JP2010185478A - Torsion bar and manufacturing method thereof - Google Patents

Torsion bar and manufacturing method thereof Download PDF

Info

Publication number
JP2010185478A
JP2010185478A JP2009028321A JP2009028321A JP2010185478A JP 2010185478 A JP2010185478 A JP 2010185478A JP 2009028321 A JP2009028321 A JP 2009028321A JP 2009028321 A JP2009028321 A JP 2009028321A JP 2010185478 A JP2010185478 A JP 2010185478A
Authority
JP
Japan
Prior art keywords
stress
torsion bar
sample
mpa
torsional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009028321A
Other languages
Japanese (ja)
Other versions
JP5312973B2 (en
Inventor
Shunji Nakajima
俊司 中島
Fumio Takahashi
文雄 高橋
Yoshiki Ono
芳樹 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2009028321A priority Critical patent/JP5312973B2/en
Publication of JP2010185478A publication Critical patent/JP2010185478A/en
Application granted granted Critical
Publication of JP5312973B2 publication Critical patent/JP5312973B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a torsion bar having high strength against fatigue which can cope with a large stress load, and its manufacturing method. <P>SOLUTION: High-frequency quenching is applied to a steel material which is a raw material of the torsion bar in a state that a torsional stress is imposed in a 45°-direction (generation direction of tension main stress) which is the use direction of the torsion bar, and after that, a compression residual stress is imparted in the 45°-direction by releasing a load of the torsional stress. In the torsion bar, the fatigue generated by the tension main stress generated in the 45°-direction which is the use direction causes breakage, but when the compression residual stress is imparted in the 45°-direction, the tension main stress generated in the 45°-direction is offset by the compression residual stress at the use of the torsion bar. When the torsional stress imposed during the high-frequency quenching is lower than 900 MPa, a limit of the fatigue of a sample is almost the same as that not imposed with the torsional stress, but when the torsional stress is greater than or equal to 900 MPa, the limit of the fatigue of the sample is increased. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、使用時にねじり応力が加えられるトーションバーおよびその製造方法に係り、特に疲労強度の向上技術の改良に関する。   The present invention relates to a torsion bar to which a torsional stress is applied during use and a method for manufacturing the torsion bar, and more particularly to improvement of a technique for improving fatigue strength.

直線状のばねであるトーションバーは、自動車の懸架等に使用されている。トーションバーでは、その一端を固定して他端をねじったときのねじり変形によるばね作用を利用しており、単位体積あたりに蓄えられる弾性エネルギーが大きいことから、軽量でかつコンパクトである。   A torsion bar which is a linear spring is used for suspension of automobiles. The torsion bar uses a spring action due to torsional deformation when its one end is fixed and the other end is twisted, and since the elastic energy stored per unit volume is large, it is lightweight and compact.

このようなトーションバーの製造方法では、その疲労強度向上のために種々の技術が提案されている。たとえば、非特許文献1では、トーションバーの材質としてSUP9を用いて焼入れおよび焼戻しを行うことにより、所定の硬さを有するように調質された調質トーションバーを得ている。また、高周波焼入れ用材料として、調質された合金から炭素鋼に変更して用いることが多いが、高周波焼入れ用トーションバーでも、S45C等の炭素鋼に変更して用いている。この場合、表面に形成される硬化層の深さの比(=硬化層の深さ/トーションバーの半径)が45〜75%となるように、S45Cからなる素材に高周波焼入れを行い、その後、低温(150℃)で焼戻しを行うことにより、通常のトーションバーよりも高い疲労強度を得ている。   In such a torsion bar manufacturing method, various techniques have been proposed to improve the fatigue strength. For example, in Non-Patent Document 1, a tempered torsion bar tempered to have a predetermined hardness is obtained by quenching and tempering using SUP9 as the material of the torsion bar. Further, the induction hardening material is often changed from a tempered alloy to carbon steel, but the induction hardening torsion bar is also changed to carbon steel such as S45C. In this case, the material made of S45C is induction-quenched so that the ratio of the depth of the cured layer formed on the surface (= the depth of the cured layer / the radius of the torsion bar) is 45 to 75%. By tempering at a low temperature (150 ° C.), higher fatigue strength than that of a normal torsion bar is obtained.

一方、ばね製品の疲労強度を向上させる技術として、ショットピーニングや高周波焼入れによる圧縮残留応力の付与がある。また、これらの技術を応用し、さらに大きな圧縮残留応力を得るための技術として、板ばねへの適用を目的として開発されたストレスショットピーニングやストレス高周波焼入れがある。   On the other hand, techniques for improving the fatigue strength of spring products include the application of compressive residual stress by shot peening or induction hardening. In addition, stress shot peening and stress induction hardening, which have been developed for application to leaf springs, are techniques for applying these techniques to obtain a larger compressive residual stress.

たとえば特許文献1のストレスショットピーニングでは、板ばねをその使用方向に曲げ応力を加えた状態で表面にショットピーニングを行う。ショットピーニング後の板ばねでは、それを冶具から取り外す際に働く復元力(板ばねが元に戻ろうとする力)により、通常のショットピーニングよりも大きな圧縮残留応力が表層に発生する。たとえば特許文献2のストレス高周波焼入れでは、板ばねをその使用方向に曲げ応力を加えた状態で表面に高周波焼入れを行う。高周波焼入れ後の板ばねでは、それを冶具から取り外す際に働く復元力により、通常の高周波焼入れよりも大きな圧縮残留応力が発生する。   For example, in the stress shot peening of Patent Document 1, shot peening is performed on the surface of the leaf spring in a state where bending stress is applied in the direction of use. In the leaf spring after shot peening, a compressive residual stress larger than that in normal shot peening is generated in the surface layer due to a restoring force (a force that the leaf spring tries to return) when removing it from the jig. For example, in the stress induction hardening of Patent Document 2, induction hardening is performed on the surface in a state where bending stress is applied to the leaf spring in the direction of use. In the leaf spring after induction hardening, a compressive residual stress larger than that of normal induction hardening occurs due to a restoring force that acts when the leaf spring is removed from the jig.

特開昭60−227929号公報JP-A-60-227929 特開2006−71082号公報JP 2006-71082 A

高周波焼入トーションバーの研究、佐藤保夫、丹下彰、白井勝義、ばね技術研究会昭和55年度Research on induction hardening torsion bar, Yasuo Sato, Akira Tange, Katsuyoshi Shirai, Spring Technology Study Group

ところで、自動車では、燃費向上のため、各部品の軽量化が要求されている。トーションバーの軽量化には小径化が有効である。しかしながら、この場合、トーションバーにはより大きな応力が負荷されることから、上記のような従来技術のトーションバーの疲労強度では不十分であった。   By the way, in automobiles, it is required to reduce the weight of each part in order to improve fuel consumption. A reduction in diameter is effective for reducing the weight of the torsion bar. However, in this case, since a larger stress is applied to the torsion bar, the fatigue strength of the conventional torsion bar as described above is insufficient.

したがって、本発明は、小径化による大きな応力の負荷に対応可能な高疲労強度を有するトーションバーおよびその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a torsion bar having a high fatigue strength that can cope with a large stress load due to a reduction in diameter and a method for manufacturing the torsion bar.

トーションバーでは、図11に示すように、一端を固定し、他端を矢印方向Tにねじると、軸線に対する45°方向に引張の主応力が発生し、軸線に対する−45°方向に圧縮の主応力が発生する。本発明者は、このようなトーションバーの使用時の応力発生状態を考慮し、トーションバーの素材である鋼材への高周波焼入れ時に次のようにねじり応力を負荷することにより、疲労強度の向上を図ることができることを見出した。   In the torsion bar, as shown in FIG. 11, when one end is fixed and the other end is twisted in the arrow direction T, a tensile main stress is generated in the 45 ° direction with respect to the axis, and the main compression is performed in the −45 ° direction with respect to the axis. Stress is generated. The present inventor considers the state of stress generation when using such a torsion bar, and improves the fatigue strength by applying torsional stress as follows during induction hardening to the steel material that is the material of the torsion bar. I found out that I can plan.

トーションバーの使用方向である45°方向にねじり応力を負荷した状態で、鋼材に高周波焼入れを行う。その後、ねじり応力の負荷を解除すると、45°方向に圧縮残留応力が付与される。トーションバーでは、使用方向である45°方向に発生する引張主応力による疲労が破壊原因となるが、上記のように45°方向に圧縮残留応力を付与すると、トーションバーの使用では、45°方向に生じる引張主応力が上記圧縮残留応力と相殺され、その結果、疲労強度の向上を図ることができる。この場合、そのような効果を得るためには、高周波焼入れ時に鋼材に負荷するねじり応力を900MPa以上に設定する必要がある。   In a state where a torsional stress is applied in the 45 ° direction, which is the direction of use of the torsion bar, induction hardening is performed on the steel material. Thereafter, when the torsional stress is released, compressive residual stress is applied in the 45 ° direction. In a torsion bar, fatigue due to tensile principal stress generated in the direction of 45 °, which is the direction of use, causes failure. However, when compressive residual stress is applied in the direction of 45 ° as described above, the direction of 45 ° The tensile principal stress generated in the above is offset with the compressive residual stress, and as a result, the fatigue strength can be improved. In this case, in order to obtain such an effect, it is necessary to set the torsional stress applied to the steel material during induction hardening to 900 MPa or more.

本発明のトーションバーの製造方法は、900MPa以上のねじり応力を鋼材に負荷した状態で鋼材に高周波焼入れを行うことを特徴としている。本発明のトーションバーの製造方法では、高周波焼入れ時に鋼材に負荷するねじり応力を900MPa以上に設定することにより、疲労強度の向上を図ることができ、その結果、大きな応力の負荷への対応が可能となり、トーションバーの小径化が可能となる。   The method for producing a torsion bar according to the present invention is characterized in that induction hardening is performed on a steel material in a state where a torsional stress of 900 MPa or more is applied to the steel material. In the torsion bar manufacturing method of the present invention, by setting the torsional stress applied to the steel material during induction hardening to 900 MPa or more, the fatigue strength can be improved, and as a result, it is possible to cope with a large stress load. Thus, the diameter of the torsion bar can be reduced.

本発明のトーションバーの製造方法は、種々の構成を用いることができる。たとえば高周波焼入れ中、ねじり応力を継続負荷することができる。たとえば、鋼材のねじり量を一定に保持してねじり応力を継続負荷しない場合、高周波焼入れを開始すると、加熱により歪みが緩和されて、焼入れ途中でねじり応力が除去される。その結果、ねじり応力の負荷による上記効果が不十分になるから、ねじり応力を継続負荷することは重要である。高周波移動焼入れ時にねじり応力の継続負荷を行うことにより、軸線に平行な表面領域の全体に圧縮残留応力を付与することができる。   The manufacturing method of the torsion bar of the present invention can use various configurations. For example, torsional stress can be continuously applied during induction hardening. For example, in the case where the torsional stress of the steel material is kept constant and the torsional stress is not continuously applied, when induction hardening is started, the strain is relaxed by heating, and the torsional stress is removed during the quenching. As a result, since the above effect due to the torsional stress becomes insufficient, it is important to continuously apply the torsional stress. By applying a continuous torsional stress during high-frequency moving quenching, compressive residual stress can be applied to the entire surface region parallel to the axis.

本発明の第1のトーションバーは、上記製造方法により得られるトーションバーである。すなわち、本発明のトーションバーは、疲労限度が片振りの応力振幅で450MPa以上であることを特徴としている。本発明のトーションバーでは、本発明のトーションバーの製造方法と同様な効果を得ることができる。   The 1st torsion bar of this invention is a torsion bar obtained by the said manufacturing method. That is, the torsion bar according to the present invention is characterized in that the fatigue limit is 450 MPa or more in a one-way stress amplitude. In the torsion bar of the present invention, the same effect as that of the method of manufacturing the torsion bar of the present invention can be obtained.

本発明の第2のトーションバーは、表面に硬化層が形成され、トーションバーの半径r、硬化層の表面からの深さtは、0.05<t/r<0.17を満足することを特徴としている。t/rが0.05以下である場合、硬化層が薄いため、その厚さのコントロールが困難となり、安定した均一な硬化層の形成が困難である。一方、t/rが0.17以上である場合、除荷時の復元力による効果が表面付近まで到達しないため、十分な疲労強度を得ることができない。0.05<t/r<0.17を満足することにより、上記不具合を解消することができる。   In the second torsion bar of the present invention, a cured layer is formed on the surface, and the radius r of the torsion bar and the depth t from the surface of the cured layer satisfy 0.05 <t / r <0.17. It is characterized by. When t / r is 0.05 or less, since the cured layer is thin, it is difficult to control the thickness, and it is difficult to form a stable and uniform cured layer. On the other hand, when t / r is 0.17 or more, the effect of the restoring force at the time of unloading does not reach the vicinity of the surface, so that sufficient fatigue strength cannot be obtained. By satisfying 0.05 <t / r <0.17, the above problem can be solved.

鋼材の硬度を430〜510HVとすることが好適である。鋼材の硬さが430HV以下である場合、十分な疲労強度を確保することができない。一方、鋼材の硬さが510HV以上である場合、鋼材が脆性的に破壊するので好ましくない。鋼材の硬度を430〜510HVとすることにより、上記不具合を解消することができる。   The hardness of the steel material is preferably 430 to 510 HV. When the hardness of the steel material is 430 HV or less, sufficient fatigue strength cannot be ensured. On the other hand, when the hardness of the steel material is 510 HV or more, the steel material is brittlely broken, which is not preferable. By setting the hardness of the steel material to 430 to 510 HV, the above problems can be solved.

トーションバーでは、その使用方向Tにねじり応力を加えると、図11に示すように、軸線に対する45°方向に引張の主応力が生じ、軸線に対する−45°方向に圧縮の主応力が生じるから、軸線に対する45°方向に付与される圧縮残留応力が−45°方向に付与される圧縮残留応力に対して十分大きいことが好適である。この場合、残留応力差が大きくなるに従い、トーションバーの疲労限度が大きくなり、圧縮残留応力差の最大値が850MPa以上であると、十分な疲労限度を得ることができる。   In the torsion bar, when a torsional stress is applied in the use direction T, as shown in FIG. 11, a tensile main stress is generated in the 45 ° direction with respect to the axis, and a compressive main stress is generated in the −45 ° direction with respect to the axis. It is preferable that the compressive residual stress applied in the 45 ° direction relative to the axis is sufficiently larger than the compressive residual stress applied in the −45 ° direction. In this case, as the residual stress difference increases, the fatigue limit of the torsion bar increases. When the maximum value of the compressive residual stress difference is 850 MPa or more, a sufficient fatigue limit can be obtained.

本発明のトーションバーあるいはその製造方法によれば、高周波焼入れ時に鋼材に負荷するねじり応力を900MPa以上に設定することにより、疲労強度の向上を図ることができ、その結果、大きな応力の負荷への対応が可能となり、トーションバーの小径化が可能となる。   According to the torsion bar or the manufacturing method thereof of the present invention, the fatigue strength can be improved by setting the torsional stress to be applied to the steel material at the time of induction hardening to 900 MPa or more. This makes it possible to reduce the diameter of the torsion bar.

本発明の実施例で用いた高周波誘導加熱装置を表し、(A)は装置に用いた試料を表す拡大斜視図、(B)は装置の概略構成を表す斜視図である。The high frequency induction heating apparatus used in the Example of this invention is represented, (A) is an expansion perspective view showing the sample used for the apparatus, (B) is a perspective view showing the schematic structure of an apparatus. (A)は本発明の実験例11の試料の表面からの距離と残留応力との関係を表すグラフ、(B)は比較実験例11の試料の表面からの距離と残留応力との関係を表すグラフである。(A) is a graph showing the relationship between the distance from the surface of the sample of Experimental Example 11 of the present invention and the residual stress, and (B) shows the relationship between the distance from the surface of the sample of Comparative Experimental Example 11 and the residual stress. It is a graph. 本発明の実験例11,比較実験例11,12の試料への疲労試験での応力振幅と耐久回数の関係を表すグラフである。It is a graph showing the relationship between the stress amplitude in the fatigue test to the sample of Experimental example 11 of this invention, and Comparative experimental example 11 and 12, and the frequency | count of durability. 本発明の実験例21,22,比較実験例21〜24の試料の高周波焼入れの際のねじり応力と疲労限度との関係を表すグラフである。It is a graph showing the relationship between the torsional stress and the fatigue limit in the case of induction hardening of the samples of Experimental Examples 21 and 22 and Comparative Experimental Examples 21 to 24 of the present invention. 本発明の実験例22の試料の45°方向と−45°方向の表面からの距離と残留応力の関係を示すグラフである。It is a graph which shows the relationship between the distance from the surface of the 45 degree direction of the sample of Experimental example 22 of this invention, and a -45 degree direction, and a residual stress. 本発明の比較実験例23の試料の45°方向と−45°方向の表面からの距離と残留応力の関係を示すグラフである。It is a graph which shows the relationship from the distance from the surface of the 45 degree direction of the sample of the comparative experiment example 23 of this invention, and -45 degree direction, and a residual stress. 本発明の比較実験例24の試料の45°方向と−45°方向の表面からの距離と残留応力の関係を示すグラフである。It is a graph which shows the relationship between the distance from the surface of the 45 degree direction of the sample of the comparative experiment example 24 of this invention, and -45 degree direction, and a residual stress. 本発明の実験例21,22および比較実験例21〜24の試料の45°方向と−45°方向での表面圧縮残留応力差と疲労限度との関係を示すグラフである。It is a graph which shows the relationship between the surface compressive residual stress difference in the 45 degree direction and -45 degree direction of the sample of Experimental Examples 21 and 22 of this invention, and Comparative Experimental Examples 21-24, and a fatigue limit. 試料の半径rに対する硬化層の表面からの深さtの比(t/r)と疲労限度の関係を示すグラフである。It is a graph which shows the relationship between the ratio (t / r) of the depth t from the surface of the hardened layer with respect to the radius r of a sample, and a fatigue limit. t/rが0.17のときの試料の表面からの距離と45°方向と−45°方向の残留応力との関係を表すグラフである。It is a graph showing the relationship between the distance from the surface of a sample when t / r is 0.17, and the residual stress of 45 degree direction and -45 degree direction. トーションバーの使用におけるねじり応力負荷時の45°方向(引張主応力発生方向)および−45°方向(圧縮主応力発生方向)を示す概念図である。It is a conceptual diagram which shows the 45 degree direction (tensile principal stress generation | occurrence | production direction) and -45 degree direction (compression main stress generation | occurrence | production direction) at the time of torsional stress load in use of a torsion bar.

(1)試験方法
以下、具体的な実施例を参照して本発明の実施形態をさらに詳細に説明する。実施例では、図1に示す高周波誘導加熱装置100を用いた。高周波誘導加熱装置100では、治具101に固定されたトルク発生部102により、ねじり応力を試料10に負荷した状態で、試料10の表面に高周波移動焼入れを行った。
(1) Test Method Hereinafter, embodiments of the present invention will be described in more detail with reference to specific examples. In the Example, the high frequency induction heating apparatus 100 shown in FIG. 1 was used. In the high frequency induction heating apparatus 100, high frequency transfer quenching was performed on the surface of the sample 10 in a state where a torsional stress was applied to the sample 10 by the torque generating unit 102 fixed to the jig 101.

試験片には,中央部に小径部11を形成し、両端部に大径部12を形成し、小径部11と大径部12とを接続するテーパ部13を形成した直線状をなす試料10を用いた。小径部11の径は12mmとした。高周波加熱は、コイル103により行い、その周波数および出力をを200KHz、45kWに設定した。図1(A)の斜線部分10Aは、コイル103による被加熱部であり、矢印Tは、試料10に加えられるねじり応力の方向を示し、矢印Mは試料10の移動方向を示している。   In the test piece, a small-diameter portion 11 is formed at the center, a large-diameter portion 12 is formed at both ends, and a linear sample 10 is formed in which a tapered portion 13 that connects the small-diameter portion 11 and the large-diameter portion 12 is formed. Was used. The diameter of the small diameter part 11 was 12 mm. High frequency heating was performed by the coil 103, and the frequency and output were set to 200 KHz and 45 kW. A hatched portion 10A in FIG. 1A is a portion to be heated by the coil 103, the arrow T indicates the direction of torsional stress applied to the sample 10, and the arrow M indicates the moving direction of the sample 10.

(2)試験結果
(2−1)高周波焼入れ時のねじり応力の有無の影響
試料10として、HV480に調質したSUP9を用い、高周波焼入れ時のねじり応力の有無の影響を調べた。実験例11では、試料10の最表面でのせん断応力τが1000MPaに相当するねじり応力を試料10に負荷した状態で、高周波誘導加熱装置100による高周波移動焼入れを行った。比較実験例11では、試料10にねじりモーメントを負荷しない状態で、高周波誘導加熱装置100による高周波移動焼入れを行った。その結果を図2(A),(B)に示す。
(2) Test results (2-1) Effect of presence or absence of torsional stress during induction hardening As sample 10, SUP9 conditioned to HV480 was used, and the influence of presence or absence of torsional stress during induction hardening was examined. In Experimental Example 11, high-frequency transfer quenching was performed by the high-frequency induction heating apparatus 100 in a state where a torsional stress corresponding to a shear stress τ of 1000 MPa on the outermost surface of the sample 10 was applied to the sample 10. In Comparative Experiment Example 11, high-frequency transfer quenching was performed by the high-frequency induction heating device 100 in a state where no torsional moment was applied to the sample 10. The results are shown in FIGS. 2 (A) and 2 (B).

図2(A),(B)は、本発明の実験例11および比較実験例11の試料の表面からの距離と残留応力との関係を表すグラフである。図2(A),(B)での実線は、軸線に対する45°方向(引張主応力発生方向)での残留応力を示し、破線は、軸線に対する−45°方向(圧縮主応力発生方向)での圧縮残留応力を示している。   2A and 2B are graphs showing the relationship between the distance from the surface of the sample of Experimental Example 11 and Comparative Experimental Example 11 of the present invention and the residual stress. 2A and 2B, the solid line indicates the residual stress in the 45 ° direction (tensile principal stress generation direction) with respect to the axis, and the broken line indicates the −45 ° direction (compression main stress generation direction) with respect to the axis. The compressive residual stress is shown.

図2(A),(B)から判るように、ねじり応力を負荷した状態で高周波焼入れを行った本発明の実験例11の試料では、ねじり応力を負荷しない状態で高周波焼入れを行った比較実験例11の試料よりも、使用時の引張主応力発生方向である45°の方向において、圧縮主応力発生方向である−45°の方向よりも大きな圧縮残留応力が得られ、圧縮残留応力領域におけるその差の最大値は850MPa以上であった。   As can be seen from FIGS. 2A and 2B, in the sample of Experimental Example 11 in which induction hardening was performed with a torsional stress applied, a comparative experiment in which induction hardening was performed without applying torsional stress. A larger compressive residual stress is obtained in the direction of 45 °, which is the tensile principal stress generation direction in use, than in the sample of Example 11 in the direction of −45 °, which is the compression main stress generation direction. The maximum value of the difference was 850 MPa or more.

実験例11,比較実験例11の試料に疲労試験を行った。疲労試験では応力比を0.1に設定した。また,50万回で破壊しなかった応力を疲労限度と定義した。その結果を図3に示す。図3は、応力振幅と耐久回数の関係を表すグラフである。図3中のプロット□は本発明の実験例11の試料のデータを示し、プロット△は比較実験例11の試料のデータを示し、プロット×は、高周波焼入れを行わなかった比較実験例12の試料(調質した状態のままの試料)のデータを示している。   Fatigue tests were performed on the samples of Experimental Example 11 and Comparative Experimental Example 11. In the fatigue test, the stress ratio was set to 0.1. The stress that did not break after 500,000 times was defined as the fatigue limit. The result is shown in FIG. FIG. 3 is a graph showing the relationship between the stress amplitude and the durability count. The plot □ in FIG. 3 shows the data of the sample of Experimental Example 11 of the present invention, the plot Δ shows the data of the sample of Comparative Experimental Example 11, and the plot × shows the sample of Comparative Experimental Example 12 that was not induction hardened. The data of (samples in a tempered state) are shown.

一点鎖線は、非特許文献1に記載の比較試料1(トーションバーの材質としてSUP9を用いて焼入れおよび焼戻しを行うことにより、所定の硬さを有するように調質されたトーションバー)の従来データ1を示している。実線は、非特許文献1に記載の比較試料2(トーションバーの材質としてS45Cを用いて硬化層深さが45〜75%となるようにトーションバーに高周波焼入れを行った後、低温(150℃)で焼戻しを行ったトーションバー)の従来データ2を示している。非特許文献1の疲労試験では平均応力が490MPaに設定されている。   The alternate long and short dash line indicates conventional data of Comparative Sample 1 described in Non-Patent Document 1 (a torsion bar tempered to have a predetermined hardness by quenching and tempering using SUP9 as a torsion bar material). 1 is shown. The solid line indicates Comparative Sample 2 described in Non-Patent Document 1 (S45C is used as the material of the torsion bar, and the torsion bar is induction-quenched so that the depth of the hardened layer is 45 to 75%. The conventional data 2 of the torsion bar tempered in FIG. In the fatigue test of Non-Patent Document 1, the average stress is set to 490 MPa.

図3から判るように、ねじり応力を負荷した状態で高周波焼入れを行った本発明の実験例11の試料では、非特許文献1に記載の従来データ1,2よりも、疲労強度が高かった。また、本発明の実験例11の試料では、比較実験例11の試料よりも、同じ耐久回数で見た場合、応力振幅が大きく、同じ応力振幅で見た場合、耐久回数が多かった。これにより、本発明の実験例11の試料は、比較実験例11の試料よりも、疲労強度が高いことを確認した。これは、図2(A),(B)に示したように、本発明の実験例11の試料ではトーションバーの使用時に45°方向(引張主応力発生方向)において、−45°方向(圧縮主応力発生方向)や軸線方向よりも大きな圧縮残留応力が得られているからであると考えられる。   As can be seen from FIG. 3, the sample of Experimental Example 11 in which induction hardening was performed with a torsional stress applied had higher fatigue strength than the conventional data 1 and 2 described in Non-Patent Document 1. Further, the sample of Experimental Example 11 of the present invention had a larger stress amplitude when viewed at the same durability number than the sample of Comparative Experimental Example 11, and the durability frequency was higher when viewed at the same stress amplitude. This confirmed that the sample of Experimental Example 11 of the present invention had higher fatigue strength than the sample of Comparative Experimental Example 11. As shown in FIGS. 2 (A) and 2 (B), in the sample of Experimental Example 11 of the present invention, when the torsion bar is used, in the 45 ° direction (tensile principal stress generation direction), the −45 ° direction (compression) This is probably because a compressive residual stress larger than that in the main stress generation direction) or the axial direction is obtained.

(2−2)高周波焼入れ時のねじり応力と疲労限度との関係
試料10としてHV480に調質したSUP9を用い、試料に負荷するねじり応力の大きさを1200MPa,1000MPa,890MPa,667MPa,333MPaに設定し、高周波誘導加熱装置100による高周波移動焼入れを行った。そして、高周波焼入れ時のねじり応力を1200MPaとした実験例21の試料、1000MPaとした実験例22の試料,890MPaとした比較実験例21の試料,780MPaとした比較実験例22の試料、667MPaとした比較実験例23の試料、333MPaとした比較実験例24の試料に疲労試験を行った。その結果を図4に示す。
(2-2) Relationship between Torsional Stress and Fatigue Limit during Induction Hardening Using SUP9 conditioned to HV480 as sample 10, the magnitude of torsional stress applied to the sample is set to 1200 MPa, 1000 MPa, 890 MPa, 667 MPa, and 333 MPa Then, high-frequency transfer quenching was performed by the high-frequency induction heating apparatus 100. Then, the sample of Experimental Example 21 in which the torsional stress during induction hardening was 1200 MPa, the sample of Experimental Example 22 set to 1000 MPa, the sample of Comparative Experimental Example 21 set to 890 MPa, the sample of Comparative Experimental Example 22 set to 780 MPa, and 667 MPa A fatigue test was performed on the sample of comparative experimental example 23 and the sample of comparative experimental example 24 set to 333 MPa. The result is shown in FIG.

図4は、本発明の実験例21,22および比較実験例21〜24の高周波焼入れの際のねじり応力と疲労限度との関係を表すグラフである。図5〜7は、本発明の実験例22および比較実験例23,24の試料の表面からの距離と、45°方向と−45°方向での残留応力との関係を表すグラフである。なお、図4では、高周波焼入れ時に試料にねじり応力を負荷しなかった比較実験例11の試料のデータ(ねじり応力の大きさ0MPa)を併記している。   FIG. 4 is a graph showing the relationship between torsional stress and fatigue limit during induction hardening in Experimental Examples 21 and 22 and Comparative Experimental Examples 21 to 24 of the present invention. 5 to 7 are graphs showing the relationship between the distance from the surface of the sample of Experimental Example 22 and Comparative Experimental Examples 23 and 24 of the present invention and the residual stress in the 45 ° direction and the −45 ° direction. In FIG. 4, the data of the sample of Comparative Experimental Example 11 (the torsional stress magnitude of 0 MPa) in which no torsional stress was applied to the sample during induction hardening are also shown.

図5〜7から判るように、高周波焼入れ中に負荷するねじり応力が大きくなるに従い、使用時の引張主応力発生方向である45°方向の圧縮残留応力が大きくなることを確認した。そして、図4から判るように、高周波焼入れ中に負荷するねじり応力が900MPa未満の場合、試料の疲労限度は、ねじり応力を負荷しないものと略同じであるが、900MPa以上にすると、大きくなった。これにより、高周波焼入れ中に負荷するねじり応力は900MPa以上に設定する必要があることを確認した。   As can be seen from FIGS. 5 to 7, it was confirmed that as the torsional stress applied during induction hardening increases, the compressive residual stress in the 45 ° direction, which is the tensile principal stress generation direction during use, increases. And, as can be seen from FIG. 4, when the torsional stress applied during induction hardening is less than 900 MPa, the fatigue limit of the sample is substantially the same as that to which no torsional stress is applied. . Thereby, it was confirmed that the torsional stress applied during induction hardening needs to be set to 900 MPa or more.

(2−3)45°方向と−45°方向での表面圧縮残留応力差と疲労限度との関係
図8は、本発明の実験例21,22および比較実験例21〜24の試料の45°方向と−45°方向での表面圧縮残留応力差と疲労限度との関係を表すグラフである。図中のプロット■は、横軸において右側から順に本発明の実験例21,22および比較実験例21〜24の試料のデータを示している。
(2-3) Relationship between Surface Compressive Residual Stress Difference and Fatigue Limit in 45 ° Direction and −45 ° Direction FIG. 8 shows 45 ° of samples of Experimental Examples 21 and 22 and Comparative Experimental Examples 21 to 24 of the present invention. It is a graph showing the relationship between the surface compressive residual stress difference in a direction and -45 degree direction, and a fatigue limit. The plot (2) in the figure shows the data of the samples of Experimental Examples 21 and 22 and Comparative Experimental Examples 21 to 24 of the present invention in order from the right side on the horizontal axis.

図8から判るように、45°方向と−45°方向との表面圧縮残留応力の差が850MPa未満の場合、試料の疲労強度は、ねじり応力を負荷しないものと略同じであるが、850MPa以上にすると、大きくなった。これにより、45°方向と−45°方向での表面圧縮残留応力差が850MPa以上に設定することが好適であることを確認した。   As can be seen from FIG. 8, when the difference in surface compressive residual stress between the 45 ° direction and the −45 ° direction is less than 850 MPa, the fatigue strength of the sample is substantially the same as that to which no torsional stress is applied, but 850 MPa or more. Then it became bigger. Thereby, it was confirmed that the difference in surface compressive residual stress between the 45 ° direction and the −45 ° direction is preferably set to 850 MPa or more.

(2−4)高周波焼入れ時のねじり応力の負荷状態の影響
試料10としてS45Cを用い、試料に一定のねじり応力を負荷した状態で、高周波誘導加熱装置100による高周波移動焼入れを行い、本発明の実験例31の試料を得た。また、試料10としてS45Cを用い、試料に一定のねじり応力を継続負荷しない状態で、高周波誘導加熱装置100による高周波移動焼入れを行い、比較実験例31の試料を得た。本発明の実験例31および比較験例31の試料の焼入れ開始側、中間部、焼入れ終了側の各箇所の断面の残留応力を測定した。
(2-4) Influence of loading state of torsional stress at induction hardening Using S45C as sample 10, with a constant torsional stress applied to the sample, high-frequency transfer quenching is performed by high-frequency induction heating apparatus 100, and A sample of Experimental Example 31 was obtained. Further, S45C was used as the sample 10, and high-frequency transfer quenching was performed by the high-frequency induction heating device 100 in a state where a constant torsional stress was not continuously applied to the sample, and a sample of Comparative Experimental Example 31 was obtained. The residual stress of the cross section of each part of the sample of Experimental Example 31 and Comparative Experimental Example 31 of the present invention on the quenching start side, the intermediate portion, and the quenching end side was measured.

その結果、ねじり応力の継続負荷を行った本発明の実験例31では、上記の全ての箇所で圧縮残留応力差が得られ、ねじり応力の継続負荷を行わなかった比較実験例31では、本発明の実験例31よりも、上記の全ての箇所で圧縮残留応力差が小さかった。これにより、ねじり応力を継続負荷した場合には、軸線に平行な表面領域の全体で大きな圧縮残留応力差が得られることを確認した。   As a result, in the experimental example 31 of the present invention in which the continuous load of torsional stress was performed, the compressive residual stress difference was obtained in all the above-mentioned locations, and in the comparative experimental example 31 in which the continuous load of torsional stress was not performed, the present invention The difference in compressive residual stress was smaller in all the above locations than in Experimental Example 31. As a result, it was confirmed that when a torsional stress was continuously applied, a large compressive residual stress difference was obtained over the entire surface region parallel to the axis.

(2−5)硬化層の表面からの深さ
試料10としてHV480に調質したSUP9を用い、試料にねじり応力を負荷した状態で、高周波誘導加熱装置100による高周波移動焼入れを行い、焼入れ移動速度を変化させることで硬化層の深さの異なる試料を得た。それら試料について、硬化層の深さと疲労強度の関係を調べた。その結果を図9に示す。図9は、t/rと疲労限度の関係を示すグラフである。図10は、t/rが0.17のときの試料の表面からの距離と残留応力との関係を表すグラフである。図9では、硬化層の深さについて、試料の半径rに対する硬化層の表面からの深さtの比(t/r)で示している。
(2-5) Depth from surface of hardened layer SUP9 tempered to HV480 is used as sample 10, and the sample is subjected to high-frequency transfer quenching with high-frequency induction heating device 100 while torsional stress is applied to the sample. Samples having different depths of the hardened layer were obtained by changing. About these samples, the relationship between the depth of a hardened layer and fatigue strength was investigated. The result is shown in FIG. FIG. 9 is a graph showing the relationship between t / r and the fatigue limit. FIG. 10 is a graph showing the relationship between the distance from the surface of the sample and the residual stress when t / r is 0.17. In FIG. 9, the depth of the hardened layer is indicated by the ratio (t / r) of the depth t from the surface of the hardened layer to the radius r of the sample.

図9から判るように、t/rが0.05以下である場合、疲労強度が大きく低下した。この場合、硬化層が薄いため、その厚さの制御が困難となる結果、安定した均一な硬化層の形成が困難であるからである。一方、t/rが0.17以上である場合、疲労強度が小さかった。この場合、原因は不明であるが、図10から判るように、ねじり応力除荷時の復元力による効果が表面付近まで届かないからと考えられる。このように、試料の半径rに対する硬化層の表面からの深さtの比が0.05<t/r<0.17を満足することにより、疲労限度を向上させることができることを確認した。   As can be seen from FIG. 9, when t / r was 0.05 or less, the fatigue strength was greatly reduced. In this case, since the cured layer is thin, it is difficult to control the thickness, and as a result, it is difficult to form a stable and uniform cured layer. On the other hand, when t / r was 0.17 or more, the fatigue strength was small. In this case, although the cause is unknown, it is considered that the effect of the restoring force at the time of unloading the torsional stress does not reach the vicinity of the surface as can be seen from FIG. As described above, it was confirmed that the fatigue limit can be improved when the ratio of the depth t from the surface of the hardened layer to the radius r of the sample satisfies 0.05 <t / r <0.17.

10…試料、10A…被加熱部、11…小径部、12…大径部、13…テーパ部、100…高周波誘導加熱装置、101…治具、102…トルク発生部、103…コイル   DESCRIPTION OF SYMBOLS 10 ... Sample, 10A ... Heated part, 11 ... Small diameter part, 12 ... Large diameter part, 13 ... Tapered part, 100 ... High frequency induction heating apparatus, 101 ... Jig, 102 ... Torque generation part, 103 ... Coil

Claims (8)

900MPa以上のねじり応力を鋼材に負荷した状態で前記鋼材に高周波焼入れを行うことを特徴とするトーションバーの製造方法。   A method for producing a torsion bar, comprising subjecting the steel material to induction hardening in a state where a torsional stress of 900 MPa or more is applied to the steel material. 前記高周波焼入れ中、前記ねじり応力を継続負荷することを特徴とする請求項1に記載のトーションバーの製造方法。   The torsion bar manufacturing method according to claim 1, wherein the torsional stress is continuously applied during the induction hardening. 請求項1または2に記載の製造方法により製造されたトーションバーであって、
疲労限度が片振りの応力振幅で450MPa以上であることを特徴とするトーションバー。
A torsion bar manufactured by the manufacturing method according to claim 1 or 2,
A torsion bar characterized by having a fatigue limit of 450 MPa or more in a single swing stress amplitude.
請求項1または2に記載の製造方法により製造されたトーションバーであって、
表面に硬化層が形成され、
前記トーションバーの半径をr、前記硬化層の前記表面からの深さをtとすると、0.05<t/r<0.17を満足することを特徴とするトーションバー。
A torsion bar manufactured by the manufacturing method according to claim 1 or 2,
A hardened layer is formed on the surface,
A torsion bar satisfying 0.05 <t / r <0.17, where r is the radius of the torsion bar and t is the depth of the hardened layer from the surface.
前記鋼材の軸線に対する45°方向と−45°方向とにおける残留応力が異なることを特徴とする請求項4に記載のトーションバー。   The torsion bar according to claim 4, wherein residual stresses in the 45 ° direction and the −45 ° direction with respect to the axis of the steel material are different. 圧縮残留応力が付与された領域での軸線方向に対する45°方向と−45°方向との圧縮残留応力差の最大値が850MPa以上であることを特徴とする請求項5に記載のトーションバー。   The torsion bar according to claim 5, wherein the maximum value of the difference in compressive residual stress between the 45 ° direction and the −45 ° direction with respect to the axial direction in the region where the compressive residual stress is applied is 850 MPa or more. 前記鋼材の硬度を430〜510HVとすることを特徴とする請求項4〜6のいずれかに記載のトーションバー。   The torsion bar according to claim 4, wherein the steel material has a hardness of 430 to 510 HV. 前記鋼材の軸線に平行な表面領域の全体に圧縮残留応力が付与されていることを特徴とする請求項4〜7のいずれかに記載のトーションバー。   The torsion bar according to any one of claims 4 to 7, wherein a compressive residual stress is applied to the entire surface region parallel to the axis of the steel material.
JP2009028321A 2009-02-10 2009-02-10 Torsion bar and manufacturing method thereof Expired - Fee Related JP5312973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009028321A JP5312973B2 (en) 2009-02-10 2009-02-10 Torsion bar and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009028321A JP5312973B2 (en) 2009-02-10 2009-02-10 Torsion bar and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010185478A true JP2010185478A (en) 2010-08-26
JP5312973B2 JP5312973B2 (en) 2013-10-09

Family

ID=42766259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028321A Expired - Fee Related JP5312973B2 (en) 2009-02-10 2009-02-10 Torsion bar and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5312973B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207953A1 (en) 2013-06-25 2014-12-31 日本精工株式会社 Rotation transmission device
WO2017002532A1 (en) * 2015-06-29 2017-01-05 Ntn株式会社 Machine part
WO2017002531A1 (en) * 2015-06-29 2017-01-05 Ntn株式会社 Manufacturing method for machine part

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182949A (en) * 1983-03-31 1984-10-17 Aichi Steel Works Ltd Spring steel with superior hardenability and sag resistance
JPS59190529A (en) * 1983-04-13 1984-10-29 Mitsubishi Steel Mfg Co Ltd Metal torsion bar and producing method thereof
WO2000075381A1 (en) * 1999-06-08 2000-12-14 Nhk Spring Co., Ltd. High-strength spring and production method therefor
JP2002275538A (en) * 2001-03-15 2002-09-25 Toyota Motor Corp Method and device for heat treatment of steel
WO2003055643A1 (en) * 2001-12-26 2003-07-10 Nhk Spring Co., Ltd. Leaf spring for vehicle and method of manufacturing the leaf spring
JP2006071082A (en) * 2004-09-06 2006-03-16 Horikiri:Kk Plate spring and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182949A (en) * 1983-03-31 1984-10-17 Aichi Steel Works Ltd Spring steel with superior hardenability and sag resistance
JPS59190529A (en) * 1983-04-13 1984-10-29 Mitsubishi Steel Mfg Co Ltd Metal torsion bar and producing method thereof
WO2000075381A1 (en) * 1999-06-08 2000-12-14 Nhk Spring Co., Ltd. High-strength spring and production method therefor
JP2002275538A (en) * 2001-03-15 2002-09-25 Toyota Motor Corp Method and device for heat treatment of steel
WO2003055643A1 (en) * 2001-12-26 2003-07-10 Nhk Spring Co., Ltd. Leaf spring for vehicle and method of manufacturing the leaf spring
JP2006071082A (en) * 2004-09-06 2006-03-16 Horikiri:Kk Plate spring and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207953A1 (en) 2013-06-25 2014-12-31 日本精工株式会社 Rotation transmission device
EP3309419A2 (en) 2013-06-25 2018-04-18 NSK Ltd. Rotation transmission device
US10480635B2 (en) 2013-06-25 2019-11-19 Nsk Ltd. Rotation transmission device
WO2017002532A1 (en) * 2015-06-29 2017-01-05 Ntn株式会社 Machine part
WO2017002531A1 (en) * 2015-06-29 2017-01-05 Ntn株式会社 Manufacturing method for machine part
JP2017014550A (en) * 2015-06-29 2017-01-19 Ntn株式会社 Machine component
JP2017014549A (en) * 2015-06-29 2017-01-19 Ntn株式会社 Manufacturing method of machine component
CN107709582A (en) * 2015-06-29 2018-02-16 Ntn株式会社 The method for manufacturing machine components

Also Published As

Publication number Publication date
JP5312973B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5337792B2 (en) Steel material, steel material manufacturing method and steel material manufacturing apparatus
Kang et al. Uniaxial ratchetting and low-cycle fatigue failure of the steel with cyclic stabilizing or softening feature
Dalaei et al. Stability of shot peening induced residual stresses and their influence on fatigue lifetime
WO2000075381A1 (en) High-strength spring and production method therefor
JP6497898B2 (en) Leaf spring device and production method of leaf spring device
WO2004085685A1 (en) Process for producing high-strength spring
JP5322744B2 (en) Compression coil spring and method of manufacturing coil spring
EP2444200B1 (en) Method for manufacturing coil spring
Mayer et al. Very high cycle fatigue properties of bainitic high carbon–chromium steel under variable amplitude conditions
JP5312973B2 (en) Torsion bar and manufacturing method thereof
Fragoudakis et al. The effect of heat and surface treatment on the fatigue behaviour of 56SiCr7 spring steel
JP2019007081A (en) Production method of spring steel wire
US20090133785A1 (en) Leaf spring material and manufacturing method thereof
WO2013038580A1 (en) Hollow member and method for manufacturing hollow member
JP5657940B2 (en) Titanium metal wear-resistant parts
Mano et al. Microstructured surface layer induced by shot peening and its effect on fatigue strength
JP2009127123A (en) Leaf spring material and manufacturing method thereof
JPH07217683A (en) Optimizing method of internal-stress distribution of spring member
Nakagawara et al. Effects of Strain‐Induced Cyclic Transformation on the Microstructure of the Peened Surface of SUS 304 Austenitic Stainless Steel
JP4311984B2 (en) Rack bar, steering device using the same, and electric power steering device
Adetunji et al. Effect of normalizing and hardening on mechanical properties of spring
Mirzazadeh et al. High cycle fatigue behavior of shot-peened steels
JP7167748B2 (en) Ultrasonic fatigue test specimen and ultrasonic fatigue test method
Sadeler et al. The effect of residual stresses induced by prestraining on fatigue life of notched specimens
Giannakis et al. Fatigue design and testing of automotive stabilizer bars

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120927

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees