JP2007205910A - Electrochemical oxygen sensor - Google Patents

Electrochemical oxygen sensor Download PDF

Info

Publication number
JP2007205910A
JP2007205910A JP2006025481A JP2006025481A JP2007205910A JP 2007205910 A JP2007205910 A JP 2007205910A JP 2006025481 A JP2006025481 A JP 2006025481A JP 2006025481 A JP2006025481 A JP 2006025481A JP 2007205910 A JP2007205910 A JP 2007205910A
Authority
JP
Japan
Prior art keywords
drive circuit
positive electrode
oxygen sensor
oxygen
electrochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006025481A
Other languages
Japanese (ja)
Inventor
Shoji Furukawa
昭二 古川
Koji Ota
浩司 太田
Naohisa Kitazawa
直久 北澤
Shogo Hiramatsu
省吾 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2006025481A priority Critical patent/JP2007205910A/en
Publication of JP2007205910A publication Critical patent/JP2007205910A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical oxygen sensor equipped with an inexpensive drive circuit which suppresses a deterioration of a cell part and prevents the flow of a transitional current to a power supply from a cell part at the time of cutting off-of a power supply in the constitution of the cell part and its drive circuit in the electrochemical oxygen sensor. <P>SOLUTION: In the electrochemical oxygen sensor constituted so that the cell part equipped with a positive electrode, a negative electrode, an electrolyte and an oxygen-permeable membrane and a sensor drive circuit are provided in a case, a diode is provided between the positive electrode power supply of the drive circuit and the input side of the positive electrode and the cathode of the diode is connected so as to come to the input side of the positive electrode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気化学式酸素センサに関する。   The present invention relates to an electrochemical oxygen sensor.

酸素センサは、船倉やマンホールの酸欠状態のチェックや麻酔器、人工呼吸器などの医療機器における酸素濃度の検出等、広い分野で使用されている。   Oxygen sensors are used in a wide range of fields, such as checking for oxygen deficiency in ship holds and manholes, and detecting oxygen concentrations in medical devices such as anesthesia machines and ventilators.

酸素センサには、電気化学式、磁気式、ジルコニア式などの、種々の方式のものが使用されている。これらの酸素センサの中では、安価・手軽で、常温で作動するため、電気化学式センサが広く利用されている。   Various types of oxygen sensors such as an electrochemical type, a magnetic type, and a zirconia type are used. Among these oxygen sensors, electrochemical sensors are widely used because they are inexpensive and easy to operate and operate at room temperature.

電気化学式酸素センサは、非特許文献1に記載されているように、アノードに鉛を用いたガルバニ式と、銀・塩化銀を用いて外部から電圧を加えて用いるポーラログラフィック式(定電位式)とに大別される。   As described in Non-Patent Document 1, the electrochemical oxygen sensor includes a galvanic type using lead for the anode, and a polarographic type (constant potential type) used by applying voltage from the outside using silver / silver chloride. ).

特許文献1で開示されている電気化学式酸素センサの一種である定電位式センサは、ケース内部に酸素の電気化学的還元に有効な金属を含む正極と、亜鉛などの金属からなる負極と、電解液とからなるセル部分を、正極−負極間の電圧を一定に保つための駆動回路に接続し、正極−負極間に流れる電流と酸素ガス濃度との間に直線関係があることを利用したものであった。   A constant potential sensor, which is a type of electrochemical oxygen sensor disclosed in Patent Document 1, includes a positive electrode containing a metal effective for electrochemical reduction of oxygen inside a case, a negative electrode made of a metal such as zinc, A cell part consisting of a liquid is connected to a drive circuit for keeping the voltage between the positive electrode and the negative electrode constant, and the fact that there is a linear relationship between the current flowing between the positive electrode and the negative electrode and the oxygen gas concentration is utilized. Met.

また、電気化学式溶存酸素センサは、河川や海水の環境水処理、養殖などの分野で広く利用されていた。従来の電気化学式溶存酸素センサは、水中に溶解している酸素濃度を測定するもので、非特許文献1や特許文献2に開示されているようにガルバニ式と定電位式があり、一般に電気化学式溶存酸素センサの測定原理やセンサ特性は気体中の酸素ガス濃度を測定する酸素ガスセンサと同等であることが知られている。したがって、本願における「電気化学式酸素センサ」とは、気体中の酸素ガスを測定するものも水中の溶存酸素を測定するものも含むものとする。   Electrochemical dissolved oxygen sensors have been widely used in fields such as environmental water treatment and aquaculture of rivers and seawater. Conventional electrochemical dissolved oxygen sensors measure the concentration of oxygen dissolved in water. As disclosed in Non-Patent Document 1 and Patent Document 2, there are galvanic and constant-potential types. It is known that the measurement principle and sensor characteristics of a dissolved oxygen sensor are equivalent to those of an oxygen gas sensor that measures the concentration of oxygen gas in a gas. Therefore, the “electrochemical oxygen sensor” in the present application includes a device for measuring oxygen gas in gas and a device for measuring dissolved oxygen in water.

従来の定電位式電気化学式酸素センサの電位と電流の関係を模式的に図2に示す。図2において、横軸は正極−負極間に流れる電流、縦軸は負極電位に対する正極電位(以下では単に「電圧」とする)である。図2において、Iは0%酸素ガス中での限界電流値を示し、I21は21%酸素ガス中での限界電流値を示し、I100は100%酸素ガス中の限界電流値を示す。電圧がEより低い領域および電圧がEより高い領域では、電圧によって電流は大きく変化するが、電圧がEとEの間では、電流値は酸素透過膜を透過して正極に達する酸素の量、すなわち酸素濃度に応じるため、電圧をEとEの間の適当な値Eとした場合には、電流はその時の酸素濃度に比例してI、I21、I100となる。 FIG. 2 schematically shows the relationship between the potential and current of a conventional constant potential electrochemical oxygen sensor. In FIG. 2, the horizontal axis represents the current flowing between the positive electrode and the negative electrode, and the vertical axis represents the positive electrode potential with respect to the negative electrode potential (hereinafter simply referred to as “voltage”). In FIG. 2, I 0 indicates a limit current value in 0% oxygen gas, I 21 indicates a limit current value in 21% oxygen gas, and I 100 indicates a limit current value in 100% oxygen gas. . The voltage is low areas and voltage E 1 is higher than E 2 region, the current varies greatly depending on the voltage, between the voltage of the E 1 and E 2, the current value reaches passes through the oxygen permeable membrane to the positive electrode When the voltage is set to an appropriate value E 0 between E 1 and E 2 in accordance with the amount of oxygen, that is, the oxygen concentration, the current is proportional to the oxygen concentration at that time, I 0 , I 21 , I 100 It becomes.

なお、E、Eの値は、正極や負極の材質、電解液の種類、正極の面積、温度などの測定条件によって変化するので、これらの条件に適したEの値を選択する必要がある。 Since the values of E 1 and E 2 vary depending on the measurement conditions such as the material of the positive electrode and the negative electrode, the type of the electrolyte, the area of the positive electrode, and the temperature, it is necessary to select an E 0 value suitable for these conditions. There is.

従来の電気化学式酸素センサの駆動回路では、負極電位に対する正極電位を一定の値に保つため、図3に示した回路を用いていた。   In the conventional electrochemical oxygen sensor drive circuit, the circuit shown in FIG. 3 is used in order to keep the positive electrode potential with respect to the negative electrode potential constant.

特開2005−233835号公報JP 2005-233835 A 特開平06−222038号公報JP-A-06-222038 電気化学測定法(上)P233〜P235(著者:藤嶋昭、相澤益男、井上徹、技報堂出版、1996年3月発行)Electrochemical measurement method (above) P233-P235 (authors: Akira Fujishima, Masuo Aizawa, Toru Inoue, Gihodo Publishing, published in March 1996)

図3に示した電気化学式酸素センサの駆動回路を用い、駆動回路の電源としては両電源(例えば+12Vと−12VとGNDなど)を用いた場合も単電源(例えば+6VとGNDなど)を用いた場合も、駆動回路の電源を切断した際、Stと#2端子並びにScと#3端子が接続された状態にあるため、差動増幅器を通じてセル部分から駆動回路の電源側へ電流が流れ、過渡的にはセル部分の正極電位が駆動回路のアース電位(GND)、つまりセル部分の負極電位に対して0Vとなるように引っぱられる。   The driving circuit of the electrochemical oxygen sensor shown in FIG. 3 is used, and a single power source (for example, +6 V and GND) is used even when both power sources (for example, +12 V, −12 V, and GND) are used as the power source of the driving circuit. In this case, since the St and # 2 terminals and the Sc and # 3 terminals are connected when the power supply of the drive circuit is cut off, a current flows from the cell portion to the power supply side of the drive circuit through the differential amplifier. Specifically, it is pulled so that the positive potential of the cell portion becomes 0 V with respect to the ground potential (GND) of the driving circuit, that is, the negative potential of the cell portion.

負極に亜鉛、電解液にpH7〜12の水溶液を用いた電気化学式酸素センサでは、セル部分の正極電位が負極電位に対して例えば+0.1V以下になると、セル内で電気分解が起こり、セル部分が劣化し、センサの機能自体が失われ、その結果センサ寿命が短くなるという問題があった。   In an electrochemical oxygen sensor using zinc as the negative electrode and an aqueous solution having a pH of 7 to 12 as the electrolytic solution, when the positive electrode potential of the cell portion becomes, for example, +0.1 V or less with respect to the negative electrode potential, electrolysis occurs in the cell, and the cell portion Deteriorated, the function of the sensor itself is lost, and as a result, the sensor life is shortened.

なお、駆動回路の電源を切った場合に電気分解を起こす電位は、負極に用いる金属や電解液の種類によって異なるものである。   Note that the potential that causes electrolysis when the drive circuit is turned off varies depending on the type of metal or electrolyte used for the negative electrode.

この現象を回避するため、従来は、駆動回路の電源を切った際に、セル部分の正極電位が負極電位に対して+0.1V以下にならないように、セル部分と駆動回路の接続部分に高価な光学式リレーを使用する必要があり、駆動回路が複雑で高価になるという問題があった。   In order to avoid this phenomenon, conventionally, when the power supply of the drive circuit is turned off, the connection between the cell portion and the drive circuit is expensive so that the positive potential of the cell portion does not become +0.1 V or less with respect to the negative potential. It is necessary to use a simple optical relay, and there is a problem that the drive circuit is complicated and expensive.

そこで、本発明の目的は、電気化学式酸素センサにおけるセル部分とその駆動回路の構成において、セル部分の劣化を抑制し、センサの寿命を長く保つために必要となる、電源切断時のセル部分から電源側への過渡的な電流の流れの防止を行うための安価な駆動回路を備えた電気化学式酸素センサを提供することにある。   Accordingly, an object of the present invention is to reduce the deterioration of the cell portion in the configuration of the cell portion and the drive circuit thereof in the electrochemical oxygen sensor, and from the cell portion when the power is turned off, which is necessary for maintaining the sensor life. An object of the present invention is to provide an electrochemical oxygen sensor having an inexpensive driving circuit for preventing a transient current flow to the power supply side.

請求項1の発明は、ケース内部に正極、負極、電解液、酸素透過膜とを備えたセル部分と、センサ駆動回路とを備えた電気化学式酸素センサにおいて、前記駆動回路の正極電源と正極入力間にダイオードを設け、前記ダイオードのカソードが正極入力側にくるように接続したことを特徴とする。   According to the first aspect of the present invention, there is provided an electrochemical oxygen sensor including a cell portion including a positive electrode, a negative electrode, an electrolyte, and an oxygen permeable membrane inside the case, and a sensor driving circuit. A diode is provided in between, and the cathode of the diode is connected so as to be on the positive electrode input side.

本発明によれば、従来の駆動回路に用いていた高価な光学式リレーに代えて安価なダイオードを用いることにより、電気化学式酸素センサとその駆動回路の構成において、センサ部分の劣化を抑制する安価な駆動回路を備えた電気化学式酸素センサを得ることができる。   According to the present invention, an inexpensive diode is used in place of the expensive optical relay used in the conventional driving circuit, thereby reducing the deterioration of the sensor portion in the configuration of the electrochemical oxygen sensor and its driving circuit. An electrochemical oxygen sensor equipped with a simple drive circuit can be obtained.

本発明の電気化学式酸素センサは、ケース内部に正極、負極、電解液、酸素を選択的に透過させ、かつ透過量が酸素ガスの拡散律速になるように制限するための隔膜(以下では単に「酸素透過膜」とする)とを備えたセル部分と、駆動回路とを備えたものであり、駆動回路の正極電源と正極入力間にダイオードを設け、前記ダイオードのカソードが正極入力側にくるように接続したことを特徴とする。   The electrochemical oxygen sensor of the present invention has a diaphragm (hereinafter simply referred to as “membrane”) for selectively allowing the positive electrode, the negative electrode, the electrolyte, and oxygen to permeate inside the case and limiting the permeation amount to be oxygen gas diffusion rate-limiting. A cell portion having an oxygen permeable membrane) and a drive circuit, and a diode is provided between the positive power source and the positive input of the drive circuit so that the cathode of the diode is on the positive input side. It is characterized by being connected to.

そして、セル部分においては、正極に酸素の電気化学的還元に有効な金、銀、白金などを含む電極を用い、負極に鉛、亜鉛、アルミニウム、スズなどを含む電極を用い、負極金属が直接溶解を起こさない電解液を用いるものである。なお、環境に対する悪影響をなくすためには、セル内部に鉛を含まないことが好ましく、セル部分としては、例えば負極に亜鉛、電解液にpH7〜12の水溶液を用いることができる。   In the cell portion, an electrode containing gold, silver, platinum, etc. effective for electrochemical reduction of oxygen is used for the positive electrode, an electrode containing lead, zinc, aluminum, tin, etc. is used for the negative electrode, and the negative electrode metal is directly An electrolytic solution that does not cause dissolution is used. In order to eliminate adverse effects on the environment, it is preferable not to contain lead in the cell. As the cell part, for example, zinc can be used for the negative electrode, and an aqueous solution having a pH of 7 to 12 can be used for the electrolyte.

本発明の電気化学式酸素センサにおいて、セル部分の構成は従来と同じものを使用することができる。図4は、電気化学式酸素センサのセル部分の断面構造を示したもので、図4において、1は中蓋、2はO−リング、3は酸素透過膜、4は正極、5は正極集電体、6は正極リード線、7は電解液、8は負極、9はホルダー本体、10はホルダー蓋、11は電解液供給用穿孔、12は正極リード線用穿孔、13は正極集電体保持部、14は負極リード線、15は保護膜である。   In the electrochemical oxygen sensor of the present invention, the same structure as that of the conventional cell portion can be used. FIG. 4 shows a cross-sectional structure of the cell portion of the electrochemical oxygen sensor. In FIG. 4, 1 is an inner lid, 2 is an O-ring, 3 is an oxygen permeable membrane, 4 is a positive electrode, and 5 is a positive electrode current collector. Body, 6 is positive electrode lead wire, 7 is electrolyte solution, 8 is negative electrode, 9 is holder body, 10 is holder lid, 11 is perforation for supplying electrolyte solution, 12 is perforation for positive electrode lead wire, and 13 is holding positive electrode current collector , 14 is a negative electrode lead wire, and 15 is a protective film.

多孔性の保護膜15を通過した被測定ガス中の酸素は、酸素透過膜3を通過する。酸素透過膜3を通ってきた酸素は、正極4において還元され、電解液供給用穿孔11中の電解液7を介して、負極8との間で電気化学反応を起こす。   The oxygen in the gas to be measured that has passed through the porous protective film 15 passes through the oxygen permeable film 3. Oxygen that has passed through the oxygen permeable membrane 3 is reduced at the positive electrode 4 and causes an electrochemical reaction with the negative electrode 8 through the electrolytic solution 7 in the electrolytic solution supply perforations 11.

本発明の電気化学式酸素センサに使用する駆動回路を図1に示す。本発明に用いる駆動回路は、図5に示した従来の駆動回路とは、図1に示した点線で囲んだ部分が異なる。すなわち従来の駆動回路の正極電源(図1の+V)と正極入力(図1のP)間に、ダイオードのカソードが正極入力側にくるように接続し、逆に光学式リレーを除去したものである。   A drive circuit used for the electrochemical oxygen sensor of the present invention is shown in FIG. The drive circuit used in the present invention is different from the conventional drive circuit shown in FIG. 5 in the portion surrounded by the dotted line shown in FIG. In other words, the diode is connected so that the cathode of the diode is on the positive input side between the positive power supply (+ V in FIG. 1) and the positive input (P in FIG. 1) of the conventional drive circuit, and the optical relay is removed. is there.

また、図5に示した従来の駆動回路では、駆動回路に光学式リレー(RY1、RY2)を設けていた。そして、駆動回路の電源を切った瞬間に光学式リレーの働きにより、セル部分と駆動回路部分の電気的接続を切断することによって、セル部分から駆動回路の電源側への電流の流れを防止していた。   In the conventional driving circuit shown in FIG. 5, optical relays (RY1, RY2) are provided in the driving circuit. At the moment when the power of the drive circuit is turned off, the optical relay works to disconnect the electrical connection between the cell part and the drive circuit part, thereby preventing current flow from the cell part to the power supply side of the drive circuit. It was.

一方、図1に示した本発明の駆動回路では、正極電源と正極端子間に、ダイオードのカソードが正極入力側にくるように接続することにより、ダイオードの整流作用を利用して、セル部分から駆動回路の電源側へ電流が流れないようにしている。   On the other hand, in the drive circuit of the present invention shown in FIG. 1, by connecting the positive electrode power source and the positive electrode terminal so that the cathode of the diode is on the positive electrode input side, the rectifying action of the diode is used to Current is prevented from flowing to the power supply side of the drive circuit.

定電位で作動させる電気化学式酸素センサは、セル部分と駆動回路とを備えたものである。例えば、セル部分の負極に亜鉛(Zn)、電解液にpH7〜12の水溶液を用いた場合には、つぎの反応がおこる。
正極反応:O+2HO+4e→4OH・・・・・・・・・・・・(1)
負極反応:2Zn+4OH→2ZnO+2HO+4e・・・・・・(2)
全反応:O+2Zn=2ZnO・・・・・・・・・・・・・・・・・(3)
また、負極にアルミニウムを用い、pHが3〜9の範囲の適当な電解液と組み合わせて、セル部分を構成することも可能である。
An electrochemical oxygen sensor that operates at a constant potential includes a cell portion and a drive circuit. For example, when zinc (Zn) is used for the negative electrode of the cell portion and an aqueous solution having a pH of 7 to 12 is used for the electrolytic solution, the following reaction occurs.
Positive electrode reaction: O 2 + 2H 2 O + 4e → 4OH (1)
Negative electrode reaction: 2Zn + 4OH → 2ZnO + 2H 2 O + 4e (2)
Total reaction: O 2 + 2Zn = 2ZnO (3)
It is also possible to form the cell portion by using aluminum for the negative electrode and combining with an appropriate electrolyte having a pH in the range of 3-9.

本発明の電気化学式酸素センサに用いる酸素透過膜の材質としては、酸素を選択的に透過させ、かつ透過量が酸素ガスの拡散律速になるように制限することができる、例えば、四フッ化エチレン六フッ化プロピレンコポリマー膜、パーフロロアルコキシ膜、エチレンテトラフロロエチレンコポリマー膜などを用いることができる。   The material of the oxygen permeable membrane used in the electrochemical oxygen sensor of the present invention can selectively permeate oxygen and can be limited so that the permeation amount is diffusion-limited for oxygen gas. For example, ethylene tetrafluoride A hexafluoropropylene copolymer film, a perfluoroalkoxy film, an ethylenetetrafluoroethylene copolymer film, or the like can be used.

図1は、本発明における駆動回路の一例を示したものである。図1において、IC1、IC2、IC3はいずれも差動増幅器、IC4はシャントレギュレータ、THは温度補償用のサーミスタ素子である。   FIG. 1 shows an example of a drive circuit according to the present invention. In FIG. 1, IC1, IC2, and IC3 are all differential amplifiers, IC4 is a shunt regulator, and TH is a thermistor element for temperature compensation.

差動増幅器・シャントレギュレータの特性から、#3の電位は、駆動回路のアース電位(GND)に対してシャントレギュレータIC4と抵抗R8とR9によって設定された電位に維持される。また、#4の電位は駆動回路のアース電位(GND)と同電位である。よって、酸素センサの正極電位は負極電位に対して一定の値に保持される。   Due to the characteristics of the differential amplifier / shunt regulator, the potential # 3 is maintained at the potential set by the shunt regulator IC4 and the resistors R8 and R9 with respect to the ground potential (GND) of the drive circuit. The potential of # 4 is the same as the ground potential (GND) of the drive circuit. Therefore, the positive electrode potential of the oxygen sensor is held at a constant value with respect to the negative electrode potential.

一方、酸素の還元によって生じたセンサ電流は、すべて温度補償用のサーミスタ素子THを通って差動増幅器IC2の出力に流れ込むが、その際にサーミスタ素子THの両端に発生する電圧が差動増幅器IC3に入力され、抵抗R2、R3、R4、R5によって設定される増幅度に応じて増幅され、差動増幅器IC3の出力端子に出力され、駆動回路の出力として取り出される。   On the other hand, all of the sensor current generated by the reduction of oxygen flows into the output of the differential amplifier IC2 through the thermistor element TH for temperature compensation. At this time, the voltage generated at both ends of the thermistor element TH is the differential amplifier IC3. Is amplified in accordance with the degree of amplification set by the resistors R2, R3, R4, and R5, output to the output terminal of the differential amplifier IC3, and taken out as the output of the drive circuit.

以上の電気回路動作によって、酸素センサの正極電位は負極電位に対して一定の値に保持されると同時に、センサ電流に比例した電圧が出力される。   With the above electric circuit operation, the positive electrode potential of the oxygen sensor is held at a constant value with respect to the negative electrode potential, and at the same time, a voltage proportional to the sensor current is output.

本発明の電気化学式酸素センサでは、正極電源(図1の+V)と正極端子間(図1のP)にダイオードが設けられ、ダイオードのカソードが正極入力側にくるように接続されている。そのため、駆動回路の電源を切断した際に、セル部分から駆動回路の電源側に電流が流れないため、酸素センサのセル部分の正極電位が負極電位に対して+0.1V以下とはならず、酸素センサのセル部分の劣化を防ぐことができる。   In the electrochemical oxygen sensor of the present invention, a diode is provided between the positive power supply (+ V in FIG. 1) and the positive terminal (P in FIG. 1), and the cathode of the diode is connected to the positive input side. Therefore, when the power supply of the drive circuit is cut off, no current flows from the cell part to the power supply side of the drive circuit, so the positive electrode potential of the cell part of the oxygen sensor does not become +0.1 V or less with respect to the negative electrode potential, Deterioration of the cell portion of the oxygen sensor can be prevented.

[実施例1および比較例1]
[実施例1]
本発明の実施例1の電気化学酸素センサの、セル部分の断面構造は図4に示したものと同じである。1はABS樹脂からなる中蓋、2はネオプレンゴムからなるO−リング、酸素透過膜3は四フッ化エチレン六フッ化プロピレンコポリマー膜からなる。
[Example 1 and Comparative Example 1]
[Example 1]
The cross-sectional structure of the cell portion of the electrochemical oxygen sensor of Example 1 of the present invention is the same as that shown in FIG. 1 is an inner lid made of ABS resin, 2 is an O-ring made of neoprene rubber, and the oxygen permeable film 3 is made of a tetrafluoroethylene hexafluoropropylene copolymer film.

金からなる正極4は四フッ化エチレン六フッ化プロピレンコポリマー膜からなる酸素透過膜3にスパッタした触媒電極であり、面積は25mmである。5はカーボンからなる正極集電体、6はチタンからなる正極リード線、7は1.0×10−3mol/lの水酸化カリウム水溶液100mlに7.46gの塩化カリウムを加えたpH10.87(24.3℃)の電解液、8は亜鉛からなる負極、9はABS樹脂からなるホルダー本体、10はABS樹脂からなるホルダー蓋である。 The positive electrode 4 made of gold is a catalyst electrode sputtered on the oxygen permeable membrane 3 made of a tetrafluoroethylene hexafluoropropylene copolymer film, and has an area of 25 mm 2 . 5 is a positive electrode current collector made of carbon, 6 is a positive electrode lead wire made of titanium, 7 is a pH of 10.87 obtained by adding 7.46 g of potassium chloride to 100 ml of a 1.0 × 10 −3 mol / l potassium hydroxide aqueous solution. (24.3 ° C.) electrolyte, 8 is a negative electrode made of zinc, 9 is a holder body made of ABS resin, and 10 is a holder lid made of ABS resin.

ホルダー本体9およびホルダー蓋10には、それぞれネジが切られている。中蓋1、O−リング2、酸素透過膜3、正極4、正極集電体5、ホルダー本体9とホルダー蓋10とのネジ締めによって押圧され、良好な接触状態が保持される。チタン製の正極リード6は正極4に、チタン製の負極リード14は負極8に、それぞれ電気的に接続されている。   The holder body 9 and the holder lid 10 are each threaded. The inner lid 1, the O-ring 2, the oxygen permeable membrane 3, the positive electrode 4, the positive electrode current collector 5, the holder main body 9 and the holder lid 10 are pressed by screwing, and a good contact state is maintained. The titanium positive electrode lead 6 is electrically connected to the positive electrode 4, and the titanium negative electrode lead 14 is electrically connected to the negative electrode 8.

中蓋1は押圧端板として機能し、多孔性フッ素樹脂膜からなる保護膜15は酸素透過膜3の表面の汚れを防止し、酸素透過膜3は酸素を選択的に透過させ、かつ透過量が酸素の拡散律速になるように制限するためのものである。O−リング2によって気密、液密性が確保される。   The inner lid 1 functions as a pressing end plate, the protective film 15 made of a porous fluororesin film prevents the surface of the oxygen permeable film 3 from being soiled, the oxygen permeable film 3 allows oxygen to permeate selectively and the permeation amount Is to limit the oxygen diffusion rate. The O-ring 2 ensures air tightness and liquid tightness.

実施例1の電気化学酸素センサの駆動回路は図1に示したものと同じである。実施例1では、セル部の負極に亜鉛を用いたため、正極―負極間の電位を約+0.1〜+0.4Vに保って、好ましくは+0.25Vに保って測定する。酸素濃度を測定する場合、測定電圧は+0.1Vと+0.4Vの間の適当な値でもよいが、+0.1Vや+0.4Vに近い値の場合、電流値が限界電流値からずれる恐れがあるため、+0.1Vと+0.4Vとからできるだけ離れた+0.1Vと+0.4Vの中間の電圧、この場合は+0.25Vが好ましい値となる。   The drive circuit of the electrochemical oxygen sensor of Example 1 is the same as that shown in FIG. In Example 1, since zinc was used for the negative electrode of the cell portion, the potential between the positive electrode and the negative electrode was kept at about +0.1 to +0.4 V, and preferably kept at +0.25 V. When measuring the oxygen concentration, the measurement voltage may be an appropriate value between +0.1 V and +0.4 V, but if the value is close to +0.1 V or +0.4 V, the current value may deviate from the limit current value. Therefore, an intermediate voltage between +0.1 V and +0.4 V, which is as far as possible from +0.1 V and +0.4 V, in this case, +0.25 V is a preferable value.

そして、実施例1では、図1のD1で示したように、正極電源(図1の+V)と正極端子(図1のP)間に、ダイオードのカソードが正極入力側にくるように一般整流ダイオードを設けた。また、図1の駆動回路において、電源としては乾電池4個を直列接続したもの(+6V入力)を使用した。   In the first embodiment, as indicated by D1 in FIG. 1, the general rectification is performed so that the cathode of the diode is on the positive input side between the positive power source (+ V in FIG. 1) and the positive terminal (P in FIG. 1). A diode was provided. In the drive circuit of FIG. 1, a power source in which four dry batteries are connected in series (+6 V input) was used.

[比較例1]
図1に示した駆動回路に代えて、図5に示した駆動回路を用い、センサと駆動回路の接続部分に光学式リレーを用いたこと以外は実施例1と同様にして、比較例1の電気化学式酸素センサを作製した。駆動回路の電源としては実施例1と同様に乾電池4個を直列接続したもの(+6V入力)を使用した。
[Comparative Example 1]
The driving circuit shown in FIG. 5 is used in place of the driving circuit shown in FIG. 1, and an optical relay is used for the connection between the sensor and the driving circuit. An electrochemical oxygen sensor was fabricated. As the power source of the drive circuit, a battery in which four dry batteries were connected in series (+6 V input) was used in the same manner as in Example 1.

比較例1の電気化学式酸素センサについて、実施例1と同様の条件で寿命試験を行った。その結果、電源を切った場合、セル部分から駆動回路の電源側への電流は流れず、セル部分の正極電位が負極電位に対して0.1V以下とならないため、セル部分の劣化が進行せず、実施例1と同程度の長い寿命が得られることがわかった。ただし、光学式リレーを用いたため、駆動回路が高価で複雑になるという問題がある。   The electrochemical oxygen sensor of Comparative Example 1 was subjected to a life test under the same conditions as in Example 1. As a result, when the power is turned off, no current flows from the cell portion to the power supply side of the driving circuit, and the positive potential of the cell portion does not become 0.1 V or less with respect to the negative potential, so that the deterioration of the cell portion proceeds. As a result, it was found that a life as long as that of Example 1 was obtained. However, since an optical relay is used, there is a problem that the drive circuit is expensive and complicated.

[比較例2]
図1に示した駆動回路に代えて、図3に示した駆動回路を用い、正極入力と正極電源間にダイオードを設けなかったこと以外は実施例1と同様にして、比較例2の電気化学式酸素センサを作製した。
[Comparative Example 2]
The drive circuit shown in FIG. 3 is used instead of the drive circuit shown in FIG. 1, and the electrochemical formula of Comparative Example 2 is the same as in Example 1 except that no diode is provided between the positive input and the positive power supply. An oxygen sensor was fabricated.

電気化学式酸素センサの駆動回路が実施例1の場合と比較例2の場合について、駆動回路への供給電源を切断した時の、セル部分の正負極間電圧の挙動を図6に示す。なお、供給電源としてはいずれの場合も、乾電池4個を直列接続したもの(+6V入力)を使用した。   FIG. 6 shows the behavior of the voltage between the positive and negative electrodes of the cell portion when the power supply to the drive circuit is cut off when the drive circuit of the electrochemical oxygen sensor is Example 1 and Comparative Example 2. Note that in all cases, a supply power source in which four dry batteries were connected in series (+6 V input) was used.

図6において、駆動回路が実施例1の場合の正負極間電圧の挙動は実線で、比較例2の場合の正負極間電圧の挙動は点線で示した。図6において、時間Aでそれぞれのセンサの駆動回路の供給電源を切断した。その結果、駆動回路が比較例2のセンサでは、正負極間の電圧が一時的に約0.05Vまで低下した。一方、駆動回路が実施例1の場合は、セル部分の正負極間電圧は変化せず、基板からの影響を受けなかった。   In FIG. 6, the behavior of the voltage between the positive and negative electrodes when the drive circuit is Example 1 is shown by a solid line, and the behavior of the voltage between the positive and negative electrodes when the drive circuit is Comparative Example 2 is shown by a dotted line. In FIG. 6, at time A, the power supply of each sensor drive circuit was cut off. As a result, in the sensor having the driving circuit of Comparative Example 2, the voltage between the positive and negative electrodes temporarily decreased to about 0.05V. On the other hand, when the drive circuit was Example 1, the voltage between the positive and negative electrodes of the cell portion did not change and was not affected by the substrate.

それぞれのセンサについて駆動回路の供給電源切断後、再度駆動回路に電源供給した場合、従来の駆動回路に接続した比較例2では、電源切断前の出力への回復が遅く、出力値も安定しなかったが、本発明における駆動回路に接続した実施例1のセンサでは回復に要する時間が短く、かつ安定した特性を示した。   When power is supplied to the drive circuit again after the supply power of the drive circuit is turned off for each sensor, in Comparative Example 2 connected to the conventional drive circuit, the recovery to the output before the power supply is turned off slowly and the output value is not stable. However, the sensor of Example 1 connected to the drive circuit according to the present invention has a short recovery time and shows stable characteristics.

このことは、本発明による駆動回路に接続したセンサでは正極電位は負極電位に対して0.1V以下にならないため、セル部分の劣化が進行せず、再測定する場合でも、安定したセンサ特性を発揮できることを示している。   This is because, in the sensor connected to the drive circuit according to the present invention, the positive electrode potential does not become 0.1 V or less with respect to the negative electrode potential, so that the cell portion does not deteriorate and stable sensor characteristics can be obtained even when remeasured. It shows that it can be demonstrated.

[実施例2]
電解液として0.1mol/lのリン酸二水素カリウム水溶液50mlに0.1mol/lの水酸化ナトリウム水溶液46.1mlを加えて100mlに希釈したpH8.0の緩衝溶液を用いたこと以外は実施例1と同様にしてセル部分を作製し、図1に示したのと同じ駆動回路を用いて、実施例2の電気化学式酸素センサを作製した。
[Example 2]
Implemented except that 50 ml of 0.1 mol / l potassium dihydrogen phosphate aqueous solution was added to 4 ml of 0.1 mol / l sodium hydroxide aqueous solution and diluted to 100 ml as an electrolytic solution. A cell portion was produced in the same manner as in Example 1, and an electrochemical oxygen sensor of Example 2 was produced using the same drive circuit as shown in FIG.

そして、実施例1と同様にして、駆動回路への供給電源を切断した時の、セル部分の正負極間電圧の挙動を測定した。その結果、セル部分の正負極間電圧は変化せず、基板からの影響を受けなかった。また、駆動回路の供給電源切断後、再度駆動回路に電源供給した場合、回復に要する時間が短く、かつ安定した特性を示した。   Then, in the same manner as in Example 1, the behavior of the voltage between the positive and negative electrodes in the cell portion when the power supply to the drive circuit was cut was measured. As a result, the voltage between the positive and negative electrodes in the cell portion did not change and was not affected by the substrate. Further, when power was supplied to the drive circuit again after the power supply to the drive circuit was cut off, the time required for recovery was short and stable characteristics were exhibited.

実施例1、2の結果から、駆動回路の正極電源と正極入力間にダイオードを設けることにより、セル部分の劣化のない、優れた寿命特性を示す電気化学式酸素センサを、従来の光学式リレーを用いる場合に比べて安価に得ることができた。   From the results of Examples 1 and 2, by providing a diode between the positive power supply and the positive input of the drive circuit, an electrochemical oxygen sensor exhibiting excellent life characteristics without deterioration of the cell portion, a conventional optical relay Compared with the case where it uses, it was able to obtain cheaply.

本発明の電気化学式酸素センサの駆動回路を示す図。The figure which shows the drive circuit of the electrochemical type oxygen sensor of this invention. 従来の定電位式電気化学式酸素センサの電位と電流の関係を示す模式図。The schematic diagram which shows the relationship between the electric potential of a conventional constant potential type electrochemical oxygen sensor, and an electric current. 従来の駆動回路から光学式リレーを除去した駆動回路を示す図。The figure which shows the drive circuit which removed the optical relay from the conventional drive circuit. 電気化学式酸素センサの断面構造を示す図Diagram showing the cross-sectional structure of an electrochemical oxygen sensor 従来の光学式リレーを用いた電気化学式酸素センサの駆動回路を示す図。The figure which shows the drive circuit of the electrochemical type oxygen sensor using the conventional optical relay. 実施例1と比較例2について、駆動回路への供給電源を切断した時の、セル部分の正負極間電圧の挙動を示す図。The figure which shows the behavior of the voltage between positive / negative of a cell part when the power supply to a drive circuit is cut | disconnected about Example 1 and Comparative Example 2. FIG.

符号の説明Explanation of symbols

3 多孔性膜
4 正極
7 電解液
8 負極
IC1、IC2、IC3 差動増幅器
IC4、IC5 シャントレギュレータ
TH 温度補償用のサーミスタ素子
RY1、RY2 光学式リレー
3 Porous membrane 4 Positive electrode 7 Electrolyte 8 Negative electrode IC1, IC2, IC3 Differential amplifier IC4, IC5 Shunt regulator TH Temperature compensation thermistor element RY1, RY2 Optical relay

Claims (1)

ケース内部に正極、負極、電解液、酸素透過膜とを備えたセル部分と、センサ駆動回路とを備えた電気化学式酸素センサにおいて、前記駆動回路の正極電源と正極入力間にダイオードを設け、前記ダイオードのカソードが正極入力側にくるように接続したことを特徴とする電気化学式酸素センサ。 In an electrochemical oxygen sensor including a cell portion including a positive electrode, a negative electrode, an electrolyte, and an oxygen permeable film inside the case, and a sensor driving circuit, a diode is provided between a positive power source and a positive input of the driving circuit, An electrochemical oxygen sensor characterized in that the cathode of the diode is connected to the positive electrode input side.
JP2006025481A 2006-02-02 2006-02-02 Electrochemical oxygen sensor Pending JP2007205910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025481A JP2007205910A (en) 2006-02-02 2006-02-02 Electrochemical oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025481A JP2007205910A (en) 2006-02-02 2006-02-02 Electrochemical oxygen sensor

Publications (1)

Publication Number Publication Date
JP2007205910A true JP2007205910A (en) 2007-08-16

Family

ID=38485501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025481A Pending JP2007205910A (en) 2006-02-02 2006-02-02 Electrochemical oxygen sensor

Country Status (1)

Country Link
JP (1) JP2007205910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069749A1 (en) * 2007-11-28 2009-06-04 Gs Yuasa Corporation Electrochemical oxygen sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036596A (en) * 1973-08-03 1975-04-05
JPS56155356A (en) * 1980-05-06 1981-12-01 Tokyo Shibaura Electric Co Cooler
JPH08145945A (en) * 1994-11-15 1996-06-07 Japan Storage Battery Co Ltd Diaphragm type gas sensor device and its operation method
JP2001519030A (en) * 1997-04-06 2001-10-16 ブローミン コンパウンズ リミテッド Active halogen online analyzer
JP2001522464A (en) * 1997-05-01 2001-11-13 セントラル リサーチ ラボラトリーズ リミティド Electrochemical sensing circuit
JP2002257772A (en) * 2001-02-27 2002-09-11 Ngk Spark Plug Co Ltd Abnormality detecting method for air-fuel ratio sensor and protecting method for sensor control circuit
JP2005233835A (en) * 2004-02-20 2005-09-02 Japan Storage Battery Co Ltd Electrochemical oxygen sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036596A (en) * 1973-08-03 1975-04-05
JPS56155356A (en) * 1980-05-06 1981-12-01 Tokyo Shibaura Electric Co Cooler
JPH08145945A (en) * 1994-11-15 1996-06-07 Japan Storage Battery Co Ltd Diaphragm type gas sensor device and its operation method
JP2001519030A (en) * 1997-04-06 2001-10-16 ブローミン コンパウンズ リミテッド Active halogen online analyzer
JP2001522464A (en) * 1997-05-01 2001-11-13 セントラル リサーチ ラボラトリーズ リミティド Electrochemical sensing circuit
JP2002257772A (en) * 2001-02-27 2002-09-11 Ngk Spark Plug Co Ltd Abnormality detecting method for air-fuel ratio sensor and protecting method for sensor control circuit
JP2005233835A (en) * 2004-02-20 2005-09-02 Japan Storage Battery Co Ltd Electrochemical oxygen sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069749A1 (en) * 2007-11-28 2009-06-04 Gs Yuasa Corporation Electrochemical oxygen sensor
US20100252432A1 (en) * 2007-11-28 2010-10-07 Gs Yuasa Corporation Electrochemical oxygen sensor
JP5019141B2 (en) * 2007-11-28 2012-09-05 株式会社Gsユアサ Electrochemical oxygen sensor

Similar Documents

Publication Publication Date Title
EP2219024B1 (en) Electrochemical oxygen sensor
EP1593962B1 (en) Eletrochemical oxygen sensor
JP4062447B2 (en) Constant potential oxygen sensor
JPH0473095B2 (en)
WO2015060328A1 (en) Potentiostatic electrolytic gas sensor
CN109642887A (en) Oxygen sensor
US20070227908A1 (en) Electrochemical cell sensor
JP2007205910A (en) Electrochemical oxygen sensor
JP2015083924A (en) Constant potential electrolysis type gas sensor
JP6209327B2 (en) Constant potential electrolytic gas sensor
JP4671565B2 (en) Diaphragm electrode
JP4830520B2 (en) Electrochemical oxygen sensor
US20200240948A1 (en) Lead-free galvanic oxygen sensor
JP4835436B2 (en) Electrochemical gas sensor and manufacturing method thereof
JP4217077B2 (en) Stabilization method of diaphragm type electrode
JPH0239740B2 (en)
JP2001289816A (en) Controlled potential electrolysis type gas sensor
JP2012117954A (en) Hydrogen fluoride detector
JP2007205904A (en) Electrochemical oxygen sensor
JP2019066328A (en) Electrochemical oxygen sensor
JP7440691B1 (en) Electrochemical gas sensor, electrochemical gas measurement method
JP2004271234A (en) Controlled potential electrolytic acidic gas detector
Bergman Amperometric oxygen sensors: problems with cathodes and anodes of metals other than silver
JP2018059719A (en) Electrochemical oxygen sensor
JP2002310974A (en) Acidic air detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025