel and an outer panel
KR20110068731A (en) Manufacturing method of high strength safety glass
WO2014054547A1 (en) Resin composition, resin cured product, transparent composite, display-element substrate, and surface-light-source substrate
JP5601487B2 (en) Prepreg and fiber-reinforced composite material cured from the same
JP2007029312A (en) Bathtub
Parameswaranpillai et al. Advances in epoxy/synthetic/natural fiber composites
Ku et al. Tensile tests of phenol formaldehyde SLG reinforced composites: Pilot study
Ku et al. Fracture toughness of phenol formaldehyde composites reinforced with E-spheres
TWI473845B (en) Formula and method of environmental fabrication use the same for dual-polymerization macromolecular composite sill

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20121127

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326