JP2010188383A - Rivet joining method - Google Patents

Rivet joining method Download PDF

Info

Publication number
JP2010188383A
JP2010188383A JP2009035656A JP2009035656A JP2010188383A JP 2010188383 A JP2010188383 A JP 2010188383A JP 2009035656 A JP2009035656 A JP 2009035656A JP 2009035656 A JP2009035656 A JP 2009035656A JP 2010188383 A JP2010188383 A JP 2010188383A
Authority
JP
Japan
Prior art keywords
joined
plate material
self
rivet
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009035656A
Other languages
Japanese (ja)
Inventor
Hirosuke Takayama
裕輔 高山
Takayuki Yamada
孝行 山田
Koji Koyakata
孝次 古舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009035656A priority Critical patent/JP2010188383A/en
Publication of JP2010188383A publication Critical patent/JP2010188383A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/02Riveting procedures
    • B21J15/025Setting self-piercing rivets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/02Riveting procedures
    • B21J15/08Riveting by applying heat, e.g. to the end parts of the rivets to enable heads to be formed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/28Control devices specially adapted to riveting machines not restricted to one of the preceding subgroups
    • B21J15/285Control devices specially adapted to riveting machines not restricted to one of the preceding subgroups for controlling the rivet upset cycle

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rivet joining method for excellently joining magnesium-made or magnesium alloy-made plates to be joined by self-pierce rivets, efficiently heating the joined part of the plates to be joined, and favorably holding (pressing) a part in the vicinity of joined parts of the plates. <P>SOLUTION: In the rivet joining method, one of a pair of plates 21, 22 to be joined by self-pierce rivets 10 is a Mg-made plate 21, and the compressive strain of the Mg-made plate 21 is 85%. In the rivet joining method, the joined part 25 to be joined with the self-pierce rivets 10 out of the Mg-made plate 21 is heated at the heating temperature of 280°C to the solidus line temperature (°C). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、フロントサイドフレームを車体前後方向に向けて設け、フロントサイドフレームの車体後方でかつ車体外側にフロントピラーを備えたリベット接合方法に関する。   The present invention relates to a rivet joining method in which a front side frame is provided in a longitudinal direction of a vehicle body, and a front pillar is provided at the rear of the front side frame and outside the vehicle body.

被接合板材の接合方法として、リベットの頭部に中空状の脚部を備えたリベット(以下、「セルフピアスリベット」という)を用いて一対の被接合板材を重ね合わせた状態に接合(締結)する方法が知られている。
このセルフピアスリベットの接合方法によれば、ガスバーナ、電気ヒータや高周波誘導加熱器などの加熱手段を用いて被接合板材を加熱することで、マグネシウムまたはマグネシウム合金製の被接合板材を重ね合わせた状態に接合(締結)することが可能である(例えば、特許文献1参照。)。
As a method for joining the plate materials to be joined, a pair of plate materials to be joined is joined (fastened) using a rivet (hereinafter referred to as “self-piercing rivet”) having a hollow leg on the head of the rivet. How to do is known.
According to this self-piercing rivet joining method, the joining plate materials made of magnesium or magnesium alloy are superposed by heating the joining plate materials using heating means such as a gas burner, an electric heater or a high frequency induction heater. Can be joined (fastened) to each other (for example, see Patent Document 1).

すなわち、特許文献1のセルフピアスリベットの接合方法によれば、マグネシウムまたはマグネシウム合金製の被接合板材を重ね合わせ、重ね合わせた被接合板材の接合部近傍に加熱手段を配置し、配置した加熱手段で重ね合わせた被接合板材の接合部を加熱する。
この状態で、リベットの頭部を押圧して脚部を接合部に押し込み(打ち込み)、脚部の先端を外側に広げて接合部を接合(締結)することができる。
That is, according to the self-piercing rivet joining method of Patent Document 1, magnesium or magnesium alloy to-be-joined plate materials are superposed, a heating means is disposed in the vicinity of the joint portion of the superposed plate materials to be joined, and the arranged heating means The joined portion of the joined plate materials that are overlapped with each other is heated.
In this state, the head portion of the rivet can be pressed to push the leg portion into the joint portion (driving), and the tip end of the leg portion can be spread outward to join (fasten) the joint portion.

特開2006−7266号公報JP 2006-7266 A

しかし、特許文献1の接合方法では、セルフピアスリベットで接合したマグネシウムまたはマグネシウム合金製の被接合板材の圧縮歪が85%の場合に、被接合板材を良好に接合することは難しい。   However, in the joining method of Patent Document 1, it is difficult to satisfactorily join the joined plate materials when the compressive strain of the joined plate materials made of magnesium or magnesium alloy joined by self-piercing rivets is 85%.

また、特許文献1の接合方法によれば、重ね合わせた被接合板材の接合部近傍に加熱手段を配置し、配置した加熱手段で重ね合わせた被接合板材の接合部を加熱している。
このため、加熱手段で発生させた熱を空気伝播で接合部に間接的に伝えることになり熱効率が悪く、接合部の加熱に時間がかかり、生産性を高める妨げになっていた。
Moreover, according to the joining method of patent document 1, a heating means is arrange | positioned in the joint part vicinity of the overlapped to-be-joined board | plate material, and the joined part of the to-be-joined board | plate material overlapped with the arrange | positioned heating means is heated.
For this reason, the heat generated by the heating means is indirectly transmitted to the joint portion by air propagation, resulting in poor thermal efficiency, and it takes time to heat the joint portion, which hinders productivity.

さらに、特許文献1の接合方法では、接合部の近傍に加熱手段が配置されるため、加熱手段が邪魔になり、接合部の近傍に被接合板材を挟持(押圧)する押圧治具を配置することが難しい。   Furthermore, in the joining method of Patent Document 1, since the heating means is disposed in the vicinity of the joining portion, the heating means is in the way, and a pressing jig for sandwiching (pressing) the plate material to be joined is disposed in the vicinity of the joining portion. It is difficult.

本発明は、セルフピアスリベットで接合したマグネシウムまたはマグネシウム合金製の被接合板材が圧縮歪85%の場合にセルフピアスリベットで良好に接合することができ、かつ、被接合板材の接合部を効率よく加熱するとともに、被接合板材の接合部近傍を好適に挟持(押圧)することができるリベット接合方法を提供することを課題とする。   The present invention can satisfactorily bond with a self-piercing rivet when the bonded plate material made of magnesium or magnesium alloy bonded with a self-piercing rivet has a compression strain of 85%, and efficiently joins the bonded portion of the bonded plate material. It is an object of the present invention to provide a rivet joining method capable of heating and suitably holding (pressing) the vicinity of the joining portion of the joined plate materials.

請求項1に係る発明は、セルフピアスリベットで接合された一対の被接合板材のうち、一方の被接合板材をマグネシウムまたはマグネシウム合金製の板材とし、該板材の圧縮歪が85%となるリベット接合方法において、前記一対の被接合板材のうち、前記セルフピアスリベットで接合する接合部を、加熱温度280〜固相線℃に加熱することを特徴とする。   The invention according to claim 1 is a rivet joint in which one of the plate members to be bonded is a plate member made of magnesium or a magnesium alloy, and the compression strain of the plate member is 85%. The method is characterized in that, of the pair of plate members to be joined, a joining portion to be joined by the self-piercing rivet is heated to a heating temperature of 280 to a solidus line C.

請求項2は、セルフピアスリベットで接合された一対の被接合板材のうち、一方の被接合板材をマグネシウムまたはマグネシウム合金製の板材とするリベット接合方法において、前記一対の被接合板材のうち前記接合部の周囲をダイおよびポンチで挟持する工程と、前記ダイに埋設されたダイ加熱手段および前記ポンチに埋設されたポンチ加熱手段で前記接合部を加熱する工程と、前記接合部に前記セルフピアスリベットを押し込むことにより、前記セルフピアスリベットで前記接合部を接合する工程と、を備えたことを特徴とする。   Claim 2 is a rivet joining method in which one of the joined plate members is a magnesium or magnesium alloy plate member among the pair of joined plate members joined by the self-piercing rivet, and the joining of the pair of joined plate members Sandwiching the periphery of the portion with a die and a punch, heating the joint with a die heating means embedded in the die and a punch heating means embedded in the punch, and the self-piercing rivet at the joint And a step of joining the joining portion with the self-piercing rivet by pushing in.

請求項3は、前記ダイ加熱手段および前記ポンチ加熱手段で前記接合部を280〜固相線℃に加熱し、前記セルフピアスリベットで前記接合部を接合した状態において、前記接合部のうち、前記マグネシウムまたは前記マグネシウム合金製の前記板材の圧縮歪が85%となることを特徴とする。   According to a third aspect of the present invention, in the state where the joint is heated to 280 to solidus C. by the die heating unit and the punch heating unit, and the joint is joined by the self-piercing rivet, The compressive strain of the plate made of magnesium or the magnesium alloy is 85%.

請求項1に係る発明では、マグネシウムまたはマグネシウム合金製の被接合板材をセルフピアスリベットで接合する際に接合部を280〜固相線℃に加熱した。接合部を280〜固相線℃に加熱することで接合部の延性を高めることができる。   In the invention which concerns on Claim 1, when joining the to-be-joined board | plate material made from magnesium or a magnesium alloy with a self-piercing rivet, the junction part was heated to 280-solidus line degreeC. The ductility of the joint can be increased by heating the joint to 280 to solidus C.

よって、セルフピアスリベットで接合した状態において、接合部の圧縮歪が85%になった場合、この圧縮歪に対応できるように接合部の延性を高めることができる。
これにより、接合部に破断(亀裂、クラック)が発生することを防いで、セルフピアスリベットで接合部を良好に接合することができる。
Therefore, when the compressive strain of the joint becomes 85% in a state where the joint is joined with the self-piercing rivet, the ductility of the joint can be increased so as to cope with the compressive strain.
Thereby, it can prevent that a fracture | rupture (a crack, a crack) generate | occur | produces in a junction part, and can join a junction part favorably with a self-piercing rivet.

請求項2に係る発明では、一対の被接合板材のうち前記接合部の周囲をダイおよびポンチで挟持することができる。
よって、被接合板材の接合部近傍を好適に挟持(押圧)することができる。
In the invention which concerns on Claim 2, the circumference | surroundings of the said junction part can be pinched | interposed with a die | dye and a punch among a pair of to-be-joined board | plate materials.
Therefore, the vicinity of the bonded portion of the bonded plate material can be suitably clamped (pressed).

さらに、ダイに埋設されたダイ加熱手段およびポンチに埋設されたポンチ加熱手段で接合部を加熱することができる。
よって、ダイ加熱手段で発生した熱をダイを経て接合部に伝えることができ、ポンチ加熱手段で発生した熱をポンチを経て接合部に伝えることができる。
これにより、ダイ加熱手段やポンチ加熱手段で発生した熱を接合部に効率よく伝えて、接合部を効率よく加熱することができる。
Further, the joint can be heated by the die heating means embedded in the die and the punch heating means embedded in the punch.
Therefore, the heat generated by the die heating unit can be transmitted to the joint through the die, and the heat generated by the punch heating unit can be transmitted to the joint through the punch.
Thereby, the heat generated by the die heating means or the punch heating means can be efficiently transmitted to the joint portion, and the joint portion can be efficiently heated.

このように、被接合板材の接合部近傍を好適に挟持(押圧)することができ、かつ、接合部を効率よく加熱することで、セルフピアスリベットで一対の被接合板材を良好に接合することができる。   As described above, the vicinity of the bonded portion of the bonded plate material can be suitably sandwiched (pressed), and the bonded portion can be efficiently heated so that the pair of bonded plate materials can be bonded well with the self-piercing rivet. Can do.

請求項3に係る発明では、ダイ加熱手段およびポンチ加熱手段で接合部を280〜固相線℃に加熱した。
これにより、マグネシウムまたはマグネシウム合金製の板材が圧縮歪85%の場合でも、セルフピアスリベットで一対の被接合板材を良好に接合することができる。
In the invention which concerns on Claim 3, a junction part was heated at 280-solidus line degree C with the die heating means and the punch heating means.
Thereby, even when the plate material made of magnesium or magnesium alloy has a compressive strain of 85%, the pair of plate materials to be bonded can be satisfactorily bonded by the self-piercing rivet.

本発明に係るリベット接合方法に用いるセルフピアスリベットおよび被接合板材を示す断面図である。It is sectional drawing which shows the self-piercing rivet and to-be-joined board | plate material used for the rivet joining method which concerns on this invention. 本発明に係るリベット接合方法で被接合板材を接合した状態を示す断面図である。It is sectional drawing which shows the state which joined the to-be-joined board | plate material with the rivet joining method which concerns on this invention. 図2の3部拡大図である。FIG. 3 is a three-part enlarged view of FIG. 2. 本発明に係るリベット接合方法で接合したMg板材の圧縮歪を示すグラフである。It is a graph which shows the compressive strain of Mg board | plate material joined by the rivet joining method which concerns on this invention. Mg板材の圧縮応力と圧縮歪との関係を示すグラフである。It is a graph which shows the relationship between the compressive stress and compressive strain of Mg board | plate material. Mg板材の加熱温度と破断時の圧縮歪との関係をグラフである。It is a graph about the relationship between the heating temperature of Mg board | plate material, and the compressive strain at the time of a fracture | rupture. 本発明に係るリベット接合方法に用いるセルフピアスリベット接合装置を示す断面図である。It is sectional drawing which shows the self-piercing rivet joining apparatus used for the rivet joining method which concerns on this invention. (a)は本発明に係るリベット接合方法で接合部を加熱する例を説明する図、(b)は本発明に係るリベット接合方法で接合部にセルフピアスリベットを押し込む(打ち込む)例を説明する図である。(A) is a figure explaining the example which heats a junction part by the rivet joining method which concerns on this invention, (b) demonstrates the example which pushes in a self-piercing rivet into a junction part (driving) by the rivet joining method which concerns on this invention. FIG. 本発明に係るリベット接合方法でAl板材およびMg板材を接合した状態を説明する図である。It is a figure explaining the state which joined the Al board | plate material and the Mg board | plate material with the rivet joining method which concerns on this invention.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

実施例に係るリベット接合方法について説明する。
図1に示すように、セルフピアスリベット10は、クロムモリブデン鋼(SCM435)で形成された部材であって、略円盤上に形成された頭部11と、頭部11の下部11aに設けられた中空状の脚部12とを備えている。
このセルフピアスリベット10は、中空状の脚部12で一対の被接合板材21,22に穴をあけて一対の被接合板材21,22を接合する自己穴あけ式のリベットである。
The rivet joining method according to the embodiment will be described.
As shown in FIG. 1, the self-piercing rivet 10 is a member formed of chromium molybdenum steel (SCM435), and is provided on a head 11 formed on a substantially disk and a lower portion 11 a of the head 11. And a hollow leg 12.
The self-piercing rivet 10 is a self-drilling type rivet in which a pair of plate members 21 and 22 are joined by making holes in the pair of plate members 21 and 22 with hollow legs 12.

脚部12は、外周壁13および内周壁14で円筒状に形成され、先端部15のうち内周壁14側の部位が傾斜面16に形成されることで、先端部15が断面先細状に形成されている。
この脚部12は、高さ寸法H、外径D、肉厚T1に形成されている。
The leg portion 12 is formed in a cylindrical shape by the outer peripheral wall 13 and the inner peripheral wall 14, and the tip portion 15 is formed in a tapered shape in cross section by forming a portion on the inner peripheral wall 14 side of the tip portion 15 on the inclined surface 16. Has been.
The leg portion 12 is formed to have a height dimension H, an outer diameter D, and a thickness T1.

セルフピアスリベット10で一対の被接合板材21,22が接合されている。
一対の被接合板材21,22のうち、一方の被接合板材21は、マグネシウム合金製の被接合板材(以下、「Mg板材」という)である。
また、他方の被接合板材22は、アルミニウム合金製の被接合板材(以下、「Al板材」という)である。
A pair of plate members 21 and 22 are joined by the self-piercing rivet 10.
Of the pair of plate members 21 and 22, one of the plate members 21 to be bonded is a magnesium alloy bonded plate member (hereinafter referred to as “Mg plate member”).
The other bonded plate material 22 is a bonded plate material made of aluminum alloy (hereinafter referred to as “Al plate material”).

Mg板材21は、表1の化学成分構成に示すように、Al成分:2.5〜3.5%、Zn成分:0.6〜1.4%、Mn成分:0.2〜1.0%、Fe成分:0.005以下、Si成分:0.10以下、Cu成分:0.05以下、Ni成分:0.005以下、Ca成分:0.04以下が含有された板材である。
このMg板材21は、板厚T2(1.5mm)に形成され、引張強さ230〜280MPa、伸び10〜24%の板材である。
As shown in the chemical composition of Table 1, the Mg plate material 21 has an Al component: 2.5 to 3.5%, a Zn component: 0.6 to 1.4%, and an Mn component: 0.2 to 1.0. %, Fe component: 0.005 or less, Si component: 0.10 or less, Cu component: 0.05 or less, Ni component: 0.005 or less, Ca component: 0.04 or less.
The Mg plate material 21 is a plate material having a plate thickness T2 (1.5 mm), a tensile strength of 230 to 280 MPa, and an elongation of 10 to 24%.

Figure 2010188383
Figure 2010188383

Al板材22は、一般に使用されているA5182−Oであり、板厚T3(1.6mm)に形成され、引張強さ290MPa、伸び16%の板材である。   The Al plate material 22 is A5182-O which is generally used, and is a plate material formed to a plate thickness T3 (1.6 mm), having a tensile strength of 290 MPa and an elongation of 16%.

図2に示すように、Mg板材21にAl板材22を重ね合わせた状態において、Mg板材21およびAl板材22にセルフピアスリベット10が押し込まれる(打ち込まれる)。
これにより、セルフピアスリベット10の先端部15が脚部12の半径方向外側に広げられ、頭部11および先端部15(すなわち、セルフピアスリベット10)でMg板材21およびAl板材22が接合されている。
As shown in FIG. 2, the self-piercing rivet 10 is pushed (driven) into the Mg plate material 21 and the Al plate material 22 in a state where the Al plate material 22 is superimposed on the Mg plate material 21.
As a result, the tip 15 of the self-piercing rivet 10 is spread outward in the radial direction of the leg 12, and the Mg plate 21 and the Al plate 22 are joined by the head 11 and the tip 15 (that is, the self-piercing rivet 10). Yes.

ここで、Mg板材21およびAl板材22がセルフピアスリベット10で接合された状態において、Mg板材21は、圧縮範囲Hにおいて圧縮歪εが特に大きい。
なお、圧縮歪ε[%]はつぎの式で求められる。
圧縮歪ε=[ΔT2/T2]×100[%]
但し、
ΔT2:Mg板材21の圧縮量
T2:Mg板材21の圧縮前の板厚
圧縮歪εが大きい部位から破断(亀裂、クラック)が発生することが考えられる。
Here, when the Mg plate material 21 and the Al plate material 22 are joined by the self-piercing rivet 10, the Mg plate material 21 has a particularly large compressive strain ε in the compression range H.
The compressive strain ε [%] is obtained by the following equation.
Compression strain ε = [ΔT2 / T2] × 100 [%]
However,
ΔT2: Compression amount of the Mg plate material 21 T2: Plate thickness before compression of the Mg plate material 21 It is considered that a fracture (crack, crack) occurs from a portion where the compression strain ε is large.

つぎに、Mg板材21の圧縮歪εを図3および図4に基づいて説明する。図4は、縦軸にMg板材21の圧縮歪、横軸にMg板材21の断面位置を示し、圧縮歪ε1〜ε10と断面位置P1〜P10との関係をグラフG1として示す。
図3、図4に示すように、Mg板材21は、部位P1の圧縮歪ε1が3%、部位P2の圧縮歪ε2が0%、部位P3の圧縮歪ε3が45%である。
また、Mg板材21は、部位P4の圧縮歪ε4が84〜85%、部位P5の圧縮歪ε5が60%、部位P6の圧縮歪ε6が67%である。
さらに、Mg板材21は、部位P7の圧縮歪ε7が73%、部位P8の圧縮歪ε8が78%、部位P9の圧縮歪ε9が71%、部位P10の圧縮歪ε10が60%である。
Next, the compressive strain ε of the Mg plate material 21 will be described with reference to FIGS. 3 and 4. FIG. 4 shows the compression strain of the Mg plate material 21 on the vertical axis, the cross-sectional position of the Mg plate material 21 on the horizontal axis, and shows the relationship between the compression strains ε1 to ε10 and the cross-sectional positions P1 to P10 as a graph G1.
As shown in FIGS. 3 and 4, the Mg plate 21 has a compression strain ε1 of 3% at the site P1, a compression strain ε2 of the site P2 of 0%, and a compression strain ε3 of the site P3 of 45%.
Further, in the Mg plate material 21, the compressive strain ε4 of the portion P4 is 84 to 85%, the compressive strain ε5 of the portion P5 is 60%, and the compressive strain ε6 of the portion P6 is 67%.
Further, in the Mg plate material 21, the compressive strain ε7 of the portion P7 is 73%, the compressive strain ε8 of the portion P8 is 78%, the compressive strain ε9 of the portion P9 is 71%, and the compressive strain ε10 of the portion P10 is 60%.

図4に示すように、Mg板材21は、部位P4の圧縮歪ε4が84〜85%と最も大きい。
よって、Mg板材21の圧縮歪εが84〜85%の場合に、Mg板材21に破断が発生しないようにする必要がある。
As shown in FIG. 4, the Mg plate material 21 has the largest compressive strain ε4 of the portion P4 of 84 to 85%.
Therefore, when the compressive strain ε of the Mg plate material 21 is 84 to 85%, it is necessary to prevent the Mg plate material 21 from being broken.

Mg板材21に破断が発生しないようにするためにはMg板材21の延性を大きく確保することが好ましい。
ここで、Mg板材21の延性を大きく確保する手段として、Mg板材21を加熱する方法が知られている。
In order to prevent the Mg plate material 21 from being broken, it is preferable to ensure a large ductility of the Mg plate material 21.
Here, a method of heating the Mg plate material 21 is known as means for ensuring a large ductility of the Mg plate material 21.

つぎに、Mg板材21の加熱条件と破断との関係を図5、図6に基づいて説明する。
まず、Mg板材21の加熱条件に応じた圧縮応力と圧縮歪との関係を図5のグラフG2〜G7に基づいて説明する。図5は、縦軸にMg板材21に作用する圧縮応力[MPa]、横軸にMg板材21の圧縮歪[%]を示す。
Next, the relationship between the heating condition of the Mg plate material 21 and the fracture will be described with reference to FIGS.
First, the relationship between the compressive stress and the compressive strain according to the heating conditions of the Mg plate material 21 will be described based on the graphs G2 to G7 in FIG. FIG. 5 shows the compressive stress [MPa] acting on the Mg plate material 21 on the vertical axis and the compressive strain [%] of the Mg plate material 21 on the horizontal axis.

図5において、Mg板材21を100℃で加熱した状態をグラフG2で示す。
グラフG2で示すように、Mg板材21を100℃で加熱した状態において、Mg板材21を圧縮応力360MPaで圧縮し、圧縮歪εを40%としたときMg板材21に破断が発生した。
In FIG. 5, a state where the Mg plate material 21 is heated at 100 ° C. is shown by a graph G2.
As shown in the graph G2, when the Mg plate material 21 was heated at 100 ° C., the Mg plate material 21 was compressed with a compressive stress of 360 MPa, and the compression strain ε was set to 40%.

Mg板材21を120℃で加熱した状態をグラフG3で示す。
グラフG3で示すように、Mg板材21を120℃で加熱した状態において、Mg板材21を圧縮応力390MPaで圧縮し、圧縮歪εを46%としたときMg板材21に破断が発生した。
A state where the Mg plate material 21 is heated at 120 ° C. is shown by a graph G3.
As shown in the graph G3, when the Mg plate material 21 was heated at 120 ° C., the Mg plate material 21 was compressed with a compressive stress of 390 MPa and the compression strain ε was set to 46%.

Mg板材21を140℃で加熱した状態をグラフG4で示す。
グラフG4で示すように、Mg板材21を140℃で加熱した状態において、Mg板材21を圧縮応力380MPaで圧縮し、圧縮歪εを53%としたときMg板材21に破断が発生した。
A state where the Mg plate material 21 is heated at 140 ° C. is shown by a graph G4.
As shown in the graph G4, when the Mg plate material 21 was heated at 140 ° C., the Mg plate material 21 was compressed with a compressive stress of 380 MPa, and when the compression strain ε was 53%, the Mg plate material 21 was broken.

Mg板材21を160℃で加熱した状態をグラフG5で示す。
グラフG5で示すように、Mg板材21を160℃で加熱した状態において、Mg板材21を圧縮応力380MPaで圧縮し、圧縮歪εを58%としたときMg板材21に破断が発生した。
A state where the Mg plate material 21 is heated at 160 ° C. is shown by a graph G5.
As shown by graph G5, when the Mg plate 21 was heated at 160 ° C., the Mg plate 21 was compressed with a compressive stress of 380 MPa, and the compression strain ε was set to 58%.

Mg板材21を180℃で加熱した状態をグラフG6で示す。
グラフG6で示すように、Mg板材21を180℃で加熱した状態において、Mg板材21を圧縮応力370MPaで圧縮し、圧縮歪εを62%としたときMg板材21に破断が発生した。
A state where the Mg plate material 21 is heated at 180 ° C. is shown by a graph G6.
As shown by graph G6, when the Mg plate material 21 was heated at 180 ° C., the Mg plate material 21 was compressed at a compressive stress of 370 MPa, and the compression strain ε was 62%.

Mg板材21を200℃で加熱した状態をグラフG7で示す。
グラフG7で示すように、Mg板材21を200℃で加熱した状態において、Mg板材21を圧縮応力340MPaで圧縮し、圧縮歪εを65%としたときMg板材21に破断が発生した。
A state where the Mg plate material 21 is heated at 200 ° C. is shown by a graph G7.
As shown by graph G7, when the Mg plate material 21 was heated at 200 ° C., the Mg plate material 21 was compressed with a compressive stress of 340 MPa, and the compression strain ε was 65%.

つぎに、Mg板材21に破断が発生したときの圧縮歪εと加熱温度との関係を図6のグラフG8に基づいて説明する。図6は、縦軸にMg板材21の破断時の圧縮歪[%]、横軸にMg板材21の加熱温度[℃]を示す。   Next, the relationship between the compressive strain ε and the heating temperature when a fracture occurs in the Mg plate material 21 will be described based on the graph G8 in FIG. FIG. 6 shows the compressive strain [%] at the time of fracture of the Mg plate 21 on the vertical axis and the heating temperature [° C.] of the Mg plate 21 on the horizontal axis.

図6に示すように、100℃で加熱したMg板材21に破断が発生したときの圧縮歪ε:40%をd1としてプロットする(グラフに標す)。
120℃で加熱したMg板材21に破断が発生したときの圧縮歪ε:46%をd2としてプロットする。
140℃で加熱したMg板材21に破断が発生したときの圧縮歪ε:53%をd3としてプロットする。
As shown in FIG. 6, the compression strain ε: 40% when fracture occurs in the Mg plate 21 heated at 100 ° C. is plotted as d1 (marked in the graph).
The compressive strain ε: 46% when fracture occurs in the Mg plate 21 heated at 120 ° C. is plotted as d2.
The compressive strain ε: 53% when fracture occurs in the Mg plate material 21 heated at 140 ° C. is plotted as d3.

160℃で加熱したMg板材21に破断が発生したときの圧縮歪ε:58%をd4としてプロットする。
180℃で加熱したMg板材21に破断が発生したときの圧縮歪ε:62%をd5としてプロットする。
200℃で加熱したMg板材21に破断が発生したときの圧縮歪ε:65%をd6としてプロットする。
The compressive strain ε: 58% when fracture occurs in the Mg plate 21 heated at 160 ° C. is plotted as d4.
The compressive strain ε: 62% when fracture occurs in the Mg plate 21 heated at 180 ° C. is plotted as d5.
The compressive strain ε: 65% when fracture occurs in the Mg plate 21 heated at 200 ° C. is plotted as d6.

図6に示すように、プロットd1〜d6が、直線状のグラフG8近傍に位置することから(グラフG8に乗ることから)、Mg板材21が破断する時の圧縮歪と加熱温度の関係は、グラフG8で示す正比例関係にあることがわかった。
このグラフG8に基づいて、Mg板材21の圧縮歪εが84〜85%のとき、Mg板材21に破断が発生することを防ぐためには280℃を超える加熱が必要なことがわかった。
As shown in FIG. 6, since the plots d1 to d6 are located in the vicinity of the linear graph G8 (from the graph G8), the relationship between the compressive strain and the heating temperature when the Mg plate material 21 breaks is It turned out that it is in the direct proportional relationship shown by the graph G8.
Based on this graph G8, it was found that when the compressive strain ε of the Mg plate material 21 is 84 to 85%, heating exceeding 280 ° C. is necessary to prevent the Mg plate material 21 from breaking.

一方、Mg板材21の加熱温度が溶融を開始する温度(固相線温度)を超えると、加熱されたMg板材21は固体状態を維持できない。
加熱されたMg板材21は固体状態を維持していないと、セルフピアスリベット10による機械的接合が困難になる。
そこで、Mg板材21の加熱温度を、Mg板材21が溶融を開始する温度(固相線温度)以下に設定した。
On the other hand, when the heating temperature of the Mg plate material 21 exceeds the temperature at which melting starts (solidus temperature), the heated Mg plate material 21 cannot maintain a solid state.
If the heated Mg plate material 21 is not maintained in a solid state, mechanical joining by the self-piercing rivet 10 becomes difficult.
Therefore, the heating temperature of the Mg plate material 21 is set to be equal to or lower than the temperature at which the Mg plate material 21 starts melting (solidus temperature).

このように、Mg板材21、具体的には、図9に示す接合部25(Al接合部27およびMg接合部26)を、ダイ加熱手段32およびポンチ加熱手段35で280〜固相線℃まで加熱することで、Mg接合部26の部位P4(図3参照)に破断が発生することを防いで、Mg板材21(接合部25)をセルフピアスリベット10で良好に接合することができる。   In this way, the Mg plate material 21, specifically, the joining portion 25 (Al joining portion 27 and Mg joining portion 26) shown in FIG. 9 is heated to 280 to solidus C ° by the die heating means 32 and the punch heating means 35. By heating, it is possible to prevent the breakage from occurring at the site P4 (see FIG. 3) of the Mg joint portion 26, and the Mg plate material 21 (joint portion 25) can be favorably joined with the self-piercing rivet 10.

つぎに、Mg板材21を280〜固相線℃に加熱するセルフピアスリベット接合装置30を図7に基づいて説明する。
図7に示すように、セルフピアスリベット接合装置30は、Mg板材21の接合部(以下、「Mg接合部」という)26に当接可能なダイ31と、ダイ31に埋設されたダイ加熱手段32と、Al板材22の接合部(以下、「Al接合部」という)27に当接可能なポンチ34と、ポンチ34に埋設されたポンチ加熱手段35と、セルフピアスリベット10をMg接合部26およびAl接合部27に押し込む(打ち込む)リベット押圧手段(図示せず)とを備えている。
Next, the self-piercing rivet joining apparatus 30 for heating the Mg plate material 21 to 280 to solidus C will be described with reference to FIG.
As shown in FIG. 7, the self-piercing rivet bonding apparatus 30 includes a die 31 that can abut on a bonding portion (hereinafter referred to as “Mg bonding portion”) 26 of the Mg plate material 21, and a die heating unit embedded in the die 31. 32, a punch 34 that can be brought into contact with a joint portion (hereinafter referred to as “Al joint portion”) 27 of the Al plate material 22, a punch heating means 35 embedded in the punch 34, and the self-piercing rivet 10 with the Mg joint portion 26. And a rivet pressing means (not shown) for pressing into the Al joint 27 (not shown).

Mg接合部26は、例えば、平面視で円形に形成された部位である。
また、Al接合部27は、例えば、平面視で円形に形成された部位である。
The Mg joint portion 26 is, for example, a portion formed in a circular shape in plan view.
In addition, the Al joint portion 27 is, for example, a portion formed in a circular shape in plan view.

ダイ31は、Mg板材21に対して直交する方向(すなわち、矢印A−B方向)に移動可能な部材である。
このダイ31は、Mg接合部26に上端部37が当接可能に形成され、上端部37の中央にMg板材21を受け入れる受入凹部38が形成され、ダイ加熱手段32を収容するダイ収納空間39が形成されている。
すなわち、ダイ31は、上端部37の中央に受入凹部38を形成することで、Mg接合部26の外周26a外側近傍26bに沿って上端部37が当接可能に形成されている。
The die 31 is a member that can move in a direction orthogonal to the Mg plate material 21 (that is, in the direction of arrows AB).
The die 31 is formed so that the upper end portion 37 can come into contact with the Mg joint portion 26, a receiving recess 38 for receiving the Mg plate material 21 is formed at the center of the upper end portion 37, and a die storage space 39 for accommodating the die heating means 32. Is formed.
That is, the die 31 is formed so that the upper end portion 37 can come into contact with the outer periphery 26 a outer vicinity 26 b of the Mg joint portion 26 by forming the receiving recess 38 in the center of the upper end portion 37.

ダイ収納空間39は、Mg板材21に対して可能な限り近づけた位置に形成されている。
Mg板材21にダイ収納空間39を近づけることで、ダイ加熱手段32がMg板材21に近づけた状態で収納されている。
ダイ加熱手段32をMg板材21に近づけることで、Mg接合部26およびAl接合部27(主に、Mg接合部26)をダイ加熱手段32で効率よく加熱することができる。
ダイ加熱手段32は、一例として、電気ヒータが用いられている。
The die storage space 39 is formed at a position as close as possible to the Mg plate material 21.
By bringing the die storage space 39 close to the Mg plate material 21, the die heating means 32 is stored in a state of being close to the Mg plate material 21.
By bringing the die heating means 32 closer to the Mg plate material 21, the Mg bonding portion 26 and the Al bonding portion 27 (mainly the Mg bonding portion 26) can be efficiently heated by the die heating means 32.
As an example, the die heating means 32 uses an electric heater.

ポンチ34は、Al板材22に対して直交する方向(すなわち、矢印C−D方向)に移動可能な部材である。
このポンチ34は、Al接合部27の外周27a外側近傍27bに下端部42が当接可能に形成され、中央にセルフピアスリベット10を収納するリベット収納空間43が形成され、ポンチ加熱手段35を収容するポンチ収納空間44が形成されている。
The punch 34 is a member that can move in a direction orthogonal to the Al plate material 22 (that is, in the direction of the arrow CD).
The punch 34 is formed so that the lower end 42 can come into contact with the outer periphery 27a of the Al joint 27 and the vicinity 27b of the outer periphery 27a, and a rivet storage space 43 for storing the self-piercing rivet 10 is formed at the center. A punch storage space 44 is formed.

ポンチ収納空間44は、Al板材22に対して可能な限り近づけた位置に形成されている。
Al板材22にポンチ収納空間44を近づけることで、ポンチ加熱手段35がAl板材22に近づけた状態で収納されている。
ポンチ加熱手段35をAl板材22に近づけることで、Al接合部27およびMg接合部26(主に、Al接合部27)をポンチ加熱手段35で効率よく加熱することができる。
ポンチ加熱手段35は、一例として、電気ヒータが用いられている。
The punch storage space 44 is formed at a position as close as possible to the Al plate material 22.
By bringing the punch storage space 44 close to the Al plate material 22, the punch heating means 35 is stored in a state of being close to the Al plate material 22.
By bringing the punch heating means 35 closer to the Al plate material 22, the Al bonding portion 27 and the Mg bonding portion 26 (mainly the Al bonding portion 27) can be efficiently heated by the punch heating means 35.
As the punch heating means 35, an electric heater is used as an example.

ポンチ34のリベット収納空間43にセルフピアスリベット10およびリベット押圧手段が収納されている。
リベット押圧手段は、セルフピアスリベット10に押込荷重Fを作用することで、セルフピアスリベット10をAl接合部27およびMg接合部26に矢印の如く押し込む(打ち込む)手段である。
以下、「Mg接合部26およびAl接合部27」をまとめて「接合部25」という。
The self-piercing rivet 10 and the rivet pressing means are stored in the rivet storage space 43 of the punch 34.
The rivet pressing means is means for pressing (striking) the self-piercing rivet 10 into the Al joint 27 and the Mg joint 26 as indicated by an arrow by applying a pressing load F to the self-piercing rivet 10.
Hereinafter, “Mg joint portion 26 and Al joint portion 27” are collectively referred to as “joint portion 25”.

つぎに、セルフピアスリベット10でAl板材22およびMg板材21を接合するリベット接合方法を図8〜図9に基づいて説明する。
図8(a)に示すように、Mg接合部26にAl接合部27を重ね合わせ、Al接合部27の外周27a外側近傍27bおよびMg接合部26の外周26a外側近傍26bをダイ31とポンチ34とで挟持する。
よって、接合部25の外周25a外側近傍25b(すなわち、接合部25の周囲)を好適に挟持(押圧)することができる。
Next, a rivet joining method for joining the Al plate material 22 and the Mg plate material 21 with the self-piercing rivet 10 will be described with reference to FIGS.
As shown in FIG. 8A, an Al joint 27 is superimposed on the Mg joint 26, and an outer periphery 27a outer vicinity 27b of the Al joint 27 and an outer periphery 26a outer vicinity 26b of the Mg joint 26 are connected to a die 31 and a punch 34. And pinch with.
Therefore, the outer periphery 25a outer vicinity 25b (that is, the periphery of the joint portion 25) of the joint portion 25 can be suitably sandwiched (pressed).

この状態で、ダイ31に埋設されたダイ加熱手段32でMg接合部26およびAl接合部27(主に、Mg接合部26)を加熱する。
同様に、ポンチ34に埋設されたポンチ加熱手段35でAl接合部27およびMg接合部26(主に、Al接合部27)を加熱する。
すなわち、ダイ加熱手段32およびポンチ加熱手段35で接合部25を280〜固相線℃まで加熱する。
In this state, the Mg bonding portion 26 and the Al bonding portion 27 (mainly the Mg bonding portion 26) are heated by the die heating means 32 embedded in the die 31.
Similarly, the punch heating means 35 embedded in the punch 34 heats the Al joint 27 and the Mg joint 26 (mainly the Al joint 27).
That is, the die heating unit 32 and the punch heating unit 35 heat the joint 25 to 280 to solidus C.

このように、ダイ加熱手段32で接合部25を加熱することで、ダイ加熱手段32で発生した熱を、空気伝播で間接的に伝えることなくダイ31を経て接合部25に伝えることができる。
さらに、ポンチ加熱手段35で接合部25を加熱することで、ポンチ加熱手段35で発生した熱を、空気伝播で間接的に伝えることなくポンチ34を経て接合部25に伝えることができる。
これにより、ダイ加熱手段32やポンチ加熱手段35で発生した熱を接合部25に効率よく伝えて、接合部25を効率よく加熱することができる。
In this way, by heating the bonding portion 25 by the die heating means 32, the heat generated by the die heating means 32 can be transmitted to the bonding portion 25 via the die 31 without being indirectly transmitted by air propagation.
Further, by heating the joint 25 by the punch heating means 35, the heat generated by the punch heating means 35 can be transmitted to the joint 25 via the punch 34 without being indirectly transmitted by air propagation.
Thereby, the heat generated by the die heating means 32 and the punch heating means 35 can be efficiently transmitted to the joint portion 25, and the joint portion 25 can be efficiently heated.

接合部25を280〜固相線℃まで加熱した後、リベット押圧手段でセルフピアスリベット10に押込荷重Fを作用する。   After heating the joint portion 25 to 280 to solidus C, a pressing load F is applied to the self-piercing rivet 10 by the rivet pressing means.

図8(b)に示すように、リベット押圧手段でセルフピアスリベット10に押込荷重Fを作用することで、セルフピアスリベット10の先端部(具体的には、脚部12の先端部)15が接合部25(Al接合部27およびMg接合部26)に矢印Eの如く押し込まれる(打ち込まれる)。   As shown in FIG. 8 (b), by applying a pressing load F to the self-piercing rivet 10 by the rivet pressing means, the tip of the self-piercing rivet 10 (specifically, the tip of the leg 12) 15 It is pushed into (injected into) the joint 25 (Al joint 27 and Mg joint 26) as shown by an arrow E.

図9に示すように、リベット押圧手段でセルフピアスリベット10を接合部25(Al接合部27およびMg接合部26)に押し込むことで、Mg接合部26が受入凹部38に膨出する。
この状態で、セルフピアスリベット10の先端部15が脚部12の半径方向外側に広げられる。
これにより、セルフピアスリベット10の頭部11および先端部15(すなわち、セルフピアスリベット10)で接合部25(Al接合部27およびMg接合部26)が接合される。
As shown in FIG. 9, the self-piercing rivet 10 is pushed into the joint portion 25 (the Al joint portion 27 and the Mg joint portion 26) by the rivet pressing means, so that the Mg joint portion 26 swells into the receiving recess 38.
In this state, the front end portion 15 of the self-piercing rivet 10 is spread outward in the radial direction of the leg portion 12.
Thereby, the joint portion 25 (the Al joint portion 27 and the Mg joint portion 26) is joined by the head portion 11 and the tip portion 15 of the self-piercing rivet 10 (that is, the self-piercing rivet 10).

このように、接合部25(Al接合部27およびMg接合部26)がセルフピアスリベット10で接合された状態において、図3に示すように、Mg接合部26は、部位P4において圧縮歪ε4:84〜85%まで圧縮される。   Thus, in a state where the joint portion 25 (Al joint portion 27 and Mg joint portion 26) is joined by the self-piercing rivet 10, as shown in FIG. 3, the Mg joint portion 26 has a compressive strain ε4: Compressed to 84-85%.

ここで、接合部25(Al接合部27およびMg接合部26)は、ダイ加熱手段32およびポンチ加熱手段35で280〜固相線℃まで加熱されている。
これにより、Mg接合部26の部位P4において、Mg板材21に破断が発生することを防いで、接合部25をセルフピアスリベット10で良好に接合することができる。
Here, the joint portion 25 (the Al joint portion 27 and the Mg joint portion 26) is heated to 280 to solidus C ° by the die heating means 32 and the punch heating means 35.
Thereby, in the site | part P4 of the Mg junction part 26, it can prevent that a fracture | rupture generate | occur | produces in the Mg board | plate material 21, and can join the junction part 25 with the self-piercing rivet 10 favorably.

加えて、接合部25の外周25a外側近傍25bをダイ31およびポンチ34で好適に挟持することができ、かつ、接合部25をダイ加熱手段32やポンチ加熱手段35で効率よく加熱することで、セルフピアスリベット10で接合部25を一層良好に接合することができる。   In addition, the outer periphery 25a outer vicinity 25b of the joining portion 25 can be suitably sandwiched by the die 31 and the punch 34, and the joining portion 25 is efficiently heated by the die heating means 32 or the punch heating means 35. The joint portion 25 can be further satisfactorily joined by the self-piercing rivet 10.

なお、本発明に係るリベット接合方法は、前述した実施例に限定されるものではなく適宜変更、改良などが可能である。
例えば、前記実施例では、一方の被接合板材としてマグネシウム合金製の板材(Mg板材)21を例示したが、これに限らないで、マグネシウム製の板材を用いることも可能である。
The rivet joining method according to the present invention is not limited to the above-described embodiments, and can be changed or improved as appropriate.
For example, in the above embodiment, the magnesium alloy plate material (Mg plate material) 21 is exemplified as one of the bonded plate materials. However, the present invention is not limited to this, and a magnesium plate material can also be used.

さらに、前記実施例で示したセルフピアスリベット10、Mg板材21、Al板材22、接合部25、接合部の外周25a、接合部の外周外側近傍25b、Mg接合部26、Al接合部27、セルフピアスリベット接合装置30、ダイ31、ダイ加熱手段32、ポンチ34およびポンチ加熱手段35などの形状や構成は例示したものに限定するものではなく適宜変更が可能である。   Furthermore, the self-piercing rivet 10, the Mg plate material 21, the Al plate material 22, the joint portion 25, the outer periphery 25a of the joint portion, the outer peripheral vicinity 25b of the joint portion, the Mg joint portion 26, the Al joint portion 27, the self shown in the above embodiment. The shapes and configurations of the pierce rivet joining device 30, the die 31, the die heating unit 32, the punch 34, the punch heating unit 35, and the like are not limited to those illustrated, and can be appropriately changed.

本発明は、フロントサイドフレームを車体前後方向に向けて設け、フロントサイドフレームの車体後方外側にフロントピラーを備えた自動車への適用に好適である。   The present invention is suitable for application to an automobile in which a front side frame is provided in the longitudinal direction of the vehicle body and a front pillar is provided on the rear side outside the vehicle body of the front side frame.

10…セルフピアスリベット、21…Mg板材(一対の被接合板材のうち一方の被接合板材)、22…Al板材(一対の被接合板材のうち他方の被接合板材)、25…接合部、25a…接合部の外周、25b…接合部の外周外側近傍、26…Mg接合部、27…Al接合部、30…セルフピアスリベット接合装置、31…ダイ、32…ダイ加熱手段、34…ポンチ、35…ポンチ加熱手段。   DESCRIPTION OF SYMBOLS 10 ... Self-piercing rivet, 21 ... Mg board | plate material (one to-be-joined board material among a pair of to-be-joined board materials), 22 ... Al board | plate material (the other to-be-joined board material among a pair of to-be-joined board materials), 25 ... Joining part, 25a ... outer periphery of the joint part, 25b ... near the outer periphery of the joint part, 26 ... Mg joint part, 27 ... Al joint part, 30 ... self-piercing rivet joining device, 31 ... die, 32 ... die heating means, 34 ... punch, 35 ... punch heating means.

Claims (3)

セルフピアスリベットで接合された一対の被接合板材のうち、一方の被接合板材をマグネシウムまたはマグネシウム合金製の板材とし、該板材の圧縮歪が85%となるリベット接合方法において、
前記一対の被接合板材のうち、前記セルフピアスリベットで接合する接合部を、加熱温度280〜固相線℃に加熱することを特徴とするリベット接合方法。
In a rivet joining method in which one of the joined plate materials is made of magnesium or a magnesium alloy, and the compressive strain of the plate material is 85% among the pair of joined plate materials joined by the self-piercing rivet.
A rivet joining method characterized by heating a joining part to be joined with the self-piercing rivet to a heating temperature of 280 to solidus line ° C among the pair of joined plates.
セルフピアスリベットで接合された一対の被接合板材のうち、一方の被接合板材をマグネシウムまたはマグネシウム合金製の板材とするリベット接合方法において、
前記一対の被接合板材のうち前記接合部の周囲をダイおよびポンチで挟持する工程と、
前記ダイに埋設されたダイ加熱手段および前記ポンチに埋設されたポンチ加熱手段で前記接合部を加熱する工程と、
前記接合部に前記セルフピアスリベットを押し込むことにより、前記セルフピアスリベットで前記接合部を接合する工程と、
を備えたことを特徴とするリベット接合方法。
In the rivet joining method in which one of the joined plates is made of magnesium or a magnesium alloy, among the pair of joined plates joined by the self-piercing rivet,
A step of sandwiching the periphery of the joint portion of the pair of joined plate materials with a die and a punch; and
Heating the joint with a die heating means embedded in the die and a punch heating means embedded in the punch; and
Joining the joint with the self-piercing rivet by pushing the self-piercing rivet into the joint; and
A rivet joining method characterized by comprising:
前記ダイ加熱手段および前記ポンチ加熱手段で前記接合部を280〜固相線℃に加熱し、
前記セルフピアスリベットで前記接合部を接合した状態において、前記接合部のうち、前記マグネシウムまたは前記マグネシウム合金製の前記板材の圧縮歪が85%となることを特徴とする請求項2記載のリベット接合方法。
The junction is heated to 280 to solidus C with the die heating means and the punch heating means,
3. The rivet joint according to claim 2, wherein a compression strain of the plate material made of magnesium or the magnesium alloy is 85% in the joint portion in a state where the joint portion is joined by the self-piercing rivet. Method.
JP2009035656A 2009-02-18 2009-02-18 Rivet joining method Pending JP2010188383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009035656A JP2010188383A (en) 2009-02-18 2009-02-18 Rivet joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035656A JP2010188383A (en) 2009-02-18 2009-02-18 Rivet joining method

Publications (1)

Publication Number Publication Date
JP2010188383A true JP2010188383A (en) 2010-09-02

Family

ID=42815013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035656A Pending JP2010188383A (en) 2009-02-18 2009-02-18 Rivet joining method

Country Status (1)

Country Link
JP (1) JP2010188383A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101920302A (en) * 2010-09-07 2010-12-22 上海交通大学 Electroplastic self-piercing riveting device
CN102728766A (en) * 2011-04-06 2012-10-17 通用汽车环球科技运作有限责任公司 Fabricated-in-place inserts to receive self-piercing rivets
US20130248083A1 (en) * 2010-12-08 2013-09-26 Toyota Jidosha Kabushiki Kaisha Method of connecting members
JP2014109291A (en) * 2012-11-30 2014-06-12 Honda Motor Co Ltd Method for fastening piercing nut
CN104023869A (en) * 2012-03-31 2014-09-03 约翰逊控股公司 Method for joining workpiece layers and connecting element and joining device
JP2015522425A (en) * 2012-07-16 2015-08-06 ヘンロブ・リミテッド Method for forming a joint using self-piercing rivets
CN105458147A (en) * 2016-01-21 2016-04-06 吉林大学 Self-punching bond-riveting connecting device and bond-riveting method
CN105689624A (en) * 2016-02-02 2016-06-22 天津大学 Electroplastic friction spin-riveting device and method for semi-hollow rivet
CN107614147A (en) * 2015-07-01 2018-01-19 新日铁住金株式会社 Mechanical engaging device and mechanical interface method
CN113634704A (en) * 2021-08-16 2021-11-12 广东鸿图科技股份有限公司 Heating type bottom die device for self-piercing riveting

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101920302B (en) * 2010-09-07 2013-02-06 上海交通大学 Electroplastic self-piercing riveting device
CN101920302A (en) * 2010-09-07 2010-12-22 上海交通大学 Electroplastic self-piercing riveting device
US20130248083A1 (en) * 2010-12-08 2013-09-26 Toyota Jidosha Kabushiki Kaisha Method of connecting members
CN102728766A (en) * 2011-04-06 2012-10-17 通用汽车环球科技运作有限责任公司 Fabricated-in-place inserts to receive self-piercing rivets
CN104023869A (en) * 2012-03-31 2014-09-03 约翰逊控股公司 Method for joining workpiece layers and connecting element and joining device
US10005120B2 (en) 2012-07-16 2018-06-26 Henrob Limited Method for forming a joint using a self-piercing rivet
JP2015522425A (en) * 2012-07-16 2015-08-06 ヘンロブ・リミテッド Method for forming a joint using self-piercing rivets
US10751787B2 (en) 2012-07-16 2020-08-25 Atlas Copco Ias Uk Limited Method for forming a joint using a self-piercing rivet
JP2014109291A (en) * 2012-11-30 2014-06-12 Honda Motor Co Ltd Method for fastening piercing nut
CN107614147B (en) * 2015-07-01 2019-12-13 日本制铁株式会社 Mechanical joining device and mechanical joining method
CN107614147A (en) * 2015-07-01 2018-01-19 新日铁住金株式会社 Mechanical engaging device and mechanical interface method
US10603713B2 (en) 2015-07-01 2020-03-31 Nippon Steel Corporation Mechanical joining apparatus and mechanical joining method
CN105458147B (en) * 2016-01-21 2017-07-04 吉林大学 It is a kind of to glue riveting attachment means and viscous rivetting method from punching
CN105458147A (en) * 2016-01-21 2016-04-06 吉林大学 Self-punching bond-riveting connecting device and bond-riveting method
CN105689624A (en) * 2016-02-02 2016-06-22 天津大学 Electroplastic friction spin-riveting device and method for semi-hollow rivet
CN113634704A (en) * 2021-08-16 2021-11-12 广东鸿图科技股份有限公司 Heating type bottom die device for self-piercing riveting

Similar Documents

Publication Publication Date Title
JP2010188383A (en) Rivet joining method
US10946468B2 (en) Tool and method for joining material layers
JP6022402B2 (en) Rivet joint structure and manufacturing method thereof
JP5399206B2 (en) Metal member joining method and metal joined body
JP4672434B2 (en) Friction stir spot welding method
JP2006007266A (en) Joining method using rivet
KR20180077492A (en) Welding method for ultra high-tensile steel and non-steel material employing tailored softening heat-treatment using laser
JP2019048307A (en) Double-acting type friction stir spot joining method
US20180236528A1 (en) Hybrid workpiece joining
JP6900692B2 (en) Joining method using rivets and equipment used for its implementation
JP6161198B2 (en) Dissimilar material joining method
JP2010172945A (en) Resistance spot welding method of high-strength steel sheet
JP6591849B2 (en) Vehicle body front structure and method for manufacturing vehicle body front structure
KR20130069204A (en) Anvil unit for self-piercing rivet system and used the same
JP2009095881A (en) Method of manufacturing welded structural member
JP5640409B2 (en) Method of manufacturing resistance spot welded joint
WO2018042471A1 (en) Coupling device
JP6854139B2 (en) Manufacturing method of the front structure of the car body
JP2013128955A (en) Press forming method and manufacturing method for pressed component
JP5748411B2 (en) Manufacturing method of joint product by one-side spot welding
JP7242112B2 (en) Solid point welding method and solid point welding apparatus
TWI619565B (en) Mechanical joining device and mechanical joining method
JP7301032B2 (en) Joining method
CN117042910A (en) Resistance welding method
WO2018042472A1 (en) Coupling device