JP2010186876A - Electrode-plate structure for plasma treatment device, and plasma treatment device - Google Patents

Electrode-plate structure for plasma treatment device, and plasma treatment device Download PDF

Info

Publication number
JP2010186876A
JP2010186876A JP2009030145A JP2009030145A JP2010186876A JP 2010186876 A JP2010186876 A JP 2010186876A JP 2009030145 A JP2009030145 A JP 2009030145A JP 2009030145 A JP2009030145 A JP 2009030145A JP 2010186876 A JP2010186876 A JP 2010186876A
Authority
JP
Japan
Prior art keywords
electrode plate
electrode
thickness
plate
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009030145A
Other languages
Japanese (ja)
Other versions
JP5182136B2 (en
Inventor
Tsutomu Hisanaga
努 久永
Takashi Yonehisa
孝志 米久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009030145A priority Critical patent/JP5182136B2/en
Publication of JP2010186876A publication Critical patent/JP2010186876A/en
Application granted granted Critical
Publication of JP5182136B2 publication Critical patent/JP5182136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve in-plane uniformity of an etching depth by reducing a temperature difference occurring between the central part and the outer peripheral part of an electrode plate. <P>SOLUTION: An electrode-plate structure 20 is used in a plasma treatment device. The electrode-plate structure comprises: an electrode plate 3 to which a high-frequency voltage is applied; and a cooling plate 14 fixed on the rear face of the electrode plate 3 into a close contact state. The electrode plate 3 is configured such that the thickness t1 of the central part is formed smaller than the thickness t2 of the outer peripheral part. The cooling plate 14 is configured corresponding to the electrode plate 3 such that the thickness of the central part is formed larger than the thickness of the outer peripheral part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、プラズマ生成用ガスを通過させる貫通孔を有するプラズマ処理装置用電極板構成体及び該電極板構成体を備えるプラズマ処理装置に関する。   The present invention relates to an electrode plate assembly for a plasma processing apparatus having a through hole through which a plasma generating gas passes, and a plasma processing apparatus including the electrode plate assembly.

半導体デバイス製造プロセスに使用されるプラズマエッチング装置やプラズマCVD装置等のプラズマ処理装置は、チャンバー内に、高周波電源に接続される電極板と架台とを例えば上下に対向配置し、架台の上にシリコンウエハを載置した状態として、電極板に形成した貫通孔からガスをシリコンウエハに向かって流通させながら高周波電圧を印加することによりプラズマを発生させ、シリコンウエハにエッチング等の処理を行う構成とされている。  A plasma processing apparatus such as a plasma etching apparatus or a plasma CVD apparatus used in a semiconductor device manufacturing process has, for example, an electrode plate connected to a high frequency power source and a frame placed in a chamber facing each other in a vertical direction, and silicon is placed on the frame. With the wafer placed, plasma is generated by applying a high-frequency voltage from a through-hole formed in the electrode plate toward the silicon wafer, and processing such as etching is performed on the silicon wafer. ing.

このプラズマ処理装置に用いられる電極板は、例えば単結晶シリコンにより円板状に形成され、その面全体に貫通孔が多数形成され、その背面には冷却板が設けられる。
例えば、特許文献1では、シリコン単結晶からなる内側及び外側部材の背面に、表面にアルマイト処理されたアルミニウム等の金属からなる冷却板が設けられており、また、特許文献2では、シリコン電極板の背面に金属膜を介して冷却板が締結固定されている。
The electrode plate used in this plasma processing apparatus is formed into a disk shape by, for example, single crystal silicon, a large number of through holes are formed on the entire surface, and a cooling plate is provided on the back surface.
For example, in Patent Document 1, a cooling plate made of a metal such as aluminum whose surface is anodized is provided on the back surfaces of the inner and outer members made of silicon single crystal. In Patent Document 2, a silicon electrode plate is used. A cooling plate is fastened and fixed to the back surface of the metal plate via a metal film.

特開2003−332314号公報JP 2003-332314 A 特開平11−256370号公報JP-A-11-256370

ところで、上記のように構成されたプラズマ処理装置では、ウエハの口径が200mmから300mmに大型化し、また、数nmの寸法ばらつきが許されない厳しいプロセス制御が要求されるようになってきており、プラズマエッチングに対して、高い面内均一性が不可欠になってきている。
この要求を実現するために、プラズマエッチング中において電極板の中心部と外周部の温度を一定にすることが望ましいが、現状では、これら電極板の中心部と外周部の温度にばらつきがあり、エッチングの面内均一性を確保する障害になっていた。
By the way, in the plasma processing apparatus configured as described above, the diameter of the wafer is increased from 200 mm to 300 mm, and strict process control that does not allow dimensional variations of several nanometers has been required. High in-plane uniformity has become essential for etching.
In order to realize this requirement, it is desirable to keep the temperature at the center and the outer periphery of the electrode plate constant during plasma etching, but at present, there is a variation in the temperature at the center and the outer periphery of these electrode plates, It was an obstacle to ensure in-plane uniformity of etching.

本発明は、このような事情に鑑みてなされたもので、電極板の中心部と外周部に生じる温度差を小さくして、エッチング深さの面内均一性を向上させることができるプラズマ処理装置用電極板構成体及び該電極板構成体を備えるプラズマ処理装置の提供を目的とする。   The present invention has been made in view of such circumstances, and a plasma processing apparatus capable of reducing in-plane uniformity of etching depth by reducing a temperature difference generated between the central portion and the outer peripheral portion of an electrode plate. It is an object of the present invention to provide an electrode plate structure for a plasma and a plasma processing apparatus including the electrode plate structure.

本発明のプラズマ処理装置用電極板構成体は、プラズマ処理装置に用いられる電極板構成体であって、高周波電圧が印加される電極板と、該電極板の背面に緊密接触状態に固定される冷却板とから構成され、前記電極板は中心部の厚さが外周部より小さく形成され、前記冷却板は、前記電極板に対応して中心部の厚さが外周部より大きく形成されていることを特徴とする。   The electrode plate structure for a plasma processing apparatus of the present invention is an electrode plate structure used in a plasma processing apparatus, and is fixed in close contact with an electrode plate to which a high-frequency voltage is applied and a back surface of the electrode plate. A cooling plate, and the electrode plate is formed such that the thickness of the central portion is smaller than that of the outer peripheral portion, and the thickness of the cooling plate is larger than that of the outer peripheral portion corresponding to the electrode plate. It is characterized by that.

この電極板構成体において、電極板は、放熱し易い外周部に比べて放熱し難い中心部の厚さが小さく形成され、その中心部に接触する冷却板は逆に外周部に比べて中心部の厚さが大きく形成されているから、電極板の中心部で発生した熱は、大きな容量の冷却板の中心部に速やかに伝達され、この冷却板を経由して外部に放出される。したがって、電極板は中心部から外周部にかけて温度が均一になり、エッチング深さの面内均一性を向上させることができる。  In this electrode plate structure, the electrode plate is formed such that the thickness of the central portion that is difficult to dissipate is smaller than the outer peripheral portion that easily dissipates heat, and the cooling plate that contacts the central portion is conversely the central portion compared to the outer peripheral portion. Therefore, the heat generated at the central portion of the electrode plate is quickly transmitted to the central portion of the large capacity cooling plate and is released to the outside through the cooling plate. Therefore, the temperature of the electrode plate is uniform from the center to the outer periphery, and the in-plane uniformity of the etching depth can be improved.

本発明のプラズマ処理装置用電極板構成体において、前記電極板の背面は凹状の円錐面に形成され、前記冷却板の前面は前記電極板の円錐面に対応した凸状の円錐面に形成されているとよい。
電極板と冷却板との接触面を円錐面に形成したことにより、電極板及び冷却板の厚さが漸次変化することになり、半径方向の温度分布に急激な変化が生じることがなく、もって面内均一性をより向上させることができる。
また、本発明のプラズマ処理装置は、前記電極板構成体を取り付けてなるものである。
なお、電極板の中心部と外周部との厚さの差は、例えば外径が300mmに対して5mm程度とされる。
In the electrode plate structure for a plasma processing apparatus of the present invention, the back surface of the electrode plate is formed in a concave conical surface, and the front surface of the cooling plate is formed in a convex conical surface corresponding to the conical surface of the electrode plate. It is good to have.
By forming the contact surface between the electrode plate and the cooling plate as a conical surface, the thickness of the electrode plate and the cooling plate is gradually changed, and there is no sudden change in the radial temperature distribution. In-plane uniformity can be further improved.
Moreover, the plasma processing apparatus of this invention attaches the said electrode plate structure.
The difference in thickness between the central portion and the outer peripheral portion of the electrode plate is, for example, about 5 mm for an outer diameter of 300 mm.

本発明によれば、電極板の中心部の厚さを外周部より小さくし、かつ冷却板を電極板に対応して中心部の厚さを外周部より大きく形成したことにより、放熱し難い電極板の中心部から熱が容量の大きい冷却板の中心部に速やかに伝達され、この冷却板から外部に放出される。したがって、電極板の中心部と外周部との温度差を小さくして、エッチング深さの面内均一性を向上させることができる。  According to the present invention, the thickness of the central portion of the electrode plate is made smaller than that of the outer peripheral portion, and the cooling plate is formed in correspondence with the electrode plate so that the thickness of the central portion is made larger than that of the outer peripheral portion. Heat is quickly transmitted from the central portion of the plate to the central portion of the cooling plate having a large capacity, and is discharged from the cooling plate to the outside. Therefore, the in-plane uniformity of the etching depth can be improved by reducing the temperature difference between the central portion and the outer peripheral portion of the electrode plate.

本発明のプラズマ処理装置用電極板構成体の実施形態を示す縦断面図であり、(a)は第1実施形態、(b)は第2実施形態を示している。It is a longitudinal cross-sectional view which shows embodiment of the electrode plate structure for plasma processing apparatuses of this invention, (a) has shown 1st Embodiment, (b) has shown 2nd Embodiment. 本発明の電極板構成体が適用されるプラズマ処理装置の実施形態としてプラズマエッチング装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows a plasma etching apparatus as embodiment of the plasma processing apparatus with which the electrode plate structure of this invention is applied. 従来の電極板構成体を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional electrode plate structure.

以下、本発明の実施形態について、図面に基づいて説明する。
まず、この電極板構成体が用いられるプラズマ処理装置の実施形態としてプラズマエッチング装置について説明する。
このプラズマエッチング装置1は、図2の概略断面図に示されるように、真空チャンバー2内の上部に電極板3が設けられるとともに、下部に上下動可能な架台4が電極板3と相互間隔をおいて平行に設けられている。この場合、上部の電極板3は絶縁体5により真空チャンバー2の壁に対して絶縁状態に支持されているとともに、架台4の上には静電チャック6が設けられており、静電チャック6の上に支持リング7と共にウエハ8を載置するようになっている。また、真空チャンバー2の上部にはエッチングガス供給管9が設けられ、このエッチングガス供給管9から送られてきたエッチングガスは拡散部材10を経由した後電極板3に設けられた貫通孔11を通してウエハ8に向って流され、真空チャンバー2の側部の排出口12から外部に排出される構成とされている。一方、電極板3と架台4との間には高周波電源13により高周波電圧が印加されるようになっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, a plasma etching apparatus will be described as an embodiment of a plasma processing apparatus in which this electrode plate structure is used.
As shown in the schematic cross-sectional view of FIG. 2, the plasma etching apparatus 1 includes an electrode plate 3 provided in the upper part of the vacuum chamber 2, and a gantry 4 that can be moved up and down in the lower part. Are provided in parallel. In this case, the upper electrode plate 3 is supported by an insulator 5 in an insulated state with respect to the wall of the vacuum chamber 2, and an electrostatic chuck 6 is provided on the gantry 4. A wafer 8 is placed together with a support ring 7 on the substrate. Further, an etching gas supply pipe 9 is provided in the upper part of the vacuum chamber 2, and the etching gas sent from the etching gas supply pipe 9 passes through the diffusion member 10 and then passes through the through hole 11 provided in the electrode plate 3. It is configured to flow toward the wafer 8 and to be discharged to the outside from the discharge port 12 on the side of the vacuum chamber 2. On the other hand, a high frequency voltage is applied between the electrode plate 3 and the gantry 4 by a high frequency power source 13.

また、電極板3は、単結晶シリコン、柱状晶シリコン、多結晶シリコンによって直径が例えば300mmの円板状に形成されており、その背面には熱伝導性に優れるアルミニウム等からなる冷却板14が固定され、この冷却板14にも、電極板3の貫通孔11に連通するように、この貫通孔11と同じピッチで貫通孔15が形成されている。そして、これら電極板3と冷却板14とにより、後述するように電極板構成体20が構成される。  The electrode plate 3 is formed in a disc shape having a diameter of, for example, 300 mm using single crystal silicon, columnar crystal silicon, or polycrystalline silicon, and a cooling plate 14 made of aluminum or the like having excellent thermal conductivity is provided on the back surface thereof. The through holes 15 are also formed in the cooling plate 14 at the same pitch as the through holes 11 so as to communicate with the through holes 11 of the electrode plate 3. The electrode plate 3 and the cooling plate 14 constitute an electrode plate structure 20 as will be described later.

このプラズマエッチング装置1では、高周波電源13から高周波電圧を印加してエッチングガスを供給すると、このエッチングガスは拡散部材10を経由して、電極板3に設けられた貫通孔11を通って電極板3と架台4との間の空間に放出され、この空間内でプラズマとなってウエハ8に当り、このプラズマによるスパッタリングすなわち物理反応と、エッチングガスの化学反応とにより、ウエハ8の表面がエッチングされる。
また、ウエハ8の均一なエッチングを行う目的で、発生したプラズマをウエハ8の中心部に集中させ、外周部へ拡散するのを阻止して電極板3とウエハ8との間に均一なプラズマを発生させるために、通常、プラズマ発生領域16がシールドリング17で囲われた状態とされている。
In this plasma etching apparatus 1, when an etching gas is supplied by applying a high-frequency voltage from a high-frequency power source 13, the etching gas passes through the diffusion member 10, passes through the through-hole 11 provided in the electrode plate 3, and returns to the electrode plate. 3 is released into the space between the gantry 3 and the gantry 4 and becomes plasma in this space, hits the wafer 8, and the surface of the wafer 8 is etched by sputtering, ie, physical reaction, and chemical reaction of the etching gas. The
Further, for the purpose of uniformly etching the wafer 8, the generated plasma is concentrated on the central portion of the wafer 8, and is prevented from diffusing to the outer peripheral portion, thereby generating a uniform plasma between the electrode plate 3 and the wafer 8. In order to generate it, the plasma generation region 16 is normally surrounded by a shield ring 17.

次に、前述した電極板構成体20の実施形態について説明する。図1(a)が第1実施形態、図1(b)が第2実施形態を示している。
図1(a)に示す第1実施形態の電極板構成体20においては、電極板3は、例えば300mmの外径に対して、直径100mmの範囲の中心部Cの厚さ(t1)が、外周部Dの厚さ(t2)に比べて小さく形成されている。この場合、この電極板3の前面は全体が平坦面に形成されるが、背面は中心部Cが平坦な円形状の凹部21とされている。一方、この電極板3の背面に固定される冷却板14は、電極板3とは逆に、中心部Cの厚さが外周部Dより大きく形成されており、この場合、冷却板14の背面は全体が平坦面に形成されるが、前面が、電極板3の背面の形状に対応して、中心部Cが平坦な円形の凸部22とされている。そして、電極板3の背面の凹部21に冷却板14の前面の凸部22が嵌合した状態で両者が緊密接触して電極板構成体20とされている。
Next, an embodiment of the electrode plate assembly 20 described above will be described. FIG. 1A shows the first embodiment, and FIG. 1B shows the second embodiment.
In the electrode plate assembly 20 of the first embodiment shown in FIG. 1A, the electrode plate 3 has a thickness (t1) of the central portion C in a range of 100 mm in diameter with respect to an outer diameter of 300 mm, for example. It is formed smaller than the thickness (t2) of the outer peripheral portion D. In this case, the entire front surface of the electrode plate 3 is formed as a flat surface, but the back surface is a circular recess 21 having a flat central portion C. On the other hand, the cooling plate 14 fixed to the back surface of the electrode plate 3 is formed so that the thickness of the central portion C is larger than the outer peripheral portion D contrary to the electrode plate 3. The entire surface is formed as a flat surface, but the front surface corresponds to the shape of the back surface of the electrode plate 3 and the central portion C is a flat circular convex portion 22. Then, in a state where the convex portion 22 on the front surface of the cooling plate 14 is fitted in the concave portion 21 on the rear surface of the electrode plate 3, both are brought into close contact with each other to form the electrode plate structure 20.

また、図1(b)に示す第2実施形態の電極板構成体25においては、電極板26は、外周縁から中心に向けて徐々に厚さが大きくなるように形成されており、この場合、前面は第1実施形態と同じく平坦面に形成され、背面が中心を頂点とする凹状の円錐面27に形成されている。したがって、電極板26の厚さは、その中心の厚さ(t1)が最も小さく、周縁で最も大きい厚さ(t2)となり、中心から周縁にかけて漸次大きく形成される。一方、冷却板28は、その背面は全体が平坦面に形成され、前面が中心を頂点とする凸状の円錐面29とされている。そして、電極板26の背面の凹状の円錐面27に冷却板28の前面の凸状の円錐面29が嵌合した状態で両者が緊密接触して電極板構成体25とされている。
なお、いずれの実施形態においても、電極板3,26の中心部と外周部との厚さの差(t2−t1)は、外径が300mmで外周部の厚さ(t2)が10mmの場合、5mmとされ、冷却板14,28は、中心部が外周部に比べて5mm厚く形成され、図1の実施形態では、これら電極板3,26と冷却板14,28とを合わせた電極板構成体20,25の全体の厚さは、中心部から外周部まで同じ厚さに設定される。
Moreover, in the electrode plate structure 25 of 2nd Embodiment shown in FIG.1 (b), the electrode plate 26 is formed so that thickness may become large gradually toward the center from an outer periphery, In this case The front surface is formed as a flat surface as in the first embodiment, and the back surface is formed as a concave conical surface 27 having the center as a vertex. Therefore, the thickness of the electrode plate 26 is the smallest at the center (t1), the largest at the periphery (t2), and gradually increases from the center to the periphery. On the other hand, the entire rear surface of the cooling plate 28 is formed as a flat surface, and the front surface is a convex conical surface 29 having the center as a vertex. Then, in a state where the convex conical surface 29 on the front surface of the cooling plate 28 is fitted to the concave conical surface 27 on the back surface of the electrode plate 26, both are brought into close contact with each other to form the electrode plate structure 25.
In any of the embodiments, the difference in thickness (t2-t1) between the central portion and the outer peripheral portion of the electrode plates 3 and 26 is when the outer diameter is 300 mm and the outer peripheral portion thickness (t2) is 10 mm. 5 mm, and the cooling plates 14 and 28 are formed with a central portion 5 mm thicker than the outer peripheral portion. In the embodiment of FIG. 1, the electrode plates 3 and 26 and the cooling plates 14 and 28 are combined. The total thickness of the structural bodies 20 and 25 is set to the same thickness from the central part to the outer peripheral part.

このような電極板構成体20,25としたことにより、放熱し難い電極板3,26の中心部の熱を、厚さが大きく容量の大きい冷却板14,28の中心部に速やかに伝達して外部に放出することができ、これにより、電極板3,26の中心部と外周部との温度差を小さくして、温度を面内で均一にし、エッチング深さの面内均一性を向上させることができる。   By using such electrode plate structures 20 and 25, heat at the center of the electrode plates 3 and 26, which is difficult to dissipate heat, is quickly transmitted to the center of the cooling plates 14 and 28 having a large thickness and a large capacity. The temperature difference between the central portion and the outer peripheral portion of the electrode plates 3 and 26 can be reduced, thereby making the temperature uniform in the surface and improving the in-plane uniformity of the etching depth. Can be made.

次に、このような電極板構成体の実施例について、従来の比較例とともに説明する。
以下の説明では、「実施例1」が図1(a)に示すように電極板3の平坦な円形の凹部21に冷却板14の凸部22が嵌合した状態に接合した電極板構成体20、「実施例2」が図1(b)に示すように電極板26の凹状の円錐面27に冷却板28の凸状の円錐面29が嵌合した状態に接合した電極板構成体25、「比較例」は図3に示すように平坦な電極板32に平坦な冷却板33が接合した電極板構成体31である。
Next, an example of such an electrode plate structure will be described together with a conventional comparative example.
In the following description, as shown in FIG. 1A, the electrode plate structure in which “Example 1” is joined in a state where the convex portion 22 of the cooling plate 14 is fitted in the flat circular concave portion 21 of the electrode plate 3. 20, “Example 2” is an electrode plate assembly 25 joined in such a manner that the convex conical surface 29 of the cooling plate 28 is fitted to the concave conical surface 27 of the electrode plate 26 as shown in FIG. The “comparative example” is an electrode plate assembly 31 in which a flat cooling plate 33 is joined to a flat electrode plate 32 as shown in FIG.

<電極板の製造>
「実施例1」「実施例2」「比較例」とも以下の方法で製造した。まず、外径が300mmの単結晶シリコンインゴットをチョコラルスキー法(CZ法)により引き上げ,このインゴットをダイヤモンドバンドソーにより厚さ10mmに輪切り状に切断して単結晶シリコンの円板を作製した。この単結晶シリコンの円板に、貫通孔11となる内径0.5mmの細孔をピッチ8mmで形成した。この孔開け加工は、レーザを用いた非接触加工、又はダイヤモンドドリルを用いた機械加工のいずれでもよい。細孔の加工領域は、円板の中心から200mmの径の範囲とした。
その後、このように形成された電極板の上側片面に次のような加工を施した。すなわち、「実施例1」の電極板3については、中心部を直径100mmで、かつ深さ5mm(=t1)の凹状に形成し、外周部の厚さ10mm(=t2)に対して段差を設けた。また、「実施例2」の電極板26については、図1(b)に示されるように、中心の深さを5mm(つまり、残る厚さt1を5mm)とし、中心から周辺に向かって徐々に浅くなるように凹状の円錐面27を加工し、周縁部にて10mm(=t2)の厚さで残るようにした。このような凹状部分を形成する加工は、ダイヤモンドエンドミル等で実施される。一方、「比較例」の電極板32については、図3に示されるように、全体の厚さが10mmの平坦な円板をそのまま使用した。
<Manufacture of electrode plates>
“Example 1”, “Example 2”, and “Comparative Example” were both produced by the following method. First, a single crystal silicon ingot having an outer diameter of 300 mm was pulled up by the chocolate ski method (CZ method), and this ingot was cut into a 10 mm thickness by a diamond band saw to produce a single crystal silicon disk. In this single crystal silicon disk, pores having an inner diameter of 0.5 mm to be through-holes 11 were formed at a pitch of 8 mm. This drilling process may be either a non-contact process using a laser or a machining process using a diamond drill. The processing area of the pores was in the range of 200 mm in diameter from the center of the disk.
Thereafter, the following processing was performed on the upper surface of the electrode plate thus formed. That is, with respect to the electrode plate 3 of “Example 1”, the central portion is formed in a concave shape with a diameter of 100 mm and a depth of 5 mm (= t1), and a step is formed with respect to the thickness of the outer peripheral portion of 10 mm (= t2). Provided. As for the electrode plate 26 of “Example 2”, as shown in FIG. 1B, the depth of the center is set to 5 mm (that is, the remaining thickness t1 is 5 mm), and gradually from the center toward the periphery. The concave conical surface 27 was processed so as to be shallow, and remained at a thickness of 10 mm (= t2) at the peripheral edge. The processing for forming such a concave portion is performed by a diamond end mill or the like. On the other hand, as for the electrode plate 32 of the “comparative example”, as shown in FIG. 3, a flat disk having a total thickness of 10 mm was used as it was.

<冷却板の製造>
アルミニウム板を旋盤により直径300mm、厚さ25mmに加工して円板状とした。そして、冷却板については、それぞれの電極板の背面の形状に対応して、その片面に、「実施例1」の冷却板14では、図1(a)に示すように中心部に円形の凸部22を形成し、「実施例2」の冷却板28では、図1(b)に示すように中心を頂点とする凸状の円錐面29を形成した。「比較例」の冷却板33は、図3に示すように、旋盤により加工した円板状のアルミニウム板をそのまま使用した。
また、各冷却板に、電極板の貫通孔11と同じ位置にドリル加工によって貫通孔15となる内径3mmの細孔を8mmのピッチで形成し、その後、表面をアルマイト処理した。
<Manufacture of cooling plate>
The aluminum plate was processed into a disk shape by processing to a diameter of 300 mm and a thickness of 25 mm with a lathe. Then, the cooling plate corresponds to the shape of the back surface of each electrode plate, and the cooling plate 14 of “Example 1” has a circular protrusion at the center as shown in FIG. In the cooling plate 28 of “Example 2”, the convex conical surface 29 having the center at the apex was formed as shown in FIG. As the cooling plate 33 of “Comparative Example”, as shown in FIG. 3, a disk-shaped aluminum plate processed by a lathe was used as it was.
In addition, on each cooling plate, pores with an inner diameter of 3 mm that became the through holes 15 were formed by drilling at the same positions as the through holes 11 of the electrode plate, and then the surface was anodized.

そして、以上のように作成した電極板と、対応する冷却板とをねじ止めすることにより、図1(a)(b)及び図3に示される各電極板構成体20,25,31とした。なお、いずれの電極板構成体も、電極板と冷却板とを合わせた全体(中心部、外周部を含めた全体)の厚さが同じ35mmとなるように設定した。  Then, the electrode plates produced as described above and the corresponding cooling plates are screwed to form the electrode plate structures 20, 25, 31 shown in FIGS. 1 (a), 1 (b) and FIG. . Each electrode plate assembly was set so that the total thickness of the electrode plate and the cooling plate (the whole including the central portion and the outer peripheral portion) was 35 mm.

次に、このようにして得られた各電極板構成体を図2に示されるようなプラズマエッチング装置に取り付けるとともに、予めCVDによりSiO2 層を形成した外径200mmのウエハを対向して取り付け、以下の条件でエッチング試験を実施した。
チャンバー内圧力:10-1Torr(13.33Pa)
エッチングガス組成:90sccmCHF3+4sccmO2+150sccmHe
高周波電力:2kW
周波数:20kHz
なお、sccmとは、standard cc/minの略であり、1atm(大気圧1013hPa)で、0℃あるいは25℃などの一定温度で規格化された1分間あたりの流量(cc)をいう。
Next, the attaching this way each electrode plate structure body obtained in the plasma etching apparatus as shown in FIG. 2, mounted to face the wafer outer diameter 200mm that SiO 2 layer was formed in advance by CVD, An etching test was performed under the following conditions.
Pressure in chamber: 10 −1 Torr (13.33 Pa)
Etching gas composition: 90 sccm CHF 3 +4 sccm O 2 +150 sccm He
High frequency power: 2kW
Frequency: 20kHz
Note that sccm is an abbreviation for standard cc / min and refers to a flow rate (cc) per minute normalized at a constant temperature such as 0 ° C. or 25 ° C. at 1 atm (atmospheric pressure 1013 hPa).

そして、このような条件で、ウエハ表面のSiO2層のプラズマエッチングを行ない、電極板の表面温度を電力チャージ後、5秒毎に測定するとともに、エッチング開始から所定時間経過した時点でのウエハ表面のSiO2層の最大エッチング深さ(=A)及び最小エッチング深さ(=B)をそれぞれ測定した。これらのエッチング深さの測定値から(A−B)/A×100(%)の値を求め、ウエハ表面のエッチング均一性を評価した。エッチング経過時間による表面温度の推移を表1に、エッチングの均一性を表2にまとめた。 Under such conditions, plasma etching of the SiO 2 layer on the wafer surface is performed, and the surface temperature of the electrode plate is measured every 5 seconds after power charging, and the wafer surface at the time when a predetermined time has elapsed from the start of etching. The maximum etching depth (= A) and the minimum etching depth (= B) of each SiO 2 layer were measured. A value of (A−B) / A × 100 (%) was obtained from the measured values of the etching depth, and the etching uniformity of the wafer surface was evaluated. Table 1 shows the transition of the surface temperature depending on the etching elapsed time, and Table 2 shows the etching uniformity.

Figure 2010186876
Figure 2010186876

Figure 2010186876
Figure 2010186876

この表1の結果によれば、いずれの電極板構成体も、電力チャージ時間の経過に従って温度が上昇するが、実施例1及び実施例2では、中心部と外周部との温度差が最大でも8℃であったのに対して、比較例では40秒経過後で115℃と大きな温度差が発生しており、両実施例では、温度差が小さく抑えられていることが確認された。
また、このようなウエハ表面のSiO2層のエッチング深さも、最も深くエッチングされた部分と最も浅くエッチングされた部分との深さの差が実施例のものは小さく、エッチングの均一性が比較例よりも向上していることが確認された。
According to the results of Table 1, the temperature of any electrode plate assembly increases as the power charge time elapses. In Example 1 and Example 2, even if the temperature difference between the central part and the outer peripheral part is maximum. In contrast to the temperature of 8 ° C., in the comparative example, a large temperature difference of 115 ° C. occurred after 40 seconds, and in both examples, it was confirmed that the temperature difference was kept small.
The etching depth of the SiO 2 layer of such a wafer surface is also deepest small ones of the difference of the depth of the etched portion and the shallowest etched portions embodiment, a comparative example the uniformity of etching It was confirmed that there was an improvement.

以上説明したように、本実施形態のプラズマ処理装置用電極板構成体によれば、電極板の中心部の厚さを外周部より小さくし、冷却板を電極板に対応して中心部の厚さを外周部より大きくしたことにより、電極板の中心部で発生した熱を、厚さがあって容量の大きい冷却板の中心部で速やかに吸収して外部に放熱することができ、電極板の中心部と外周部との温度差を小さくして、全体の温度を均一にし、エッチング深さの面内均一性を向上させることができる。   As described above, according to the electrode plate structure for a plasma processing apparatus of the present embodiment, the thickness of the central portion of the electrode plate is made smaller than that of the outer peripheral portion, and the thickness of the central portion of the cooling plate corresponding to the electrode plate is set. By making the thickness larger than the outer peripheral part, the heat generated at the center part of the electrode plate can be quickly absorbed at the center part of the thick and large capacity cooling plate and radiated to the outside. The temperature difference between the central portion and the outer peripheral portion can be reduced, the entire temperature can be made uniform, and the in-plane uniformity of the etching depth can be improved.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、各実施例では、電極板の中心部の厚さを5mm、外周部を10mmとしたが、この寸法に限定されるものではない。ただし、電極板の背部へのプラズマの回り込みを防止するために、中心部の最も薄い部分の厚さを3mm以上とするのが好ましい。
また、電極板と冷却板とを合わせた全体の厚さは一定に設定したが、冷却板の中心部をさらに厚くするなど、各部の全体厚さを調整してもよい。
さらに、図1(a)に示す電極板では中央部と外周部との間に90°の段部が形成されるが、その段部の部分をテーパ状に形成してもよい。また、その段部を同心状に複数設けて段階的に厚さが変化するようにしてもよい。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, in each embodiment, the thickness of the central portion of the electrode plate is 5 mm and the outer peripheral portion is 10 mm. However, the dimensions are not limited to this. However, it is preferable that the thickness of the thinnest part of the central part be 3 mm or more in order to prevent the plasma from wrapping around the back part of the electrode plate.
In addition, although the total thickness of the electrode plate and the cooling plate is set to be constant, the total thickness of each portion may be adjusted, for example, by making the central portion of the cooling plate thicker.
Furthermore, in the electrode plate shown in FIG. 1A, a step portion of 90 ° is formed between the central portion and the outer peripheral portion, but the step portion may be formed in a tapered shape. Further, a plurality of step portions may be provided concentrically so that the thickness changes stepwise.

1 プラズマエッチング装置
2 真空チャンバ
3 電極板
11 貫通孔
13 高周波電源
14 冷却板
15 貫通孔
20 電極板構成体
21 凹部
22 凸部
25 電極板構成体
26 電極板
27 円錐面
28 冷却板
29 円錐面
DESCRIPTION OF SYMBOLS 1 Plasma etching apparatus 2 Vacuum chamber 3 Electrode plate 11 Through-hole 13 High frequency power supply 14 Cooling plate 15 Through-hole 20 Electrode plate structure 21 Recess 22 Convex part 25 Electrode plate structure 26 Electrode plate 27 Conical surface 28 Cooling plate 29 Conical surface

Claims (3)

プラズマ処理装置に用いられる電極板構成体であって、
高周波電圧が印加される電極板と、該電極板の背面に緊密接触状態に固定される冷却板とから構成され、前記電極板は中心部の厚さが外周部より小さく形成され、前記冷却板は、前記電極板に対応して中心部の厚さが外周部より大きく形成されていることを特徴とするプラズマ処理装置用電極板構成体。
An electrode plate structure used in a plasma processing apparatus,
The electrode plate is composed of an electrode plate to which a high-frequency voltage is applied and a cooling plate fixed in close contact with the back surface of the electrode plate, and the electrode plate is formed with a central portion smaller than the outer peripheral portion, and the cooling plate Is an electrode plate structure for a plasma processing apparatus, wherein the thickness of the central portion is larger than that of the outer peripheral portion corresponding to the electrode plate.
前記電極板の背面は凹状の円錐面に形成され、前記冷却板の前面は前記電極板の円錐面に対応した凸状の円錐面に形成されていることを特徴とする請求項1記載のプラズマ処理装置用電極板構成体。   2. The plasma according to claim 1, wherein the back surface of the electrode plate is formed in a concave conical surface, and the front surface of the cooling plate is formed in a convex conical surface corresponding to the conical surface of the electrode plate. An electrode plate assembly for a processing apparatus. 請求項1又は請求項2に記載の電極板構成体を取り付けてなるプラズマ処理装置。 A plasma processing apparatus to which the electrode plate structure according to claim 1 or 2 is attached.
JP2009030145A 2009-02-12 2009-02-12 Electrode plate assembly for plasma processing apparatus and plasma processing apparatus Active JP5182136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009030145A JP5182136B2 (en) 2009-02-12 2009-02-12 Electrode plate assembly for plasma processing apparatus and plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009030145A JP5182136B2 (en) 2009-02-12 2009-02-12 Electrode plate assembly for plasma processing apparatus and plasma processing apparatus

Publications (2)

Publication Number Publication Date
JP2010186876A true JP2010186876A (en) 2010-08-26
JP5182136B2 JP5182136B2 (en) 2013-04-10

Family

ID=42767347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030145A Active JP5182136B2 (en) 2009-02-12 2009-02-12 Electrode plate assembly for plasma processing apparatus and plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP5182136B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116243A1 (en) * 2018-12-06 2020-06-11 東京エレクトロン株式会社 Plasma processing apparatus
JP2021089870A (en) * 2019-12-05 2021-06-10 東京エレクトロン株式会社 Plasma processing device and plasma processing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522647A (en) * 2003-12-23 2007-08-09 ラム リサーチ コーポレーション Shower head electrode assembly for plasma processing equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522647A (en) * 2003-12-23 2007-08-09 ラム リサーチ コーポレーション Shower head electrode assembly for plasma processing equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116243A1 (en) * 2018-12-06 2020-06-11 東京エレクトロン株式会社 Plasma processing apparatus
JP2020092024A (en) * 2018-12-06 2020-06-11 東京エレクトロン株式会社 Plasma processing apparatus
KR20210090268A (en) * 2018-12-06 2021-07-19 도쿄엘렉트론가부시키가이샤 plasma processing unit
JP7097284B2 (en) 2018-12-06 2022-07-07 東京エレクトロン株式会社 Plasma processing equipment
KR102531442B1 (en) 2018-12-06 2023-05-12 도쿄엘렉트론가부시키가이샤 plasma processing unit
JP2021089870A (en) * 2019-12-05 2021-06-10 東京エレクトロン株式会社 Plasma processing device and plasma processing method
WO2021111926A1 (en) * 2019-12-05 2021-06-10 東京エレクトロン株式会社 Plasma treatment device and plasma treatment method
JP7301727B2 (en) 2019-12-05 2023-07-03 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method

Also Published As

Publication number Publication date
JP5182136B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP2007116150A (en) Substrate supporting device
JP2007067037A (en) Vacuum processing device
JP5895603B2 (en) Electrode plate for plasma processing equipment
JP5182136B2 (en) Electrode plate assembly for plasma processing apparatus and plasma processing apparatus
JP4517369B2 (en) Silicon ring for plasma etching equipment
JP2001007090A (en) Focusing ring for plasma etching apparatus
JP2003051485A (en) Coating silicon electrode plate for plasma etching
JP2004079961A (en) Silicon electrode plate for plasma etching
KR20130068137A (en) Manufacturing method for focus ring of dry etching device
JP5088483B2 (en) Composite silicon ring for plasma etching equipment to support wafer
JP2016025277A (en) Focus ring
JP2003051491A (en) Electrode plate for plasma-etching apparatus
JP4517370B2 (en) Silicon ring for plasma etching equipment
JP4517363B2 (en) Silicon electrode plate for plasma etching
JP4517364B2 (en) Silicon electrode plate for plasma etching
JP2012119590A (en) Electrode plate for plasma processing apparatus
JP4045591B2 (en) Electrode plate for plasma etching
JP4883368B2 (en) Single crystal silicon electrode plate for plasma etching
JP5742347B2 (en) Electrode plate for plasma processing equipment
JP2012222271A (en) Electrode plate for plasma processing apparatus
JPH11317396A (en) Etching system
JP2019009271A (en) Electrode plate for plasma processing apparatus and manufacturing method of electrode plate for plasma processing apparatus
JP2006128372A (en) Silicon ring for plasma etcher
JP5674433B2 (en) Manufacturing method of semiconductor device
JP2013110277A (en) Electrode plate for plasma treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R150 Certificate of patent or registration of utility model

Ref document number: 5182136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3