JP2010185855A - Method and apparatus for stabilizing constant-potential electrolytic gas sensor, manufacturing method of same, gas analyzer, and constant-potential electrolytic gas sensor - Google Patents

Method and apparatus for stabilizing constant-potential electrolytic gas sensor, manufacturing method of same, gas analyzer, and constant-potential electrolytic gas sensor Download PDF

Info

Publication number
JP2010185855A
JP2010185855A JP2009031912A JP2009031912A JP2010185855A JP 2010185855 A JP2010185855 A JP 2010185855A JP 2009031912 A JP2009031912 A JP 2009031912A JP 2009031912 A JP2009031912 A JP 2009031912A JP 2010185855 A JP2010185855 A JP 2010185855A
Authority
JP
Japan
Prior art keywords
electrode
gas sensor
working
electrolytic
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009031912A
Other languages
Japanese (ja)
Other versions
JP5251581B2 (en
Inventor
Hiroko Konno
裕子 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2009031912A priority Critical patent/JP5251581B2/en
Publication of JP2010185855A publication Critical patent/JP2010185855A/en
Application granted granted Critical
Publication of JP5251581B2 publication Critical patent/JP5251581B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for stabilizing constant-potential electrolytic gas sensors and capable of stabilizing the output sensitivity of the constant-potential electrolytic gas sensors in a short time without affecting a working pole, a counter pole, or further a reference pole which are involved in the detection of electrode reaction at measurement and to provide a manufacturing method of constant-potential electrolytic gas sensors, a gas analyzer, and a constant-potential electrolytic gas sensor. <P>SOLUTION: In the method for stabilizing constant-potential electrolytic gas sensors having two poles of a working pole and a counter pole or three poles of a working pole; a counter pole, and a reference pole in an electrolytic solution housing part housing an electrolytic solution to detect an electrolytic current of a gas to be detected at the working pole, a voltage is applied between a process electrode provided in the electrolytic solution housing part separately from the working pole, the counter pole, or the reference pole and the working pole. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、廃棄物焼却炉、ボイラー炉、エンジンなどの排ガス中の二酸化硫黄(SO2)、窒素酸化物(NOx)、一酸化炭素(CO)などの測定に利用される定電位電解式ガスセンサの安定化方法及び装置、定電位電解式ガスセンサの製造方法、ガス分析装置、並びに、定電位電解式ガスセンサに関するものである。 The present invention is, for example, a potentiostatic electrolysis used for measuring sulfur dioxide (SO 2 ), nitrogen oxide (NOx), carbon monoxide (CO), etc. in exhaust gas from waste incinerators, boiler furnaces, engines, etc. The present invention relates to a method and apparatus for stabilizing a gas sensor, a method for manufacturing a constant potential electrolytic gas sensor, a gas analyzer, and a constant potential electrolytic gas sensor.

従来、例えば、廃棄物等を焼却した焼却排ガスなどに含まれる二酸化硫黄(SO2)、窒素酸化物(NOx)、一酸化炭素(CO)などの被検ガスを検知し、その量を測定するのに用いられる定電位電解式ガスセンサがある。 Conventionally, for example, a test gas such as sulfur dioxide (SO 2 ), nitrogen oxide (NOx), and carbon monoxide (CO) contained in an incineration exhaust gas incinerated with waste or the like is detected and the amount thereof is measured. There is a constant potential electrolytic gas sensor used for the above.

定電位電解式ガスセンサは、被検ガスを検出する作用極と、作用極との間で電流を流す対極と、作用極の電位を制御するための参照極とを有する。これら作用極、対極、参照極は、多孔性のガス拡散膜(ガス透過性隔膜)で仕切られた空間内に配置され、この空間は電解液で満たされる。被検ガスは、ガス透過性隔膜を透過して電解液に溶解し、作用極に接触する。被検ガスは、参照極との間の電位差が一定に保たれた作用極において電気分解され、作用極と対極との間に電気化学反応に応じて流れる電解電流が測定される。定電位電解式ガスセンサは、電解電流値が被検ガスの濃度に比例するように構成されており、この電解電流値を測定することで、被検ガスの濃度に変換することができる。   The constant potential electrolytic gas sensor has a working electrode that detects a test gas, a counter electrode that allows current to flow between the working electrode, and a reference electrode that controls the potential of the working electrode. These working electrode, counter electrode, and reference electrode are arranged in a space partitioned by a porous gas diffusion membrane (gas permeable diaphragm), and this space is filled with an electrolytic solution. The test gas passes through the gas-permeable diaphragm, dissolves in the electrolyte, and comes into contact with the working electrode. The test gas is electrolyzed at the working electrode in which the potential difference from the reference electrode is kept constant, and the electrolytic current flowing according to the electrochemical reaction between the working electrode and the counter electrode is measured. The constant potential electrolytic gas sensor is configured such that the electrolysis current value is proportional to the concentration of the test gas, and by measuring this electrolysis current value, it can be converted to the concentration of the test gas.

上述のように、定電位電解式ガスセンサは、ガスを定電位で電解した時の酸化反応或いは還元反応に伴う電解電流を計測するが、作用極と対極での反応が安定する平衡状態を保った条件下で、一定のガス濃度に比例した電解電流が得られる。   As described above, the constant potential electrolytic gas sensor measures the electrolytic current accompanying the oxidation reaction or reduction reaction when the gas is electrolyzed at a constant potential, but maintains an equilibrium state in which the reaction between the working electrode and the counter electrode is stable. Under conditions, an electrolysis current proportional to a certain gas concentration is obtained.

定電位電解式ガスセンサをユーザーが最初に使用する場合の初期状態では、電解セル(電解液収容部)内の作用極及び対極の表面状態が一様ではないことから、出力のバラツキがあり、一定の出力感度が得られるまでに長時間のエージングを必要とする。   In the initial state when the user uses the potentiostatic gas sensor for the first time, the surface state of the working electrode and the counter electrode in the electrolytic cell (electrolyte container) is not uniform, so there is variation in output and constant A long time aging is required until an output sensitivity of 1 is obtained.

この時間を短縮するため、印加電圧を必要としない場合、即ち、被検ガスの電解電位が0mVの場合は、ショートプラグを用いるなどして、測定前に一定のエージング期間を設けて作用極及び対極間の表面状態を均一にすることが可能である。但し、出力を安定化するのにかかる時間を更に短縮することが望まれる。   In order to shorten this time, when an applied voltage is not required, that is, when the electrolytic potential of the test gas is 0 mV, a short aging period is used to provide a fixed aging period before the measurement, such as using a short plug. It is possible to make the surface state between the counter electrodes uniform. However, it is desirable to further reduce the time taken to stabilize the output.

一方、印加電圧が必要な場合、被検ガスの電解電位が0mVでない場合には、この方法が適用できないため、使用するまでに非常に長時間(例えば、24時間〜150日)のエージングを行い、安定した状態になってから測定を開始する必要がある。   On the other hand, when an applied voltage is required, this method cannot be applied when the electrolysis potential of the test gas is not 0 mV. Therefore, aging is performed for a very long time (for example, 24 hours to 150 days) before use. It is necessary to start measurement after it becomes stable.

又、定電位電解式ガスセンサを長時間使用した場合、出力は徐々に低下していく。そのため、一定の出力感度が得られるようにするために、例えば、特許文献1には、作用極に対して測定対象ガスの電解電流と同方向の電流を生じさせるとともに、測定時の電位(第1の電位)より高い電位(第2の電位)を与えて、感度回復を行うことが記載されている。   In addition, when the constant potential electrolytic gas sensor is used for a long time, the output gradually decreases. Therefore, in order to obtain a certain output sensitivity, for example, in Patent Document 1, a current in the same direction as the electrolytic current of the measurement target gas is generated in the working electrode, and the potential at the time of measurement (first It is described that sensitivity recovery is performed by applying a potential (second potential) higher than (potential 1).

特開2005−127928号公報JP-A-2005-127828

上記特許文献1に記載の定電位電解式ガスセンサの感度回復方法を、定電位電解式ガスセンサの出力感度の安定化方法に利用することが考えられる。   It is conceivable to use the sensitivity recovery method of the constant potential electrolytic gas sensor described in Patent Document 1 as a method for stabilizing the output sensitivity of the constant potential electrolytic gas sensor.

しかしながら、この場合、安定化処理において作用極と対極との間で電圧を印加することとなり、被検ガスの電解電流を検出する際における電極反応に影響を及ぼすおそれがある。つまり、作用極の界面状態を安定化状態とするために、対極や参照極を用いて作用極との間に電圧を印加すると、対極や参照極の表面状態が自然状態ではなくなるものと考えられるため、これらを用いて作用極との間で電圧を印加することは望ましくない。   However, in this case, a voltage is applied between the working electrode and the counter electrode in the stabilization process, which may affect the electrode reaction when detecting the electrolysis current of the test gas. In other words, in order to stabilize the interface state of the working electrode, it is considered that when the voltage is applied between the working electrode and the counter electrode using the counter electrode or the reference electrode, the surface state of the counter electrode or the reference electrode disappears from the natural state. Therefore, it is not desirable to apply a voltage between the working electrode using these.

従って、本発明の目的は、測定時の電極反応の検出に関与する作用極、対極、更には参照極に影響を与えることなく、定電位電解式ガスセンサの出力感度をより短時間に安定化することのできる定電位電解式ガスセンサの安定化方法及び装置、定電位電解式ガスセンサの製造方法、ガス分析装置、並びに、定電位電解式ガスセンサを提供することである。   Therefore, an object of the present invention is to stabilize the output sensitivity of the potentiostatic gas sensor in a shorter time without affecting the working electrode, counter electrode, and reference electrode involved in the detection of the electrode reaction during measurement. The present invention provides a stabilization method and apparatus for a constant potential electrolytic gas sensor, a method for manufacturing a constant potential electrolytic gas sensor, a gas analyzer, and a constant potential electrolytic gas sensor.

上記目的は本発明に係る定電位電解式ガスセンサの安定化方法及び装置、定電位電解式ガスセンサの製造方法、ガス分析装置、並びに、定電位電解式ガスセンサにて達成される。要約すれば、第1の本発明は、電解液を収容する電解液収容部内に、作用極及び対極の2極、又は作用極、対極及び参照極の3極を有し、作用極における被検ガスの電解電流を検出する定電位電解式ガスセンサの安定化方法であって、前記電解液収容部内に前記作用極、対極又は参照極とは別個に設けられた処理電極と前記作用極との間に電圧を印加する処理を行うことを特徴とする定電位電解式ガスセンサの安定化方法である。   The above object is achieved by the method and apparatus for stabilizing a potentiostatic gas sensor, the method for producing a potentiostatic gas sensor, the gas analyzer, and the potentiostatic gas sensor according to the present invention. In summary, the first aspect of the present invention has two working electrodes and a counter electrode, or three working electrodes, a counter electrode, and a reference electrode in an electrolytic solution container that stores the electrolytic solution. A method for stabilizing a constant-potential electrolytic gas sensor that detects an electrolytic current of a gas, wherein the working electrode, a counter electrode, or a reference electrode provided separately from the working electrode, the counter electrode, or the reference electrode in the electrolytic solution housing portion This is a method for stabilizing a constant potential electrolytic gas sensor, characterized in that a process of applying a voltage is performed.

第2の本発明によれば、電解液を収容する電解液収容部内に、作用極及び対極の2極、又は作用極、対極及び参照極の3極を有し、作用極における被検ガスの電解電流を検出する定電位電解式ガスセンサの製造方法であって、前記電解液収容部内に前記作用極、対極又は参照極とは別個に処理電極を設ける工程と、前記処理電極と前記作用極との間に電圧を印加する処理を行う工程と、を含むことを特徴とする定電位電解式ガスセンサの製造方法が提供される。   According to the second aspect of the present invention, the working electrode and the counter electrode, or the working electrode, the counter electrode, and the reference electrode, are provided in the electrolytic solution storage unit that stores the electrolytic solution. A method for producing a constant potential electrolytic gas sensor for detecting an electrolysis current, the step of providing a processing electrode separately from the working electrode, the counter electrode or the reference electrode in the electrolyte container, the processing electrode and the working electrode, And a step of performing a process of applying a voltage between the two. A method for manufacturing a constant potential electrolytic gas sensor is provided.

第3の本発明によると、電解液を収容する電解液収容部内に、作用極及び対極の2極、又は作用極、対極及び参照極の3極を有し、作用極における被検ガスの電解電流を検出する定電位電解式ガスセンサの安定化装置であって、前記電解液収容部内に前記作用極、対極又は参照極とは別個に設けられた処理電極と前記作用極との間に電圧を印加する電圧印加手段を有し、上記本発明の安定化方法における上記処理を行うことを特徴とする定電位電解式ガスセンサの安定化装置が提供される。   According to the third aspect of the present invention, the working electrode and the counter electrode, or the working electrode, the counter electrode, and the reference electrode are provided in the electrolytic solution storage unit for storing the electrolytic solution. A stabilization apparatus for a constant potential electrolytic gas sensor for detecting a current, wherein a voltage is applied between a processing electrode and a working electrode provided separately from the working electrode, the counter electrode, or the reference electrode in the electrolyte container. There is provided a stabilizing device for a potentiostatic gas sensor, characterized by having a voltage applying means for applying, and performing the above-described processing in the stabilization method of the present invention.

第4の本発明によると、電解液を収容する電解液収容部内に、作用極及び対極の2極、又は作用極、対極及び参照極の3極を有し、作用極における被検ガスの電解電流を検出する定電位電解式ガスセンサを備えたガス分析装置であって、前記定電位電解式ガスセンサは、前記電解液収容部内に前記作用極、対極又は参照極とは別個に処理電極を有しており、更に、前記定電位電解式ガスセンサで検出される前記作用極における被検ガスの電解電流を測定する測定手段と、前記処理電極と前記作用極との間に電圧を印加する電圧印加手段と、を有し、上記本発明の安定化方法における上記処理を実行可能であることを特徴とするガス分析装置が提供される。   According to the fourth aspect of the present invention, there are two working electrodes and a counter electrode, or three working electrodes, a counter electrode, and a reference electrode, in the electrolytic solution container that stores the electrolytic solution, and electrolysis of the test gas at the working electrode. A gas analyzer including a constant potential electrolytic gas sensor for detecting a current, wherein the constant potential electrolytic gas sensor includes a processing electrode in the electrolyte solution storage unit separately from the working electrode, the counter electrode, or the reference electrode. And measuring means for measuring the electrolytic current of the test gas at the working electrode detected by the constant potential electrolytic gas sensor, and voltage applying means for applying a voltage between the processing electrode and the working electrode The gas analyzer is characterized in that the processing in the stabilization method of the present invention can be performed.

第5の本発明によると、電解液を収容する電解液収容部内に、作用極及び対極の2極、又は作用極、対極及び参照極の3極を有し、作用極における被検ガスの電解電流を検出する定電位電解式ガスセンサであって、更に、前記電解液収容部内に前記作用極、対極又は参照極とは別個に、安定化処理のために前記作用極との間で電圧を印加するのに用いられる処理電極を有することを特徴とする定電位電解式ガスセンサが提供される。   According to the fifth aspect of the present invention, there are two working electrodes and a counter electrode, or three working electrodes, a counter electrode, and a reference electrode, in the electrolytic solution container that stores the electrolytic solution, and electrolysis of the test gas at the working electrode. A constant potential electrolytic gas sensor that detects current, and further, a voltage is applied between the working electrode, the working electrode, the counter electrode, and the reference electrode separately from the working electrode, the counter electrode, or the reference electrode in the electrolyte solution storage portion. There is provided a potentiostatic gas sensor characterized by having a processing electrode used for the treatment.

本発明によれば、測定時の電極反応の検出に関与する作用極、対極、更には参照極に影響を与えることなく、定電位電解式ガスセンサの出力感度をより短時間に安定化することができる。   According to the present invention, the output sensitivity of the potentiostatic gas sensor can be stabilized in a shorter time without affecting the working electrode, counter electrode, and reference electrode involved in the detection of the electrode reaction during measurement. it can.

本発明に係る定電位電解式ガスセンサの一実施例の概略断面図である。It is a schematic sectional drawing of one Example of the constant potential electrolytic gas sensor which concerns on this invention. 本発明に係る定電位電解式ガスセンサの一実施例の概略組み立て部分断面図である。It is a general | schematic assembly fragmentary sectional view of one Example of the constant potential electrolytic gas sensor which concerns on this invention. 本発明に係る定電位電解式ガスセンサの一実施例のセンサ本体の概略平面図である。1 is a schematic plan view of a sensor main body of one embodiment of a constant potential electrolytic gas sensor according to the present invention. 本発明に係る定電位電解式ガスセンサの一実施例の電極構成を説明するための模式図である。It is a schematic diagram for demonstrating the electrode structure of one Example of the constant potential electrolytic gas sensor which concerns on this invention. 本発明に係る定電位電解式ガスセンサを備えたガス分析装置の概略ブロック構成図である。It is a schematic block block diagram of the gas analyzer provided with the constant potential electrolytic gas sensor which concerns on this invention. 本発明の効果を示すグラフ図である。It is a graph which shows the effect of this invention.

以下、本発明に係る定電位電解式ガスセンサの安定化方法及び装置、定電位電解式ガスセンサの製造方法、ガス分析装置、並びに、定電位電解式ガスセンサを図面に則して更に詳しく説明する。   Hereinafter, a stabilization method and apparatus for a constant potential electrolytic gas sensor, a method for manufacturing a constant potential electrolytic gas sensor, a gas analyzer, and a constant potential electrolytic gas sensor according to the present invention will be described in more detail with reference to the drawings.

一般に、定電位電解式セルは、作用極(第1極)、対極(第2極)、参照極(第3極)の3極から構成され、作用極における酸化反応或いは還元反応に伴い流れる電流を測定する。実際に計測を行う場合には、電解液中で回路を形成して、電極の界面電位が平衡電位に達し、電極反応が安定するまでのエージング時間が必要である。作用極の界面電位の安定化に必要な電子は対極から流れる電流を通じて供給される。   In general, a constant potential electrolytic cell is composed of three electrodes, a working electrode (first electrode), a counter electrode (second electrode), and a reference electrode (third electrode), and a current that flows along with an oxidation reaction or a reduction reaction at the working electrode. Measure. In actual measurement, an aging time is required until a circuit is formed in the electrolytic solution, the electrode interface potential reaches the equilibrium potential, and the electrode reaction is stabilized. Electrons necessary for stabilizing the interface potential of the working electrode are supplied through a current flowing from the counter electrode.

例えば、酸素電極等の作用極は、大気中の酸素の還元反応により動作時に流れる電流を利用して表面状態が安定化するため、比較的速く界面電位が平衡に達するが、大気中に存在するガスと反応しない作用極は、動作時に流れる電流が少なく安定化に長い時間を要すると考えられる。   For example, a working electrode such as an oxygen electrode stabilizes the surface state by using a current flowing during operation due to a reduction reaction of oxygen in the atmosphere, so that the interface potential reaches equilibrium relatively quickly, but exists in the atmosphere. A working electrode that does not react with gas is considered to require a long time for stabilization because of a small current flowing during operation.

被検ガスの電解電位が0mVの場合は、ショートプラグを用いるなどして、測定前に一定期間のエージング期間を設けて作用及び対極間の界面電位を均一にすることが可能である。但し、出力の安定化に要する時間の更なる短縮が望まれる。一方、被検ガスの電解電位が0mVではなく、印加電圧が必要な場合には、この方法が適用できず、電極表面の安定化に非常に長い時間を要し、初期感度のバラツキが生じる。   In the case where the electrolytic potential of the test gas is 0 mV, it is possible to make the interface potential between the working and the counter electrode uniform by providing a certain aging period before measurement by using a short plug or the like. However, it is desired to further shorten the time required for stabilizing the output. On the other hand, if the electrolytic potential of the test gas is not 0 mV and an applied voltage is required, this method cannot be applied, and it takes a very long time to stabilize the electrode surface, resulting in variations in initial sensitivity.

そこで、本発明では、電極界面が平衡電位に達するために作用極が必要とする電流を外部より強制的に印加し、安定化までに必要な電流を測定前に供給し、より速く界面電位を平衡状態に到達させて、初期感度のバラツキをなくす。具体的には、例えば、新品の定電位電解式ガスセンサに対して、電圧を印加して電解処理を行い作用極表面の状態を均一にする。   Therefore, in the present invention, the current necessary for the working electrode to reach the equilibrium potential at the electrode interface is forcibly applied from the outside, the current necessary for stabilization is supplied before measurement, and the interface potential is increased more quickly. Let the equilibrium state be reached and eliminate variations in initial sensitivity. Specifically, for example, a new constant potential electrolytic gas sensor is subjected to electrolytic treatment by applying a voltage to make the working electrode surface uniform.

このとき、測定回路に使用する対極、参照極を使用すると、電極反応に影響することが考えられるため、作用極に通電するのに必要な専用の極(第4極)を「処理電極」として設け、作用極と第4極との間に通電を行うようにする。   At this time, if the counter electrode and reference electrode used in the measurement circuit are used, the electrode reaction may be affected. Therefore, the dedicated electrode (fourth electrode) necessary to energize the working electrode is used as the “processing electrode”. And energization between the working electrode and the fourth electrode.

即ち、測定回路に使用する対極、参照極の表面状態は安定に維持することが重要である。作用極の界面状態を安定化状態とするために、対極や参照極を用いて作用極との間に電圧を印加すると、強制的に対極や参照極の表面状態が変化して、自然状態ではなくなるものと考えられる。このため、被検ガスの電解電流の検出時の出力が安定するのに時間がかかるようになることがある。従って、定電位電解式ガスセンサの安定化のために、測定回路に使用する対極や参照極を用いて作用極との間で電圧を印加することは望ましくない。   That is, it is important to keep the surface state of the counter electrode and the reference electrode used in the measurement circuit stable. When a voltage is applied between the working electrode and the working electrode in order to stabilize the interface state of the working electrode, the surface state of the working electrode or the reference electrode is forcibly changed. It is thought that it will disappear. For this reason, it may take time for the output when the electrolysis current of the test gas is detected to stabilize. Therefore, in order to stabilize the constant potential electrolytic gas sensor, it is not desirable to apply a voltage between the working electrode using the counter electrode or the reference electrode used in the measurement circuit.

本発明によれば、定電位電解式ガスセンサの出力感度の安定化のために専用の極(第4極)を用いて作用極との間で電圧を印加するので、この安定化処理により、対極や参照極の表面状態を安定に維持したまま、作用極の表面状態が安定し、初期状態又は長時間使用後における定電位電解式ガスセンサ内の極表面のバラつきがなくなり、一定の感度が得られるようになる。以下、更に具体的な実施例を参照しながら、本発明について更に詳しく説明する。   According to the present invention, a voltage is applied to the working electrode using the dedicated electrode (fourth electrode) in order to stabilize the output sensitivity of the constant potential electrolytic gas sensor. The surface state of the working electrode is stabilized while maintaining the surface state of the reference electrode and the reference electrode stably, and there is no variation in the surface of the electrode in the constant potential electrolytic gas sensor in the initial state or after long-term use, and a constant sensitivity is obtained. It becomes like this. Hereinafter, the present invention will be described in more detail with reference to more specific examples.

実施例1
[定電位電解式ガスセンサ]
先ず、本発明に係る定電位電解式ガスセンサの一実施例について説明する。
Example 1
[Constant potential electrolysis gas sensor]
First, an embodiment of a constant potential electrolytic gas sensor according to the present invention will be described.

本実施例では、定電位電解式ガスセンサは、作用極(第1極)、対極(第2極)、参照極(第3極)、更には上述の処理電極(第4極)は薄膜状に形成される。本明細書では、これら作用極、参照極、対極、処理電極が表面に付着形成された膜を総称して「電極担持膜」という。又、作用極、参照極、対極、処理電極が表面に付着形成された膜を、それぞれ「作用極担持膜」、「参照極担持膜」、「対極担持膜」、「処理電極担持膜」という。又、薄膜状に形成された作用極、参照極、対極、処理電極などの電極を総称して「薄膜電極」という。   In this embodiment, the constant potential electrolytic gas sensor has a working electrode (first electrode), a counter electrode (second electrode), a reference electrode (third electrode), and the above processing electrode (fourth electrode) in a thin film shape. It is formed. In this specification, a film in which the working electrode, the reference electrode, the counter electrode, and the processing electrode are attached to the surface is collectively referred to as an “electrode carrying film”. In addition, films having the working electrode, reference electrode, counter electrode, and processing electrode attached to the surface are referred to as “working electrode carrying film”, “reference electrode carrying film”, “counter electrode carrying film”, and “processing electrode carrying film”, respectively. . Electrodes such as a working electrode, a reference electrode, a counter electrode, and a processing electrode formed in a thin film shape are collectively referred to as a “thin film electrode”.

図1は、本実施例の定電位電解式ガスセンサ100の概略断面を示す。又、図2は、本実施例の定電位電解式ガスセンサ100の組立部分断面を示す。   FIG. 1 shows a schematic cross section of a constant potential electrolytic gas sensor 100 of the present embodiment. Moreover, FIG. 2 shows the assembly partial cross section of the constant potential electrolytic gas sensor 100 of a present Example.

本実施例の定電位電解式ガスセンサ100は、大別して電解セル部110と、フィルタ部120とを有する。電解セル部110は、被検ガスの測定を行う定電位電解式ガスセンサ本体を構成し、フィルタ部120は、被検ガスの測定に対する干渉ガスの除去を行う。   The constant potential electrolytic gas sensor 100 of the present embodiment is roughly divided into an electrolytic cell unit 110 and a filter unit 120. The electrolysis cell unit 110 constitutes a constant potential electrolysis gas sensor main body for measuring the test gas, and the filter unit 120 removes interference gas for the measurement of the test gas.

先ず、電解セル部110について説明する。電解セル部110は、概略、電解液Sを収容する電解液収容部を構成する凹部13を備えたケース本体1と、ケース本体1に配置される電極担持膜群3A、3B、3C、3Dと、シール部材としての弾性部材であるOリング5と、シール部材5をケース本体1に押圧して取り付ける押さえ部材としてのワッシャー6及びケース蓋7とを有する。更に、電解セル部110は、電極担持膜群3A〜3Dが備える電極から引き出される第1、第2、第3、第4のリード21A、21B、21C、21Dと、これら第1〜第4のリード21A〜21Dが接続されてケース本体1の外部との電気信号の授受を行うためのコンタクト部材としての第1、第2、第3、第4のコンタクトピン22A、22B、22C、22Dとを有する。そして、ケース本体1には、第1〜第4のリード21A〜21Dが挿通され、又第1〜第4のコンタクトピン22A〜22Dが取り付けられる通路としての第1、第2、第3、第4の貫通孔15A、15B、15C、15Dが形成されている。   First, the electrolytic cell unit 110 will be described. The electrolytic cell unit 110 is roughly composed of a case main body 1 having a recess 13 that constitutes an electrolytic solution storage unit that stores an electrolytic solution S, and electrode supporting film groups 3A, 3B, 3C, and 3D disposed in the case main body 1. And an O-ring 5 that is an elastic member as a sealing member, and a washer 6 and a case lid 7 as pressing members that press and attach the sealing member 5 to the case body 1. Furthermore, the electrolysis cell unit 110 includes first, second, third, and fourth leads 21A, 21B, 21C, and 21D drawn from the electrodes included in the electrode supporting film groups 3A to 3D, and the first to fourth of these. First, second, third, and fourth contact pins 22A, 22B, 22C, and 22D as contact members that are connected to the leads 21A to 21D and exchange electric signals with the outside of the case body 1 are provided. Have. The first to fourth leads 21A to 21D are inserted into the case main body 1, and the first, second, third, and second passages are attached to the first to fourth contact pins 22A to 22D. Four through holes 15A, 15B, 15C, and 15D are formed.

図3は本実施例の定電位電解式ガスセンサ100のケース本体1の上面を示す。図1及び図2は、図3中のA−A線において定電位電解式ガスセンサ100を切断した場合の断面を示しており、第1〜第4の貫通孔15A〜15Dのうち第1、第4の貫通孔15A、15Dが示され、又第1〜第4のコンタクトピン22A〜22Dのうち第1、第4のコンタクトピン22A、22Dが示されている。   FIG. 3 shows the upper surface of the case body 1 of the constant potential electrolytic gas sensor 100 of the present embodiment. 1 and 2 show a cross section when the constant potential electrolytic gas sensor 100 is cut along the line AA in FIG. 3, and the first and fourth through holes 15A to 15D are shown in FIG. Four through holes 15A and 15D are shown, and the first and fourth contact pins 22A and 22D among the first to fourth contact pins 22A to 22D are shown.

図2を参照して、電解セル部110のケース本体1は、下側の大径部11と上側の小径部12とを有する。大径部11は概略円柱形状を有し、小径部12は大径部11と同心の概略円筒形状を有する。大径部11には、小径部12との会合面に開口部13aを有する凹部13が形成されている。凹部13は概略円柱状の穴として形成されている。凹部13の内径は、小径部12の中空部14の内径よりも小さい。従って、大径部11と小径部12との会合面には、凹部13の開口部13aを取り囲む概略円環状の台部19が形成されている。又、凹部13の底部の略中心には、圧力調整部として、凹部13の内径よりも小さい内径を有する空間16が更に形成されている。   Referring to FIG. 2, case body 1 of electrolysis cell portion 110 has a lower large-diameter portion 11 and an upper small-diameter portion 12. The large diameter portion 11 has a substantially cylindrical shape, and the small diameter portion 12 has a substantially cylindrical shape concentric with the large diameter portion 11. The large-diameter portion 11 is formed with a recess 13 having an opening 13 a on the meeting surface with the small-diameter portion 12. The recess 13 is formed as a substantially cylindrical hole. The inner diameter of the concave portion 13 is smaller than the inner diameter of the hollow portion 14 of the small diameter portion 12. Therefore, a substantially annular base 19 surrounding the opening 13 a of the recess 13 is formed on the meeting surface of the large diameter portion 11 and the small diameter portion 12. In addition, a space 16 having an inner diameter smaller than the inner diameter of the recess 13 is further formed as a pressure adjusting portion at the approximate center of the bottom of the recess 13.

図3に示すように、大径部11の台部19上には、凹部13の開口部13aの縁部に沿って、第1〜第4の貫通孔15A〜15Dが開口している。第1〜第4の貫通孔15A〜15Dはそれぞれ、ケース本体1の大径部11を、軸方向に貫通している。第1〜第4の貫通孔15A〜15Dのそれぞれの、台部19とは反対側の端部を封止するように第1〜第4のコンタクトピン22A〜22Dが取り付けられる。そして、第1〜第4の貫通孔15A〜15D内で、第1〜第4のリード21A〜21Dのそれぞれの一方の端部が、第1〜第4のコンタクトピン22A〜22Dに電気的に接続される。凹部13の周囲の貫通孔15A〜15Dの配置は、本実施例のものに限定されるものではない。   As shown in FIG. 3, first to fourth through holes 15 </ b> A to 15 </ b> D are opened on the base 19 of the large diameter portion 11 along the edge of the opening 13 a of the recess 13. Each of the first to fourth through holes 15A to 15D penetrates the large diameter portion 11 of the case body 1 in the axial direction. The first to fourth contact pins 22A to 22D are attached so as to seal the end portions of the first to fourth through holes 15A to 15D on the side opposite to the base portion 19. In each of the first to fourth through holes 15A to 15D, one end of each of the first to fourth leads 21A to 21D is electrically connected to the first to fourth contact pins 22A to 22D. Connected. The arrangement of the through holes 15A to 15D around the recess 13 is not limited to that of the present embodiment.

図4は、ケース本体1に対する電極担持膜群3A〜3Dの積層構成をより詳しく示す。本実施例では、凹部13内に、対極担持膜3C、参照極担持膜3B、処理電極担持膜3D、作用極担持膜3Aを、底部から開口部13aに向けてこの順序で有する。作用極担持膜3A、参照極担持膜3B、対極担持膜3C、処理電極担持膜3Dはそれぞれ、多孔性のガス透過性膜31A、31B、31C、31D上に、導電性材料を備えた薄膜電極である作用極32A、参照極32B、対極32C、処理電極32Dが形成されて構成される。   FIG. 4 shows the laminated structure of the electrode supporting film groups 3A to 3D on the case body 1 in more detail. In this embodiment, the counter electrode supporting film 3C, the reference electrode supporting film 3B, the processing electrode supporting film 3D, and the working electrode supporting film 3A are provided in this order from the bottom toward the opening 13a. The working electrode support film 3A, the reference electrode support film 3B, the counter electrode support film 3C, and the processing electrode support film 3D are thin film electrodes each provided with a conductive material on the porous gas permeable films 31A, 31B, 31C, and 31D. A working electrode 32A, a reference electrode 32B, a counter electrode 32C, and a processing electrode 32D are formed.

又、作用極担持膜3Aと処理電極担持膜3Dとの間には第1の電解液保持部材としての第1の保水シート4Aが配置され、処理電極担持膜3Dと参照極担持膜3Bとの間には第2の電解液保持部材としての第2の保水シート4Bが配置され、参照極担持膜3Bと対極担持膜3Cとの間には第3の電解液保持部材としての第3の保水シート4Cが配置される。   A first water retaining sheet 4A as a first electrolyte solution holding member is disposed between the working electrode supporting film 3A and the processing electrode supporting film 3D, and the processing electrode supporting film 3D and the reference electrode supporting film 3B are arranged. A second water retention sheet 4B as a second electrolyte solution holding member is disposed between them, and a third water retention material as a third electrolyte solution holding member is interposed between the reference electrode support film 3B and the counter electrode support film 3C. A sheet 4C is disposed.

作用極担持膜3Aは、ケース本体1における被検ガスと電解液Sとの界面に、電解液Sの収容部たる凹部13の開口部13aを覆うように配置されて隔膜を構成する。そして、作用極32Aは、作用極用ガス透過性膜31Aの凹部13側、即ち、第1の保水シート4Aに接触する側の面に形成されている。処理電極担持膜3Dは、処理電極用ガス透過性膜31Dの第1の保水シート4Aに接触する側の面に形成されている。又、参照極32Bは、参照極用ガス透過性膜31Bの第2の保水シート4Bに接触する側の面に形成されている。更に、対極32Cは、対極用ガス透過性膜31Cの第3の保水シート4Cに接触する側の面に形成されている。   The working electrode support film 3 </ b> A is arranged at the interface between the test gas and the electrolyte S in the case body 1 so as to cover the opening 13 a of the recess 13 serving as a storage part for the electrolyte S, thereby forming a diaphragm. The working electrode 32A is formed on the recess 13 side of the working electrode gas-permeable membrane 31A, that is, on the surface in contact with the first water retention sheet 4A. The processing electrode support film 3D is formed on the surface of the processing electrode gas-permeable film 31D on the side in contact with the first water retention sheet 4A. The reference electrode 32B is formed on the surface of the reference electrode gas-permeable membrane 31B on the side in contact with the second water retention sheet 4B. Furthermore, the counter electrode 32C is formed on the surface of the counter electrode gas-permeable membrane 31C on the side in contact with the third water retention sheet 4C.

ここで、薄膜電極は、高分子膜上に、導電体をスッパッタリング法や蒸着法により付着させる方法、或いは導電体の微粒子(導電性微粒子)を膜形成材(樹脂など)で固める方法などの成膜方法により形成される。ガス透過性膜31A〜31Dとしては、高分子膜、特に、フッ素樹脂系の撥水性(疎水性)膜を用いることができる。ガス透過性膜としては、シリコーン膜などのその他の多孔性高分子膜を使用することもできる。   Here, the thin film electrode is a method in which a conductor is deposited on a polymer film by a sputtering method or a vapor deposition method, or a method in which fine particles (conductive fine particles) of a conductor are solidified with a film forming material (such as a resin). The film forming method is used. As the gas permeable films 31 </ b> A to 31 </ b> D, polymer films, in particular, fluororesin-based water-repellent (hydrophobic) films can be used. As the gas permeable membrane, other porous polymer membranes such as silicone membranes can also be used.

本実施例では、第1〜第4のガス透過性膜31A〜31Dとして、フッ素樹脂系の薄膜であるPTFE(ポリテトラフルオロエチレン)製の薄膜を用いた。   In this example, a thin film made of PTFE (polytetrafluoroethylene), which is a fluororesin-based thin film, was used as the first to fourth gas permeable films 31A to 31D.

そして、本実施例では、この作用極32A、参照極32B、対極32C、処理電極32Dは、高分子膜に膜形成材と電極材料(導電性微粒子)との混合物を塗布して加熱焼成することによって形成した。即ち、本実施例では、作用極32A、参照極32B、対極32C、処理電極32Dは、高分子膜としてのガス透過性膜(PTFE膜)上に、導電性微粒子を、膜形成材としてのPTFE樹脂粉末を用いて薄膜状に固める方法により形成した。   In this embodiment, the working electrode 32A, the reference electrode 32B, the counter electrode 32C, and the processing electrode 32D are obtained by applying a mixture of a film forming material and an electrode material (conductive fine particles) to a polymer film and baking it. Formed by. That is, in this embodiment, the working electrode 32A, the reference electrode 32B, the counter electrode 32C, and the processing electrode 32D are composed of conductive fine particles and PTFE as a film forming material on a gas permeable film (PTFE film) as a polymer film. The resin powder was used to form a thin film.

作用極32Aの電極材料としては、白金、パラジウム、金、銀などの貴金属、或いはカーボンなどを使用することができる。参照極32Bの電極材料としては、白金、金、パラジウムなどの貴金属、銀又は塩化銀メッキした銀、或いはカーボンなどを使用することができる。対極32Cの電極材料としては、白金、パラジウム、金、銀などの貴金属などを使用することができる。又、処理電極32Dの電極材料としては、白金を好適に用いることができるが、その他にも、パラジウム、金、銀などの貴金属、或いはカーボンなどを使用することができる。   As the electrode material of the working electrode 32A, a noble metal such as platinum, palladium, gold, silver, or carbon can be used. As an electrode material of the reference electrode 32B, a noble metal such as platinum, gold or palladium, silver or silver plated with silver chloride, or carbon can be used. As an electrode material of the counter electrode 32C, a noble metal such as platinum, palladium, gold, or silver can be used. Further, platinum can be suitably used as the electrode material of the processing electrode 32D, but in addition, noble metals such as palladium, gold, silver, or carbon can be used.

電解液Sとしては、通常、硫酸(H2SO4)や、燐酸(H2PO4)などが使用されるが、その他の酸又はアルカリ溶液も使用できる。電解液Sの濃度は、通常、1〜10Mとされる。本実施例では、5M(=mol/L)の硫酸(H2SO4)を用いた。 As the electrolytic solution S, sulfuric acid (H 2 SO 4 ), phosphoric acid (H 2 PO 4 ) or the like is usually used, but other acid or alkaline solutions can also be used. The concentration of the electrolytic solution S is usually 1 to 10M. In this example, 5M (= mol / L) sulfuric acid (H 2 SO 4 ) was used.

又、本実施例では、第1、第2、第3の電解液保持部材4A、4B、4Cとしては、ポリエステル繊維から成る不織布のシートを用いた。第1、第2、第3の電解液保持部材4A、4B、4Cとしては、スポンジ、濾紙などを用いることもできる。   In this embodiment, as the first, second, and third electrolyte solution holding members 4A, 4B, and 4C, non-woven sheets made of polyester fibers were used. As the first, second, and third electrolyte solution holding members 4A, 4B, and 4C, sponges, filter papers, and the like can be used.

作用極32Aと第1の保水シート4Aとの間に第1のリード21Aの一方の端部が配置される。第1の保水シート4Aと処理電極32Dとの間に第4のリード21Dの一方の端部が配置される。又、第2の保水シート4Bと参照極32Bとの間に第2のリード21Bの一方の端部が配置される。更に、第3の保水シート4Cと対極32Cとの間に第3のリード21Cの一方の端部が配置される。層間から引き出された第1〜第4のリード21A〜21Dはそれぞれ、所望により凹部13の内壁に沿って折り返されて、ケース本体1の台部19上に開口した第1〜第4の貫通孔15A〜15D内に導入される。そして、第1〜第4の貫通孔15A〜15Dの台部19とは反対側の端部に取り付けられた第1〜第4のコンタクトピン22A〜22Dに至る。尚、本実施例では、第1〜第4のリード21A〜21Dとしては、白金から成る平坦リードを使用した。又、第1〜第4のコンタクトピンとしては、金メッキした真鍮製のものを使用した。   One end of the first lead 21A is disposed between the working electrode 32A and the first water retaining sheet 4A. One end of the fourth lead 21D is disposed between the first water retention sheet 4A and the processing electrode 32D. One end of the second lead 21B is disposed between the second water retention sheet 4B and the reference electrode 32B. Furthermore, one end portion of the third lead 21C is disposed between the third water retention sheet 4C and the counter electrode 32C. The first to fourth leads 21 </ b> A to 21 </ b> D drawn from the interlayer are each folded back along the inner wall of the recess 13 as desired, and opened to the base 19 of the case body 1. Introduced in 15A-15D. And it reaches 1st-4th contact pins 22A-22D attached to the edge part on the opposite side to base 19 of the 1st-4th penetration holes 15A-15D. In the present embodiment, flat leads made of platinum were used as the first to fourth leads 21A to 21D. The first to fourth contact pins were made of brass plated with gold.

ここで、作用極32A、参照極32B、対極32C、処理電極32Dはそれぞれ概略円盤状に形成されており、その径は凹部13の内径と同等又はそれよりも小さい。又、参照極用、対極用及び処理電極用のガス透過性膜31B、31C、31D、第1、第2、第3の保水シート4A、4B、4Cもそれぞれ概略円盤状に形成されており、その径は凹部13の内径と同等又はそれよりも小さい。本実施例では、作用極32A、参照極32B、対極32C、処理電極32Dの径は、参照極用、対極用及び処理電極用のガス透過性膜31B、31C、31Dの径よりも小さくされており、又第1、第2、第3の保水シート4A、4B、4Cの径は参照極用、対極用及び処理電極用のガス透過性膜31B、31C、31Dの径とほぼ同じである。一方、作用極用のガス透過性膜31Aは、凹部13の内径よりも大きく、且つ、小径部12の中空部14の内径と同等又はそれよりも小さい径を有する概略円盤形状に形成されている。そして、これらの円盤状部の各部材は、互いに略同心的に、又凹部13と略同心的に配置される。   Here, the working electrode 32 </ b> A, the reference electrode 32 </ b> B, the counter electrode 32 </ b> C, and the processing electrode 32 </ b> D are each formed in a substantially disk shape, and the diameter thereof is equal to or smaller than the inner diameter of the recess 13. In addition, the gas permeable membranes 31B, 31C, 31D for the reference electrode, the counter electrode, and the processing electrode, the first, second, and third water retention sheets 4A, 4B, 4C are also formed in a substantially disk shape, The diameter is equal to or smaller than the inner diameter of the recess 13. In the present embodiment, the diameters of the working electrode 32A, the reference electrode 32B, the counter electrode 32C, and the processing electrode 32D are made smaller than the diameters of the gas permeable membranes 31B, 31C, and 31D for the reference electrode, the counter electrode, and the processing electrode. In addition, the diameters of the first, second, and third water retaining sheets 4A, 4B, and 4C are substantially the same as the diameters of the gas permeable films 31B, 31C, and 31D for the reference electrode, the counter electrode, and the processing electrode. On the other hand, the gas permeable membrane 31A for the working electrode is formed in a substantially disc shape having a diameter larger than the inner diameter of the recess 13 and equal to or smaller than the inner diameter of the hollow portion 14 of the small diameter portion 12. . The members of these disk-shaped parts are arranged substantially concentrically with each other and substantially concentrically with the recess 13.

従って、作用極32A、参照極担持膜3B(即ち、参照極用ガス透過性膜31B及び参照極32B)、対極担持膜3C(即ち、対極用ガス透過性膜31C及び対極32C)、処理電極担持膜3D(即ち、処理電極用ガス透過性膜31D及び処理電極32D)、第1の保水シート4A、第2の保水シート4B及び第3の保水シート4Cは、凹部13内に収容される。一方、作用極用ガス透過性膜31Aは、凹部13内には配置されず、この第1のガス透過性膜31Aの外縁部より内側の所定範囲がケース本体1の台部19上に配置される。本実施例では、参照極担持膜3B、対極担持膜3C、処理電極担持膜3Dは、各々参照極32B、対極32C、処理電極32Dが上面に向くように配置されているが、前記各電極は、それらが下面に向くように配置され、これに対応するリード21B、21C、21Dが前記各極の真下に配置された状態で、ケース本体1の凹部13内に収容されていてもよい。   Accordingly, the working electrode 32A, the reference electrode supporting film 3B (that is, the reference electrode gas-permeable film 31B and the reference electrode 32B), the counter electrode supporting film 3C (that is, the counter electrode gas-permeable film 31C and the counter electrode 32C), and the processing electrode support The membrane 3D (that is, the processing electrode gas-permeable membrane 31D and the processing electrode 32D), the first water retention sheet 4A, the second water retention sheet 4B, and the third water retention sheet 4C are accommodated in the recess 13. On the other hand, the working electrode gas-permeable membrane 31A is not arranged in the recess 13, and a predetermined range inside the outer edge portion of the first gas-permeable membrane 31A is arranged on the base 19 of the case body 1. The In this embodiment, the reference electrode supporting film 3B, the counter electrode supporting film 3C, and the processing electrode supporting film 3D are arranged so that the reference electrode 32B, the counter electrode 32C, and the processing electrode 32D face the upper surface, respectively. These leads 21B, 21C, and 21D may be accommodated in the recess 13 of the case body 1 in such a state that the leads 21B, 21C, and 21D are arranged directly below the respective poles.

電極担持膜群3A〜3D及び第1〜第3の保水シート4A〜4Cをケース本体1に配置した状態で、Oリング5が取り付けられたワッシャー6がケース本体1上に配置される。そして、ケース蓋7が、ワッシャー6をケース本体1に押圧するようにして、ケース本体1に取り付けられる。   A washer 6 to which an O-ring 5 is attached is disposed on the case body 1 in a state where the electrode supporting film groups 3A to 3D and the first to third water retention sheets 4A to 4C are disposed on the case body 1. Then, the case lid 7 is attached to the case body 1 so as to press the washer 6 against the case body 1.

即ち、ワッシャー6は、概略円柱状の中心穴部61を有するリング状部材であり、ケース本体1側の外縁部が切り欠かれてシール部材保持部(段部)62が形成されている。ワッシャー6の中心穴部61の内径は、ケース本体1の凹部13の内径と同等又はそれよりも大きい。一方、ワッシャー6の最大外径は、ケース本体1の小径部12の中空部14及びその開口部14aの内径と同等又はそれよい小さい。そして、このワッシャー6は、Oリング5が設けられた側から、ケース本体1の小径部12の中空部14内に配置される。   That is, the washer 6 is a ring-shaped member having a substantially cylindrical center hole 61, and an outer edge portion on the case body 1 side is cut away to form a seal member holding portion (step portion) 62. The inner diameter of the center hole 61 of the washer 6 is equal to or larger than the inner diameter of the recess 13 of the case body 1. On the other hand, the maximum outer diameter of the washer 6 is equal to or smaller than the inner diameter of the hollow portion 14 of the small diameter portion 12 of the case body 1 and the opening portion 14a. And this washer 6 is arrange | positioned in the hollow part 14 of the small diameter part 12 of the case main body 1 from the side in which the O-ring 5 was provided.

これにより、Oリング5が、台部19上に配置された作用極担持膜3Aの外縁部近傍に配置される。本実施例では、第1〜第4の貫通孔15A〜15Dは、台部19上において、凹部13の縁部よりに開口している。従って、作用極担持膜3Aの作用極用ガス透過性膜31Aは、台部19の全周にわたって、直接Oリング5と台部19との間に狭持される。又、Oリング5は、ケース本体1の小径部12の中空部14の内壁に圧接する。尚、Oリング5の他にゴムパッキンなどのその他の弾性部材をシール部材として用いてもよい。   Thereby, the O-ring 5 is disposed in the vicinity of the outer edge portion of the working electrode carrying film 3 </ b> A disposed on the base 19. In the present embodiment, the first to fourth through holes 15 </ b> A to 15 </ b> D are opened from the edge of the recess 13 on the base 19. Accordingly, the working electrode gas-permeable membrane 31 </ b> A of the working electrode support membrane 3 </ b> A is directly sandwiched between the O-ring 5 and the base portion 19 over the entire circumference of the base portion 19. The O-ring 5 is in pressure contact with the inner wall of the hollow portion 14 of the small diameter portion 12 of the case body 1. In addition to the O-ring 5, other elastic members such as rubber packing may be used as the seal member.

尚、電解液Sは、対極担持膜3C、参照極担持膜3B、処理電極担持膜3D、第1、第2及び第3の保水シート4A、4B、4Cが凹部13内に配置された後に、作用極担持膜3Aをケース本体1上に配置する前に、凹部13内に収容することができる。或いは、ケース本体1に、別途電解液Sを凹部13内に充填するための開口部を設け、例えば、上述のようにしてケース蓋7などによって凹部13を密封した後に、その開口部から凹部13内に電解液Sを注入するようにしてもよい。   The electrolytic solution S is disposed after the counter electrode support film 3C, the reference electrode support film 3B, the processing electrode support film 3D, the first, second, and third water retention sheets 4A, 4B, and 4C are disposed in the recess 13. The working electrode support film 3 </ b> A can be accommodated in the recess 13 before being disposed on the case body 1. Alternatively, the case body 1 is separately provided with an opening for filling the electrolytic solution S into the recess 13. For example, after the recess 13 is sealed with the case lid 7 as described above, the recess 13 is opened from the opening. You may make it inject | pour the electrolyte solution S in it.

ケース蓋7は袋ナット状部材であり、内周面に、ケース本体1の小径部12の外周に形成されたネジ部18に噛合するネジ部73が形成されている。ケース蓋7は、中心開口部71を有する。この中心開口部71は、ワッシャー6の中心穴部61と略同径で、ケース蓋7をケース本体1に取り付けた状態でワッシャー6の中心穴部61と同心に配置される。ワッシャー6をケース本体1に配置した後に、ケース蓋7をケース本体1の小径部12に螺合することにより、ケース蓋7の中心開口部71を取り巻くフランジ部72により、ワッシャー6をケース本体1に押圧することができる。   The case lid 7 is a cap nut-like member, and a screw portion 73 that meshes with the screw portion 18 formed on the outer periphery of the small diameter portion 12 of the case main body 1 is formed on the inner peripheral surface. The case lid 7 has a center opening 71. The central opening 71 is substantially the same diameter as the central hole 61 of the washer 6 and is arranged concentrically with the central hole 61 of the washer 6 with the case lid 7 attached to the case body 1. After the washer 6 is disposed on the case main body 1, the case lid 7 is screwed into the small-diameter portion 12 of the case main body 1, whereby the washer 6 is attached to the case main body 1 by the flange portion 72 surrounding the central opening 71 of the case lid 7. Can be pressed.

このように、本実施例の定電位電解式ガスセンサ100では、作用極担持膜3Aは、ケース本体1の凹部13の開口部13aを取り囲む台部19に、ワッシャー6及びケース蓋7を用いてOリング5で押圧される。そして、図中作用極担持膜3Aより下層に積層されて凹部13内に配置された第1の保水シート4A、処理電極担持膜3D、第2の保水シート4B、参照極担持膜3B、第3の保水シート4C及び対極担持膜3Cは、凹部13内で作用極担持膜3Aにより押圧される。これにより、凹部13は液密的に封止され、且つ、凹部13内に積層状態で配置された作用極32A、参照極32B、対極32C、処理電極32Dと、第1、第2、第3、第4のリード21A、21B、21C、21Dとのそれぞれは互いに圧接される。   As described above, in the constant potential electrolytic gas sensor 100 of the present embodiment, the working electrode support film 3 </ b> A is formed on the base 19 surrounding the opening 13 a of the recess 13 of the case body 1 using the washer 6 and the case lid 7. It is pressed by the ring 5. In the figure, the first water retention sheet 4A, the processing electrode support film 3D, the second water retention sheet 4B, the reference electrode support film 3B, the third layer stacked below the working electrode support film 3A and disposed in the recess 13 are provided. The water retention sheet 4 </ b> C and the counter electrode support film 3 </ b> C are pressed by the working electrode support film 3 </ b> A in the recess 13. Accordingly, the recess 13 is sealed in a liquid-tight manner, and the working electrode 32A, the reference electrode 32B, the counter electrode 32C, the processing electrode 32D, and the first, second, and third electrodes disposed in the recess 13 in a stacked state. The fourth leads 21A, 21B, 21C, and 21D are in pressure contact with each other.

更に、第1〜第4の貫通孔15A〜15Dにおいて台部19上の開口部から第1〜第4のコンタクトピン22A〜22Dまでの間のそれぞれの少なくとも一部、本実施例では全部を、液密的に封止するように、充填材23A、23B、23C、23Dを充填することができる。充填材23A〜23Dとしては、電解液Sに対して十分な耐性を有するものを用いる。又、充填材23A〜23Dは、第1〜第4のリード21A〜21Dと接触しても望ましくない電流を発生することがないように絶縁性の材料であることが好ましい。充填材23A〜23Dとしては、電解液Sとして用いられる硫酸に対して十分な耐性を有する耐薬品性の樹脂、例えば、接着剤を好適に用いることができる。例えば、充填材23A〜23Dとしてエポキシ樹脂接着剤を用いることができる。   Further, at least a part of each of the first to fourth through holes 15A to 15D from the opening on the base 19 to the first to fourth contact pins 22A to 22D, all in the present embodiment, Fillers 23A, 23B, 23C, and 23D can be filled so as to be sealed in a liquid-tight manner. As the fillers 23A to 23D, those having sufficient resistance to the electrolytic solution S are used. Further, it is preferable that the fillers 23A to 23D are insulating materials so as not to generate an undesired current even if they contact the first to fourth leads 21A to 21D. As the fillers 23A to 23D, a chemical-resistant resin having sufficient resistance to the sulfuric acid used as the electrolytic solution S, for example, an adhesive can be suitably used. For example, an epoxy resin adhesive can be used as the fillers 23A to 23D.

次に、フィルタ部120について説明する。本実施例では、フィルタ部120は、フィルタ取り付け具8と、干渉ガス除去フィルタ9とを有する。ケース本体1に取り付けられたフィルタ取り付け具8に干渉ガス除去フィルタ9を装着することにより、干渉ガス除去フィルタ9はケース本体1に対して着脱自在に取り付けられる。   Next, the filter unit 120 will be described. In the present embodiment, the filter unit 120 includes a filter attachment 8 and an interference gas removal filter 9. The interference gas removal filter 9 is detachably attached to the case body 1 by attaching the interference gas removal filter 9 to the filter attachment 8 attached to the case body 1.

取り付け具8は、中空部81を有する円筒状部材であり、その軸線方向一方の端部(図中下側)の内周面には、ケース本体1の大径部11の外周に形成されたネジ部17に噛合するネジ部82が形成されている。取り付け具8は、ケース蓋7を取り付けた後のケース本体1のケース蓋7側から被せて、大径部11に螺合する。   The fixture 8 is a cylindrical member having a hollow portion 81, and is formed on the outer peripheral surface of the large-diameter portion 11 of the case body 1 on the inner peripheral surface of one end portion in the axial direction (the lower side in the figure). A screw portion 82 that meshes with the screw portion 17 is formed. The attachment 8 is placed from the case lid 7 side of the case body 1 after the case lid 7 is attached, and is screwed into the large diameter portion 11.

そして、取り付け具8の軸線方向他方の端部(図中上側)に、干渉ガス除去フィルタ9が取り付けられる。干渉ガス除去フィルタ9はフィルタ本体91と、このフィルタ本体91の外周に取り付けられたフィルタシール部材92とを有する。フィルタシール部92を、上記取り付け具8の端部の内周面に対して圧入嵌合することによって、干渉ガス除去フィルタ9は、しっかりと取り付け具8に取り付けられる。フィルタ本体91は通気性を有し、定電位電解式ガスセンサ100の雰囲気ガスを電解セル部110に向けて通過させ、又電解セル部110からのガスを定電位電解式ガスセンサ100の外部に向けて通過させるが、その通気経路に、電解セル部110における測定に影響を及ぼす干渉ガスを吸収する吸収剤が設けられている。例えば、定電位電解式ガスセンサ100をNO、NO2センサとして構成する場合、フィルタ本体91には、それぞれ干渉ガスであるNO2、SO2を吸収して除去する吸収剤、NO、SO2を吸収して除去する吸収剤を設けることができる。 An interference gas removal filter 9 is attached to the other end (upper side in the figure) of the attachment 8 in the axial direction. The interference gas removal filter 9 has a filter main body 91 and a filter seal member 92 attached to the outer periphery of the filter main body 91. The interference gas removal filter 9 is firmly attached to the fixture 8 by press-fitting the filter seal portion 92 to the inner peripheral surface of the end of the fixture 8. The filter main body 91 has air permeability and allows the atmospheric gas of the constant potential electrolytic gas sensor 100 to pass toward the electrolytic cell unit 110, and the gas from the electrolytic cell unit 110 to the outside of the constant potential electrolytic gas sensor 100. Although it is allowed to pass through, an absorbent that absorbs interference gas that affects measurement in the electrolytic cell unit 110 is provided in the ventilation path. For example, when the constant potential electrolytic gas sensor 100 is configured as a NO or NO 2 sensor, the filter main body 91 absorbs NO 2 and SO 2 that are interference gases and absorbs and removes NO and SO 2 . And an absorbent to be removed.

尚、本実施例では、ケース本体1、ワッシャー6、ケース蓋7、取り付け具8はプラスチックによって成型されている。   In the present embodiment, the case main body 1, the washer 6, the case lid 7, and the fixture 8 are molded from plastic.

本実施例では、定電位電解式ガスセンサ100は、被検ガスの測定に関わる電極として作用極(第1極)32A、対極(第2極)32C及び参照極(第3極)32Bを有し、これに加えて更に処理電極(第4極)32Dを有する構成とされている。しかし、本発明はこれに限定されるものではなく、被検ガスの測定に関わる電極として作用極(第1極)32A及び対極(第2極)32Cを有し(即ち、参照極(第3極)32Bを有しない)、これに加えて更に処理電極(第4極)を有する構成とされていてもよい。例えば、測定対象ガスがCO、O2である、COセンサ、O2センサなどの場合には、参照極(第3極)32Bを有しない構成が採られる場合がある。 In this embodiment, the constant potential electrolysis gas sensor 100 has a working electrode (first electrode) 32A, a counter electrode (second electrode) 32C, and a reference electrode (third electrode) 32B as electrodes involved in measurement of the test gas. In addition to this, a processing electrode (fourth pole) 32D is further provided. However, the present invention is not limited to this, and has a working electrode (first electrode) 32 </ b> A and a counter electrode (second electrode) 32 </ b> C as electrodes related to measurement of the test gas (that is, a reference electrode (third electrode)). (Pole) 32B is not included), and in addition to this, a processing electrode (fourth electrode) may be included. For example, in the case of a CO sensor, an O 2 sensor, or the like in which the measurement target gas is CO or O 2 , a configuration without the reference electrode (third electrode) 32B may be adopted.

[ガス分析装置]
次に、図5を参照して、本発明に係る定電位電解式ガスセンサ100を備えたガス分析装置の一実施例について説明する。
[Gas analyzer]
Next, with reference to FIG. 5, an embodiment of a gas analyzer equipped with the constant potential electrolytic gas sensor 100 according to the present invention will be described.

ガス分析装置200は、被検ガスを定電位で電解したときの電解電流から被検ガスの濃度を求める。ガス分析装置200は、図5に示す如く、定電位電解式ガスセンサ100と、演算表示部300とを有する。典型的には、定電位電解式ガスセンサ100は、演算表示部300に対して着脱可能とされる。演算表示部300は、定電位電解式ガスセンサ200の作用極32Aと電解液Sの界面を一定の電位に保つよう、作用極32Aと参照極32Bとの電位を監視して調整するようになっている。又、その時作用極32Aと対極32Cとの間に流れる電解電流を増幅、演算して被検ガスの濃度を表示するようになっている。この電解電流は、作用極用ガス透過性隔膜31Aを通じて電解液S中に拡散吸収した被検ガスが作用極32Aにおいて酸化又は還元される反応によって得られるものである。定電位電解式ガスセンサ100は、電解電流値が被検ガスの濃度に比例するように構成され、演算表示部300は、この電解電流値を測定することで、被検ガスの濃度に変換する。   The gas analyzer 200 obtains the concentration of the test gas from the electrolysis current when the test gas is electrolyzed at a constant potential. As shown in FIG. 5, the gas analyzer 200 includes a constant potential electrolytic gas sensor 100 and a calculation display unit 300. Typically, the constant potential electrolytic gas sensor 100 is detachable from the calculation display unit 300. The calculation display unit 300 monitors and adjusts the potential between the working electrode 32A and the reference electrode 32B so as to keep the interface between the working electrode 32A and the electrolyte S of the constant potential electrolytic gas sensor 200 at a constant potential. Yes. At that time, the electrolytic current flowing between the working electrode 32A and the counter electrode 32C is amplified and calculated to display the concentration of the test gas. This electrolytic current is obtained by a reaction in which the test gas diffused and absorbed in the electrolyte S through the working electrode gas-permeable diaphragm 31A is oxidized or reduced at the working electrode 32A. The constant potential electrolytic gas sensor 100 is configured such that the electrolysis current value is proportional to the concentration of the test gas, and the calculation display unit 300 measures the electrolysis current value to convert it into the test gas concentration.

定電位電解式ガスセンサ100からの測定信号は、演算表示部300へと送信され、演算表示部300は、被検ガスの濃度を演算して表示する。本実施例では、演算表示部300は、作用極32A、参照極32B及び対極32Cが接続される測定手段としての変換器301を有する。変換器301は、可変電圧電源を備え作用極32Aに定電位を与える定電位回路302と、測定した電解電流値の大きさから被検ガス濃度を算出する演算制御部(CPU)303と、を具備している。   A measurement signal from the constant potential electrolytic gas sensor 100 is transmitted to the calculation display unit 300, and the calculation display unit 300 calculates and displays the concentration of the test gas. In the present embodiment, the calculation display unit 300 includes a converter 301 as measurement means to which the working electrode 32A, the reference electrode 32B, and the counter electrode 32C are connected. The converter 301 includes a constant potential circuit 302 that includes a variable voltage power source and applies a constant potential to the working electrode 32A, and an arithmetic control unit (CPU) 303 that calculates a test gas concentration from the measured electrolytic current value. It has.

又、変換器301の演算制御部(CPU)303は、本発明に従う安定化方法を具現する安定化処理を実行させるようになっている。本実施例では、上記定電位回路302には、処理電極32Dをも接続されており、定電位回路302が、安定化処理において作用極32Aと処理電極32Dとの間に電圧を印加する電圧印加手段として機能する。   In addition, the arithmetic control unit (CPU) 303 of the converter 301 is configured to execute a stabilization process that embodies the stabilization method according to the present invention. In this embodiment, the processing electrode 32D is also connected to the constant potential circuit 302, and the constant potential circuit 302 applies a voltage to apply a voltage between the working electrode 32A and the processing electrode 32D in the stabilization process. Functions as a means.

又、変換器301は、測定手順や安定化処理手順などのガス分析装置200の動作プログラムなどが記憶された記憶手段(電子的メモリ)304を有している。   Further, the converter 301 has a storage means (electronic memory) 304 in which an operation program of the gas analyzer 200 such as a measurement procedure and a stabilization processing procedure is stored.

更に、本実施例では、演算表示部300は、算出した被検ガス濃度を表示する表示部305、各種設定等の入力を行うための入力手段306などを有している。   Further, in the present embodiment, the calculation display unit 300 includes a display unit 305 that displays the calculated gas concentration to be detected, an input unit 306 for inputting various settings, and the like.

尚、安定化処理については、後述して更に詳しく説明する。   The stabilization process will be described in detail later.

測定対象ガスの種類によって、電極材料、電解液Sの種類、印加電圧(作用極5と参照極6との電位差、設定電解電位)などが選択される。通常、設定電解電位は、被検ガスに対して干渉ガスの影響を最小にすると共に、被検ガスに対して限界電流(電流値が電位変動によって変化せず、被検ガスの濃度に比例して変化する)が得られるように設定する。   The electrode material, the type of the electrolyte S, the applied voltage (potential difference between the working electrode 5 and the reference electrode 6, the set electrolysis potential), and the like are selected depending on the type of measurement target gas. Normally, the set electrolysis potential minimizes the influence of the interference gas on the test gas and is limited to the limit current (the current value does not change due to potential fluctuation and is proportional to the test gas concentration). To change).

本実施例では、一例として、定電位電解式ガスセンサ100に、NOセンサ、NO2センサを用いる場合について説明する。表1は、NOセンサ、NO2センサの一例における、設定電解電位(印加電圧)、作用極、対極、参照極及び処理電極の材質を示す。 In this embodiment, as an example, to a constant potential electrolysis type gas sensor 100, NO sensors, the case of using the NO 2 sensor. Table 1 shows the set electrolytic potential (applied voltage), working electrode, counter electrode, reference electrode, and processing electrode material in an example of a NO sensor and a NO 2 sensor.

NOセンサでは、設定電解電位+300mVにおいて、作用極32AでのNOの硝酸(HNO3)への酸化による酸化電流を測定する。NO2センサでは、設定電解電位0mVにおいて、作用極32AでのNO2のNOへの還元反応による還元電流を測定する。 The NO sensor measures an oxidation current due to oxidation of NO to nitric acid (HNO 3 ) at the working electrode 32A at a set electrolytic potential of +300 mV. The NO 2 sensor measures the reduction current due to the reduction reaction of NO 2 to NO at the working electrode 32A at the set electrolysis potential of 0 mV.

尚、本発明は、NOセンサ、NO2センサの他にも、例えばSO2センサ、COセンサについても適用することができる。この場合、一例として、SO2センサでは、設定電解電位0mVにおいて、作用極でのSO2のH2SO4への酸化による酸化電流を測定する。又、一例として、COセンサでは、設定電解電位0mVにおいて、作用極でのCOの二酸化炭素(CO2)への酸化反応による酸化電流を測定する。 The present invention can be applied to, for example, an SO 2 sensor and a CO sensor in addition to the NO sensor and the NO 2 sensor. In this case, as an example, the SO 2 sensor measures an oxidation current due to oxidation of SO 2 to H 2 SO 4 at the working electrode at a set electrolysis potential of 0 mV. Further, as an example, the CO sensor in the setting electrolysis potential 0 mV, measuring the oxidation current due to the oxidation reaction of carbon dioxide to CO at the working electrode (CO 2).

[安定化方法]
前述のように、定電位電解式ガスセンサ100をユーザーが最初に使用する場合の初期状態では、出力のバラツキがあり、一定の出力感度が得られるまでに長時間のエージングを必要とする。
[Stabilization method]
As described above, in the initial state when the user uses the potentiostatic gas sensor 100 for the first time, there are variations in output, and long-term aging is required until a certain output sensitivity is obtained.

又、定電位電解式ガスセンサ100を、例えば、乾燥状態で保存するなど、ある期間放置したような場合にも、感度が劣化し、その後再び安定した出力を得られるようにするために、長時間のエージングを必要とする場合がある。   In addition, when the constant potential electrolysis gas sensor 100 is left for a certain period of time, for example, when it is stored in a dry state, the sensitivity is deteriorated, and then a stable output can be obtained again for a long time. Aging may be required.

又、定電位電解式ガスセンサ100を長時間使用した場合に、出力が徐々に低下してくることがあり、その後再び安定した出力を得られるようにするために、長時間のエージングを必要とする場合がある。   In addition, when the potentiostatic gas sensor 100 is used for a long time, the output may gradually decrease, and then long-term aging is required to obtain a stable output again. There is a case.

そこで、典型的には、定電位電解式ガスセンサ100を最初に使用する前に、或いは定電位電解式ガスセンサ100の使用を開始してある期間使用せずに放置した後に最初に使用する前に、本発明に従う安定化処理を定電位電解式ガスセンサ100に施すことができる。又、定電位電解式ガスセンサ100の使用を開始してある期間使用することにより感度が劣化した後に再び使用を開始する前に、本発明に従う安定化処理を定電位電解式ガスセンサ100に施すことができる。   Therefore, typically, before using the potentiostatic gas sensor 100 for the first time, or after using the potentiostatic gas sensor 100 for a certain period of time, and before using it for the first time, The stabilization process according to the present invention can be applied to the potentiostatic gas sensor 100. In addition, the stabilization treatment according to the present invention may be performed on the constant potential electrolytic gas sensor 100 before the use is started again after the sensitivity is deteriorated by using the constant potential electrolytic gas sensor 100 for a certain period of time. it can.

本発明に従う安定化処理は、電解液Sを収容する電解液収容部13内に、作用極32A及び対極32Cの2極、又は作用極32A、対極32C及び参照極32Dの3極を有し、作用極32Aにおける被検ガスの電解電流を検出する定電位電解式ガスセンサ100の安定化方法を具現するものであって、電解液収容部13内に作用極32A、対極32C又は参照極32Bとは別個に設けられた処理電極32Dと作用極32Aとの間に電圧を印加する処理を行う。この安定化処理は、定電位電解式ガスセンサ100が組み立てられ、電解液収容部13に電解液Sが収容されている状態で行われる。   The stabilization treatment according to the present invention has two electrodes, the working electrode 32A and the counter electrode 32C, or the working electrode 32A, the counter electrode 32C, and the reference electrode 32D in the electrolyte solution storage unit 13 that stores the electrolyte S. A method for stabilizing the constant potential electrolytic gas sensor 100 that detects the electrolysis current of the test gas at the working electrode 32A is implemented. What is the working electrode 32A, the counter electrode 32C, or the reference electrode 32B in the electrolyte container 13? A process of applying a voltage between the processing electrode 32D and the working electrode 32A provided separately is performed. This stabilization process is performed in a state in which the constant potential electrolytic gas sensor 100 is assembled and the electrolytic solution S is stored in the electrolytic solution storage unit 13.

如何なる理論によっても束縛されることを意図するものではないが、作用極と他の極との間に電圧を印加すると、作用極の表面は電解洗浄による付着物(吸着物)の物理的除去作用などにより、感度出力が安定化するまでの時間が劇的に短縮するものと思われる。このとき、作用極の界面状態を安定化状態とするために、対極や参照極を用いて作用極との間に電圧を印加すると、強制的に対極や参照極の表面状態が変化して、自然状態ではなくなり、そのために、測定時に出力が安定するまでに時間がかかるようになることがある。従って、定電位電解式ガスセンサの安定化のために、測定回路に使用する対極や参照極を用いて作用極との間で電圧を印加することは望ましくない。   Although not intended to be bound by any theory, when a voltage is applied between the working electrode and another electrode, the surface of the working electrode is physically removed by the electrolytic cleaning. It seems that the time until the sensitivity output is stabilized is drastically reduced. At this time, in order to stabilize the interface state of the working electrode, when a voltage is applied between the working electrode using the counter electrode or the reference electrode, the surface state of the counter electrode or the reference electrode is forcibly changed, The natural state is lost, and therefore it may take time for the output to stabilize during measurement. Therefore, in order to stabilize the constant potential electrolytic gas sensor, it is not desirable to apply a voltage between the working electrode using the counter electrode or the reference electrode used in the measurement circuit.

これに対して、本発明に従う安定化処理では、定電位電解式ガスセンサ100の出力感度の安定化のために、専用の極である処理電極32Dを用いて作用極32Aとの間で電圧を印加するので、この安定化処理により、対極32Cや参照極32Dの表面状態を安定に維持したまま、作用極32Aの表面状態が安定し、初期状態又は長時間使用後における電解セル(電解液収容部)13内の極表面のバラツキがなくなり、一定の感度が得られるようになる。   In contrast, in the stabilization process according to the present invention, in order to stabilize the output sensitivity of the constant potential electrolytic gas sensor 100, a voltage is applied to the working electrode 32A using the processing electrode 32D that is a dedicated electrode. Therefore, by this stabilization treatment, the surface state of the working electrode 32A is stabilized while maintaining the surface state of the counter electrode 32C and the reference electrode 32D stably, and the electrolytic cell (electrolyte container) ) There is no variation in the pole surface in 13 and a certain sensitivity can be obtained.

安定化処理における作用極32Aと処理電極32Dとの間に印加する電圧の電位は、典型的には、被検ガスの電解電流を検出する際の作用極32Aの電位とは異なる。安定化処理において印加する電圧は、所望の安定化時間の短縮効果が得られるように適宜設定し得るものである。本発明者の検討によれば、安定化処理において作用極32Aと処理電極32Dとの間に印加する電圧の電位は、被検ガスの電解電流を検出する際の作用極32Aの電位に対し、正極性側又は負極性側の電位であってもよく、典型的には、被検ガスの電解電流を検出する際の作用極32Aの電位に対して500mV以上2V以下の差を有するようにすることが好ましい。即ち、測定時の作用極32Aの電位と、安定化処理時に作用極32Aと処理電極32Dとの間に印加する電圧の電位との差の絶対値が500mV〜2Vであることが好ましい(つまり、測定時の作用極32Aの電位を0mVとすれば、安定化処理時に作用極32Aと処理電極32Dとの間に印加する電圧の電位は+500mV〜+2V、又は−500mV〜−2Vとすることが好ましい)。又、安定化処理において印加する電圧は直流(DC)電圧であっても、交流(AC)電圧であってもよい。交流電圧の場合は、被検ガスの電解電流を検出する際の作用極32Aの電位に対して、少なくとも一方の極性側に上記範囲の差が得られるような電圧を印加することが好ましい。   The potential of the voltage applied between the working electrode 32A and the processing electrode 32D in the stabilization processing is typically different from the potential of the working electrode 32A when detecting the electrolytic current of the test gas. The voltage applied in the stabilization process can be appropriately set so as to obtain a desired stabilization time shortening effect. According to the study of the present inventor, the potential of the voltage applied between the working electrode 32A and the processing electrode 32D in the stabilization process is equal to the potential of the working electrode 32A when detecting the electrolytic current of the test gas. The potential may be on the positive side or on the negative side, and typically has a difference of 500 mV or more and 2 V or less with respect to the potential of the working electrode 32A when detecting the electrolysis current of the test gas. It is preferable. That is, the absolute value of the difference between the potential of the working electrode 32A during measurement and the potential of the voltage applied between the working electrode 32A and the processing electrode 32D during the stabilization process is preferably 500 mV to 2 V (that is, If the potential of the working electrode 32A during measurement is 0 mV, the potential of the voltage applied between the working electrode 32A and the processing electrode 32D during the stabilization process is preferably +500 mV to +2 V, or −500 mV to −2 V. ). The voltage applied in the stabilization process may be a direct current (DC) voltage or an alternating current (AC) voltage. In the case of an alternating voltage, it is preferable to apply a voltage that provides a difference in the above range on at least one of the polar sides with respect to the potential of the working electrode 32A when detecting the electrolytic current of the test gas.

安定化処理において印加する電圧が上述の範囲よりも小さいと、安定化にかかる時間の短縮効果が顕著でなくなることがある。一方、上述の範囲を超えても安定化にかかる時間の短縮効果はそれほど促進されず、かえって水の電気分解や水素の発生などが発生して問題となるおそれがある。   If the voltage applied in the stabilization process is smaller than the above range, the effect of shortening the stabilization time may not be significant. On the other hand, even if the above range is exceeded, the effect of shortening the time required for stabilization is not so much promoted, and instead electrolysis of water, generation of hydrogen, etc. may occur, which may be a problem.

上述のように、典型的には、安定化処理は、定電位電解式ガスセンサ100を最初に使用する前に、或いは定電位電解式ガスセンサ100の使用を開始してある期間使用せずに放置した後に最初に使用する前に行うことができる。この安定化処理における電圧の印加時間は、所望の安定化の程度に応じて適宜選択することができる。本発明者の検討によれば、安定化処理における電圧印加時間は、1〜30分間であることが好ましい。又、この安定化処理における電圧の印加は、所定時間間隔においてパルス的に行うことができる。例えば、1〜10分毎に0.1秒〜10分間、作用極32Aと処理電極32Bとの間に電圧を印加して安定化処理を行うことができる。   As described above, typically, the stabilization process is left before using the potentiostatic gas sensor 100 for the first time or without being used for a certain period of time since the use of the potentiostatic gas sensor 100 has been started. Can be done later before first use. The voltage application time in this stabilization process can be appropriately selected according to the desired degree of stabilization. According to the study by the present inventor, the voltage application time in the stabilization process is preferably 1 to 30 minutes. The voltage application in the stabilization process can be performed in a pulse manner at a predetermined time interval. For example, the stabilization process can be performed by applying a voltage between the working electrode 32A and the processing electrode 32B every 0.1 to 10 minutes for 0.1 second to 10 minutes.

又、上述のように、安定化処理は、定電位電解式ガスセンサ100の使用を開始してある期間使用することにより感度が劣化した後に再び使用を開始する前に行うことができる。即ち、定電位電解式ガスセンサ100を使用することにより、それぞれのセンサによって種々の程度に劣化する感度を、本発明に従う安定化処理によって回復させて、一定の感度が得られるようにすることができる。この場合、安定化処理、即ち、作用極32Aと処理電極32Dとの間に電圧を印加する処理を定期的に行うことができる。即ち、定電位電解式ガスセンサ100を使用して一定時間が経過する毎などの所定のタイミングで、一定時間、作用極32Aと処理電極32Dとの間に電圧を印加する。このとき、安定化処理をパルス的に行う、即ち、安定化処理における作用極32Aと処理電極32Dとの間に印加する電圧を、所定時間間隔においてパルス的に印加することで、測定を長時間中断することなく、感度低下を回復させることができる。例えば、測定状態の定電位電解式ガスセンサ100に対して、1分〜1日毎に0.1秒〜10分、通常、1分〜1時間毎に0.1秒〜1分、好ましくは0.1秒〜10秒といった単位の極短時間、作用極32Aと処理電極32Bとの間に電圧を印加して安定化処理を行うことができる。或いは、1時間〜30日毎、通常、10時間〜5日毎に、1分〜30分間、作用極32Aと処理電極32Dとの間に電圧を印加して安定化処理を行うなどしてもよい。但し、所望の感度回復効果が得られるように、安定化処理を実施する間隔、安定化処理において電圧を印加する時間は適宜選定することができる。   Further, as described above, the stabilization process can be performed before the use is started again after the sensitivity is deteriorated by using the constant potential electrolytic gas sensor 100 for a certain period of time. That is, by using the constant potential electrolysis gas sensor 100, the sensitivity that deteriorates to various degrees by each sensor can be recovered by the stabilization processing according to the present invention, so that a constant sensitivity can be obtained. . In this case, stabilization processing, that is, processing for applying a voltage between the working electrode 32A and the processing electrode 32D can be performed periodically. That is, a voltage is applied between the working electrode 32A and the processing electrode 32D for a predetermined time at a predetermined timing such as every time a constant time elapses by using the constant potential electrolytic gas sensor 100. At this time, the stabilization process is performed in a pulsed manner, that is, the voltage applied between the working electrode 32A and the processing electrode 32D in the stabilization process is applied in a pulsed manner at a predetermined time interval, so that the measurement can be performed for a long time. Sensitivity reduction can be recovered without interruption. For example, for the potentiostatic gas sensor 100 in the measurement state, 0.1 second to 10 minutes every 1 minute to 1 day, usually 0.1 second to 1 minute every 1 minute to 1 hour, preferably 0. The stabilization process can be performed by applying a voltage between the working electrode 32A and the processing electrode 32B for an extremely short time such as 1 second to 10 seconds. Alternatively, a stabilization process may be performed by applying a voltage between the working electrode 32A and the processing electrode 32D every 1 hour to 30 days, usually every 10 hours to 5 days, for 1 minute to 30 minutes. However, the interval for performing the stabilization process and the time for applying the voltage in the stabilization process can be appropriately selected so as to obtain a desired sensitivity recovery effect.

安定化処理は、定電位電解式ガスセンサ100が測定系、即ち、被検ガス中にある状態で行ってもよいし、実質的に被検ガスを含まない空気中で行ってもよい。例えば、定電位電解式ガスセンサ100の使用開始前、或いはある期間放置した後に再び使用する前の安定化処理は、被検ガスを含まない空気中で行うことができる。又、例えば、使用中の定電位電解式ガスセンサ100に対して、定期的(好ましくはパルス的に)に安定化処理を行う場合には、定電位電解式ガスセンサ100は測定系にある状態で安定化処理を行うことができる。   The stabilization process may be performed in a state where the constant potential electrolytic gas sensor 100 is in the measurement system, that is, in the test gas, or may be performed in the air that does not substantially include the test gas. For example, the stabilization process before starting the use of the potentiostatic gas sensor 100 or leaving it for a certain period and before using it again can be performed in air containing no test gas. Further, for example, when the stabilization process is performed periodically (preferably in a pulse manner) for the constant potential electrolytic gas sensor 100 in use, the constant potential electrolytic gas sensor 100 is stable in a state where it is in the measurement system. Processing can be performed.

安定化処理は、演算表示部300の電気回路部に組み込まれた定電位電解式ガスセンサ100の安定化処理のための回路によって行われる。本実施例では、演算表示部300の変換器301が備える定電位回路302が、安定化処理において作用極32Aと処理電極32Dとの間に電圧を印加する電圧印加手段として機能する。操作者は、演算表示部300が備える入力手段306から、任意のタイミングで安定化処理を実行させることができる。或いは、変換器301の演算制御部(CPU)303が、変換器301の記憶手段(電子的メモリ)304に記憶されたコンピュータプログラムに従って、自動的に安定化処理を実行させるようにしてもよい。   The stabilization process is performed by a circuit for stabilizing the constant potential electrolytic gas sensor 100 incorporated in the electric circuit unit of the calculation display unit 300. In the present embodiment, the constant potential circuit 302 included in the converter 301 of the calculation display unit 300 functions as a voltage applying unit that applies a voltage between the working electrode 32A and the processing electrode 32D in the stabilization process. The operator can execute the stabilization process at an arbitrary timing from the input unit 306 provided in the calculation display unit 300. Alternatively, the calculation control unit (CPU) 303 of the converter 301 may automatically execute the stabilization process according to a computer program stored in the storage unit (electronic memory) 304 of the converter 301.

[安定化装置]
上述のように、本発明に従う安定処理は、本発明に従う定電位電解式ガスセンサ100を備えたガス分析装置200において実行することができる。このように、定電位電解式ガスセンサ100の安定化装置(安定化ユニット)は、ガス分析装置200に組み込まれていてよい。
[Stabilizer]
As described above, the stabilization process according to the present invention can be executed in the gas analyzer 200 including the constant potential electrolytic gas sensor 100 according to the present invention. As described above, the stabilization device (stabilization unit) of the potentiostatic gas sensor 100 may be incorporated in the gas analyzer 200.

即ち、本実施例では、電解液Sを収容する電解液収容部13内に、作用極32A及び対極32Cの2極、又は作用極32A、対極32C及び参照極32Bの3極を有し、作用極32Aにおける被検ガスの電解電流を検出する定電位電解式ガスセンサ100の安定化装置(安定化ユニット)は、ガス分析装置200に組み込まれている。この安定化装置(安定化ユニット)は、電解液収容部13内に作用極32A、対極32C又は参照極32Dとは別個に設けられた処理電極32Dと作用極32Aとの間に電圧を印加する電圧印加手段を有し、本発明に従う安定化処理を行う。本実施例では、この電圧印加手段の機能は、演算表示部300が備える変換器301の定電位回路302が有する。そして、この安定化装置(安定化ユニット)による安定化処理は、演算表示部300の電気回路部に組み込まれた定電位電解式ガスセンサ100の安定化処理のための回路によって行われる。上述のように、安定化装置(安定化ユニット)による安定化処理は、操作者が、演算表示部300が備える入力手段306から指示することにより、或いは変換器301の演算制御部(CPU)303による制御により自動で実行される。   That is, in the present embodiment, the electrolytic solution storage unit 13 that stores the electrolytic solution S has two working electrodes 32A and a counter electrode 32C, or three working electrodes 32A, a counter electrode 32C, and a reference electrode 32B. A stabilization device (stabilization unit) of the constant potential electrolytic gas sensor 100 that detects the electrolysis current of the test gas at the pole 32A is incorporated in the gas analyzer 200. This stabilization device (stabilization unit) applies a voltage between the processing electrode 32D and the working electrode 32A, which are provided in the electrolyte solution storage unit 13 separately from the working electrode 32A, the counter electrode 32C, or the reference electrode 32D. It has a voltage application means and performs the stabilization process according to this invention. In this embodiment, the function of the voltage applying means is provided in the constant potential circuit 302 of the converter 301 provided in the calculation display unit 300. And the stabilization process by this stabilization apparatus (stabilization unit) is performed by the circuit for the stabilization process of the constant potential electrolytic gas sensor 100 incorporated in the electric circuit part of the calculation display part 300. As described above, the stabilization process by the stabilization device (stabilization unit) is performed by an operator instructing from the input unit 306 provided in the calculation display unit 300 or by the calculation control unit (CPU) 303 of the converter 301. Automatically executed by control by

但し、本発明はこれに限定されるものではなく、上記ガス分析装置200に組み込まれるものとした安定化装置は、主に安定化処理を行うことを目的とした特別の装置として構成されていてもよい。例えば、後述するように定電位電解式ガスセンサ100の製造過程において安定化処理を実行する場合などに、この安定化装置を用いることができる。   However, the present invention is not limited to this, and the stabilization device incorporated in the gas analyzer 200 is configured as a special device mainly for the purpose of performing the stabilization process. Also good. For example, as will be described later, this stabilization device can be used when a stabilization process is performed in the manufacturing process of the potentiostatic gas sensor 100.

[定電位電解式ガスセンサの製造方法]
本発明によれば、定電位電解式ガスセンサ100の製造工程に本発明に従う安定化処理を導入することによって、出力感度の安定化済みの定電位電解式ガスセンサ100を提供することが可能となる。
[Manufacturing Method of Constant Potential Electrolytic Gas Sensor]
According to the present invention, by introducing the stabilization process according to the present invention into the manufacturing process of the controlled potential electrolytic gas sensor 100, it is possible to provide the controlled potential electrolytic gas sensor 100 whose output sensitivity has been stabilized.

即ち、本発明に従う定電位電解式ガスセンサ100の製造方法は、電解液Sを収容する電解液収容部13内に、作用極32A及び対極32Cの2極、又は作用極32A、対極32C及び参照極32Dの3極を有し、作用極32Aにおける被検ガスの電解電流を検出する定電位電解式ガスセンサ100を製造するにあたり、少なくとも、(i)電解液収容部13内に作用極32A、対極32C又は参照極32Dとは別個に処理電極32Dを設ける工程と、(ii)処理電極32Dと作用極32Aとの間に電圧を印加する処理を行う工程と、を含んでいる。   That is, in the method for manufacturing the constant potential electrolytic gas sensor 100 according to the present invention, the working electrode 32A, the counter electrode 32C, or the working electrode 32A, the counter electrode 32C, and the reference electrode are provided in the electrolyte solution storage unit 13 that stores the electrolyte solution S. In manufacturing the constant potential electrolytic gas sensor 100 having the three electrodes 32D and detecting the electrolysis current of the test gas in the working electrode 32A, at least (i) the working electrode 32A and the counter electrode 32C are provided in the electrolyte container 13. Or the process electrode 32D is provided separately from the reference electrode 32D, and (ii) the process of applying a voltage between the process electrode 32D and the working electrode 32A is included.

上記(i)の処理電極32Dを設ける工程を含む、定電位電解式ガスセンサ100の組み立て過程については、上述した通りである。又、上記(ii)の処理は、定電位電解式ガスセンサ100の使用開始前に行うとして説明した安定化処理と同じであってよい。上記(ii)の安定化処理工程は、定電位電解式ガスセンサ100が組み立てられ、電解液収容部13に電解液Sが収容されている状態で行われる。   The assembly process of the potentiostatic gas sensor 100 including the step (i) of providing the processing electrode 32D is as described above. Further, the process (ii) may be the same as the stabilization process described as being performed before the use of the constant potential electrolytic gas sensor 100. The stabilization process step (ii) is performed in a state in which the constant potential electrolytic gas sensor 100 is assembled and the electrolytic solution S is stored in the electrolytic solution storage unit 13.

これにより、定電位電解式ガスセンサ100の製造時に、より短時間に、しかも対極や参照極に影響を与えることなく、定電位電解式ガスセンサ100の出力感度を安定化することができる。従って、定電位電解式ガスセンサ100の測定前の出力感度のバラツキを抑え、一定の出力感度を得ることができる。   Thereby, the output sensitivity of the potentiostatic gas sensor 100 can be stabilized in a shorter time and without affecting the counter electrode and the reference electrode when the potentiostatic gas sensor 100 is manufactured. Therefore, variation in output sensitivity before the measurement of the constant potential electrolytic gas sensor 100 can be suppressed, and constant output sensitivity can be obtained.

そして、ユーザーは、提供された定電位電解式ガスセンサ100を使用する前に、その出力感度を安定化する必要がないか、或いはその安定化処理に斯かる時間がより短時間で済むため、例えば定電位電解式ガスセンサ100の交換後に、迅速に測定を開始又は再開することが可能となる。   And since the user does not need to stabilize the output sensitivity before using the provided potentiostatic gas sensor 100 or the time required for the stabilization process is shorter, for example, After the constant potential electrolytic gas sensor 100 is replaced, the measurement can be started or restarted quickly.

試験例1
次に、本発明の効果を確認した試験例について説明する。
Test example 1
Next, test examples for confirming the effects of the present invention will be described.

実施例1に従う新品のNOセンサとNO2センサを用い、本発明に従う安定化処理を実施した場合と実施しない場合とでの、被検ガス(成分NO、NO2)に対する出力感度を測定した。 Using the new NO sensor and NO 2 sensor according to Example 1, the output sensitivity to the test gas (component NO, NO 2 ) was measured when the stabilization process according to the present invention was performed and when it was not performed.

安定化処理においては、作用極32Aと処理電極32Dとの間に1.5Vの電圧(即ち、被検ガスの電解電流の測定時における作用極32の電位に対して、NOセンサでは1.2V、NO2センサでは1.5Vの差を有する電圧)を10分間印加した。結果を図6に示す。 In the stabilization process, a voltage of 1.5 V between the working electrode 32A and the processing electrode 32D (that is, 1.2 V for the NO sensor with respect to the potential of the working electrode 32 when measuring the electrolytic current of the test gas). In the NO 2 sensor, a voltage having a difference of 1.5 V) was applied for 10 minutes. The results are shown in FIG.

図6から、本発明に従う安定化処理を行うことによって、短時間(10分)の安定化処理で、長時間(150日)エージングした時と同様の感度(出力電流値20μA以上)が得られた。これは、安定化処理により、作用極32Aの表面が電解洗浄され、界面電位の状態が均一になったためであると考えられる。   From FIG. 6, by performing the stabilization process according to the present invention, the sensitivity (output current value of 20 μA or more) similar to that when aging for a long time (150 days) is obtained in the stabilization process for a short time (10 minutes). It was. This is presumably because the surface of the working electrode 32A was electrolytically cleaned by the stabilization treatment, and the state of the interface potential became uniform.

又、試験に用いた複数のセンサにおいて、安定化処理前は出力感度にバラツキがあったものが、安定化処理後には出力感度(出力電流値)が20μA以上とほぼ一定となった。このように、本試験における短時間においても、各センサの安定化状態は、ほぼ飽和に達しているものと考えられる。   Further, among the plurality of sensors used in the test, the output sensitivity varied before the stabilization process, but the output sensitivity (output current value) became almost constant at 20 μA or more after the stabilization process. Thus, it is considered that the stabilization state of each sensor has almost reached saturation even in a short time in this test.

32A 作用極
32B 参照極
32C 対極
32D 処理電極
100 定電位電解式ガスセンサ
200 ガス分析装置
300 演算表示部
32A Working electrode 32B Reference electrode 32C Counter electrode 32D Processing electrode 100 Constant potential electrolytic gas sensor 200 Gas analyzer 300 Calculation display unit

Claims (13)

電解液を収容する電解液収容部内に、作用極及び対極の2極、又は作用極、対極及び参照極の3極を有し、作用極における被検ガスの電解電流を検出する定電位電解式ガスセンサの安定化方法であって、
前記電解液収容部内に前記作用極、対極又は参照極とは別個に設けられた処理電極と前記作用極との間に電圧を印加する処理を行うことを特徴とする定電位電解式ガスセンサの安定化方法。
Constant-potential electrolysis type that has two working electrodes and a counter electrode, or three working electrodes, a counter electrode, and a reference electrode in the electrolyte container that contains the electrolyte, and detects the electrolysis current of the test gas at the working electrode A method for stabilizing a gas sensor,
Stabilization of a potentiostatic gas sensor characterized by performing a process of applying a voltage between a working electrode provided separately from the working electrode, counter electrode or reference electrode in the electrolyte container and the working electrode Method.
前記処理における前記電圧の電位は、被検ガスの電解電流を検出する際の前記作用極の電位とは異なることを特徴とする請求項1に記載の定電位電解式ガスセンサの安定化方法。   2. The method for stabilizing a constant potential electrolytic gas sensor according to claim 1, wherein the potential of the voltage in the processing is different from the potential of the working electrode when detecting the electrolytic current of the test gas. 前記処理における前記電圧は、所定時間間隔においてパルス的に印加することを特徴とする請求項1又は2に記載の定電位電解式ガスセンサの安定化方法。   The method for stabilizing a constant potential electrolytic gas sensor according to claim 1 or 2, wherein the voltage in the processing is applied in a pulse manner at a predetermined time interval. 前記処理における前記電圧は、1〜30分間印加することを特徴とする請求項1〜3のいずれかに記載の定電位電解式ガスセンサの安定化方法。   The method for stabilizing a constant potential electrolytic gas sensor according to any one of claims 1 to 3, wherein the voltage in the treatment is applied for 1 to 30 minutes. 前記処理における前記電圧の電位は、被検ガスの電解電流を検出する際の前記作用極の電位に対し、500mV以上2V以下の差を有することを特徴とする請求項1〜4のいずれかの項に記戴の定電位電解式ガスセンサの安定化方法。   The potential of the voltage in the treatment has a difference of 500 mV or more and 2 V or less with respect to the potential of the working electrode when detecting the electrolysis current of the test gas. A method for stabilizing a constant potential electrolysis gas sensor as described in the section. 電解液を収容する電解液収容部内に、作用極及び対極の2極、又は作用極、対極及び参照極の3極を有し、作用極における被検ガスの電解電流を検出する定電位電解式ガスセンサの製造方法であって、
前記電解液収容部内に前記作用極、対極又は参照極とは別個に処理電極を設ける工程と、
前記処理電極と前記作用極との間に電圧を印加する処理を行う工程と、
を含むことを特徴とする定電位電解式ガスセンサの製造方法。
Constant-potential electrolysis type that has two working electrodes and a counter electrode, or three working electrodes, a counter electrode, and a reference electrode in the electrolyte container that contains the electrolyte, and detects the electrolysis current of the test gas at the working electrode A method for manufacturing a gas sensor, comprising:
Providing a treatment electrode separately from the working electrode, counter electrode or reference electrode in the electrolyte container;
Performing a process of applying a voltage between the processing electrode and the working electrode;
A method for producing a constant potential electrolytic gas sensor, comprising:
前記処理における前記電圧の電位は、被検ガスの電解電流を検出する際の前記作用極の電位とは異なることを特徴とする請求項6に記載の定電位電解式ガスセンサの製造方法。   The method of manufacturing a constant potential electrolytic gas sensor according to claim 6, wherein the potential of the voltage in the processing is different from the potential of the working electrode when detecting the electrolytic current of the test gas. 前記処理における前記電圧は、所定時間間隔においてパルス的に印加することを特徴とする請求項6又は7に記載の定電位電解式ガスセンサの製造方法。   The method of manufacturing a constant potential electrolytic gas sensor according to claim 6 or 7, wherein the voltage in the treatment is applied in a pulse manner at a predetermined time interval. 前記処理における前記電圧は、1〜30分間印加することを特徴とする請求項6〜8のいずれかに記載の定電位電解式ガスセンサの製造方法。   The method for producing a constant potential electrolytic gas sensor according to any one of claims 6 to 8, wherein the voltage in the treatment is applied for 1 to 30 minutes. 前記処理における前記電圧の電位は、被検ガスの電解電流を検出する際の前記作用極の電位に対し500mV以上2V以下の差を有することを特徴とする請求項6〜9のいずれかの項に記戴の定電位電解式ガスセンサの製造方法。   The potential of the voltage in the treatment has a difference of 500 mV or more and 2 V or less with respect to the potential of the working electrode when detecting the electrolytic current of the test gas. A manufacturing method of a constant potential electrolytic gas sensor described in 1. 電解液を収容する電解液収容部内に、作用極及び対極の2極、又は作用極、対極及び参照極の3極を有し、作用極における被検ガスの電解電流を検出する定電位電解式ガスセンサの安定化装置であって、
前記電解液収容部内に前記作用極、対極又は参照極とは別個に設けられた処理電極と前記作用極との間に電圧を印加する電圧印加手段を有し、請求項1〜5のいずれかの項に記載の処理を行うことを特徴とする定電位電解式ガスセンサの安定化装置。
Constant-potential electrolysis type that has two working electrodes and a counter electrode, or three working electrodes, a counter electrode, and a reference electrode in the electrolyte container that contains the electrolyte, and detects the electrolysis current of the test gas at the working electrode A gas sensor stabilization device comprising:
6. The apparatus according to claim 1, further comprising a voltage applying unit configured to apply a voltage between the working electrode and the working electrode provided separately from the working electrode, the counter electrode, or the reference electrode in the electrolytic solution storage unit. A stabilizing device for a constant potential electrolytic gas sensor, characterized by performing the treatment described in the section.
電解液を収容する電解液収容部内に、作用極及び対極の2極、又は作用極、対極及び参照極の3極を有し、作用極における被検ガスの電解電流を検出する定電位電解式ガスセンサを備えたガス分析装置であって、
前記定電位電解式ガスセンサは、前記電解液収容部内に前記作用極、対極又は参照極とは別個に処理電極を有しており、更に、前記定電位電解式ガスセンサで検出される前記作用極における被検ガスの電解電流を測定する測定手段と、前記処理電極と前記作用極との間に電圧を印加する電圧印加手段と、を有し、請求項1〜5のいずれかの項に記載の処理を実行可能であることを特徴とするガス分析装置。
Constant-potential electrolysis type that has two working electrodes and a counter electrode, or three working electrodes, a counter electrode, and a reference electrode in the electrolyte container that contains the electrolyte, and detects the electrolysis current of the test gas at the working electrode A gas analyzer equipped with a gas sensor,
The constant potential electrolytic gas sensor has a processing electrode separately from the working electrode, the counter electrode, or the reference electrode in the electrolyte container, and further, in the working electrode detected by the constant potential electrolytic gas sensor. 6. The measuring device according to claim 1, further comprising: a measuring unit that measures an electrolytic current of the test gas; and a voltage applying unit that applies a voltage between the processing electrode and the working electrode. A gas analyzer characterized in that processing can be performed.
電解液を収容する電解液収容部内に、作用極及び対極の2極、又は作用極、対極及び参照極の3極を有し、作用極における被検ガスの電解電流を検出する定電位電解式ガスセンサであって、更に、前記電解液収容部内に前記作用極、対極又は参照極とは別個に、安定化処理のために前記作用極との間で電圧を印加するのに用いられる処理電極を有することを特徴とする定電位電解式ガスセンサ。   Constant-potential electrolysis type that has two working electrodes and a counter electrode, or three working electrodes, a counter electrode, and a reference electrode in the electrolyte container that contains the electrolyte, and detects the electrolysis current of the test gas at the working electrode A gas sensor, further comprising a processing electrode used for applying a voltage between the working electrode, the counter electrode, or the reference electrode in the electrolytic solution storage unit, separately from the working electrode, for the stabilization process. A constant potential electrolytic gas sensor comprising:
JP2009031912A 2009-02-13 2009-02-13 Stabilizing method and apparatus for constant potential electrolytic gas sensor, manufacturing method for constant potential electrolytic gas sensor, gas analyzer, and constant potential electrolytic gas sensor Expired - Fee Related JP5251581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009031912A JP5251581B2 (en) 2009-02-13 2009-02-13 Stabilizing method and apparatus for constant potential electrolytic gas sensor, manufacturing method for constant potential electrolytic gas sensor, gas analyzer, and constant potential electrolytic gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009031912A JP5251581B2 (en) 2009-02-13 2009-02-13 Stabilizing method and apparatus for constant potential electrolytic gas sensor, manufacturing method for constant potential electrolytic gas sensor, gas analyzer, and constant potential electrolytic gas sensor

Publications (2)

Publication Number Publication Date
JP2010185855A true JP2010185855A (en) 2010-08-26
JP5251581B2 JP5251581B2 (en) 2013-07-31

Family

ID=42766590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009031912A Expired - Fee Related JP5251581B2 (en) 2009-02-13 2009-02-13 Stabilizing method and apparatus for constant potential electrolytic gas sensor, manufacturing method for constant potential electrolytic gas sensor, gas analyzer, and constant potential electrolytic gas sensor

Country Status (1)

Country Link
JP (1) JP5251581B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141167A (en) * 2010-01-06 2011-07-21 Osaka Gas Co Ltd Method for improving sensitivity of electrochemical sensor and electrochemical sensor
JP2013130500A (en) * 2011-12-22 2013-07-04 Central Research Institute Of Electric Power Industry Conditioning method for hydrogen selenide gas detector
JP2014153103A (en) * 2013-02-06 2014-08-25 Riken Keiki Co Ltd Constant-potential electrolysis type gas sensor and storage method thereof, and jig for storage of constant-potential electrolysis type gas sensor
WO2019202807A1 (en) 2018-04-20 2019-10-24 理研計器株式会社 Constant potential electrolysis gas sensor
WO2022091947A1 (en) * 2020-10-27 2022-05-05 株式会社堀場アドバンスドテクノ Diaphragm-type sensor and measurement system using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327495A (en) * 1976-08-26 1978-03-14 Mitsui Shipbuilding Eng Gas analysis
JPH01216254A (en) * 1988-02-24 1989-08-30 Matsushita Electric Works Ltd Stabilizing method for secular characteristic in electrochemical material detection
JP2003075393A (en) * 2001-09-05 2003-03-12 Dkk Toa Corp Diaphragm type electrode
JP2005127928A (en) * 2003-10-24 2005-05-19 Dkk Toa Corp Controlled potential electrolysis type gas measuring instrument
JP2005127927A (en) * 2003-10-24 2005-05-19 Dkk Toa Corp Continuous exhaust gas analyzer equipped with controlled potential electrolysis type gas sensor
JP2007248313A (en) * 2006-03-16 2007-09-27 Dkk Toa Corp Constant-potential electrolysis type gas sensor
JP2007315824A (en) * 2006-05-23 2007-12-06 Dkk Toa Corp Potential stabilization method for controlling constant potential electrolysis gas sensor, and controlled constant potential electrolysis gas sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327495A (en) * 1976-08-26 1978-03-14 Mitsui Shipbuilding Eng Gas analysis
JPH01216254A (en) * 1988-02-24 1989-08-30 Matsushita Electric Works Ltd Stabilizing method for secular characteristic in electrochemical material detection
JP2003075393A (en) * 2001-09-05 2003-03-12 Dkk Toa Corp Diaphragm type electrode
JP2005127928A (en) * 2003-10-24 2005-05-19 Dkk Toa Corp Controlled potential electrolysis type gas measuring instrument
JP2005127927A (en) * 2003-10-24 2005-05-19 Dkk Toa Corp Continuous exhaust gas analyzer equipped with controlled potential electrolysis type gas sensor
JP2007248313A (en) * 2006-03-16 2007-09-27 Dkk Toa Corp Constant-potential electrolysis type gas sensor
JP2007315824A (en) * 2006-05-23 2007-12-06 Dkk Toa Corp Potential stabilization method for controlling constant potential electrolysis gas sensor, and controlled constant potential electrolysis gas sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141167A (en) * 2010-01-06 2011-07-21 Osaka Gas Co Ltd Method for improving sensitivity of electrochemical sensor and electrochemical sensor
JP2013130500A (en) * 2011-12-22 2013-07-04 Central Research Institute Of Electric Power Industry Conditioning method for hydrogen selenide gas detector
JP2014153103A (en) * 2013-02-06 2014-08-25 Riken Keiki Co Ltd Constant-potential electrolysis type gas sensor and storage method thereof, and jig for storage of constant-potential electrolysis type gas sensor
WO2019202807A1 (en) 2018-04-20 2019-10-24 理研計器株式会社 Constant potential electrolysis gas sensor
KR20200137002A (en) 2018-04-20 2020-12-08 리켄 게이키 가부시키가이샤 Electrostatic gas sensor
US11531001B2 (en) 2018-04-20 2022-12-20 Riken Keiki Co., Ltd. Controlled potential electrolysis gas sensor
WO2022091947A1 (en) * 2020-10-27 2022-05-05 株式会社堀場アドバンスドテクノ Diaphragm-type sensor and measurement system using same

Also Published As

Publication number Publication date
JP5251581B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5251581B2 (en) Stabilizing method and apparatus for constant potential electrolytic gas sensor, manufacturing method for constant potential electrolytic gas sensor, gas analyzer, and constant potential electrolytic gas sensor
JPH057657B2 (en)
CN109239163B (en) Sensor with a sensor element
JP2016524789A (en) Estimating the charge state of the positive electrolyte solution in a working redox flow battery cell without a reference electrode
WO2015060328A1 (en) Potentiostatic electrolytic gas sensor
JP6959178B2 (en) Constant potential electrolytic gas sensor
JP2007315824A (en) Potential stabilization method for controlling constant potential electrolysis gas sensor, and controlled constant potential electrolysis gas sensor
EP1502100A2 (en) Chloramine amperometric sensor
JP2007248313A (en) Constant-potential electrolysis type gas sensor
JP2015083924A (en) Constant potential electrolysis type gas sensor
JP2008101948A (en) Galvanic cell type sensor
US20070227908A1 (en) Electrochemical cell sensor
JP2009047431A (en) Gas concentration detector and gas concentration detecting method
JP6209327B2 (en) Constant potential electrolytic gas sensor
JP4671565B2 (en) Diaphragm electrode
JP2015034820A (en) Galvanic cell oxygen sensor
JP2009216523A (en) Galvanic cell type sensor
JP6330213B2 (en) Constant potential electrolytic oxygen gas sensor
JP3650919B2 (en) Electrochemical sensor
JP2019078594A (en) Concentration measuring instrument for chlorine dioxide gas
JP4830520B2 (en) Electrochemical oxygen sensor
JP2019120655A (en) Setting method of temperature correction coefficient of CO detector
JPH0738848Y2 (en) Constant potential electrolytic hydrogen sensor
JPH0298660A (en) Gas concentration sensor
JP2007205910A (en) Electrochemical oxygen sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5251581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees