JP2010185378A - Internal combustion engine with supercharger - Google Patents

Internal combustion engine with supercharger Download PDF

Info

Publication number
JP2010185378A
JP2010185378A JP2009030316A JP2009030316A JP2010185378A JP 2010185378 A JP2010185378 A JP 2010185378A JP 2009030316 A JP2009030316 A JP 2009030316A JP 2009030316 A JP2009030316 A JP 2009030316A JP 2010185378 A JP2010185378 A JP 2010185378A
Authority
JP
Japan
Prior art keywords
exhaust
purification catalyst
bypass
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009030316A
Other languages
Japanese (ja)
Other versions
JP5332684B2 (en
Inventor
Nobuji Tsukiyama
宜司 築山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009030316A priority Critical patent/JP5332684B2/en
Publication of JP2010185378A publication Critical patent/JP2010185378A/en
Application granted granted Critical
Publication of JP5332684B2 publication Critical patent/JP5332684B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine with a supercharger wherein degradation of a catalyst is restrained, and which is advantageous in cost reduction. <P>SOLUTION: The internal combustion engine 1 includes: a turbocharger 5 by which exhaust energy is recovered by a turbine 5b in an exhaust passage 4 to drive a compressor 5a in an intake passage 3; and an exhaust-gas purifying catalyst 6 provided in a section downstream of the turbine 5b in the exhaust passage 4 to purify the exhaust. In the internal combustion engine 1, a bypass passage 8 and a bypass exhaust-gas purifying catalyst 9 are provided. The bypass passage 8 is provided to make a detour around the turbine 5b and the exhaust-gas purifying catalyst 6, and connect the section upstream of the turbine 5b in the exhaust passage 4 to the section downstream of the exhaust-gas purifying catalyst 6. The bypass exhaust-gas purifying catalyst 9 which is placed in the bypass passage 8 to purify the exhaust gas. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ターボチャージャのタービン及び排気浄化触媒が排気通路に設けられている内燃機関に関する。   The present invention relates to an internal combustion engine in which a turbine of a turbocharger and an exhaust purification catalyst are provided in an exhaust passage.

排気通路にターボチャージャのタービンが設けられるとともにそのタービンの下流に排気浄化用の触媒が設けられた内燃機関が知られている。このような内燃機関において、タービンを迂回するバイパス通路と、そのバイパス通路に配置されて排気通路に設けられた排気浄化用の第1の触媒より熱容量が小さい第2の触媒とを備え、内燃機関の運転状態に応じて第1の触媒の先をバイパス通路又はタービンのいずれか一方に選択的に切り替えるものが知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2が存在する。   There is known an internal combustion engine in which a turbocharger turbine is provided in an exhaust passage and an exhaust purification catalyst is provided downstream of the turbine. In such an internal combustion engine, the internal combustion engine includes a bypass passage that bypasses the turbine, and a second catalyst that is disposed in the bypass passage and has a smaller heat capacity than the first catalyst for exhaust purification provided in the exhaust passage. There is known one that selectively switches the tip of the first catalyst to either a bypass passage or a turbine in accordance with the operation state (see Patent Document 1). In addition, there is Patent Document 2 as a prior art document related to the present invention.

特開2001−50038号公報JP 2001-50038 A 特開平5−321643号公報JP-A-5-321643

周知のように触媒を通過した排気は触媒での反応熱により温度が高くなる。一方、タービンを通過した排気は、タービンにて冷却されるので温度が低くなる。そのため、特許文献1の内燃機関では、排気通路に設けられている触媒の接続先を切り替えた際に触媒に流入する排気の温度が急に変化するおそれがある。この場合、触媒が急に加熱されたり冷却されたりするので、触媒が劣化し易くなる。また、特許文献1の内燃機関では、排気通路の触媒にバイパス通路の触媒にて加熱された排気を導入するので、排気通路には高温の排気に耐えることが可能な触媒を設ける必要がある。一般に触媒は、担持されている貴金属の量が多いほど耐熱性が向上する。そのため、特許文献1の内燃機関では、担持されている貴金属の量が多い触媒を排気通路に配置する必要があり、コストが高くなる。   As is well known, the exhaust gas that has passed through the catalyst has a high temperature due to the heat of reaction at the catalyst. On the other hand, since the exhaust gas that has passed through the turbine is cooled by the turbine, the temperature is lowered. For this reason, in the internal combustion engine of Patent Document 1, when the connection destination of the catalyst provided in the exhaust passage is switched, the temperature of the exhaust gas flowing into the catalyst may change suddenly. In this case, since the catalyst is suddenly heated or cooled, the catalyst is easily deteriorated. Further, in the internal combustion engine of Patent Document 1, since exhaust gas heated by the catalyst in the bypass passage is introduced into the catalyst in the exhaust passage, it is necessary to provide a catalyst that can withstand high-temperature exhaust in the exhaust passage. In general, the heat resistance of the catalyst improves as the amount of noble metal supported increases. For this reason, in the internal combustion engine of Patent Document 1, it is necessary to dispose a catalyst having a large amount of noble metal carried in the exhaust passage, which increases the cost.

そこで、本発明は、触媒の劣化を抑制でき、かつコストの低減に有利な過給機付内燃機関を提供することを目的とする。   Accordingly, an object of the present invention is to provide a supercharged internal combustion engine that can suppress deterioration of a catalyst and is advantageous for cost reduction.

本発明の過給機付内燃機関は、排気通路のタービンにて排気エネルギを回収して吸気通路のコンプレッサを駆動するターボチャージャと、前記排気通路の前記タービンよりも下流側の区間に設けられて排気を浄化する排気浄化触媒と、を備えた内燃機関において、前記タービン及び前記排気浄化触媒を迂回して、前記排気通路の前記タービンよりも上流側の区間と前記排気浄化触媒よりも下流側の区間とを接続するバイパス通路と、前記バイパス通路に設けられて排気を浄化するバイパス排気浄化触媒と、を備えている(請求項1)。   An internal combustion engine with a supercharger according to the present invention is provided in a section downstream of the turbine in the exhaust passage and a turbocharger that recovers exhaust energy by a turbine in the exhaust passage and drives a compressor in the intake passage. In an internal combustion engine comprising an exhaust purification catalyst for purifying exhaust, a section of the exhaust passage upstream of the turbine and downstream of the exhaust purification catalyst bypasses the turbine and the exhaust purification catalyst. A bypass passage connecting the sections and a bypass exhaust purification catalyst provided in the bypass passage for purifying exhaust gas are provided.

本発明の過給機付内燃機関によれば、バイパス通路が排気通路の排気浄化触媒よりも下流側の区間に接続されているので、バイパス排気浄化触媒を通過した排気を排気浄化触媒の下流に導くことができる。そのため、排気浄化触媒にはタービンを通過した排気のみが導かれ、バイパス排気浄化触媒にはタービンを通過する前の排気のみが導かれる。これにより、各排気浄化触媒に流入する排気の温度が急に変化することを抑制できるので、各排気浄化触媒の劣化を抑制できる。また、このように排気浄化触媒には、タービンを通過した排気のみが流入するので、排気浄化触媒に高温の排気が流入することを抑制できる。そのため、排気浄化触媒の耐熱温度を低下させることができる。従って、コストを低減することができる。一方、バイパス排気浄化触媒にはタービンに流入する前の排気が導かれるので、この排気でバイパス排気浄化触媒を速やかに昇温できる。そのため、バイパス排気浄化触媒による排気の浄化を速やかに開始することができる。   According to the internal combustion engine with a supercharger of the present invention, the bypass passage is connected to a section downstream of the exhaust purification catalyst in the exhaust passage, so that the exhaust gas that has passed through the bypass exhaust purification catalyst is placed downstream of the exhaust purification catalyst. Can lead. Therefore, only the exhaust gas that has passed through the turbine is guided to the exhaust purification catalyst, and only the exhaust gas that has not passed through the turbine is guided to the bypass exhaust purification catalyst. Thereby, since it can suppress that the temperature of the exhaust_gas | exhaustion which flows into each exhaust gas purification catalyst changes suddenly, degradation of each exhaust gas purification catalyst can be suppressed. In addition, since only the exhaust gas that has passed through the turbine flows into the exhaust purification catalyst in this way, it is possible to prevent high temperature exhaust gas from flowing into the exhaust purification catalyst. Therefore, the heat resistant temperature of the exhaust purification catalyst can be lowered. Therefore, the cost can be reduced. On the other hand, since the exhaust before flowing into the turbine is guided to the bypass exhaust purification catalyst, the temperature of the bypass exhaust purification catalyst can be quickly increased by this exhaust. Therefore, exhaust purification by the bypass exhaust purification catalyst can be started quickly.

本発明の過給機付内燃機関の一形態においては、前記バイパス通路を開閉するバイパス弁と、前記排気通路の前記タービンと前記排気浄化触媒との間の区間に設けられて前記排気通路を開閉する排気制御弁と、前記内燃機関の運転状態に基づいて前記バイパス弁及び前記排気制御弁をそれぞれ制御する制御手段と、をさらに備えていてもよい(請求項2)。この場合、バイパス弁及び排気制御弁をそれぞれ適宜に開閉することにより、排気の全量をタービン又はバイパス通路のいずれか一方に選択的に導くことができる。   In one form of the supercharger-equipped internal combustion engine of the present invention, the exhaust passage is provided in a section between the bypass valve for opening and closing the bypass passage and the turbine and the exhaust purification catalyst in the exhaust passage. And an exhaust control valve for controlling the bypass valve and the exhaust control valve based on an operating state of the internal combustion engine, respectively. In this case, the exhaust gas can be selectively guided to either the turbine or the bypass passage by opening and closing the bypass valve and the exhaust control valve as appropriate.

この形態において、前記制御手段は、前記内燃機関が冷間始動後の暖機運転中の場合には前記排気制御弁を閉じ、かつ前記バイパス弁を開けてもよい(請求項3)。このように排気制御弁を閉じるとともにバイパス弁を開けることにより、排気の全量をバイパス通路に導くことができるので、この排気にてバイパス排気浄化触媒を速やかに昇温できる。そのため、バイパス排気浄化触媒を速やかに排気の浄化に適した温度域まで昇温し、その昇温後のバイパス排気浄化触媒によって排気を浄化することができる。従って、内燃機関が暖機運転されているときの排気エミッションを改善することができる。   In this embodiment, the control means may close the exhaust control valve and open the bypass valve when the internal combustion engine is in a warm-up operation after a cold start (Claim 3). By closing the exhaust control valve and opening the bypass valve in this way, the entire amount of exhaust can be guided to the bypass passage, so that the temperature of the bypass exhaust purification catalyst can be quickly raised by this exhaust. Therefore, the temperature of the bypass exhaust purification catalyst can be quickly raised to a temperature range suitable for exhaust purification, and the exhaust can be purified by the bypass exhaust purification catalyst after the temperature rise. Therefore, exhaust emission when the internal combustion engine is warming up can be improved.

また、前記制御手段は、前記内燃機関の回転数が所定の判定値以下の場合には前記排気制御弁を開け、かつ前記バイパス弁を閉じ、前記内燃機関の回転数が前記所定の判定値より高い場合には前記排気制御弁及び前記バイパス弁の両方を開けてもよい(請求項4)。このように内燃機関の回転数に応じて排気制御弁及びバイパス弁をそれぞれ制御することにより、内燃機関の運転状態に応じて内燃機関の過給を適切に行うことができる。また、内燃機関の回転数が判定値よりも高い場合はバイパス弁を開けて排気浄化触媒に導かれる排気の流量を低減するので、排気によって排気浄化触媒が過度に加熱されることを防止できる。   The control means opens the exhaust control valve and closes the bypass valve when the rotational speed of the internal combustion engine is less than or equal to a predetermined determination value, and the rotational speed of the internal combustion engine is greater than the predetermined determination value. If it is high, both the exhaust control valve and the bypass valve may be opened (Claim 4). In this way, by controlling the exhaust control valve and the bypass valve according to the rotational speed of the internal combustion engine, it is possible to appropriately perform supercharging of the internal combustion engine according to the operating state of the internal combustion engine. Further, when the rotational speed of the internal combustion engine is higher than the determination value, the flow rate of the exhaust gas guided to the exhaust gas purification catalyst is reduced by opening the bypass valve, so that the exhaust gas purification catalyst can be prevented from being excessively heated by the exhaust gas.

本発明の過給機付内燃機関の一形態においては、前記排気浄化触媒及び前記バイパス排気浄化触媒には、それぞれ貴金属が担持されており、前記排気浄化触媒に担持されている貴金属の量は、前記バイパス排気浄化触媒に担持されている貴金属の量よりも少なくてもよい(請求項5)。上述したように排気浄化触媒には、タービンを通過した排気のみが導かれる。そのため、このように担持されている貴金属の量をバイパス排気浄化触媒よりも少なくすることができる。また、このように貴金属の量を少なくすることにより、排気浄化触媒のコストを低減することができる。   In one form of the internal combustion engine with a supercharger of the present invention, the exhaust purification catalyst and the bypass exhaust purification catalyst each carry a noble metal, and the amount of the noble metal carried on the exhaust purification catalyst is: The amount may be smaller than the amount of noble metal supported on the bypass exhaust purification catalyst. As described above, only the exhaust gas that has passed through the turbine is guided to the exhaust gas purification catalyst. Therefore, the amount of the noble metal supported in this way can be made smaller than that of the bypass exhaust purification catalyst. Moreover, the cost of the exhaust purification catalyst can be reduced by reducing the amount of noble metal in this way.

以上に説明したように、本発明の過給機付内燃機関によれば、バイパス通路が排気通路の排気浄化触媒よりも下流側の区間に接続されているので、排気浄化触媒にはタービンを通過した排気のみが導かれ、バイパス排気浄化触媒にはタービンを通過する前の排気のみが導かれる。これにより、各排気浄化触媒に流入する排気の温度が急に変化することを抑制できるので、各排気浄化触媒の劣化を抑制できる。また、排気浄化触媒の耐熱温度を低下させることができるので、コストを低減することができる。   As described above, according to the supercharged internal combustion engine of the present invention, the bypass passage is connected to the section downstream of the exhaust purification catalyst in the exhaust passage, so that the exhaust purification catalyst passes through the turbine. Only the exhaust gas that has passed through the turbine is guided to the bypass exhaust gas purification catalyst. Thereby, since it can suppress that the temperature of the exhaust_gas | exhaustion which flows into each exhaust gas purification catalyst changes suddenly, degradation of each exhaust gas purification catalyst can be suppressed. Moreover, since the heat-resistant temperature of the exhaust purification catalyst can be lowered, the cost can be reduced.

本発明の一形態に係る内燃機関を概略的に示す図。1 is a diagram schematically showing an internal combustion engine according to an embodiment of the present invention. ECUが実行する排気制御ルーチンを示すフローチャート。The flowchart which shows the exhaust control routine which ECU performs. エンジンの運転状態とウェイストゲートバルブ及び排気制御弁の状態との関係を示す図。The figure which shows the relationship between the driving | running state of an engine, and the state of a waste gate valve and an exhaust control valve. 触媒の耐熱温度とその触媒に担持されるべき貴金属量との関係の一例を示す図。The figure which shows an example of the relationship between the heat-resistant temperature of a catalyst, and the amount of noble metals which should be carry | supported by the catalyst.

図1は、本発明の一形態に係る内燃機関を概略的に示している。この内燃機関(以下、エンジンと称することがある。)1は、車両に走行用動力源として搭載されるディーゼルエンジンであり、複数の気筒(不図示)が設けられた機関本体2と、各気筒にそれぞれ接続される吸気通路3及び排気通路4とを備えている。吸気通路3には、ターボチャージャ5のコンプレッサ5aが設けられている。排気通路4には、ターボチャージャ5のタービン5bと、排気浄化触媒6とが設けられている。排気通路4のタービン5bと排気浄化触媒6との間の区間には、排気通路4を開閉する排気制御弁7が設けられている。排気浄化触媒6は、タービン5bとの間の距離が短くなるようにタービン5bに近付けて配置されている。   FIG. 1 schematically shows an internal combustion engine according to an embodiment of the present invention. An internal combustion engine (hereinafter sometimes referred to as an engine) 1 is a diesel engine mounted on a vehicle as a driving power source, and includes an engine body 2 provided with a plurality of cylinders (not shown), and each cylinder. Are provided with an intake passage 3 and an exhaust passage 4, respectively. The intake passage 3 is provided with a compressor 5 a of a turbocharger 5. In the exhaust passage 4, a turbine 5 b of the turbocharger 5 and an exhaust purification catalyst 6 are provided. An exhaust control valve 7 that opens and closes the exhaust passage 4 is provided in a section of the exhaust passage 4 between the turbine 5 b and the exhaust purification catalyst 6. The exhaust purification catalyst 6 is disposed close to the turbine 5b so that the distance to the turbine 5b is shortened.

また、排気通路4には、排気通路4のタービン5bより上流側の区間と排気浄化触媒6より下流側の区間とを接続するバイパス通路8が設けられている。このようにバイパス通路8を設けることにより、気筒から排出された排気をタービン5b及び排気浄化触媒6を迂回して排気浄化触媒6の下流の排気通路4に導くことができる。バイパス通路8には、排気を浄化するためのバイパス排気浄化触媒9が設けられている。排気浄化触媒6及びバイパス排気浄化触媒9には、それぞれ貴金属が担持されている。この貴金属としては、例えば白金、パラジウム、ロジウム等が担持されている。排気浄化触媒6の容量は、バイパス排気浄化触媒9の容量よりも大きい。一方、排気浄化触媒6に担持されている貴金属の量は、バイパス排気浄化触媒9に担持されている貴金属の量よりも少ない。バイパス通路8と排気通路4のタービン5bより上流側の区間との接続位置には、バイパス通路8を開閉するバイパス弁としてのウェイストゲートバルブ10が設けられている。   Further, the exhaust passage 4 is provided with a bypass passage 8 that connects a section upstream of the turbine 5 b of the exhaust passage 4 and a section downstream of the exhaust purification catalyst 6. By providing the bypass passage 8 in this manner, the exhaust discharged from the cylinder can be guided to the exhaust passage 4 downstream of the exhaust purification catalyst 6 by bypassing the turbine 5 b and the exhaust purification catalyst 6. The bypass passage 8 is provided with a bypass exhaust purification catalyst 9 for purifying the exhaust. The exhaust purification catalyst 6 and the bypass exhaust purification catalyst 9 each carry a noble metal. As this noble metal, platinum, palladium, rhodium or the like is supported, for example. The capacity of the exhaust purification catalyst 6 is larger than the capacity of the bypass exhaust purification catalyst 9. On the other hand, the amount of the noble metal carried on the exhaust purification catalyst 6 is smaller than the amount of the noble metal carried on the bypass exhaust purification catalyst 9. A waste gate valve 10 as a bypass valve that opens and closes the bypass passage 8 is provided at a connection position between the bypass passage 8 and a section upstream of the turbine 5 b of the exhaust passage 4.

排気制御弁7及びウェイストゲートバルブ10の動作は、制御手段としてのエンジンコントロールユニット(ECU)20にてそれぞれ制御される。ECU20は、マイクロプロセッサ及びその動作に必要なRAM、ROM等の周辺機器を含んだ周知のコンピュータユニットとして構成され、エンジン1に設けられた各種のセンサの出力信号に基づいてエンジン1の運転状態を制御する周知のものである。ECU20には、エンジン1の運転状態を検出するためのセンサとしてエンジン1の機関回転速度(回転数)に対応する信号を出力するクランク角センサ21、及びエンジン1の冷却水の温度に対応する信号を出力する水温センサ22等が接続されている。この他にもECU20に各種センサが接続されているが、それらの図示は省略した。   The operations of the exhaust control valve 7 and the waste gate valve 10 are respectively controlled by an engine control unit (ECU) 20 as a control means. The ECU 20 is configured as a well-known computer unit including a microprocessor and peripheral devices such as a RAM and a ROM necessary for its operation, and determines the operating state of the engine 1 based on output signals of various sensors provided in the engine 1. It is a well-known thing to control. The ECU 20 includes a crank angle sensor 21 that outputs a signal corresponding to the engine rotation speed (rotation speed) of the engine 1 as a sensor for detecting the operating state of the engine 1, and a signal corresponding to the coolant temperature of the engine 1. Is connected to a water temperature sensor 22 or the like. In addition to this, various sensors are connected to the ECU 20, but they are not shown.

図2は、ECU20が排気制御弁7及びウェイストゲートバルブ10の動作を制御するためにエンジン1の運転中に所定の周期で繰り返し実行する排気制御ルーチンを示している。この制御ルーチンにおいてECU20は、まずステップS11でエンジン1の運転状態を取得する。エンジン1の運転状態としては、例えばエンジン1の回転数、及びエンジン1の冷却水の温度等が取得される。次のステップS12においてECU20は、エンジン1が機関温度が低い状態での始動である冷間始動後の暖機運転中、すなわちファーストアイドル中か否か判断する。この判断は、例えばエンジン1の冷却水の温度及びエンジン1の回転数に基づいて行えばよい。例えば、エンジン1の冷却水の温度が予め設定した判定温度以下であり、かつエンジン1の回転数が所定のアイドリング回転数域内の場合にエンジン1がファーストアイドル中と判断する。エンジン1がファーストアイドル中であると判断した場合はステップS13に進み、ECU20はウェイストゲートバルブ10を開け、排気制御弁7を閉じる。その後、今回の制御ルーチンを終了する。   FIG. 2 shows an exhaust control routine that the ECU 20 repeatedly executes at a predetermined cycle during operation of the engine 1 in order to control the operations of the exhaust control valve 7 and the waste gate valve 10. In this control routine, the ECU 20 first acquires the operating state of the engine 1 in step S11. As the operating state of the engine 1, for example, the rotational speed of the engine 1, the temperature of the cooling water of the engine 1, and the like are acquired. In the next step S12, the ECU 20 determines whether or not the engine 1 is in a warm-up operation after a cold start which is a start in a state where the engine temperature is low, that is, whether or not it is in a fast idle. This determination may be made based on, for example, the temperature of the coolant of the engine 1 and the rotational speed of the engine 1. For example, when the temperature of the cooling water of the engine 1 is equal to or lower than a preset determination temperature and the rotational speed of the engine 1 is within a predetermined idling rotational speed range, it is determined that the engine 1 is in a fast idle. If it is determined that the engine 1 is in the first idle state, the process proceeds to step S13, where the ECU 20 opens the waste gate valve 10 and closes the exhaust control valve 7. Thereafter, the current control routine is terminated.

一方、ファーストアイドル中ではないと判断した場合はステップS14に進み、ECU20はエンジン1が低速運転中か否か判断する。この判断は、エンジン1の回転数に基づいて行えばよい。例えば、エンジン1の回転数が予め設定した所定の判定値以下の場合にエンジン1が低速運転中と判断する。なお、この判定値には、エンジン1が低速運転中か否かの判断基準となる回転数が設定され、エンジン1のアイドリング回転数域の上限値よりも高い値が設定される。エンジン1が低速運転中と判断した場合はステップS15に進み、ECU20はウェイストゲートバルブ10を閉じ、排気制御弁7を開ける。その後、今回の制御ルーチンを終了する。   On the other hand, if it is determined that the engine is not in the fast idle state, the process proceeds to step S14, where the ECU 20 determines whether the engine 1 is operating at a low speed. This determination may be made based on the rotational speed of the engine 1. For example, when the rotational speed of the engine 1 is equal to or less than a predetermined determination value set in advance, it is determined that the engine 1 is operating at a low speed. The determination value is set to a rotational speed that is a criterion for determining whether or not the engine 1 is operating at a low speed, and is set to a value higher than the upper limit value of the idling rotational speed range of the engine 1. When it is determined that the engine 1 is operating at low speed, the process proceeds to step S15, where the ECU 20 closes the waste gate valve 10 and opens the exhaust control valve 7. Thereafter, the current control routine is terminated.

一方、エンジン1が中・高速運転中であると判断した場合はステップS16に進み、ECU20はウェイストゲートバルブ10及び排気制御弁7の両方を開ける。その後、今回の制御ルーチンを終了する。   On the other hand, if it is determined that the engine 1 is operating at a medium or high speed, the process proceeds to step S16, where the ECU 20 opens both the waste gate valve 10 and the exhaust control valve 7. Thereafter, the current control routine is terminated.

図3は、エンジン1の運転状態とウェイストゲートバルブ10及び排気制御弁7の状態との関係を示している。また、図3には各運転状態において排気が導かれる排気浄化触媒についても示した。この図に示したようにエンジン1ではファーストアイドル中はバイパス排気浄化触媒9のみに排気が導かれ、低速運転中は排気浄化触媒6のみに排気が導かれる。そして、エンジン1が中・高速運転中は、排気浄化触媒6及びバイパス排気浄化触媒9の両方に排気が導かれる。   FIG. 3 shows the relationship between the operating state of the engine 1 and the states of the waste gate valve 10 and the exhaust control valve 7. FIG. 3 also shows an exhaust purification catalyst to which exhaust gas is guided in each operation state. As shown in this figure, in the engine 1, the exhaust is guided only to the bypass exhaust purification catalyst 9 during the first idle, and the exhaust is guided only to the exhaust purification catalyst 6 during the low speed operation. During the middle / high speed operation of the engine 1, the exhaust is guided to both the exhaust purification catalyst 6 and the bypass exhaust purification catalyst 9.

この形態のエンジン1によれば、バイパス通路8が排気通路4の排気浄化触媒6より下流側の区間に接続されているので、バイパス排気浄化触媒9を通過した排気は排気浄化触媒6の下流に導かれる。そのため、排気浄化触媒6にはタービン5bを通過した排気のみを導くことができ、またバイパス排気浄化触媒9にはタービン5bを通過する前の排気のみを導くことができる。これにより、各排気浄化触媒6、9に流入する排気の温度が急に変化することを抑制できるので、各排気浄化触媒6、9の劣化を抑制できる。   According to the engine 1 of this embodiment, since the bypass passage 8 is connected to the section downstream of the exhaust purification catalyst 6 in the exhaust passage 4, the exhaust gas that has passed through the bypass exhaust purification catalyst 9 is downstream of the exhaust purification catalyst 6. Led. Therefore, only the exhaust gas that has passed through the turbine 5b can be guided to the exhaust purification catalyst 6, and only the exhaust gas that has not passed through the turbine 5b can be guided to the bypass exhaust purification catalyst 9. Thereby, since it can suppress that the temperature of the exhaust gas which flows into each exhaust purification catalyst 6 and 9 changes suddenly, degradation of each exhaust purification catalyst 6 and 9 can be suppressed.

また、この形態のエンジン1では、排気浄化触媒6にはタービン5bを通過した排気のみが導かれる。そのため、排気浄化触媒6の耐熱温度をバイパス排気浄化触媒9の耐熱温度より低くすることができる。図4は、触媒の耐熱温度とその触媒に担持されるべき貴金属の量との関係の一例を示している。なお、図4の温度T1は排気浄化触媒6の耐熱温度を示し、温度T2はバイパス排気浄化触媒9の耐熱温度を示している。この図に示したように触媒の耐熱温度を高くするためには、より多くの貴金属を担持させる必要がある。そのため、耐熱温度が高い触媒ほどコストが高くなる。上述したように排気浄化触媒6の耐熱温度は、バイパス排気浄化触媒9の耐熱温度より低くできる。そのため、排気浄化触媒6に担持すべき貴金属の量をバイパス排気浄化触媒9と比較して少なくすることができる。従ってコストを低減することができる。   In the engine 1 of this embodiment, only the exhaust gas that has passed through the turbine 5b is guided to the exhaust purification catalyst 6. Therefore, the heat resistance temperature of the exhaust purification catalyst 6 can be made lower than the heat resistance temperature of the bypass exhaust purification catalyst 9. FIG. 4 shows an example of the relationship between the heat resistant temperature of the catalyst and the amount of noble metal to be supported on the catalyst. 4 represents the heat resistance temperature of the exhaust purification catalyst 6, and the temperature T2 represents the heat resistance temperature of the bypass exhaust purification catalyst 9. As shown in this figure, in order to increase the heat-resistant temperature of the catalyst, it is necessary to carry more noble metal. Therefore, the higher the heat-resistant temperature, the higher the cost. As described above, the heat resistance temperature of the exhaust purification catalyst 6 can be lower than the heat resistance temperature of the bypass exhaust purification catalyst 9. Therefore, the amount of noble metal to be carried on the exhaust purification catalyst 6 can be reduced as compared with the bypass exhaust purification catalyst 9. Therefore, the cost can be reduced.

さらに、この形態のエンジン1によれば、ファーストアイドル中は排気制御弁7が閉じられてウェイストゲートバルブ10が開けられるので、気筒から排出された排気のほぼ全量がバイパス排気浄化触媒9に導かれる。そのため、高温の排気にてバイパス排気浄化触媒9を速やかに昇温して活性化させることができる。そして、これによりファーストアイドル中の排気エミッションを改善することができる。一方、低速運転中は排気制御弁7が開けられてウェイストゲートバルブ10が閉じられるので、気筒から排出された排気のほぼ全量をタービン5bに導入できる。そのため、排気エネルギを十分に回収し、この排気エネルギにてエンジン1を適切に過給することができる。さらに中・高速運転中は、排気制御弁7及びウェイストゲートバルブ10の両方が開けられるので、排気浄化触媒6及びバイパス排気浄化触媒9の両方を使用して排気を浄化することができる。   Further, according to the engine 1 of this embodiment, the exhaust control valve 7 is closed and the waste gate valve 10 is opened during the first idle, so that almost the entire amount of exhaust discharged from the cylinder is guided to the bypass exhaust purification catalyst 9. . Therefore, the bypass exhaust purification catalyst 9 can be quickly heated and activated by high-temperature exhaust. As a result, exhaust emission during the first idle can be improved. On the other hand, since the exhaust control valve 7 is opened and the waste gate valve 10 is closed during low-speed operation, almost the entire amount of exhaust discharged from the cylinder can be introduced into the turbine 5b. Therefore, exhaust energy can be sufficiently recovered, and the engine 1 can be appropriately supercharged with this exhaust energy. Further, during the middle / high speed operation, both the exhaust control valve 7 and the waste gate valve 10 are opened, so that the exhaust can be purified using both the exhaust purification catalyst 6 and the bypass exhaust purification catalyst 9.

本発明は、上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、本発明が適用される内燃機関はディーゼルエンジンに限らず、ガソリンその他の燃料を利用する各種の内燃機関であってもよい。内燃機関がファーストアイドル中か否かは、冷却水の温度の代わりにオイルの温度を参照して判断してもよい。   The present invention is not limited to the above-described form and can be implemented in various forms. For example, the internal combustion engine to which the present invention is applied is not limited to a diesel engine, but may be various internal combustion engines using gasoline or other fuels. Whether or not the internal combustion engine is in the first idle state may be determined by referring to the temperature of the oil instead of the temperature of the cooling water.

排気制御弁及びウェイストゲートバルブには、開度を調整可能なバルブが設けられてもよい。この場合、エンジンの運転状態に応じてこれら排気制御弁及びウェイストゲートバルブの開度を適宜に調整してもよい。例えば、ファーストアイドル運転の終了後には、排気制御弁が徐々に開けられるとともにウェイストゲートバルブを徐々に閉じられるようにこれらのバルブの開度を調整する。このように開度を調整することにより例えばタービンの回転数を徐々に上昇させることができるので、内燃機関の回転数変動などを抑制することができる。   The exhaust control valve and the waste gate valve may be provided with a valve whose opening degree can be adjusted. In this case, the opening degree of the exhaust control valve and the waste gate valve may be appropriately adjusted according to the operating state of the engine. For example, after the end of the first idle operation, the opening degree of these valves is adjusted so that the exhaust control valve is gradually opened and the waste gate valve is gradually closed. By adjusting the opening degree in this way, for example, the rotational speed of the turbine can be gradually increased, so that fluctuations in the rotational speed of the internal combustion engine can be suppressed.

1 内燃機関
3 吸気通路
4 排気通路
5 ターボチャージャ
5a コンプレッサ
5b タービン
6 排気浄化触媒
7 排気制御弁
8 バイパス通路
9 バイパス排気浄化触媒
10 ウェイストゲートバルブ(バイパス弁)
20 エンジンコントロールユニット(制御手段)
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 3 Intake passage 4 Exhaust passage 5 Turbocharger 5a Compressor 5b Turbine 6 Exhaust purification catalyst 7 Exhaust control valve 8 Bypass passage 9 Bypass exhaust purification catalyst 10 Waste gate valve (bypass valve)
20 Engine control unit (control means)

Claims (5)

排気通路のタービンにて排気エネルギを回収して吸気通路のコンプレッサを駆動するターボチャージャと、前記排気通路の前記タービンよりも下流側の区間に設けられて排気を浄化する排気浄化触媒と、を備えた内燃機関において、
前記タービン及び前記排気浄化触媒を迂回して、前記排気通路の前記タービンよりも上流側の区間と前記排気浄化触媒よりも下流側の区間とを接続するバイパス通路と、前記バイパス通路に設けられて排気を浄化するバイパス排気浄化触媒と、を備えている過給機付内燃機関。
A turbocharger that recovers exhaust energy by a turbine in the exhaust passage and drives a compressor in the intake passage; and an exhaust purification catalyst that is provided in a section downstream of the turbine in the exhaust passage and purifies the exhaust. In internal combustion engines
A bypass passage that bypasses the turbine and the exhaust purification catalyst and connects a section upstream of the turbine and a section downstream of the exhaust purification catalyst in the exhaust passage, and is provided in the bypass passage. An internal combustion engine with a supercharger, comprising: a bypass exhaust purification catalyst that purifies exhaust gas.
前記バイパス通路を開閉するバイパス弁と、前記排気通路の前記タービンと前記排気浄化触媒との間の区間に設けられて前記排気通路を開閉する排気制御弁と、前記内燃機関の運転状態に基づいて前記バイパス弁及び前記排気制御弁をそれぞれ制御する制御手段と、をさらに備えている請求項1に記載の過給機付内燃機関。   Based on a bypass valve that opens and closes the bypass passage, an exhaust control valve that is provided in a section of the exhaust passage between the turbine and the exhaust purification catalyst, and that opens and closes the exhaust passage, and an operating state of the internal combustion engine The supercharged internal combustion engine according to claim 1, further comprising control means for controlling the bypass valve and the exhaust control valve, respectively. 前記制御手段は、前記内燃機関が冷間始動後の暖機運転中の場合には前記排気制御弁を閉じ、かつ前記バイパス弁を開ける請求項2に記載の過給機付内燃機関。   The internal combustion engine with a supercharger according to claim 2, wherein the control means closes the exhaust control valve and opens the bypass valve when the internal combustion engine is in a warm-up operation after a cold start. 前記制御手段は、前記内燃機関の回転数が所定の判定値以下の場合には前記排気制御弁を開け、かつ前記バイパス弁を閉じ、前記内燃機関の回転数が前記所定の判定値より高い場合には前記排気制御弁及び前記バイパス弁の両方を開ける請求項2又は3に記載の過給機付内燃機関。   The control means opens the exhaust control valve and closes the bypass valve when the rotational speed of the internal combustion engine is less than or equal to a predetermined determination value, and when the rotational speed of the internal combustion engine is higher than the predetermined determination value The internal combustion engine with a supercharger according to claim 2 or 3, wherein both the exhaust control valve and the bypass valve are opened. 前記排気浄化触媒及び前記バイパス排気浄化触媒には、それぞれ貴金属が担持されており、
前記排気浄化触媒に担持されている貴金属の量は、前記バイパス排気浄化触媒に担持されている貴金属の量よりも少ない請求項1〜4のいずれか一項に記載の過給機付内燃機関。
The exhaust purification catalyst and the bypass exhaust purification catalyst each carry a noble metal,
The internal combustion engine with a supercharger according to any one of claims 1 to 4, wherein an amount of the noble metal carried on the exhaust purification catalyst is smaller than an amount of the noble metal carried on the bypass exhaust purification catalyst.
JP2009030316A 2009-02-12 2009-02-12 Internal combustion engine with a supercharger Expired - Fee Related JP5332684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009030316A JP5332684B2 (en) 2009-02-12 2009-02-12 Internal combustion engine with a supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009030316A JP5332684B2 (en) 2009-02-12 2009-02-12 Internal combustion engine with a supercharger

Publications (2)

Publication Number Publication Date
JP2010185378A true JP2010185378A (en) 2010-08-26
JP5332684B2 JP5332684B2 (en) 2013-11-06

Family

ID=42766179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030316A Expired - Fee Related JP5332684B2 (en) 2009-02-12 2009-02-12 Internal combustion engine with a supercharger

Country Status (1)

Country Link
JP (1) JP5332684B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110271673A1 (en) * 2010-05-04 2011-11-10 Alpraaz Ab Exhaust system for a combustion engine
JP2016061156A (en) * 2014-09-12 2016-04-25 株式会社デンソー Intake and exhaust device for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193445A (en) * 2000-01-13 2001-07-17 Fuji Heavy Ind Ltd Exhaust device for engine
JP2007247557A (en) * 2006-03-16 2007-09-27 Toyota Motor Corp Start control device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193445A (en) * 2000-01-13 2001-07-17 Fuji Heavy Ind Ltd Exhaust device for engine
JP2007247557A (en) * 2006-03-16 2007-09-27 Toyota Motor Corp Start control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110271673A1 (en) * 2010-05-04 2011-11-10 Alpraaz Ab Exhaust system for a combustion engine
JP2016061156A (en) * 2014-09-12 2016-04-25 株式会社デンソー Intake and exhaust device for internal combustion engine

Also Published As

Publication number Publication date
JP5332684B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5170339B2 (en) Control device for an internal combustion engine with a supercharger
JP2009191686A (en) Supercharger of engine
WO2009116416A1 (en) Warm-up method and warm-up system for catalytic converter for purifying exhaust gas
JP2009002283A (en) Control system of internal combustion engine
JP5262788B2 (en) Control device for an internal combustion engine with a supercharger
JP2010209735A (en) Control device for internal combustion engine
JP2009228486A (en) Turbo supercharge type internal combustion engine
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
JP2007162489A (en) Control device for internal combustion engine with supercharger
JP2009185737A (en) Supercharger for engine
JP5282695B2 (en) Control device for an internal combustion engine with a supercharger
JP2011179324A (en) Control device for internal combustion engine
JP6375808B2 (en) Intake / exhaust device for internal combustion engine
JP4188403B2 (en) Control device
JP5332684B2 (en) Internal combustion engine with a supercharger
JP2010203426A (en) Control device of internal combustion engine with supercharger
JP2009235944A (en) Supercharging apparatus for engine
JP2010151102A (en) Internal combustion engine with supercharger
JP4406384B2 (en) Control device for internal combustion engine
JP2005002975A (en) Exhaust purification device for engine
JP2010190046A (en) Exhaust heat recovery control device for internal combustion engine
JPH11141331A (en) Emission control device of engine with turbo charger
JP4421360B2 (en) Exhaust gas purification device for internal combustion engine
JP2010133327A (en) Exhaust emission control device for internal combustion engine
JP2010116895A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5332684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees