JP2010188227A - Method for producing catalyst for producing methacrylic acid - Google Patents

Method for producing catalyst for producing methacrylic acid Download PDF

Info

Publication number
JP2010188227A
JP2010188227A JP2009032709A JP2009032709A JP2010188227A JP 2010188227 A JP2010188227 A JP 2010188227A JP 2009032709 A JP2009032709 A JP 2009032709A JP 2009032709 A JP2009032709 A JP 2009032709A JP 2010188227 A JP2010188227 A JP 2010188227A
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
producing
slurry
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009032709A
Other languages
Japanese (ja)
Inventor
Mieharu Sugiyama
美栄治 杉山
Takuro Watanabe
拓朗 渡邉
Masahide Kondo
正英 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2009032709A priority Critical patent/JP2010188227A/en
Publication of JP2010188227A publication Critical patent/JP2010188227A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of producing a catalys, which has satisfactory catalytic activity as an industrial catalyst for producing methacrylic acid and is excellent in selectivity and yield of methacrylic acid, through a simplified a catalyst production process. <P>SOLUTION: The method for producing the catalyst for producing methacrylic acid, which catalyst is used for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen and contains molybdenum and vanadium at the least as catalytic components, comprises the steps of: mixing raw material compounds of catalytic components in water being a solvent to prepare a mixed solution or slurry; concentrating the prepared mixed solution or slurry to the extent that the water content thereof becomes 21-70 mass%; adding an organic binder to the mixed solution or slurry before, during or after the time to carry out the concentrating step; and molding the organic binder-added concentrate to obtain a molding. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に使用する触媒(以下、メタクリル酸製造用触媒という)の製造方法、該方法により製造される触媒並びに該触媒を用いたメタクリル酸の製造方法に関する。   The present invention relates to a method for producing a catalyst (hereinafter referred to as a catalyst for producing methacrylic acid) used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, a catalyst produced by the method, and the method The present invention relates to a method for producing methacrylic acid using a catalyst.

従来、メタクロレインを分子状酸素で気相接触酸化してメタクリル酸を製造するための触媒については数多くの提案がなされている。このような触媒の多くは、モリブデン及びバナジウムを含む組成を有しており、工業的にはその成型方法より打錠成型触媒や押出成型触媒、担持成型触媒等に分類されるものが製造され使用されている。通常、打錠成型触媒は触媒組成物粉体を圧縮して成型する方法である。押出成型触媒は触媒組成物を含む粒子を混練し、押出成型する工程を経て製造され、担持成型触媒は触媒成分を含む粉体を担体に担持させる工程を経て製造される。   Conventionally, many proposals have been made on a catalyst for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen. Many of these catalysts have a composition containing molybdenum and vanadium, and industrially produced and used are classified into tableting molding catalysts, extrusion molding catalysts, supported molding catalysts, etc., from the molding method. Has been. Usually, the tableting catalyst is a method of compressing and molding the catalyst composition powder. The extrusion-molded catalyst is manufactured through a process of kneading particles containing the catalyst composition and extrusion-molding, and the supported molded catalyst is manufactured through a process of supporting a powder containing a catalyst component on a carrier.

このような触媒には触媒活性、目的生成物の選択性、収率、触媒の成型性等の向上が求められており、その製造方法が検討されている。例えば触媒成分元素を含有する化合物を混合した溶液又はスラリーを濃縮又は乾燥し、得られる濃縮物又は乾燥物中の水分含有量を5〜20重量%に調整した後、100〜250℃の温度で熱処理することにより得られる触媒が、比較的低い反応温度において高い収率で目的生成物を製造できることが示されている(特許文献1及び2)。また、触媒成型時にポリビニルアルコール等の有機物質を添加し、熱処理を施すことで、触媒内に細孔構造を形成することができ、選択率を向上させる方法が提案されている(特許文献3及び4)。また、触媒の物理的強度を向上させるため、触媒物質にグラファイトを添加し、押出成型する方法が提案されている(特許文献5)。   Such catalysts are required to be improved in catalytic activity, target product selectivity, yield, catalyst moldability, etc., and their production methods are being studied. For example, a solution or slurry in which a compound containing a catalyst component element is mixed is concentrated or dried, and the water content in the resulting concentrate or dried product is adjusted to 5 to 20% by weight, and then at a temperature of 100 to 250 ° C. It has been shown that the catalyst obtained by heat treatment can produce the target product in a high yield at a relatively low reaction temperature (Patent Documents 1 and 2). In addition, a method has been proposed in which a pore structure can be formed in the catalyst by adding an organic substance such as polyvinyl alcohol at the time of catalyst molding and performing heat treatment, thereby improving the selectivity (Patent Documents 3 and 3). 4). Moreover, in order to improve the physical strength of a catalyst, the method of adding graphite to a catalyst substance and extruding is proposed (Patent Document 5).

特開昭58−51943号公報JP 58-51943 A 特開昭58−112050号公報JP 58-11250 A 特開昭55−73347号公報JP 55-73347 A 特開2002−282696号公報JP 2002-282696 A 特開昭60−150834号公報JP-A-60-150834

しかしながら、これら公知の方法で得られる触媒は、必ずしも触媒活性、目的生成物の選択性などの点で工業触媒としては十分でなく、更なる改良が望まれている。また、一方ではこれら公知の方法は工程が煩雑で触媒製造工場での初期設備投資が多大となり、人的負荷も大きいため触媒製造コストも高く、生産性が低いのが現状であり、工程の短縮化、触媒製造生産性の向上が望まれている。   However, the catalysts obtained by these known methods are not necessarily sufficient as industrial catalysts in terms of catalyst activity, target product selectivity and the like, and further improvements are desired. On the other hand, these known methods are complicated in process, require large initial capital investment in the catalyst manufacturing factory, and have a large human load, so the catalyst manufacturing cost is high and the productivity is low. Improvement of catalyst production productivity is desired.

本発明は、これら課題を鑑みて、メタクリル酸製造の工業用触媒として十分な触媒活性を有し、メタクリル酸の選択性、収率の優れた触媒を、触媒製造工程を大幅に省略した方法で製造できる触媒の製造方法及びその触媒を用いたメタクリル酸の製造方法を提供することを目的とする。   In view of these problems, the present invention provides a catalyst having sufficient catalytic activity as an industrial catalyst for methacrylic acid production and excellent selectivity for methacrylic acid and yield, in which the catalyst production process is greatly omitted. It aims at providing the manufacturing method of the catalyst which can be manufactured, and the manufacturing method of methacrylic acid using the catalyst.

本発明に係るメタクリル酸製造用触媒の製造方法は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、少なくともモリブデン及びバナジウムを触媒成分として含むメタクリル酸製造用触媒の製造方法において、溶媒としての水に該触媒成分の原料化合物を混合した混合溶液又はスラリーを調製する工程、該混合溶液又はスラリーの含水率が21〜70質量%になるまで濃縮する工程、前記混合溶液又はスラリーの濃縮前、濃縮中又は濃縮後のいずれかの段階で有機バインダーを添加する工程、及び前記有機バインダーの添加された濃縮物を成型して成型体を得る工程、を有することを特徴とする。   The method for producing a catalyst for producing methacrylic acid according to the present invention is used for producing methacrylic acid containing at least molybdenum and vanadium as catalyst components, which are used when producing methacrolein by vapor-phase catalytic oxidation of methacrolein with molecular oxygen. In the method for producing a catalyst, a step of preparing a mixed solution or slurry in which the raw material compound of the catalyst component is mixed with water as a solvent, a step of concentrating until the water content of the mixed solution or slurry is 21 to 70% by mass, A step of adding an organic binder at any stage before, during or after concentration of the mixed solution or slurry, and a step of obtaining a molded body by molding the concentrate to which the organic binder has been added. It is characterized by.

また、本発明に係るメタクリル酸製造用触媒は、前記メタクリル酸製造用触媒の製造方法により得られることを特徴とする。   The catalyst for producing methacrylic acid according to the present invention is obtained by the method for producing a catalyst for producing methacrylic acid.

また、本発明に係るメタクリル酸の製造方法によれば、前記メタクリル酸製造用触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化することを特徴とする。   In addition, according to the method for producing methacrylic acid according to the present invention, methacrolein is subjected to gas phase catalytic oxidation with molecular oxygen in the presence of the catalyst for producing methacrylic acid.

本発明によれば、メタクリル酸製造において高い触媒活性を示し、メタクリル酸の選択率、収率の高い触媒を製造することができ、かつ、触媒製造工程を簡略化した生産効率の高い触媒製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the high catalyst activity in methacrylic acid manufacture, the selectivity of methacrylic acid, the catalyst of a high yield can be manufactured, and the catalyst manufacturing method with high production efficiency which simplified the catalyst manufacturing process Can be provided.

本発明に係るメタクリル酸製造用触媒の製造方法は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、少なくともモリブデン及びバナジウムを触媒成分として含むメタクリル酸製造用触媒の製造方法において、溶媒としての水に該触媒成分の原料化合物を混合した混合溶液又はスラリーを調製する工程、該混合溶液又はスラリーの含水率が21〜70質量%になるまで濃縮する工程、前記混合溶液又はスラリーに、濃縮前、濃縮中又は濃縮後のいずれかに有機バインダーを添加する工程、及び前記有機バインダーの添加された濃縮物を成型して成型体を得る工程、を有する。   The method for producing a catalyst for producing methacrylic acid according to the present invention is used for producing methacrylic acid containing at least molybdenum and vanadium as catalyst components, which are used when producing methacrolein by vapor-phase catalytic oxidation of methacrolein with molecular oxygen. In the method for producing a catalyst, a step of preparing a mixed solution or slurry in which the raw material compound of the catalyst component is mixed with water as a solvent, a step of concentrating until the water content of the mixed solution or slurry is 21 to 70% by mass, A step of adding an organic binder to the mixed solution or slurry before, during or after the concentration, and a step of obtaining a molded body by molding the concentrate to which the organic binder has been added.

本発明の方法により製造される触媒を構成する触媒成分の組成は、目的とするメタクリル酸製造用触媒に応じて適宜選択でき、少なくともモリブデン及びバナジウムを触媒成分として含有する触媒であれば特に限定されないが、好ましくは下記式(1)で表される組成を有するものである。   The composition of the catalyst component constituting the catalyst produced by the method of the present invention can be appropriately selected according to the target catalyst for producing methacrylic acid, and is not particularly limited as long as it contains at least molybdenum and vanadium as catalyst components. However, it preferably has a composition represented by the following formula (1).

aMobcCudefgh (1)
式(1)中、P、Mo、V、Cu及びOは、それぞれリン、モリブデン、バナジウム、銅及び酸素を表し、Xは、砒素、アンチモン及びテルルからなる群より選ばれた少なくとも1種類の元素を表し、Yは、ビスマス、ゲルマニウム、ジルコニウム、銀、セレン、ケイ素、タングステン、ホウ素、鉄、亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウム及びランタンからなる群より選ばれた少なくとも1種類の元素を表し、Zは、カリウム、ルビジウム及びセシウムからなる群より選ばれた少なくとも1種類の元素を表す。a、b、c、d、e、f、g及びhは各元素の原子比率を表し、b=12のとき、a=0.1〜3、c=0.01〜3、d=0.01〜2、e=0〜3、f=0〜3、g=0.01〜3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。
P a Mo b V c Cu d X e Y f Z g O h (1)
In the formula (1), P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen, respectively, and X is at least one element selected from the group consisting of arsenic, antimony and tellurium. Y is selected from the group consisting of bismuth, germanium, zirconium, silver, selenium, silicon, tungsten, boron, iron, zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, cerium and lanthanum At least one element is represented, and Z represents at least one element selected from the group consisting of potassium, rubidium, and cesium. a, b, c, d, e, f, g, and h represent atomic ratios of the respective elements. When b = 12, a = 0.1-1, c = 0.01-3, d = 0. 01 to 2, e = 0 to 3, f = 0 to 3, g = 0.01 to 3, and h is an atomic ratio of oxygen necessary to satisfy the valence of each element.

以上のようなメタクリル酸製造用触媒は、以下の方法により好適に製造できる。   The catalyst for producing methacrylic acid as described above can be suitably produced by the following method.

まず、メタクリル酸製造用触媒の触媒成分の原料化合物を、水に溶解又は懸濁させ、混合溶液又はスラリーを調製する。混合溶液又はスラリーの調製方法は、特に限定はなく、例えば、沈殿法、酸化物混合法等の公知の方法が挙げられる。   First, the raw material compound of the catalyst component of the catalyst for producing methacrylic acid is dissolved or suspended in water to prepare a mixed solution or slurry. The method for preparing the mixed solution or slurry is not particularly limited, and examples thereof include known methods such as a precipitation method and an oxide mixing method.

モリブデンの原料化合物としては、例えば、三酸化モリブデン等の酸化モリブデン類;パラモリブデン酸アンモニウム、ジモリブデン酸アンモニウム等のモリブデン酸アンモニウム類等が挙げられる。バナジウムの原料化合物としては、メタバナジン酸アンモニウム、五酸化バナジウム、蓚酸バナジル等が挙げられる。モリブデン及びバナジウム以外の原料化合物としては、例えば、各元素の酸化物、硝酸塩、炭酸塩、アンモニウム塩、ハロゲン化物等が利用できる。リンの原料化合物としては、例えば、リン酸、五酸化リン、リン酸アンモニウム等が挙げられる。銅の原料化合物としては、硝酸銅、水酸化銅、塩化銅等が挙げられる。触媒成分の原料化合物は、触媒成分を構成する各元素に対して1種を用いても2種以上を組み合わせて用いてもよい。   Examples of the raw material compound of molybdenum include molybdenum oxides such as molybdenum trioxide; ammonium molybdates such as ammonium paramolybdate and ammonium dimolybdate. Examples of the raw material compound for vanadium include ammonium metavanadate, vanadium pentoxide, and vanadyl oxalate. As raw material compounds other than molybdenum and vanadium, for example, oxides, nitrates, carbonates, ammonium salts, halides and the like of each element can be used. Examples of the phosphorus source compound include phosphoric acid, phosphorus pentoxide, and ammonium phosphate. Examples of the copper raw material compound include copper nitrate, copper hydroxide, and copper chloride. The raw material compound of the catalyst component may be used alone or in combination of two or more for each element constituting the catalyst component.

前記触媒成分の原料化合物を溶解又は分散させる溶媒には水を用いるが、水にエチルアルコール、アセトン等を添加した溶媒を用いてもよい。   Water is used as a solvent for dissolving or dispersing the raw material compound of the catalyst component, but a solvent obtained by adding ethyl alcohol, acetone or the like to water may be used.

また、本発明では、混合溶液又はスラリーに有機バインダーを添加する。混合溶液又はスラリーに添加する有機バインダーは特に限定されず、例えば、メチルセルロース、エチルセルロース、カルボキシルメチルセルロース、カルボキシルメチルセルロースナトリウム、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシブチルメチルセルロース、エチルヒドロキシエチルセルロース等のセルロース誘導体や、ポリビニルアルコール等の水溶性又は水分散性を有する合成高分子化合物;デキストリン、シクロデキルトリン、プルラン等のαグルカン;カードラン、ラミナラン、パラミロン、カロース、パキマン、スクレログルカン等のβグルカンなどを挙げることができる。この中でも、混練物のハンドリング性や乾燥物の強度が強く酸化反応に有効な細孔を形成しやすい理由から、メチルセルロース、プルラン、β−1,3−グルカンを主成分とする「ビオポリー」(商品名、キリンフードテック(株)製)が好ましい。混合溶液又はスラリーに添加する有機バインダーの種類は、1種類でもよく、2種類以上を適宜組み合わせてもよい。   In the present invention, an organic binder is added to the mixed solution or slurry. The organic binder added to the mixed solution or slurry is not particularly limited. For example, methyl cellulose, ethyl cellulose, carboxyl methyl cellulose, sodium carboxyl methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxybutyl methyl cellulose, ethyl hydroxyethyl cellulose Cellulose derivatives such as water-soluble or water-dispersible polymer compounds such as polyvinyl alcohol; α-glucans such as dextrin, cyclodequillin, and pullulan; curdlan, laminaran, paramylon, callose, Pakiman, scleroglucan And β-glucan. Among these, “Biopoly” (mainly composed of methylcellulose, pullulan, β-1,3-glucan) is used because the kneaded material is easy to handle and the strength of the dried material is strong and it is easy to form pores effective for the oxidation reaction. Name, Kirin Food Tech Co., Ltd.) is preferable. One kind of organic binder may be added to the mixed solution or slurry, or two or more kinds may be appropriately combined.

混合溶液又はスラリーに添加する有機バインダーの量は、固形分としての原料化合物100質量部に対して、0.1〜20質量部が好ましく、0.5〜15質量部がより好ましく、0.8〜10質量部がさらに好ましい。なお、固形分としての原料化合物100質量部とは、仕込みの各触媒成分の酸化物質量換算の合計を100質量部とするものである。   The amount of the organic binder added to the mixed solution or slurry is preferably from 0.1 to 20 parts by weight, more preferably from 0.5 to 15 parts by weight, based on 100 parts by weight of the raw material compound as a solid content. More preferably, it is 10 mass parts. In addition, 100 mass parts of raw material compounds as a solid content is a total of 100 mass parts in terms of oxide mass of each charged catalyst component.

混合溶液又はスラリーに有機バインダーを添加するタイミングは特に限定されず、例えば、濃縮前の混合溶液又はスラリーに添加する方法、濃縮中に添加する方法、濃縮後に添加する方法等が挙げられる。   The timing for adding the organic binder to the mixed solution or slurry is not particularly limited, and examples thereof include a method of adding to the mixed solution or slurry before concentration, a method of adding during concentration, and a method of adding after concentration.

有機バインダーの添加方法は特に限定されず、混合溶液又はスラリー中に直接添加し溶解又は分散させる方法や、溶媒に溶解又は分散させて添加する方法等が挙げられる。溶媒に溶解又は分散させる方法は特に限定されず、高温の溶媒にバインダーを分散させ低温にして溶解する方法や、逆に低温の溶媒にバインダーを分散させ高温にして溶解する方法等が挙げられる。   The method for adding the organic binder is not particularly limited, and examples thereof include a method of directly adding and dissolving or dispersing in a mixed solution or slurry, a method of adding by dissolving or dispersing in a solvent, and the like. The method of dissolving or dispersing in a solvent is not particularly limited, and examples thereof include a method in which a binder is dispersed in a high temperature solvent and dissolved at a low temperature, and a method in which the binder is dispersed in a low temperature solvent and dissolved at a high temperature.

また、本発明では混合溶液又はスラリーを所定の含水率となるまで濃縮する。濃縮する方法は特に限定されず、例えば、触媒混合調製釜をそのまま用いて濃縮する方法、万能混合撹拌機を用いる方法、加熱機構が付いた混練機を用いる方法などが挙げられる。濃縮は加熱により行われるが、加熱方法は特に限定されず、蒸気又は温水による加熱や電気ヒーターなどの加熱機器が使用できる。濃縮割合は混合溶液又はスラリーの含水率が21〜70質量%まで濃縮させるのが好ましい。より好ましくは含水率が30〜50質量%の範囲である。濃縮割合が上記範囲以外であると次の工程である押出成型工程で成型体を得ることが困難となる。含水率が21質量%未満であると乾燥が進みすぎて濃縮物がパサパサの状態となり、押出成型工程で形状の整った成型体を得ることが難しい。一方含水率が70質量%をこえると混合溶液又はスラリーの粘度が低すぎ、押出成型工程で形状の整った成型体を得ることが困難となる。なお、含水率は、赤外線水分計により、乾燥減量法で求めた。また、加熱濃縮する際のジャケット温度としては、90〜130℃で行うことが好ましい。   In the present invention, the mixed solution or slurry is concentrated until a predetermined water content is obtained. The method of concentration is not particularly limited, and examples thereof include a method of concentrating using a catalyst mixing preparation kettle as it is, a method of using a universal mixing stirrer, and a method of using a kneader equipped with a heating mechanism. Concentration is performed by heating, but the heating method is not particularly limited, and heating equipment such as heating with steam or hot water or an electric heater can be used. The concentration ratio is preferably such that the water content of the mixed solution or slurry is 21 to 70% by mass. More preferably, the moisture content is in the range of 30 to 50% by mass. When the concentration ratio is outside the above range, it becomes difficult to obtain a molded body in the extrusion process, which is the next process. If the water content is less than 21% by mass, drying proceeds too much, and the concentrate becomes papasa, making it difficult to obtain a molded body with a well-formed shape in the extrusion process. On the other hand, when the water content exceeds 70% by mass, the viscosity of the mixed solution or slurry is too low, and it becomes difficult to obtain a molded body having a uniform shape in the extrusion molding process. The water content was determined by a loss on drying method using an infrared moisture meter. Moreover, it is preferable to carry out at 90-130 degreeC as a jacket temperature at the time of heat concentration.

次いで、有機バインダーの添加された濃縮物を成型する。成型方法は特に限定されず、例えば、公知の押出成型、担持成型、転動造粒等の方法が挙げられる。中でも、濃縮物をそのまま利用できる観点から、押出成型が好ましい。成型体の形状は特に限定されず、例えば、リング状、円柱状、星型、球状等の任意の形状に成型できる。また、賦型補強剤として、珪藻土、シリカゾル、シリカゲル、ベントナイト、カオリン等を添加することもでき、ガラス繊維、アスベスト、セラミック繊維、カーボン繊維等をさらに添加することもできる。   Next, the concentrate to which the organic binder has been added is molded. The molding method is not particularly limited, and examples thereof include known methods such as extrusion molding, support molding, and rolling granulation. Among these, extrusion molding is preferable from the viewpoint that the concentrate can be used as it is. The shape of the molded body is not particularly limited, and for example, it can be molded into an arbitrary shape such as a ring shape, a cylindrical shape, a star shape, a spherical shape, and the like. Moreover, diatomaceous earth, silica sol, silica gel, bentonite, kaolin and the like can be added as a shaping reinforcing agent, and glass fiber, asbestos, ceramic fiber, carbon fiber and the like can be further added.

次に、この成型体を必要に応じて乾燥させた後、次いで熱処理する。このときの乾燥条件及び熱処理条件については特に限定はなく、公知の処理条件を適用することができる。通常、乾燥は60〜150℃の温度で1〜24時間行い、熱処理は200〜500℃、好ましくは300〜450℃の温度で1〜24時間行うことができる。なお、乾燥を省略して熱処理を行ってもよい。   Next, the molded body is dried as necessary, and then heat-treated. There are no particular limitations on the drying conditions and heat treatment conditions at this time, and known processing conditions can be applied. Usually, drying is performed at a temperature of 60 to 150 ° C. for 1 to 24 hours, and heat treatment can be performed at a temperature of 200 to 500 ° C., preferably 300 to 450 ° C. for 1 to 24 hours. Note that heat treatment may be performed without drying.

本発明の方法では、従来法のように、スラリーを乾燥し触媒の乾燥粉を得る工程、触媒乾燥粉とバインダー粉を計量する工程、その計量されたものを乾式で混合する工程、その混合された粉に溶媒を添加し混練を行う工程、の全て又は一部を省略、簡略化できる。   In the method of the present invention, as in the conventional method, the step of drying the slurry to obtain a dry powder of the catalyst, the step of measuring the dry catalyst powder and the binder powder, the step of mixing the measured ones in a dry process, the mixing All or part of the step of adding a solvent to the powder and kneading can be omitted or simplified.

次に、本発明のメタクリル酸の製造方法について説明する。本発明のメタクリル酸の製造方法は、上記のようにして得られたメタクリル酸製造用触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するものである。   Next, the manufacturing method of methacrylic acid of this invention is demonstrated. The method for producing methacrylic acid of the present invention is a method for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen in the presence of the methacrylic acid production catalyst obtained as described above.

気相接触酸化によるメタクリル酸の製造は、一般に固定床反応器を用いメタクロレイン及び分子状酸素を含む原料ガスを供給し、反応させることにより実施できる。固定床反応器に充填される触媒層は、特に限定されず、触媒のみの無希釈層でも、不活性担体を含んだ希釈層でもよく、単一層でも複数の層からなる混合層であってもよい。   Production of methacrylic acid by gas phase catalytic oxidation can be generally carried out by supplying a raw material gas containing methacrolein and molecular oxygen using a fixed bed reactor and reacting them. The catalyst layer packed in the fixed bed reactor is not particularly limited, and may be an undiluted layer containing only a catalyst or a diluted layer containing an inert carrier, and may be a single layer or a mixed layer composed of a plurality of layers. Good.

原料ガス中のメタクロレインの濃度は、広い範囲で変えることができるが、1〜20体積%が好ましく、3〜10体積%がより好ましい。   The concentration of methacrolein in the raw material gas can be varied within a wide range, but is preferably 1 to 20% by volume, more preferably 3 to 10% by volume.

メタクロレインは、反応に実質的な影響を与えない不純物として、低級飽和アルデヒド等を少量含んでいてもよいが、その量はできるだけ少ないことが好ましい。原料ガス中の分子状酸素濃度は、メタクロレイン1モルに対して0.3〜4モルが好ましく、特に0.4〜2.5モルが好ましい。分子状酸素源としては、空気を用いるのが経済的であるが、必要ならば純酸素で富化した空気も用い得る。   Although methacrolein may contain a small amount of a lower saturated aldehyde or the like as an impurity that does not substantially affect the reaction, the amount is preferably as small as possible. The molecular oxygen concentration in the raw material gas is preferably 0.3 to 4 mol, and particularly preferably 0.4 to 2.5 mol, per 1 mol of methacrolein. It is economical to use air as the molecular oxygen source, but if necessary, air enriched with pure oxygen can also be used.

原料ガス中には、メタクロレインと分子状酸素以外に、水(水蒸気)を含んでいることが好ましい。水の存在下で反応を行うことで、より高い収率でメタクリル酸が得られる。原料ガス中の水蒸気の濃度は、0.1容量%以上が好ましく、1容量%以上がより好ましい。また、50容量%以下が好ましく、40容量%以下がより好ましい。また、希釈のために、窒素、炭酸ガス等の不活性ガスを加えてもよい。   The source gas preferably contains water (water vapor) in addition to methacrolein and molecular oxygen. By performing the reaction in the presence of water, methacrylic acid can be obtained in a higher yield. The concentration of water vapor in the raw material gas is preferably 0.1% by volume or more, and more preferably 1% by volume or more. Moreover, 50 volume% or less is preferable and 40 volume% or less is more preferable. Moreover, you may add inert gas, such as nitrogen and a carbon dioxide gas, for dilution.

反応圧力は、通常、常圧から数気圧までの範囲内で適宜設定される。   The reaction pressure is usually appropriately set within a range from normal pressure to several atmospheres.

反応温度は、通常、230〜450℃の範囲内で設定され、メタクリル酸収率の点からは、250〜400℃が好ましい。   The reaction temperature is usually set within the range of 230 to 450 ° C., and from the point of methacrylic acid yield, 250 to 400 ° C. is preferable.

原料ガスの流量は特に限定されず、適切な接触時間になるように適宜設定することができる。接触時間は1.5秒以上が好ましく、2秒以上がより好ましい。また、15秒以下が好ましく、5秒以下がより好ましい。   The flow rate of the raw material gas is not particularly limited, and can be appropriately set so as to have an appropriate contact time. The contact time is preferably 1.5 seconds or longer, and more preferably 2 seconds or longer. Moreover, 15 seconds or less are preferable and 5 seconds or less are more preferable.

以下、本発明を実施例及び比較例を用いて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。下記の実施例及び比較例中の「部」は質量部である。反応器の熱媒としては硝酸カリウム50質量%及び亜硝酸ナトリウム50質量%からなる塩溶融物を用いた。   EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example and a comparative example, this invention is not limited to these Examples. The “parts” in the following examples and comparative examples are parts by mass. As a heat medium for the reactor, a salt melt composed of 50% by mass of potassium nitrate and 50% by mass of sodium nitrite was used.

原料ガス及び生成物の分析はガスクロマトグラフィーを用いて行った。なお、メタクロレインの反応率、生成するメタクリル酸の選択率及び単流収率は、以下のように定義される。
メタクロレインの反応率(%)=(B/A)×100
メタクリル酸の選択率(%) =(C/B)×100
メタクリル酸の収率(%) =(C/A)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
The analysis of the raw material gas and the product was performed using gas chromatography. In addition, the reaction rate of methacrolein, the selectivity of the methacrylic acid to produce | generate, and a single flow yield are defined as follows.
Reaction rate of methacrolein (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Methacrylic acid yield (%) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.

[実施例1]
純水400部に、三酸化モリブデン100部、メタバナジン酸アンモニウム3.1部、85質量%リン酸水溶液7.3部及び硝酸銅1.1部を溶解し、これを撹拌しながら95℃に昇温し、液温を95℃に保ちつつ3時間撹拌した。40℃まで冷却後、回転翼撹拌機を用いて撹拌しながら、重炭酸セシウム13.5部を純水20部に溶解した溶液を添加し、15分間撹拌した。次いで、硝酸アンモニウム11.6部を純水20部に溶解した溶液を添加し、さらに20分間撹拌した。
[Example 1]
In 400 parts of pure water, 100 parts of molybdenum trioxide, 3.1 parts of ammonium metavanadate, 7.3 parts of 85% by weight phosphoric acid aqueous solution and 1.1 parts of copper nitrate were dissolved, and the temperature was raised to 95 ° C. with stirring. The mixture was warmed and stirred for 3 hours while maintaining the liquid temperature at 95 ° C. After cooling to 40 ° C., a solution obtained by dissolving 13.5 parts of cesium bicarbonate in 20 parts of pure water was added while stirring using a rotary blade stirrer, and the mixture was stirred for 15 minutes. Next, a solution obtained by dissolving 11.6 parts of ammonium nitrate in 20 parts of pure water was added, and the mixture was further stirred for 20 minutes.

以上のようにして得られた、触媒成分の原料化合物を含有するスラリーに、その固形分としての原料化合物100部に対して、1.0部のヒドロキシプロピルメチルセルロースと、5.0部の「ビオポリー」(商品名、キリンフードテック(株)製)を粉末で添加した。これを万能混合撹拌機にて撹拌しながらジャケットの温度を110℃で加熱し、スラリーの含水率を43質量%になるまで濃縮せしめ、粘土状の濃縮物を得た。なお、含水率は、赤外線水分計で乾燥減量法により求めた値である。   In the slurry containing the raw material compound of the catalyst component obtained as described above, 1.0 part of hydroxypropylmethylcellulose and 5.0 parts of “Biopoly” are added to 100 parts of the raw material compound as the solid content. (Trade name, manufactured by Kirin Foodtech Co., Ltd.) was added as a powder. While stirring this with a universal mixing stirrer, the temperature of the jacket was heated at 110 ° C., and the slurry was concentrated to a moisture content of 43% by mass to obtain a clay-like concentrate. The water content is a value determined by a loss on drying method using an infrared moisture meter.

得られた粘土状の濃縮物を、ピストン式押出し成型機を用いて成型し、外径6mm、平均長さ5mmのペレット状の成型体を得た。ピストン式押出し成型時の成型性は極めて良好であった。この成型体を60℃で16時間乾燥し、次いで空気流通下に380℃で5時間熱処理して、触媒を得た。得られた触媒の酸素以外の元素組成(以下同じ)は、次の通りであった。なお、触媒組成はICP発光分析法および原子吸光分析法により測定した。   The obtained clay-like concentrate was molded using a piston-type extrusion molding machine to obtain a pellet-shaped molded body having an outer diameter of 6 mm and an average length of 5 mm. The moldability at the time of piston type extrusion molding was extremely good. This molded body was dried at 60 ° C. for 16 hours, and then heat-treated at 380 ° C. for 5 hours under air flow to obtain a catalyst. The elemental composition other than oxygen (hereinafter the same) of the obtained catalyst was as follows. The catalyst composition was measured by ICP emission analysis and atomic absorption analysis.

Mo120.451.1Cu0.08Cs1.2
この触媒を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%、窒素55容量%の原料ガスを、反応温度290℃、反応圧力1気圧(絶対圧)、接触時間3.6秒で通じて、メタクロレインの気相接触酸化反応を行った。生成物を捕集し、ガスクロマトグラフィーで分析して、メタクロレインの反応率、メタクリル酸の選択率、及びメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 Cu 0.08 Cs 1.2
This catalyst is filled in a reaction tube, and a raw material gas of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor, and 55% by volume of nitrogen is reacted at a reaction temperature of 290 ° C., a reaction pressure of 1 atm (absolute pressure), and a contact time. The gas phase catalytic oxidation reaction of methacrolein was performed in 3.6 seconds. The product was collected and analyzed by gas chromatography to determine methacrolein reaction rate, methacrylic acid selectivity, and methacrylic acid yield. The results are shown in Table 1.

[実施例2]
触媒成分の原料化合物を含有するスラリーに、その固形分として原料化合物100部に対して3.0部のプルランと、3.0部の「ビオポリー」を粉末で添加し、スラリーの含水率を34質量%まで濃縮せしめた以外は、実施例1と同様にして触媒を製造した。ピストン式押出し成型時の成型性は極めて良好であり、得られた触媒を用いて実施例1と同様にメタクロレインの気相接触酸化反応を行った。結果を表1に示す。
[Example 2]
To the slurry containing the raw material compound of the catalyst component, 3.0 parts of pullulan and 3.0 parts of “Biopoly” are added as a solid to 100 parts of the raw material compound as a powder, and the water content of the slurry is 34. A catalyst was produced in the same manner as in Example 1 except that the catalyst was concentrated to mass%. Moldability at the time of piston-type extrusion molding was very good, and the gas phase catalytic oxidation reaction of methacrolein was performed in the same manner as in Example 1 using the obtained catalyst. The results are shown in Table 1.

[実施例3]
触媒成分の原料化合物を含有するスラリーに、その固形分として原料化合物100部に対して2.0部のヒドロキシプロピルメチルセルロースと、8.0部の「ビオポリー」を粉末で添加し、スラリーの含水率を55質量%まで濃縮せしめた以外は、実施例1と同様にして触媒を製造した。ピストン式押出し成型時の成型性は良好で、若干成型体は軟らかかったが、製造上問題ない程度であった。得られた触媒を用いて実施例1と同様にメタクロレインの気相接触酸化反応を行った。結果を表1に示す。
[Example 3]
To the slurry containing the raw material compound of the catalyst component, 2.0 parts of hydroxypropylmethylcellulose and 8.0 parts of “Biopoly” are added as a solid to 100 parts of the raw material compound as a powder, and the water content of the slurry A catalyst was produced in the same manner as in Example 1 except that was concentrated to 55% by mass. The moldability at the time of piston type extrusion molding was good and the molded body was slightly soft, but there was no problem in manufacturing. Using the resulting catalyst, the gas phase catalytic oxidation reaction of methacrolein was carried out in the same manner as in Example 1. The results are shown in Table 1.

[実施例4]
触媒成分の原料化合物を含有するスラリーに、その固形分として原料化合物100部に対して3.0部の「ビオポリー」を粉末で添加し、スラリーの含水率を28質量%まで濃縮せしめた以外は、実施例1と同様にして触媒を製造した。ピストン式押出し成型時の成型性は良好で、若干成型体が硬く成型圧力も高かったが、製造上問題ない程度であった。得られた触媒を用いて実施例1と同様にメタクロレインの気相接触酸化反応を行った。結果を表1に示す。
[Example 4]
Except for adding 3.0 parts of “Biopoly” as a solid to the slurry containing the raw material compound of the catalyst component as a solid, and concentrating the water content of the slurry to 28% by mass. A catalyst was produced in the same manner as in Example 1. The moldability at the time of piston-type extrusion molding was good, the molded body was slightly hard and the molding pressure was high, but there was no problem in manufacturing. Using the resulting catalyst, the gas phase catalytic oxidation reaction of methacrolein was carried out in the same manner as in Example 1. The results are shown in Table 1.

[実施例5]
触媒成分の原料化合物を含有するスラリーに、その固形分として原料化合物100部に対して21.0部の「ビオポリー」を粉末で添加した以外は、実施例1と同様にして触媒を製造した。ピストン式押出し成型時の成型性は良好だったが、乾燥、熱処理して得られた触媒は強度が弱かった。この触媒を用いて実施例1と同様にメタクロレインの気相接触酸化反応を行った。結果を表1に示す。
[Example 5]
A catalyst was produced in the same manner as in Example 1 except that 21.0 parts of “Biopoly” was added as a solid to the slurry containing the raw material compound of the catalyst component as a solid content with respect to 100 parts of the raw material compound. Although the moldability at the time of piston extrusion was good, the catalyst obtained by drying and heat treatment was weak in strength. Using this catalyst, the gas phase catalytic oxidation reaction of methacrolein was carried out in the same manner as in Example 1. The results are shown in Table 1.

[比較例1]
スラリーの含水率を19質量%まで濃縮せしめた以外は実施例1と同様に触媒を製造した。濃縮物の含水率が低いため、パサパサ感があり、ピストン式押出し成型時の成型圧力が高くなり成型性が低かった。得られた触媒を用いて実施例1と同様にしてメタクロレインの気相接触酸化反応を行ったが、成型圧力が高くなったため有効な細孔が得られず収率が低い結果となった。結果を表1に示す。
[Comparative Example 1]
A catalyst was produced in the same manner as in Example 1 except that the water content of the slurry was concentrated to 19% by mass. Since the water content of the concentrate was low, there was a feeling of dryness, the molding pressure during piston type extrusion molding was high, and the moldability was low. Using the obtained catalyst, the gas phase catalytic oxidation reaction of methacrolein was carried out in the same manner as in Example 1. However, since the molding pressure was increased, effective pores were not obtained, resulting in a low yield. The results are shown in Table 1.

[比較例2]
触媒成分の原料化合物を含有するスラリーに、その固形分として原料化合物100部に対して5.0部のヒドロキシプロピルメチルセルロースと、10部の「ビオポリー」を粉末で添加し、スラリーの含水率を75質量%まで濃縮せしめた以外は、実施例1と同様にして触媒を製造した。得られた濃縮物は含水率が高いため、ピストン式押出し成型時に成型体を得ることができなかった。
[Comparative Example 2]
To the slurry containing the raw material compound of the catalyst component, 5.0 parts of hydroxypropylmethylcellulose and 10 parts of “Biopoly” are added as powder to 100 parts of the raw material compound as a solid, and the water content of the slurry is 75. A catalyst was produced in the same manner as in Example 1 except that the catalyst was concentrated to mass%. Since the obtained concentrate had a high water content, a molded body could not be obtained at the time of piston type extrusion molding.

[比較例3]
実施例1と同様の触媒成分の原料化合物を含有するスラリーを並流式スプレー乾燥機を用い、乾燥機入口温度270℃、スラリー噴霧用回転円盤16000rpmの条件で乾燥した。得られた乾燥粉100部に対して純水40部と、1.0部のヒドロキシプロピルメチルセルロースと、5.0部の「ビオポリー」を粉末で添加し、混練機で混合、混練して粘土状の混練物を得た(含水率38質量%)以外は実施例1と同様に触媒を得た。ピストン式押出し成型時の成型性は極めて良好で、得られた触媒を用いて実施例1と同様にメタクロレインの気相接触酸化反応を行った。その結果を表1に示す。
[Comparative Example 3]
The slurry containing the raw material compound of the same catalyst component as in Example 1 was dried using a co-current type spray dryer under conditions of a dryer inlet temperature of 270 ° C. and a slurry spraying rotary disk of 16000 rpm. 40 parts of pure water, 1.0 part of hydroxypropylmethylcellulose, and 5.0 parts of “Biopoly” are added as powder to 100 parts of the obtained dry powder, mixed and kneaded in a kneader to form a clay A catalyst was obtained in the same manner as in Example 1 except that a kneaded product was obtained (water content: 38 mass%). Moldability at the time of piston-type extrusion molding was extremely good, and a gas phase catalytic oxidation reaction of methacrolein was performed in the same manner as in Example 1 using the obtained catalyst. The results are shown in Table 1.

[比較例4]
スラリーに有機バインダーを添加せずに、含水率を30質量%まで濃縮した以外は実施例1と同様に触媒を製造した。しかし、有機バインダーを添加していないため成型体にまとまりが無く、ピストン式押出し成型機で一定寸の成型体を得ることができなかった。
[Comparative Example 4]
A catalyst was produced in the same manner as in Example 1 except that the water content was concentrated to 30% by mass without adding an organic binder to the slurry. However, since the organic binder was not added, the molded body was not organized, and a molded body having a certain size could not be obtained with a piston-type extrusion molding machine.

Figure 2010188227
Figure 2010188227

Claims (7)

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、少なくともモリブデン及びバナジウムを触媒成分として含むメタクリル酸製造用触媒の製造方法において、
溶媒としての水に該触媒成分の原料化合物を混合した混合溶液又はスラリーを調製する工程、
該混合溶液又はスラリーの含水率が21〜70質量%になるまで濃縮する工程、
前記混合溶液又はスラリーの濃縮前、濃縮中又は濃縮後のいずれかの段階で有機バインダーを添加する工程、及び
前記有機バインダーの添加された濃縮物を成型して成型体を得る工程、
を有することを特徴とするメタクリル酸製造用触媒の製造方法。
In a method for producing a methacrylic acid production catalyst containing at least molybdenum and vanadium as catalyst components, which is used for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen,
Preparing a mixed solution or slurry in which the raw material compound of the catalyst component is mixed with water as a solvent;
A step of concentrating until the water content of the mixed solution or slurry becomes 21 to 70% by mass;
A step of adding an organic binder at any stage before, during or after concentration of the mixed solution or slurry, and a step of obtaining a molded body by molding the concentrate to which the organic binder has been added,
The manufacturing method of the catalyst for methacrylic acid manufacture characterized by having.
前記有機バインダーを前記混合溶液又はスラリーの濃縮前に添加する請求項1に記載のメタクリル酸製造用触媒の製造方法。   The method for producing a catalyst for methacrylic acid production according to claim 1, wherein the organic binder is added before concentration of the mixed solution or slurry. 前記成型体を得る工程が、押出成型により行われる請求項1又は2に記載のメタクリル酸製造用触媒の製造方法。   The manufacturing method of the catalyst for methacrylic acid production of Claim 1 or 2 with which the process of obtaining the said molded object is performed by extrusion molding. 前記有機バインダーがセルロース誘導体、ポリビニルアルコール、ポリエチレングリコール、αグルカン及びβグルカンからなる群から選択された1種類以上である請求項1から3のいずれか1項に記載のメタクリル酸製造用触媒の製造方法。   The said organic binder is 1 or more types selected from the group which consists of a cellulose derivative, polyvinyl alcohol, polyethyleneglycol, alpha glucan, and beta glucan, The manufacture of the catalyst for methacrylic acid manufacture of any one of Claim 1 to 3 Method. 前記混合溶液又はスラリーに添加する有機バインダーの量が、固形分としての前記触媒成分の原料化合物100質量部に対し、0.1〜20質量部である請求項1から4のいずれか1項に記載のメタクリル酸製造用触媒の製造方法。   The amount of the organic binder added to the mixed solution or slurry is 0.1 to 20 parts by mass with respect to 100 parts by mass of the raw material compound of the catalyst component as a solid content. The manufacturing method of the catalyst for methacrylic acid manufacture of description. 請求項1から5のいずれか1項に記載のメタクリル酸製造用触媒の製造方法により得られるメタクリル酸製造用触媒。   The catalyst for methacrylic acid manufacture obtained by the manufacturing method of the catalyst for methacrylic acid manufacture of any one of Claim 1 to 5. 請求項6に記載のメタクリル酸製造用触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法。   A method for producing methacrylic acid, comprising subjecting methacrolein to gas phase catalytic oxidation with molecular oxygen in the presence of the catalyst for producing methacrylic acid according to claim 6.
JP2009032709A 2009-02-16 2009-02-16 Method for producing catalyst for producing methacrylic acid Pending JP2010188227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009032709A JP2010188227A (en) 2009-02-16 2009-02-16 Method for producing catalyst for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009032709A JP2010188227A (en) 2009-02-16 2009-02-16 Method for producing catalyst for producing methacrylic acid

Publications (1)

Publication Number Publication Date
JP2010188227A true JP2010188227A (en) 2010-09-02

Family

ID=42814875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009032709A Pending JP2010188227A (en) 2009-02-16 2009-02-16 Method for producing catalyst for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP2010188227A (en)

Similar Documents

Publication Publication Date Title
JP2011092882A (en) Method for producing catalyst for preparation of methacrylic acid, and method for preparing methacrylic acid
JP5581693B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP2008155126A (en) Method for producing metal component-containing catalyst
KR101860595B1 (en) Method for preparing catalyst for production of methacrylic acid
JP2008080232A (en) Method for re-generating catalyst for manufacturing methacrylic acid and method for manufacturing methacrylic acid
KR100783994B1 (en) Catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4846114B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using catalyst produced by the production method
JP4601196B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for synthesizing unsaturated carboxylic acid using the catalyst
JP5828260B2 (en) Catalyst production method
JP4634633B2 (en) Unsaturated carboxylic acid synthesis catalyst, preparation method thereof, and synthesis method of unsaturated carboxylic acid using the catalyst
JP2009213970A (en) Method for manufacturing catalyst for synthesizing unsaturated carboxylic acid
JP5063055B2 (en) Method for packing solid catalyst and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2008086928A (en) Regeneration method of catalyst for producing methacrylic acid and production method of methacrylic acid
JP2010188227A (en) Method for producing catalyst for producing methacrylic acid
JP4464734B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid, catalyst for synthesis of unsaturated carboxylic acid, and method for synthesis of unsaturated carboxylic acid
JP5090796B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
KR102084768B1 (en) Method of producing unsaturated aldehyde and unsaturated caboxylic acid
JP4875480B2 (en) Method for producing metal-containing catalyst
CN106881128B (en) Heteropolyacid salt catalyst, preparation method and application thereof
JP2004130261A (en) Method of manufacturing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP5462300B2 (en) Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP2010207803A (en) Compound oxide catalyst
JP5069151B2 (en) Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP5569180B2 (en) Method for producing a catalyst for methacrylic acid production
JP4902991B2 (en) Method for producing oxide catalyst