JP2010190046A - Exhaust heat recovery control device for internal combustion engine - Google Patents

Exhaust heat recovery control device for internal combustion engine Download PDF

Info

Publication number
JP2010190046A
JP2010190046A JP2009032209A JP2009032209A JP2010190046A JP 2010190046 A JP2010190046 A JP 2010190046A JP 2009032209 A JP2009032209 A JP 2009032209A JP 2009032209 A JP2009032209 A JP 2009032209A JP 2010190046 A JP2010190046 A JP 2010190046A
Authority
JP
Japan
Prior art keywords
heat recovery
exhaust heat
exhaust
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009032209A
Other languages
Japanese (ja)
Inventor
Tsubasa Sakuishi
翼 作石
Nobuaki Ikemoto
池本  宣昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009032209A priority Critical patent/JP2010190046A/en
Priority to DE102010001953A priority patent/DE102010001953A1/en
Publication of JP2010190046A publication Critical patent/JP2010190046A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/04Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids
    • F01N3/043Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids without contact between liquid and exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/06Exhaust treating devices having provisions not otherwise provided for for improving exhaust evacuation or circulation, or reducing back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/66Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/048Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Supercharger (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance engine output by utilizing an exhaust heat recovery device for an engine. <P>SOLUTION: When a target engine output is in a high output side area, an electric water pump 15 is controlled to increase the quantity of exhaust heat recovery of the exhaust heat recovery device 19. As the temperature of exhaust gas lowers and the volume flow rate of the exhaust gas lowers, and the exhaust gas pressure loss decreases and exhaustion efficiency improves accordingly, the engine output improves. When the target engine output is in a low output side area, the electric water pump 15 is controlled to decrease the quantity of exhaust heat recovery of the exhaust heat recovery device 19. Although the temperature of the exhaust gas rises and the volume flow rate of the exhaust gas rises, and the exhaust gas pressure loss increases and exhaustion efficiency lowers accordingly, as a combustion state can be improved by lowering the exhaust efficiency appropriately and increasing the inner EGR quantity (exhaust gas remaining quantity) of the engine 11 in the low output side area, it is possible to improve the engine output. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排出ガスと冷却水との間で熱交換を行って排気熱を回収する排気熱回収器を備えた内燃機関の排気熱回収制御装置に関する発明である。   The present invention relates to an exhaust heat recovery control device for an internal combustion engine that includes an exhaust heat recovery device that recovers exhaust heat by exchanging heat between exhaust gas and cooling water of the internal combustion engine.

特許文献1(特開2008−190437号公報)に記載されているように、内燃機関の排出ガスと冷却水との間で熱交換を行って排気熱を回収する排気熱回収器を設け、この排気熱回収器で回収した排気熱を内燃機関の早期暖機に利用するようにしたものがある。この特許文献1の技術では、内燃機関の始動後で且つ触媒の暖機完了前の場合には、排気熱回収器に循環させる冷却水の流量を所定量以下にして排気熱回収量を少なくすることで、排気熱による触媒の暖機を促進するようにしている。   As described in Patent Document 1 (Japanese Patent Laid-Open No. 2008-190437), an exhaust heat recovery device is provided that recovers exhaust heat by exchanging heat between exhaust gas and cooling water of an internal combustion engine. Some exhaust heat recovered by an exhaust heat recovery device is used for early warm-up of an internal combustion engine. In the technique of this Patent Document 1, when the internal combustion engine is started and before the catalyst is warmed up, the flow rate of the cooling water circulated to the exhaust heat recovery device is set to a predetermined amount or less to reduce the exhaust heat recovery amount. Thus, warming up of the catalyst by exhaust heat is promoted.

特開2008−190437号公報(第2頁等)JP 2008-190437 A (second page, etc.)

しかし、上記従来の技術は、排気熱回収器を単に内燃機関や触媒の暖機促進に利用するだけであるため、排気熱回収器の利用範囲が狭く、排気熱回収器を設けるメリット(付加価値)が少ない。   However, the above conventional technology simply uses the exhaust heat recovery device for promoting warm-up of the internal combustion engine and the catalyst, so that the range of use of the exhaust heat recovery device is narrow and the merit of providing the exhaust heat recovery device (added value) )Less is.

そこで、本発明が解決しようとする課題は、内燃機関や触媒の暖機促進の他に、内燃機関の出力制御にも排気熱回収器を活用することができる内燃機関の排気熱回収制御装置を提供することにある。   Therefore, the problem to be solved by the present invention is to provide an exhaust heat recovery control device for an internal combustion engine that can utilize the exhaust heat recovery device for output control of the internal combustion engine in addition to promoting warm-up of the internal combustion engine and the catalyst. It is to provide.

排気熱回収器による排気熱回収量が変化すると、排出ガスの温度が変化して排出ガスの体積流量が変化し、それに応じて触媒やマフラ(消音器)等での排気圧損が変化して排気効率が変化する。これは、排気熱回収器の排気熱回収量を変化させることで排気効率を変化させることができることを意味する。   When the amount of exhaust heat recovered by the exhaust heat recovery unit changes, the temperature of the exhaust gas changes and the volume flow rate of the exhaust gas changes, and the exhaust pressure loss in the catalyst, muffler (silencer), etc. changes accordingly and the exhaust gas changes. Efficiency changes. This means that the exhaust efficiency can be changed by changing the exhaust heat recovery amount of the exhaust heat recovery device.

このような特性に着目して、請求項1に係る発明は、内燃機関の排出ガスと冷却水との間で熱交換を行って排気熱を回収する排気熱回収器を備えた内燃機関の排気熱回収制御装置において、排気熱回収器による排気熱回収量を調整する排気熱回収量調整手段と、内燃機関の出力又はこれに関連性のある情報(以下これらを「機関出力情報」と総称する)に応じて排気熱回収量を変化させるように排気熱回収量調整手段を制御する排気熱回収制御手段とを備えた構成としたものである。この構成では、機関出力情報に応じて排気熱回収量を変化させることができるため、内燃機関の出力に応じて排気効率を適正に変化させて、内燃機関の出力を向上させることが可能となり、内燃機関や触媒の暖機促進の他に、内燃機関出力の制御にも排気熱回収器を活用することができて、排気熱回収器の利用範囲を拡大でき、排気熱回収器を設けるメリット(付加価値)を増やすことができる。   Focusing on such characteristics, the invention according to claim 1 is an exhaust gas of an internal combustion engine provided with an exhaust heat recovery device that recovers exhaust heat by exchanging heat between exhaust gas of the internal combustion engine and cooling water. In the heat recovery control device, the exhaust heat recovery amount adjusting means for adjusting the exhaust heat recovery amount by the exhaust heat recovery device and the output of the internal combustion engine or information related thereto (hereinafter referred to as “engine output information”) And an exhaust heat recovery control means for controlling the exhaust heat recovery amount adjusting means so as to change the exhaust heat recovery amount according to the above. In this configuration, since the exhaust heat recovery amount can be changed according to the engine output information, it becomes possible to appropriately change the exhaust efficiency according to the output of the internal combustion engine and improve the output of the internal combustion engine. In addition to promoting warm-up of internal combustion engines and catalysts, exhaust heat recovery devices can also be used to control the output of internal combustion engines, and the range of use of exhaust heat recovery devices can be expanded. Value added).

具体的には、請求項2のように、機関出力情報が所定の高出力側の領域のときに排気熱回収量を増加させるように排気熱回収量調整手段を制御し、機関出力情報が所定の低出力側の領域のときに排気熱回収量を減少させるように排気熱回収量調整手段を制御すると良い。このようにすれば、機関出力情報が高出力側の領域のときには、排気熱回収量を増加させることで、排出ガス温度が低下して排出ガスの体積流量が減少し、それに応じて排気圧損が減少して排気効率が高くなるため、内燃機関の出力を向上させる(出力を効率良く発生させる)ことができる。   Specifically, as in claim 2, when the engine output information is in a predetermined high output side region, the exhaust heat recovery amount adjusting means is controlled to increase the exhaust heat recovery amount, and the engine output information is predetermined. It is preferable to control the exhaust heat recovery amount adjusting means so as to reduce the exhaust heat recovery amount in the low output side region. In this way, when the engine output information is in the high output side region, increasing the exhaust heat recovery amount reduces the exhaust gas temperature and decreases the volume flow rate of the exhaust gas. Since the exhaust efficiency decreases and the exhaust efficiency increases, the output of the internal combustion engine can be improved (output can be generated efficiently).

一方、機関出力情報が低出力側の領域のときには、排気熱回収量を減少させることで、排出ガス温度が上昇して排出ガスの体積流量が増加し、それに応じて排気圧損が増加して排気効率が低くなるが、低出力側の領域では、排気効率を適度に低くすることで内燃機関の内部EGR量(排出ガス残留量)を増加させて燃焼状態を向上させることができるため、内燃機関の出力を向上させる(出力を効率良く発生させる)ことができる。   On the other hand, when the engine output information is in the low output region, the exhaust heat recovery amount is reduced, so that the exhaust gas temperature rises and the exhaust gas volume flow rate increases, and the exhaust pressure loss increases accordingly. Although the efficiency is reduced, in the low output side region, the internal combustion engine can be improved by increasing the internal EGR amount (exhaust gas residual amount) of the internal combustion engine by appropriately reducing the exhaust efficiency. Output can be improved (output can be generated efficiently).

また、請求項3のように、機関出力情報として、内燃機関の目標出力と目標燃料噴射量とアクセル開度のうちの少なくとも1つを用いるようにしても良い。アクセル開度に応じて内燃機関の目標出力が変化し、それに応じて目標燃料噴射量が変化して内燃機関の出力が変化するため、目標出力と目標燃料噴射量とアクセル開度は、いずれも内燃機関の出力を反映した情報となる。   According to a third aspect of the present invention, at least one of the target output of the internal combustion engine, the target fuel injection amount, and the accelerator opening may be used as the engine output information. Since the target output of the internal combustion engine changes according to the accelerator opening, and the target fuel injection amount changes accordingly and the output of the internal combustion engine changes, the target output, the target fuel injection amount, and the accelerator opening are all The information reflects the output of the internal combustion engine.

或は、請求項4のように、機関出力情報として、内燃機関の排出ガス温度と排出ガス体積流量と触媒温度のうちの少なくとも1つを用いるようにしても良い。内燃機関の出力に応じて排出ガス温度や排出ガス体積流量が変化し、それに応じて触媒温度が変化するため、排出ガス温度と排出ガス体積流量と触媒温度は、いずれも内燃機関の出力を反映した情報となる。   Alternatively, as in claim 4, at least one of the exhaust gas temperature, the exhaust gas volume flow rate, and the catalyst temperature of the internal combustion engine may be used as the engine output information. Since the exhaust gas temperature and the exhaust gas volume flow rate change according to the output of the internal combustion engine, and the catalyst temperature changes accordingly, the exhaust gas temperature, the exhaust gas volume flow rate, and the catalyst temperature all reflect the output of the internal combustion engine. Information.

また、内燃機関の排出ガスの運動エネルギで排気タービンを回転駆動することでコンプレッサを回転駆動して吸入空気を過給する排気タービン式過給機(いわゆるターボチャージャ)を備えたシステムでは、排気熱回収器による排気熱回収量が変化すると、排出ガスの温度が変化して排出ガスの体積流量が変化し、それに応じて排気タービンの回転速度が変化して実過給圧が変化する。これは、排気熱回収器の排気熱回収量を変化させることで実過給圧を変化させることができることを意味する。   Further, in a system having an exhaust turbine supercharger (so-called turbocharger) that rotationally drives an exhaust turbine with kinetic energy of exhaust gas of an internal combustion engine to supercharge intake air, the exhaust heat When the amount of exhaust heat recovered by the recovery device changes, the temperature of the exhaust gas changes and the volume flow rate of the exhaust gas changes, and the rotational speed of the exhaust turbine changes accordingly and the actual supercharging pressure changes. This means that the actual supercharging pressure can be changed by changing the exhaust heat recovery amount of the exhaust heat recovery device.

このような特性に着目して、請求項5のように、内燃機関の排出ガスと冷却水との間で熱交換を行って排気熱を回収する排気熱回収器と、内燃機関の排出ガスで排気タービンを回転駆動することでコンプレッサを回転駆動して吸入空気を過給する排気タービン式過給機とを備えた内燃機関の排気熱回収制御装置において、排気熱回収器による排気熱回収量を調整する排気熱回収量調整手段と、内燃機関の目標過給圧と実過給圧に応じて排気熱回収量を変化させるように排気熱回収量調整手段を制御する排気熱回収制御手段とを備えた構成としても良い。この構成では、目標過給圧と実過給圧に応じて排気熱回収量を変化させることができるため、目標過給圧と実過給圧との関係に応じて実過給圧を変化させて、実過給圧を速やかに目標過給圧に制御することが可能となり、内燃機関の出力の制御性を向上させることができる。   By paying attention to such characteristics, an exhaust heat recovery device that recovers exhaust heat by exchanging heat between the exhaust gas of the internal combustion engine and the cooling water, and an exhaust gas of the internal combustion engine as in claim 5 In an exhaust heat recovery control device for an internal combustion engine having an exhaust turbine supercharger that rotationally drives an exhaust turbine to supercharge intake air by rotating the compressor, the amount of exhaust heat recovered by the exhaust heat recovery device is reduced. An exhaust heat recovery amount adjusting means for adjusting, and an exhaust heat recovery control means for controlling the exhaust heat recovery amount adjustment means so as to change the exhaust heat recovery amount in accordance with the target boost pressure and the actual boost pressure of the internal combustion engine. It is good also as a structure provided. In this configuration, since the exhaust heat recovery amount can be changed according to the target boost pressure and the actual boost pressure, the actual boost pressure is changed according to the relationship between the target boost pressure and the actual boost pressure. Thus, the actual boost pressure can be quickly controlled to the target boost pressure, and the controllability of the output of the internal combustion engine can be improved.

具体的には、請求項6のように、実過給圧が目標過給圧よりも低いときに排気熱回収量を減少させるように排気熱回収量調整手段を制御し、実過給圧が目標過給圧よりも高いときに排気熱回収量を増加させるように排気熱回収量調整手段を制御すると良い。このようにすれば、実過給圧が目標過給圧よりも低いときには、排気熱回収量を減少させることで、排出ガス温度が上昇して排出ガスの体積流量が増加し、それに応じて排気タービンの回転速度が上昇して実過給圧が上昇するため、実過給圧を速やかに目標過給圧まで引き上げることができる。   Specifically, as in claim 6, when the actual supercharging pressure is lower than the target supercharging pressure, the exhaust heat recovery amount adjusting means is controlled so as to decrease the exhaust heat recovery amount, and the actual supercharging pressure is reduced. The exhaust heat recovery amount adjusting means may be controlled so as to increase the exhaust heat recovery amount when it is higher than the target boost pressure. In this way, when the actual supercharging pressure is lower than the target supercharging pressure, the exhaust heat recovery amount is decreased to increase the exhaust gas temperature and increase the volume flow rate of the exhaust gas. Since the rotational speed of the turbine is increased and the actual supercharging pressure is increased, the actual supercharging pressure can be quickly raised to the target supercharging pressure.

一方、実過給圧が目標過給圧よりも高いときには、排気熱回収量を増加させることで、排出ガス温度が低下して排出ガスの体積流量が減少し、それに応じて排気タービンの回転速度が低下して実過給圧が低下するため、実過給圧を速やかに目標過給圧まで引き下げることができる。   On the other hand, when the actual supercharging pressure is higher than the target supercharging pressure, increasing the exhaust heat recovery amount reduces the exhaust gas temperature and decreases the volume flow rate of the exhaust gas, and accordingly the rotational speed of the exhaust turbine. Decreases and the actual supercharging pressure decreases, so that the actual supercharging pressure can be quickly lowered to the target supercharging pressure.

更に、請求項7のように、内燃機関の目標出力が所定値以下のときには目標過給圧と実過給圧に応じた排気熱回収量の制御を停止して他の要求に応じた排気熱回収量の制御を実行するようにしても良い。このようにすれば、内燃機関の目標出力が所定値以下のときには、排出ガスの運動エネルギが小さいため、排気タービン式過給機が十分に機能しないと判断して、目標過給圧と実過給圧に応じた排気熱回収量の制御を停止して、他の要求に応じた排気熱回収量の制御(例えば、内燃機関の目標出力に応じた排気熱回収量の制御)を行うことができる。   Further, as in claim 7, when the target output of the internal combustion engine is less than a predetermined value, the control of the exhaust heat recovery amount according to the target boost pressure and the actual boost pressure is stopped, and the exhaust heat according to other requirements. You may make it perform control of collection | recovery amount. In this way, when the target output of the internal combustion engine is less than or equal to the predetermined value, it is determined that the exhaust turbine supercharger does not function sufficiently because the kinetic energy of the exhaust gas is small. The control of the exhaust heat recovery amount according to the supply pressure is stopped, and the exhaust heat recovery amount control according to other requirements (for example, control of the exhaust heat recovery amount according to the target output of the internal combustion engine) is performed. it can.

また、請求項8のように、車両に搭載した内燃機関の排出ガスと冷却水との間で熱交換を行って排気熱を回収する排気熱回収器を備えた内燃機関の排気熱回収制御装置において、排気熱回収器による排気熱回収量を調整する排気熱回収量調整手段と、車両の運転者によって操作される操作手段と、操作手段の操作状態に応じて排気熱回収量を変化させるように排気熱回収量調整手段を制御する排気熱回収制御手段とを備えた構成としても良い。このようにすれば、運転者の操作に応じて排気熱回収量を変化させて排気効率を適正に変化させることができる。   An exhaust heat recovery control device for an internal combustion engine comprising an exhaust heat recovery device for recovering exhaust heat by exchanging heat between exhaust gas and cooling water of an internal combustion engine mounted on a vehicle as in claim 8 The exhaust heat recovery amount adjusting means for adjusting the exhaust heat recovery amount by the exhaust heat recovery device, the operation means operated by the driver of the vehicle, and the exhaust heat recovery amount is changed according to the operating state of the operation means. The exhaust heat recovery control means for controlling the exhaust heat recovery amount adjustment means may be provided. In this way, the exhaust efficiency can be appropriately changed by changing the exhaust heat recovery amount according to the operation of the driver.

また、請求項9のように、排気熱回収量調整手段として、排気熱回収器に循環させる冷却水の流量を調整する手段を用いるようにすると良い。このようにすれば、排気熱回収量調整手段(例えば電動ウォータポンプや流量調整バルブ等)によって排気熱回収器に循環させる冷却水の流量を調整することで排気熱回収器による排気熱回収量を調整することができる。   Further, as in the ninth aspect, as the exhaust heat recovery amount adjusting means, means for adjusting the flow rate of the cooling water circulated in the exhaust heat recovery device may be used. In this way, the exhaust heat recovery amount by the exhaust heat recovery device can be adjusted by adjusting the flow rate of the cooling water circulated to the exhaust heat recovery device by the exhaust heat recovery amount adjustment means (for example, an electric water pump or a flow rate adjustment valve). Can be adjusted.

尚、排気熱回収量調整手段は、排気熱回収器に循環させる冷却水の流量を調整する手段に限定されず、例えば、排出ガスと冷却水との間で熱交換を行うための熱交換媒体を封入した熱交換媒体循環経路に開閉弁を設けた排気熱回収器の場合には、この開閉弁を排気熱回収量調整手段として用いて、開閉弁によって熱交換媒体の循環量を調整することで排気熱回収器による排気熱回収量を調整するようにしても良い。   The exhaust heat recovery amount adjusting means is not limited to means for adjusting the flow rate of the cooling water to be circulated through the exhaust heat recovery device. For example, the heat exchange medium for exchanging heat between the exhaust gas and the cooling water. In the case of an exhaust heat recovery device provided with an on-off valve in the heat exchange medium circulation path enclosing the heat exchanger, the on-off valve is used as an exhaust heat recovery amount adjusting means, and the circulation amount of the heat exchange medium is adjusted by the on-off valve. The exhaust heat recovery amount by the exhaust heat recovery device may be adjusted.

図1は本発明の実施例1におけるエンジン冷却システム全体の概略構成図である。FIG. 1 is a schematic configuration diagram of the entire engine cooling system in Embodiment 1 of the present invention. 図2は実施例1の排気熱回収制御を説明するブロック図である。FIG. 2 is a block diagram illustrating exhaust heat recovery control according to the first embodiment. 図3は実施例1の排気熱回収制御ルーチンの処理の流れを説明するフローチャートである。FIG. 3 is a flowchart for explaining the processing flow of the exhaust heat recovery control routine of the first embodiment. 図4は実施例1の排気熱回収制御の実行例を説明するタイムチャートである。FIG. 4 is a time chart for explaining an execution example of the exhaust heat recovery control of the first embodiment. 図5は実施例2の排気熱回収制御を説明するブロック図である。FIG. 5 is a block diagram illustrating exhaust heat recovery control according to the second embodiment. 図6は実施例2の排気熱回収制御ルーチンの処理の流れを説明するフローチャートである。FIG. 6 is a flowchart for explaining the processing flow of the exhaust heat recovery control routine of the second embodiment. 図7は実施例2の排気熱回収制御の実行例を説明するタイムチャートである。FIG. 7 is a time chart for explaining an execution example of the exhaust heat recovery control of the second embodiment. 図8は実施例3のエンジン冷却システム全体の概略構成図である。FIG. 8 is a schematic configuration diagram of the entire engine cooling system of the third embodiment. 図9は実施例3の排気熱回収制御を説明するブロック図である。FIG. 9 is a block diagram illustrating the exhaust heat recovery control of the third embodiment. 図10は実施例3の排気熱回収制御ルーチンの処理の流れを説明するフローチャートである。FIG. 10 is a flowchart for explaining the processing flow of the exhaust heat recovery control routine of the third embodiment. 図11は実施例3の排気熱回収制御の実行例を説明するタイムチャートである。FIG. 11 is a time chart for explaining an execution example of the exhaust heat recovery control of the third embodiment. 図12は他の実施例のエンジン冷却システム全体の概略構成図である。FIG. 12 is a schematic configuration diagram of an entire engine cooling system according to another embodiment.

以下、本発明を実施するための形態を具体化した幾つかの実施例を説明する。   Hereinafter, some embodiments embodying the mode for carrying out the present invention will be described.

本発明の実施例1を図1乃至図4に基づいて説明する。
まず、図1に基づいてエンジン冷却システム全体の概略構成を説明する。
内燃機関であるエンジン11のウォータジャケット(冷却水通路)の出口と入口との間には、冷却水が循環する冷却水循環流路12が接続され、この冷却水循環流路12の途中に、ラジエータ13が設けられている。また、エンジン11のウォータジャケットの出口と、冷却水循環流路12のうちのラジエータ13の下流側との間には、ラジエータ13をバイパスするバイパス流路14が接続されている。更に、冷却水循環流路12の途中(例えばバイパス流路14との接続部よりも下流側)には、冷却水を循環させるための電動ウォータポンプ15が設けられている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine cooling system will be described with reference to FIG.
A cooling water circulation passage 12 through which cooling water circulates is connected between an outlet and an inlet of a water jacket (cooling water passage) of an engine 11 that is an internal combustion engine. A radiator 13 is provided in the middle of the cooling water circulation passage 12. Is provided. A bypass flow path 14 that bypasses the radiator 13 is connected between the outlet of the water jacket of the engine 11 and the downstream side of the radiator 13 in the cooling water circulation flow path 12. Further, an electric water pump 15 for circulating the cooling water is provided in the middle of the cooling water circulation passage 12 (for example, downstream of the connection portion with the bypass passage 14).

また、冷却水循環流路12の途中(例えばバイパス流路14との接続部)には、冷却水温に応じて開閉動作するサーモスタット16が設けられ、冷却水温が所定温度(例えば暖機完了に相当する温度)よりも低い未暖機水温領域では、サーモスタット16が閉弁してエンジン11とラジエータ13との間の冷却水の循環を停止する。これにより、エンジン11側の冷却水温を速やかに上昇させてエンジン11の暖機を促進する。その後、冷却水温が所定温度以上になったときに、サーモスタット16が開弁してエンジン11とラジエータ13との間で冷却水を循環させて、ラジエータ13の放熱作用により冷却水温を適正な暖機温度範囲内に調節してエンジン11のオーバーヒートを防止する。   Further, a thermostat 16 that opens and closes according to the cooling water temperature is provided in the middle of the cooling water circulation channel 12 (for example, a connection portion with the bypass channel 14), and the cooling water temperature corresponds to a predetermined temperature (for example, completion of warm-up). In the non-warm-up water temperature region lower than (temperature), the thermostat 16 is closed and the circulation of the cooling water between the engine 11 and the radiator 13 is stopped. As a result, the cooling water temperature on the engine 11 side is quickly raised to promote warm-up of the engine 11. Thereafter, when the cooling water temperature becomes equal to or higher than the predetermined temperature, the thermostat 16 is opened to circulate the cooling water between the engine 11 and the radiator 13, and the cooling water temperature is appropriately warmed up by the heat radiation action of the radiator 13. The engine 11 is prevented from being overheated by adjusting it within the temperature range.

一方、エンジン11の排気管17には、排出ガスを浄化する三元触媒等の触媒18が設けられ、この触媒18の上流側(又は下流側)に、排気熱回収器19が設けられている。この排気熱回収器19は、冷却水循環流路12の途中(例えば電動ウォータポンプ15よりも下流側)に接続され、排気管17内を流れる排出ガスと、冷却水循環流路12内を流れる冷却水との間で熱交換を行って排気熱を回収するようになっている。また、電動ウォータポンプ15によって排気熱回収器19に循環させる冷却水の流量を調整することで排気熱回収器19による排気熱回収量を調整するようになっている。この場合、電動ウォータポンプ15が排気熱回収量調整手段としての役割を果たす。   On the other hand, the exhaust pipe 17 of the engine 11 is provided with a catalyst 18 such as a three-way catalyst for purifying exhaust gas, and an exhaust heat recovery device 19 is provided upstream (or downstream) of the catalyst 18. . The exhaust heat recovery device 19 is connected to the middle of the cooling water circulation passage 12 (for example, downstream of the electric water pump 15), and the exhaust gas flowing in the exhaust pipe 17 and the cooling water flowing in the cooling water circulation passage 12 are connected. Exhaust heat is recovered by exchanging heat with each other. Further, the amount of exhaust heat recovered by the exhaust heat recovery unit 19 is adjusted by adjusting the flow rate of the cooling water circulated to the exhaust heat recovery unit 19 by the electric water pump 15. In this case, the electric water pump 15 serves as exhaust heat recovery amount adjusting means.

エンジン11のシリンダブロックには、クランク軸が所定クランク角回転する毎にパルス信号を出力するクランク角センサ20が取り付けられ、このクランク角センサ20の出力信号に基づいてクランク角やエンジン回転速度が検出される。また、エアフローメータ21によって吸入空気量が検出され、アクセルセンサ22によってアクセル開度(アクセルペダルの踏込量)が検出される。   A crank angle sensor 20 that outputs a pulse signal every time the crankshaft rotates a predetermined crank angle is attached to the cylinder block of the engine 11, and the crank angle and the engine rotation speed are detected based on the output signal of the crank angle sensor 20. Is done. The air flow meter 21 detects the intake air amount, and the accelerator sensor 22 detects the accelerator opening (the amount of depression of the accelerator pedal).

これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)23に入力される。このECU23は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁(図示せず)の燃料噴射量や点火プラグ(図示せず)の点火時期を制御する。   Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 23. The ECU 23 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby control the fuel injection valve (not shown) according to the engine operating state. The fuel injection amount and the ignition timing of a spark plug (not shown) are controlled.

ここで、排気熱回収器19による排気熱回収量が変化すると、排出ガスの温度が変化して排出ガスの体積流量が変化し、それに応じて触媒18やマフラ(消音器)等での排気圧損が変化して排気効率が変化する。これは、排気熱回収器19の排気熱回収量を変化させることで排気効率を変化させることができることを意味する。   Here, when the amount of exhaust heat recovery by the exhaust heat recovery unit 19 changes, the temperature of the exhaust gas changes and the volume flow rate of the exhaust gas changes, and the exhaust pressure loss in the catalyst 18, muffler (silencer) and the like accordingly. Changes and exhaust efficiency changes. This means that the exhaust efficiency can be changed by changing the exhaust heat recovery amount of the exhaust heat recovery unit 19.

このような特性に着目して、本実施例1では、ECU23により後述する図3の排気熱回収制御ルーチンを実行することで、目標エンジン出力に応じて排気熱回収器19の排気熱回収量を変化させるように電動ウォータポンプ15を制御する排気熱回収制御を実行する。   Focusing on such characteristics, in the first embodiment, the ECU 23 executes an exhaust heat recovery control routine of FIG. 3 to be described later, whereby the exhaust heat recovery amount of the exhaust heat recovery unit 19 is set according to the target engine output. Exhaust heat recovery control for controlling the electric water pump 15 so as to be changed is executed.

具体的には、図2に示すように、目標排気熱回収量Qr のマップを参照して、目標エンジン出力Perに応じた目標排気熱回収量Qr を算出する。この目標排気熱回収量Qr のマップは、例えば、目標エンジン出力Perが所定値よりも高出力側の領域のときには、目標エンジン出力Perが高くなるほど目標排気熱回収量Qr が増加するように設定され、目標エンジン出力Perが所定値よりも低出力側の領域のときには、目標エンジン出力Perが低くなるほど目標排気熱回収量Qr が減少するように設定されている。また、目標排気熱回収量Qr の上限値は、排気熱回収器19の許容最大排気熱回収量又はそれよりも余裕分だけ少ない値に設定されている。   Specifically, as shown in FIG. 2, the target exhaust heat recovery amount Qr corresponding to the target engine output Per is calculated with reference to the map of the target exhaust heat recovery amount Qr. This map of the target exhaust heat recovery amount Qr is set so that, for example, when the target engine output Per is in a region on the higher output side than a predetermined value, the target exhaust heat recovery amount Qr increases as the target engine output Per increases. When the target engine output Per is in a region on the output side lower than the predetermined value, the target exhaust heat recovery amount Qr is set to decrease as the target engine output Per decreases. Further, the upper limit value of the target exhaust heat recovery amount Qr is set to the allowable maximum exhaust heat recovery amount of the exhaust heat recovery device 19 or a value smaller than that by the margin.

この後、目標冷却水流量Vw のマップを参照して、目標排気熱回収量Qr に応じた目標冷却水流量Vw を算出し、この目標冷却水流量Vw に応じて電動ウォータポンプ15を制御して、排気熱回収器19に循環させる冷却水の流量を目標冷却水流量Vw に調整することで、排気熱回収器19の排気熱回収量を目標排気熱回収量Qr に調整する。   Thereafter, referring to the map of the target coolant flow rate Vw, the target coolant flow rate Vw corresponding to the target exhaust heat recovery amount Qr is calculated, and the electric water pump 15 is controlled according to the target coolant flow rate Vw. The exhaust heat recovery amount of the exhaust heat recovery device 19 is adjusted to the target exhaust heat recovery amount Qr by adjusting the flow rate of the cooling water circulated through the exhaust heat recovery device 19 to the target cooling water flow rate Vw.

この排気熱回収制御によって、目標エンジン出力が高出力側の領域のときには、排気熱回収器19の排気熱回収量を増加させるように電動ウォータポンプ15を制御する。排気熱回収器19の排気熱回収量を増加させると、排出ガス温度が低下して排出ガスの体積流量が減少し、それに応じて排気圧損が減少して排気効率が高くなるため、エンジン出力が向上する。   By this exhaust heat recovery control, when the target engine output is in the high output region, the electric water pump 15 is controlled so as to increase the exhaust heat recovery amount of the exhaust heat recovery unit 19. If the exhaust heat recovery amount of the exhaust heat recovery unit 19 is increased, the exhaust gas temperature is decreased and the volume flow rate of the exhaust gas is decreased. Accordingly, the exhaust pressure loss is decreased and the exhaust efficiency is increased. improves.

一方、目標エンジン出力が低出力側の領域のときには、排気熱回収器19の排気熱回収量を減少させるように電動ウォータポンプ15を制御する。排気熱回収器19の排気熱回収量を減少させると、排出ガス温度が上昇して排出ガスの体積流量が増加し、それに応じて排気圧損が増加して排気効率が低くなるが、低出力側の領域では、排気効率を適度に低くすることでエンジン11の内部EGR量(排出ガス残留量)を増加させて燃焼状態を向上させることができるため、エンジン出力が向上する。   On the other hand, when the target engine output is in the low output region, the electric water pump 15 is controlled so as to reduce the exhaust heat recovery amount of the exhaust heat recovery device 19. When the exhaust heat recovery amount of the exhaust heat recovery device 19 is decreased, the exhaust gas temperature rises and the volume flow rate of the exhaust gas increases, the exhaust pressure loss increases accordingly, and the exhaust efficiency decreases, but the low output side In this region, it is possible to improve the combustion state by increasing the internal EGR amount (exhaust gas residual amount) of the engine 11 by appropriately reducing the exhaust efficiency, so that the engine output is improved.

以上説明した本実施例1の排気熱回収制御は、ECU23によって図3の排気熱回収制御ルーチンに従って実行される。以下、このルーチンの処理内容を説明する。
図3に示す排気熱回収制御ルーチンは、ECU23の電源オン中に所定周期で繰り返し実行され、特許請求の範囲でいう排気熱回収制御手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、アクセル開度、吸入空気量、エンジン回転速度等の各種情報を読み込んだ後、ステップ102に進み、アクセル開度、吸入空気量、エンジン回転速度等の各種情報に基づいて目標エンジン出力Perをマップ又は数式等により算出する。
The exhaust heat recovery control of the first embodiment described above is executed by the ECU 23 according to the exhaust heat recovery control routine of FIG. The processing contents of this routine will be described below.
The exhaust heat recovery control routine shown in FIG. 3 is repeatedly executed at a predetermined cycle while the ECU 23 is turned on, and serves as exhaust heat recovery control means in the claims. When this routine is started, first, in step 101, various information such as the accelerator opening, the intake air amount, and the engine rotational speed is read, and then the process proceeds to step 102 where the accelerator opening, the intake air amount, and the engine rotational speed are read. The target engine output Per is calculated by a map or a mathematical formula based on various information such as.

この後、ステップ103に進み、目標排気熱回収量Qr のマップを参照して、目標エンジン出力Perに応じた目標排気熱回収量Qr を算出する。ここで、目標排気熱回収量Qr のマップ(図2参照)は、例えば、目標エンジン出力Perが所定値よりも高出力側の領域のときには、目標エンジン出力Perが高くなるほど目標排気熱回収量Qr が増加し、目標エンジン出力Perが所定値よりも低出力側の領域のときには、目標エンジン出力Perが低くなるほど目標排気熱回収量Qr が減少するように設定されている。   Thereafter, the routine proceeds to step 103, where the target exhaust heat recovery amount Qr corresponding to the target engine output Per is calculated with reference to the map of the target exhaust heat recovery amount Qr. Here, the map (see FIG. 2) of the target exhaust heat recovery amount Qr is, for example, when the target engine output Per is in a region on the higher output side than a predetermined value, the target exhaust heat recovery amount Qr becomes higher as the target engine output Per becomes higher. When the target engine output Per is in a region where the target engine output Per is lower than the predetermined value, the target exhaust heat recovery amount Qr is set to decrease as the target engine output Per decreases.

この後、ステップ104に進み、目標冷却水流量Vw のマップを参照して、目標排気熱回収量Qr に応じた目標冷却水流量Vw を算出した後、ステップ105に進み、目標冷却水流量Vw に応じて電動ウォータポンプ15を制御して、排気熱回収器19に循環させる冷却水の流量を目標冷却水流量Vw に調整することで、排気熱回収器19の排気熱回収量を目標排気熱回収量Qr に調整する。   Thereafter, the process proceeds to step 104, the target coolant flow rate Vw corresponding to the target exhaust heat recovery amount Qr is calculated with reference to the map of the target coolant flow rate Vw, and then the process proceeds to step 105, where the target coolant flow rate Vw is set. Accordingly, the electric water pump 15 is controlled to adjust the flow rate of the cooling water circulated to the exhaust heat recovery unit 19 to the target cooling water flow rate Vw, so that the exhaust heat recovery amount of the exhaust heat recovery unit 19 is set to the target exhaust heat recovery rate. Adjust to quantity Qr.

以上説明した本実施例1の排気熱回収の実行例を図4のタイムチャートを用いて説明する。目標エンジン出力が高出力側の領域となる期間Aは、排気熱回収器19に循環させる冷却水の流量を増加させるように電動ウォータポンプ15を制御して、排気熱回収器19の排気熱回収量を増加させる。これにより、排出ガス温度が低下して排出ガスの体積流量が減少し、それに応じて排気圧損が減少して排気効率が高くなるため、エンジン出力を向上させる(出力を効率良く発生させる)ことができる。   An execution example of the exhaust heat recovery of the first embodiment described above will be described with reference to the time chart of FIG. During the period A in which the target engine output is in the high output side region, the electric water pump 15 is controlled so as to increase the flow rate of the cooling water circulated to the exhaust heat recovery device 19, and the exhaust heat recovery of the exhaust heat recovery device 19. Increase the amount. As a result, the exhaust gas temperature decreases, the exhaust gas volume flow rate decreases, the exhaust pressure loss decreases accordingly, and the exhaust efficiency increases, thereby improving the engine output (generating the output efficiently). it can.

一方、目標エンジン出力が低出力側の領域となる期間Bは、排気熱回収器19に循環させる冷却水の流量を減少させるように電動ウォータポンプ15を制御して、排気熱回収器19の排気熱回収量を減少させる。これにより、排出ガス温度が上昇して排出ガスの体積流量が増加し、それに応じて排気圧損が増加して排気効率が低くなるが、低出力側の領域では、排気効率を適度に低くすることでエンジン11の内部EGR量(排出ガス残留量)を増加させて燃焼状態を向上させることができるため、エンジン出力を向上させる(出力を効率良く発生させる)ことができる。   On the other hand, during the period B in which the target engine output is in the low output side region, the electric water pump 15 is controlled so as to decrease the flow rate of the cooling water circulated to the exhaust heat recovery unit 19, Reduce heat recovery. As a result, the exhaust gas temperature rises and the volume flow rate of the exhaust gas increases, and accordingly, the exhaust pressure loss increases and the exhaust efficiency decreases.However, in the low output region, the exhaust efficiency should be lowered moderately. Thus, since the combustion state can be improved by increasing the internal EGR amount (exhaust gas residual amount) of the engine 11, the engine output can be improved (the output can be generated efficiently).

次に、図5乃至図7を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, a second embodiment of the present invention will be described with reference to FIGS. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

前記実施例1では、目標エンジン出力に応じて排気熱回収器19の排気熱回収量を変化させるように電動ウォータポンプ15を制御したが、エンジン出力に応じて排出ガス温度や排出ガス体積流量が変化するため、排出ガス温度と排出ガス体積流量は、いずれもエンジン出力を反映した情報となる。   In the first embodiment, the electric water pump 15 is controlled so as to change the exhaust heat recovery amount of the exhaust heat recovery unit 19 according to the target engine output, but the exhaust gas temperature and the exhaust gas volume flow rate are changed according to the engine output. Therefore, both the exhaust gas temperature and the exhaust gas volume flow rate are information reflecting the engine output.

そこで、本実施例2では、ECU23により後述する図6の排気熱回収制御ルーチンを実行することで、エンジン11の排出ガス温度と排出ガス体積流量に応じて排気熱回収器19の排気熱回収量を変化させるように電動ウォータポンプ15を制御する排気熱回収制御を実行する。   Thus, in the second embodiment, the exhaust heat recovery control routine of FIG. 6 described later is executed by the ECU 23, so that the exhaust heat recovery amount of the exhaust heat recovery unit 19 according to the exhaust gas temperature of the engine 11 and the exhaust gas volume flow rate. Exhaust heat recovery control is performed to control the electric water pump 15 so as to change the value.

具体的には、図5に示すように、目標排気熱回収量Qr のマップを参照して、排出ガス温度Tg と排出ガス体積流量Vg に応じた目標排気熱回収量Qr を算出する。この目標排気熱回収量Qr のマップは、例えば、排出ガス温度Tg と排出ガス体積流量Vg が所定ラインよりも高出力側の領域(排出ガス温度Tg が所定ラインよりも高く且つ排出ガス体積流量Vg が所定ラインよりも大きい領域)のときには、排出ガス温度Tg が高くなるほど且つ排出ガス体積流量Vg が大きくなるほど目標排気熱回収量Qr が増加するように設定され、排出ガス温度Tg と排出ガス体積流量Vg が所定ラインよりも低出力側の領域(排出ガス温度Tg が所定ラインよりも低く且つ排出ガス体積流量Vg が所定ラインよりも小さい領域)のときには、排出ガス温度Tg が低くなるほど且つ排出ガス体積流量Vg が小さくなるほど目標排気熱回収量Qr が減少するように設定されている。また、目標排気熱回収量Qr の上限値は、排気熱回収器19の許容最大排気熱回収量又はそれよりも余裕分だけ少ない値に設定されている。   Specifically, as shown in FIG. 5, the target exhaust heat recovery amount Qr corresponding to the exhaust gas temperature Tg and the exhaust gas volume flow rate Vg is calculated with reference to the map of the target exhaust heat recovery amount Qr. The map of the target exhaust heat recovery amount Qr is, for example, a region where the exhaust gas temperature Tg and the exhaust gas volume flow rate Vg are higher than the predetermined line (the exhaust gas temperature Tg is higher than the predetermined line and the exhaust gas volume flow rate Vg. Is set such that the target exhaust heat recovery amount Qr increases as the exhaust gas temperature Tg increases and the exhaust gas volume flow rate Vg increases, so that the exhaust gas temperature Tg and the exhaust gas volume flow rate are increased. When Vg is a region on the lower output side than the predetermined line (region where the exhaust gas temperature Tg is lower than the predetermined line and the exhaust gas volume flow rate Vg is smaller than the predetermined line), the exhaust gas temperature Tg becomes lower and the exhaust gas volume. The target exhaust heat recovery amount Qr is set to decrease as the flow rate Vg decreases. Further, the upper limit value of the target exhaust heat recovery amount Qr is set to the allowable maximum exhaust heat recovery amount of the exhaust heat recovery device 19 or a value smaller than that by the margin.

この後、目標冷却水流量Vw のマップを参照して、目標排気熱回収量Qr に応じた目標冷却水流量Vw を算出し、この目標冷却水流量Vw に応じて電動ウォータポンプ15を制御して、排気熱回収器19に循環させる冷却水の流量を目標冷却水流量Vw に調整することで、排気熱回収器19による排気熱回収量を目標排気熱回収量Qr に調整する。   Thereafter, referring to the map of the target coolant flow rate Vw, the target coolant flow rate Vw corresponding to the target exhaust heat recovery amount Qr is calculated, and the electric water pump 15 is controlled according to the target coolant flow rate Vw. The amount of exhaust heat recovered by the exhaust heat recovery device 19 is adjusted to the target exhaust heat recovery amount Qr by adjusting the flow rate of the cooling water circulated through the exhaust heat recovery device 19 to the target cooling water flow rate Vw.

この排気熱回収制御によって、排出ガス温度と排出ガス体積流量が高出力側の領域のときには、排気熱回収器19の排気熱回収量を増加させるように電動ウォータポンプ15を制御し、一方、排出ガス温度と排出ガス体積流量が低出力側の領域のときには、排気熱回収器19の排気熱回収量を減少させるように電動ウォータポンプ15を制御する。   By this exhaust heat recovery control, when the exhaust gas temperature and the exhaust gas volume flow rate are in the high output region, the electric water pump 15 is controlled to increase the exhaust heat recovery amount of the exhaust heat recovery unit 19, while When the gas temperature and the exhaust gas volume flow rate are in the low output region, the electric water pump 15 is controlled so as to reduce the exhaust heat recovery amount of the exhaust heat recovery device 19.

以下、本実施例2でECU23が実行する図6の排気熱回収制御ルーチンの処理内容を説明する。本ルーチンでは、まず、ステップ201で、吸入空気量、エンジン回転速度、吸気温等の各種情報を読み込んだ後、ステップ202に進み、吸入空気量、エンジン回転速度、吸気温等の各種情報に基づいて排出ガス温度Tg と排出ガス体積流量Vg をそれぞれマップ又は数式等により算出(推定)する。尚、排出ガス温度Tg や排出ガス体積流量Vg をセンサで検出するようにしても良い。   Hereinafter, the processing contents of the exhaust heat recovery control routine of FIG. 6 executed by the ECU 23 in the second embodiment will be described. In this routine, first, in step 201, various information such as the intake air amount, the engine rotational speed, the intake air temperature, etc. are read, and then the process proceeds to step 202, on the basis of various information such as the intake air amount, the engine rotational speed, the intake air temperature. Then, the exhaust gas temperature Tg and the exhaust gas volume flow rate Vg are respectively calculated (estimated) by a map or a mathematical expression. The exhaust gas temperature Tg and the exhaust gas volume flow rate Vg may be detected by a sensor.

この後、ステップ203に進み、目標排気熱回収量Qr のマップを参照して、排出ガス温度Tg と排出ガス体積流量Vg に応じた目標排気熱回収量Qr を算出する。ここで、目標排気熱回収量Qr のマップ(図5参照)は、例えば、排出ガス温度Tg と排出ガス体積流量Vg が所定ラインよりも高出力側の領域のときには、排出ガス温度Tg が高くなるほど且つ排出ガス体積流量Vg が大きくなるほど目標排気熱回収量Qr が増加するように設定され、排出ガス温度Tg と排出ガス体積流量Vg が所定ラインよりも低出力側の領域のときには、排出ガス温度Tg が低くなるほど且つ排出ガス体積流量Vg が小さくなるほど目標排気熱回収量Qr が減少するように設定されている。   Thereafter, the routine proceeds to step 203, where the target exhaust heat recovery amount Qr corresponding to the exhaust gas temperature Tg and the exhaust gas volume flow rate Vg is calculated with reference to the map of the target exhaust heat recovery amount Qr. Here, the map of the target exhaust heat recovery amount Qr (see FIG. 5) shows that the exhaust gas temperature Tg increases as the exhaust gas temperature Tg and the exhaust gas volume flow rate Vg are higher than the predetermined line, for example. The target exhaust heat recovery amount Qr is set so as to increase as the exhaust gas volume flow rate Vg increases. When the exhaust gas temperature Tg and the exhaust gas volume flow rate Vg are lower than the predetermined line, the exhaust gas temperature Tg is set. Is set so that the target exhaust heat recovery amount Qr decreases as the exhaust gas volume flow rate Vg decreases.

この後、目標冷却水流量Vw のマップを参照して、目標排気熱回収量Qr に応じた目標冷却水流量Vw を算出し、この目標冷却水流量Vw に応じて電動ウォータポンプ15を制御して、排気熱回収器19に循環させる冷却水の流量を目標冷却水流量Vw に調整することで、排気熱回収器19の排気熱回収量を目標排気熱回収量Qr に調整する(ステップ204、205)。   Thereafter, referring to the map of the target coolant flow rate Vw, the target coolant flow rate Vw corresponding to the target exhaust heat recovery amount Qr is calculated, and the electric water pump 15 is controlled according to the target coolant flow rate Vw. The exhaust heat recovery amount of the exhaust heat recovery device 19 is adjusted to the target exhaust heat recovery amount Qr by adjusting the flow rate of the cooling water circulated to the exhaust heat recovery device 19 to the target cooling water flow rate Vw (steps 204 and 205). ).

以上説明した本実施例2では、例えば、図7のタイムチャートに示すように、排出ガス温度Tg と排出ガス体積流量Vg が高出力側の領域となる期間Aは、排気熱回収器19に循環させる冷却水の流量を増加させるように電動ウォータポンプ15を制御して、排気熱回収器19の排気熱回収量を増加させる。これにより、排出ガス温度が低下して排出ガスの体積流量が減少し、それに応じて排気圧損が減少して排気効率が高くなるため、エンジン出力を向上させることができる。   In the second embodiment described above, for example, as shown in the time chart of FIG. 7, the exhaust gas temperature Tg and the exhaust gas volume flow rate Vg are circulated to the exhaust heat recovery device 19 during the period A in which the exhaust gas temperature Tg and the exhaust gas volume flow rate Vg are in the high output region. The electric water pump 15 is controlled to increase the flow rate of the cooling water to be increased, and the exhaust heat recovery amount of the exhaust heat recovery unit 19 is increased. As a result, the exhaust gas temperature decreases and the volume flow rate of the exhaust gas decreases, the exhaust pressure loss decreases accordingly, and the exhaust efficiency increases, so that the engine output can be improved.

一方、排出ガス温度Tg と排出ガス体積流量Vg が低出力側の領域となる期間Bは、排気熱回収器19に循環させる冷却水の流量を減少させるように電動ウォータポンプ15を制御して、排気熱回収器19の排気熱回収量を減少させる。これにより、排出ガス温度が上昇して排出ガスの体積流量が増加し、それに応じて排気圧損が増加して排気効率が低くなるが、低出力側の領域では、排気効率を適度に低くすることでエンジン11の内部EGR量(排出ガス残留量)を増加させて燃焼状態を向上させることができるため、エンジン出力を向上させることができる。   On the other hand, during the period B in which the exhaust gas temperature Tg and the exhaust gas volume flow rate Vg are in the low output side region, the electric water pump 15 is controlled so as to decrease the flow rate of the cooling water circulated to the exhaust heat recovery device 19, The exhaust heat recovery amount of the exhaust heat recovery unit 19 is reduced. As a result, the exhaust gas temperature rises and the volume flow rate of the exhaust gas increases, and accordingly, the exhaust pressure loss increases and the exhaust efficiency decreases.However, in the low output region, the exhaust efficiency should be lowered moderately. Since the internal EGR amount (exhaust gas residual amount) of the engine 11 can be increased and the combustion state can be improved, the engine output can be improved.

次に、図8乃至図11を用いて本発明の実施例3を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 3 of the present invention will be described with reference to FIGS. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例3では、図8に示すように、エンジン11の排気管17のうちの排気熱回収器19の下流側に、排気タービン式過給機24が設けられている。この排気タービン式過給機24は、排出ガスの運動エネルギで排気タービンを回転駆動することでコンプレッサを回転駆動して吸入空気を過給するようになっている。また、エンジン11の吸気管(図示せず)には、実過給圧(例えばスロットルバルブ上流側の実吸気圧)を検出する過給圧センサ25が設けられている。   In the third embodiment, as shown in FIG. 8, an exhaust turbine supercharger 24 is provided on the downstream side of the exhaust heat recovery device 19 in the exhaust pipe 17 of the engine 11. The exhaust turbine supercharger 24 supercharges intake air by rotationally driving the compressor by rotationally driving the exhaust turbine with the kinetic energy of the exhaust gas. Further, a supercharging pressure sensor 25 that detects an actual supercharging pressure (for example, an actual intake pressure upstream of the throttle valve) is provided in an intake pipe (not shown) of the engine 11.

排気タービン式過給機24を備えたシステムでは、排気熱回収器19による排気熱回収量が変化すると、排出ガスの温度が変化して排出ガスの体積流量が変化し、それに応じて排気タービンの回転速度が変化して実過給圧が変化する。つまり、排気熱回収器19の排気熱回収量を変化させることで実過給圧を変化させることができる。   In the system provided with the exhaust turbine supercharger 24, when the exhaust heat recovery amount by the exhaust heat recovery device 19 changes, the temperature of the exhaust gas changes and the volume flow rate of the exhaust gas changes, and the exhaust turbine's flow rate changes accordingly. The rotational speed changes and the actual supercharging pressure changes. That is, the actual supercharging pressure can be changed by changing the exhaust heat recovery amount of the exhaust heat recovery unit 19.

このような特性に着目して、本実施例3では、ECU23により後述する図10の排気熱回収制御ルーチンを実行することで、エンジン11の目標過給圧と実過給圧に応じて排気熱回収量を変化させるように電動ウォータポンプ15を制御する排気熱回収制御を実行する。   Focusing on such characteristics, in the third embodiment, the exhaust heat recovery control routine of FIG. 10 described later is executed by the ECU 23, whereby the exhaust heat according to the target boost pressure and the actual boost pressure of the engine 11 is executed. Exhaust heat recovery control for controlling the electric water pump 15 so as to change the recovery amount is executed.

具体的には、図9に示すように、目標排気熱回収量Qr のマップを参照して、目標過給圧Ptgと実過給圧Ptcとの差ΔP(=Ptg−Ptc)に応じた目標排気熱回収量Qr を算出する。この目標排気熱回収量Qr のマップは、例えば、目標過給圧Ptgと実過給圧Ptcとの差ΔPが0より大きい値(プラス値)となる領域、つまり実過給圧Ptcが目標過給圧Ptgよりも低い領域のときには、目標過給圧Ptgと実過給圧Ptcとの差ΔPが大きくなるほど目標排気熱回収量Qr が減少するように設定され、目標過給圧Ptgと実過給圧Ptcとの差ΔPが0より小さい値(マイナス値)となる領域、つまり実過給圧Ptcが目標過給圧Ptgよりも高い領域のときには、目標過給圧Ptgと実過給圧Ptcとの差ΔPが小さくなるほど(つまり差ΔPの絶対値が大きくなるほど)、目標排気熱回収量Qr が増加するように設定されている。また、目標排気熱回収量Qr の上限値は、排気熱回収器19の許容最大排気熱回収量又はそれよりも余裕分だけ少ない値に設定されている。   Specifically, as shown in FIG. 9, the target corresponding to the difference ΔP (= Ptg−Ptc) between the target boost pressure Ptg and the actual boost pressure Ptc is referred to with reference to the map of the target exhaust heat recovery amount Qr. The exhaust heat recovery amount Qr is calculated. The map of the target exhaust heat recovery amount Qr is, for example, a region where the difference ΔP between the target boost pressure Ptg and the actual boost pressure Ptc is a value greater than 0 (plus value), that is, the actual boost pressure Ptc is the target boost pressure. In a region lower than the supply pressure Ptg, the target exhaust heat recovery amount Qr is set to decrease as the difference ΔP between the target boost pressure Ptg and the actual boost pressure Ptc increases, and the target boost pressure Ptg In a region where the difference ΔP from the supply pressure Ptc is a value smaller than 0 (negative value), that is, in a region where the actual boost pressure Ptc is higher than the target boost pressure Ptg, the target boost pressure Ptg and the actual boost pressure Ptc. Is set so that the target exhaust heat recovery amount Qr increases as the difference ΔP decreases with (that is, as the absolute value of the difference ΔP increases). Further, the upper limit value of the target exhaust heat recovery amount Qr is set to the allowable maximum exhaust heat recovery amount of the exhaust heat recovery device 19 or a value smaller than that by the margin.

この後、目標冷却水流量Vw のマップを参照して、目標排気熱回収量Qr に応じた目標冷却水流量Vw を算出し、この目標冷却水流量Vw に応じて電動ウォータポンプ15を制御して、排気熱回収器19に循環させる冷却水の流量を目標冷却水流量Vw に調整することで、排気熱回収器19による排気熱回収量を目標排気熱回収量Qr に調整する。   Thereafter, referring to the map of the target coolant flow rate Vw, the target coolant flow rate Vw corresponding to the target exhaust heat recovery amount Qr is calculated, and the electric water pump 15 is controlled according to the target coolant flow rate Vw. The amount of exhaust heat recovered by the exhaust heat recovery device 19 is adjusted to the target exhaust heat recovery amount Qr by adjusting the flow rate of the cooling water circulated through the exhaust heat recovery device 19 to the target cooling water flow rate Vw.

この排気熱回収制御によって、実過給圧が目標過給圧よりも低いときには、排気熱回収器19の排気熱回収量を減少させるように電動ウォータポンプ15を制御する。排気熱回収器19の排気熱回収量を減少させると、排出ガス温度が上昇して排出ガスの体積流量が増加し、それに応じて排気タービンの回転速度が上昇して実過給圧が上昇するため、実過給圧が速やかに目標過給圧まで上昇する。   By this exhaust heat recovery control, when the actual supercharging pressure is lower than the target supercharging pressure, the electric water pump 15 is controlled so as to reduce the exhaust heat recovery amount of the exhaust heat recovery device 19. When the exhaust heat recovery amount of the exhaust heat recovery device 19 is decreased, the exhaust gas temperature increases and the volume flow rate of the exhaust gas increases, and the rotational speed of the exhaust turbine increases accordingly and the actual supercharging pressure increases. Therefore, the actual supercharging pressure quickly increases to the target supercharging pressure.

一方、実過給圧が目標過給圧よりも高いときには、排気熱回収器19の排気熱回収量を増加させるさせるように電動ウォータポンプ15を制御する。排気熱回収器19の排気熱回収量を増加させると、排出ガス温度が低下して排出ガスの体積流量が減少し、それに応じて排気タービンの回転速度が低下して実過給圧が低下するため、実過給圧が速やかに目標過給圧まで低下する。   On the other hand, when the actual supercharging pressure is higher than the target supercharging pressure, the electric water pump 15 is controlled to increase the exhaust heat recovery amount of the exhaust heat recovery device 19. When the exhaust heat recovery amount of the exhaust heat recovery unit 19 is increased, the exhaust gas temperature is decreased and the volume flow rate of the exhaust gas is decreased, and the rotational speed of the exhaust turbine is accordingly decreased and the actual supercharging pressure is decreased. Therefore, the actual supercharging pressure quickly decreases to the target supercharging pressure.

また、目標エンジン出力が所定値以下のときには、排出ガスの運動エネルギが小さいため、排気タービン式過給機24が十分に機能しないと判断して、目標過給圧と実過給圧に応じた排気熱回収量の制御を停止して、他の要求に応じた排気熱回収量の制御(例えば、目標エンジン出力に応じた排気熱回収量の制御)を行う。   When the target engine output is less than or equal to a predetermined value, the exhaust gas kinetic energy is small, so it is determined that the exhaust turbine supercharger 24 does not function sufficiently, and the target supercharging pressure and the actual supercharging pressure are determined. The control of the exhaust heat recovery amount is stopped, and the exhaust heat recovery amount is controlled according to other requirements (for example, control of the exhaust heat recovery amount according to the target engine output).

以下、本実施例3でECU23が実行する図10の排気熱回収制御ルーチンの処理内容を説明する。本ルーチンでは、まず、ステップ301で、アクセル開度、吸入空気量、エンジン回転速度等の各種情報を読み込んだ後、ステップ302に進み、アクセル開度、吸入空気量、エンジン回転速度等の各種情報に基づいて目標エンジン出力Perをマップ又は数式等により算出する。   Hereinafter, the processing contents of the exhaust heat recovery control routine of FIG. 10 executed by the ECU 23 in the third embodiment will be described. In this routine, first, in step 301, various information such as the accelerator opening, the intake air amount, and the engine rotational speed is read, and then the process proceeds to step 302, where various information such as the accelerator opening, the intake air amount, and the engine rotational speed are obtained. Based on the above, the target engine output Per is calculated by a map or a mathematical expression.

この後、ステップ303に進み、目標エンジン出力Perが所定値よりも高いか否かを判定し、目標エンジン出力Perが所定値よりも高いと判定された場合には、排出ガスの運動エネルギが大きいため、排気タービン式過給機24が機能すると判断して、目標過給圧と実過給圧に応じた排気熱回収量の制御を次のようにして実行する。   Thereafter, the process proceeds to step 303, where it is determined whether or not the target engine output Per is higher than a predetermined value, and when it is determined that the target engine output Per is higher than the predetermined value, the kinetic energy of the exhaust gas is large. Therefore, it is determined that the exhaust turbine supercharger 24 functions, and the control of the exhaust heat recovery amount according to the target supercharging pressure and the actual supercharging pressure is executed as follows.

まず、ステップ304に進み、目標エンジン出力Per等に基づいて目標過給圧Ptgをマップ又は数式等により算出した後、ステップ305に進み、目標排気熱回収量Qr のマップを参照して、目標過給圧Ptgと実過給圧Ptcとの差ΔP(=Ptg−Ptc)に応じた目標排気熱回収量Qr を算出する。ここで、目標排気熱回収量Qr のマップ(図9参照)は、例えば、目標過給圧Ptgと実過給圧Ptcとの差ΔPがプラス値となる領域(つまり実過給圧Ptcが目標過給圧Ptgよりも低い領域)のときには、目標過給圧Ptgと実過給圧Ptcとの差ΔPが大きくなるほど目標排気熱回収量Qr が減少するように設定され、目標過給圧Ptgと実過給圧Ptcとの差ΔPがマイナス値となる領域(つまり実過給圧Ptcが目標過給圧Ptgよりも高い領域)のときには、目標過給圧Ptgと実過給圧Ptcとの差ΔPが小さくなるほど(つまり差ΔPの絶対値が大きくなるほど)、目標排気熱回収量Qr が増加するように設定されている。   First, the process proceeds to step 304, where the target boost pressure Ptg is calculated based on the target engine output Per or the like by using a map or a mathematical formula. Then, the process proceeds to step 305 and the target excess heat recovery amount Qr is referred to by referring to the target exhaust heat recovery amount Qr. A target exhaust heat recovery amount Qr corresponding to a difference ΔP (= Ptg−Ptc) between the supply pressure Ptg and the actual supercharging pressure Ptc is calculated. Here, the map of the target exhaust heat recovery amount Qr (see FIG. 9) is, for example, a region where the difference ΔP between the target boost pressure Ptg and the actual boost pressure Ptc is a positive value (that is, the actual boost pressure Ptc is the target). In a region lower than the supercharging pressure Ptg), the target exhaust heat recovery amount Qr is set to decrease as the difference ΔP between the target supercharging pressure Ptg and the actual supercharging pressure Ptc increases, and the target supercharging pressure Ptg In a region where the difference ΔP from the actual boost pressure Ptc is a negative value (that is, a region where the actual boost pressure Ptc is higher than the target boost pressure Ptg), the difference between the target boost pressure Ptg and the actual boost pressure Ptc The target exhaust heat recovery amount Qr is set to increase as ΔP decreases (that is, as the absolute value of the difference ΔP increases).

この後、目標冷却水流量Vw のマップを参照して、目標排気熱回収量Qr に応じた目標冷却水流量Vw を算出し、この目標冷却水流量Vw に応じて電動ウォータポンプ15を制御して、排気熱回収器19に循環させる冷却水の流量を目標冷却水流量Vw に調整することで、排気熱回収器19による排気熱回収量を目標排気熱回収量Qr に調整する(ステップ307、308)。   Thereafter, referring to the map of the target coolant flow rate Vw, the target coolant flow rate Vw corresponding to the target exhaust heat recovery amount Qr is calculated, and the electric water pump 15 is controlled according to the target coolant flow rate Vw. The exhaust heat recovery amount by the exhaust heat recovery device 19 is adjusted to the target exhaust heat recovery amount Qr by adjusting the flow rate of the cooling water circulated to the exhaust heat recovery device 19 to the target cooling water flow rate Vw (steps 307 and 308). ).

一方、上記ステップ303で、目標エンジン出力Perが所定値以下であると判定された場合には、排出ガスの運動エネルギが小さいため、排気タービン式過給機24が十分に機能しないと判断して、目標過給圧と実過給圧に応じた排気熱回収量の制御を停止し、他の要求に応じた排気熱回収量の制御(例えば、目標エンジン出力に応じた排気熱回収量の制御)を次のようにして実行する。   On the other hand, if it is determined in step 303 that the target engine output Per is less than or equal to the predetermined value, it is determined that the exhaust turbine supercharger 24 does not function sufficiently because the kinetic energy of the exhaust gas is small. , Stop the control of the exhaust heat recovery amount according to the target boost pressure and the actual boost pressure, and control the exhaust heat recovery amount according to other requirements (for example, control of the exhaust heat recovery amount according to the target engine output) ) Is executed as follows.

まず、ステップ306で、目標排気熱回収量Qr のマップを参照して、目標エンジン出力Perに応じた目標排気熱回収量Qr を算出する。この後、目標冷却水流量Vw のマップを参照して、目標排気熱回収量Qr に応じた目標冷却水流量Vw を算出し、この目標冷却水流量Vw に応じて電動ウォータポンプ15を制御して、排気熱回収器19に循環させる冷却水の流量を目標冷却水流量Vw に調整することで、排気熱回収器19による排気熱回収量を目標排気熱回収量Qr に調整する(ステップ307、308)。   First, in step 306, the target exhaust heat recovery amount Qr corresponding to the target engine output Per is calculated with reference to the map of the target exhaust heat recovery amount Qr. Thereafter, referring to the map of the target coolant flow rate Vw, the target coolant flow rate Vw corresponding to the target exhaust heat recovery amount Qr is calculated, and the electric water pump 15 is controlled according to the target coolant flow rate Vw. The exhaust heat recovery amount by the exhaust heat recovery device 19 is adjusted to the target exhaust heat recovery amount Qr by adjusting the flow rate of the cooling water circulated to the exhaust heat recovery device 19 to the target cooling water flow rate Vw (steps 307 and 308). ).

以上説明した本実施例3では、例えば、図11のタイムチャートに示すように、実過給圧が目標過給圧よりも低い期間Aは、排気熱回収器19に循環させる冷却水の流量を減少させるように電動ウォータポンプ15を制御して、排気熱回収器19の排気熱回収量を減少させる。これにより、排出ガス温度が上昇して排出ガスの体積流量が増加し、それに応じて排気タービンの回転速度が上昇して実過給圧が上昇するため、実過給圧を速やかに目標過給圧まで引き上げることができる。   In the third embodiment described above, for example, as shown in the time chart of FIG. 11, during the period A in which the actual supercharging pressure is lower than the target supercharging pressure, the flow rate of the cooling water circulated to the exhaust heat recovery device 19 is set. The electric water pump 15 is controlled so as to decrease the exhaust heat recovery amount of the exhaust heat recovery unit 19. As a result, the exhaust gas temperature rises and the volume flow rate of the exhaust gas increases, and the rotational speed of the exhaust turbine rises accordingly and the actual supercharging pressure rises. The pressure can be increased.

一方、実過給圧が目標過給圧よりも高い期間Bは、排気熱回収器19に循環させる冷却水の流量を増加させるように電動ウォータポンプ15を制御して、排気熱回収器19の排気熱回収量を増加させる。これにより、排出ガス温度が低下して排出ガスの体積流量が減少し、それに応じて排気タービンの回転速度が低下して実過給圧が低下するため、実過給圧を速やかに目標過給圧まで引き下げることができる。   On the other hand, during the period B in which the actual supercharging pressure is higher than the target supercharging pressure, the electric water pump 15 is controlled so as to increase the flow rate of the cooling water circulated to the exhaust heat recovery device 19. Increase exhaust heat recovery. As a result, the exhaust gas temperature decreases and the exhaust gas volume flow rate decreases, and the rotational speed of the exhaust turbine decreases accordingly and the actual supercharging pressure decreases. Can be reduced to pressure.

尚、上記実施例1では、目標エンジン出力に応じて排気熱回収器19の排気熱回収量を変化させるように電動ウォータポンプ15を制御したが、アクセル開度に応じて目標エンジン出力が変化し、それに応じて目標燃料噴射量が変化してエンジン出力が変化するため、アクセル開度や目標燃料噴射量もエンジン出力を反映した情報となる。そこで、アクセル開度に応じて排気熱回収器19の排気熱回収量を変化させるように電動ウォータポンプ15を制御したり、或は、目標燃料噴射量に応じて排気熱回収器19の排気熱回収量を変化させるように電動ウォータポンプ15を制御するようにしても良い。   In the first embodiment, the electric water pump 15 is controlled to change the exhaust heat recovery amount of the exhaust heat recovery unit 19 according to the target engine output. However, the target engine output changes according to the accelerator opening. Since the target fuel injection amount changes accordingly and the engine output changes, the accelerator opening and the target fuel injection amount are also information reflecting the engine output. Therefore, the electric water pump 15 is controlled so as to change the exhaust heat recovery amount of the exhaust heat recovery device 19 according to the accelerator opening, or the exhaust heat of the exhaust heat recovery device 19 according to the target fuel injection amount. The electric water pump 15 may be controlled so as to change the recovery amount.

また、上記実施例2では、排出ガス温度と排出ガス体積流量に応じて排気熱回収器19の排気熱回収量を変化させるように電動ウォータポンプ15を制御したが、エンジン出力に応じて排出ガス温度や排出ガス体積流量が変化し、それに応じて触媒温度が変化するため、触媒温度もエンジン出力を反映した情報となる。そこで、触媒温度に応じて排気熱回収器19の排気熱回収量を変化させるように電動ウォータポンプ15を制御するようにしても良い。   In the second embodiment, the electric water pump 15 is controlled so as to change the exhaust heat recovery amount of the exhaust heat recovery unit 19 according to the exhaust gas temperature and the exhaust gas volume flow rate, but the exhaust gas is controlled according to the engine output. Since the temperature and the exhaust gas volume flow rate change and the catalyst temperature changes accordingly, the catalyst temperature also becomes information reflecting the engine output. Therefore, the electric water pump 15 may be controlled so as to change the exhaust heat recovery amount of the exhaust heat recovery device 19 according to the catalyst temperature.

その他、エンジン出力に関連性のある種々の情報(例えば、スロットル開度、吸入空気量、点火時期、エンジン回転速度等)に応じて排気熱回収器19の排気熱回収量を変化させるように電動ウォータポンプ15を制御するようにしても良い。   In addition, electric power is used to change the exhaust heat recovery amount of the exhaust heat recovery device 19 according to various information related to the engine output (for example, throttle opening, intake air amount, ignition timing, engine rotation speed, etc.). The water pump 15 may be controlled.

また、エンジン11を搭載した車両の運転者によって操作される排気熱回収操作スイッチ(操作手段)を設け、この排気熱回収操作スイッチの操作状態に応じて排気熱回収器19の排気熱回収量を変化させるように電動ウォータポンプ15を制御するようにしたり、或は、変速機のシフトレバー(操作手段)の操作位置に応じて排気熱回収器19の排気熱回収量を変化させるように電動ウォータポンプ15を制御するようにしても良い。このようにすれば、運転者の操作に応じて排気熱回収量を変化させて排気効率を適正に変化させることができる。   Further, an exhaust heat recovery operation switch (operation means) operated by a driver of the vehicle equipped with the engine 11 is provided, and the exhaust heat recovery amount of the exhaust heat recovery unit 19 is set according to the operation state of the exhaust heat recovery operation switch. The electric water pump 15 is controlled so as to change, or the electric water recovery amount of the exhaust heat recovery unit 19 is changed according to the operation position of the shift lever (operation means) of the transmission. The pump 15 may be controlled. In this way, the exhaust efficiency can be appropriately changed by changing the exhaust heat recovery amount according to the operation of the driver.

また、上記各実施例1〜3では、電動ウォータポンプ15によって排気熱回収器19に循環させる冷却水の流量を調整することで、排気熱回収器19による排気熱回収量を調整するようにしたが、排気熱回収器19による排気熱回収量を調整する方法は、適宜変更しても良い。   In the first to third embodiments, the exhaust heat recovery amount by the exhaust heat recovery device 19 is adjusted by adjusting the flow rate of the cooling water circulated to the exhaust heat recovery device 19 by the electric water pump 15. However, the method of adjusting the exhaust heat recovery amount by the exhaust heat recovery device 19 may be changed as appropriate.

例えば、図12に示すように、冷却水循環流路12のうちの排気熱回収器19の上流側と下流側との間に、排気熱回収器19をバイパスするバイパス流路26を接続して、冷却水循環流路12とバイパス流路26との分岐部(又は合流部)に、流量調整バルブ27を設ける。この流量調整バルブ27は、排気熱回収器19に流れる冷却水の流量と、バイパス流路26に流れる冷却水の流量の流量比を調整可能な電磁駆動バルブで構成し、この流量調整バルブ27によって排気熱回収器19に循環させる冷却水の流量を調整することで、排気熱回収器19による排気熱回収量を調整するようにしても良い。この場合、流量調整バルブ27が排気熱回収量調整手段としての役割を果たす。   For example, as shown in FIG. 12, a bypass flow path 26 that bypasses the exhaust heat recovery device 19 is connected between the upstream side and the downstream side of the exhaust heat recovery device 19 in the cooling water circulation flow channel 12, A flow rate adjusting valve 27 is provided at a branch (or junction) between the cooling water circulation channel 12 and the bypass channel 26. The flow rate adjusting valve 27 is configured by an electromagnetically driven valve that can adjust a flow rate ratio between the flow rate of the cooling water flowing through the exhaust heat recovery unit 19 and the flow rate of the cooling water flowing through the bypass passage 26. The amount of exhaust heat recovered by the exhaust heat recovery device 19 may be adjusted by adjusting the flow rate of the cooling water circulated through the exhaust heat recovery device 19. In this case, the flow rate adjusting valve 27 serves as exhaust heat recovery amount adjusting means.

更に、排気熱回収量調整手段は、排気熱回収器に循環させる冷却水の流量を調整する手段に限定されず、例えば、排出ガスと冷却水との間で熱交換を行うための熱交換媒体を封入した熱交換媒体循環経路に開閉弁を設けた排気熱回収器の場合には、この開閉弁を排気熱回収量調整手段として用いて、開閉弁によって熱交換媒体の循環量を調整することで排気熱回収器による排気熱回収量を調整するようにしても良い。   Further, the exhaust heat recovery amount adjusting means is not limited to means for adjusting the flow rate of the cooling water to be circulated through the exhaust heat recovery device. For example, the heat exchange medium for exchanging heat between the exhaust gas and the cooling water. In the case of an exhaust heat recovery device provided with an on-off valve in the heat exchange medium circulation path enclosing the heat exchanger, the on-off valve is used as an exhaust heat recovery amount adjusting means, and the circulation amount of the heat exchange medium is adjusted by the on-off valve. The exhaust heat recovery amount by the exhaust heat recovery device may be adjusted.

その他、本発明は、エンジン冷却システムの構成を適宜変更しても良い等、要旨を逸脱しない範囲で種々変更して実施できる。   In addition, the present invention can be implemented with various changes without departing from the gist, such as appropriately changing the configuration of the engine cooling system.

11…エンジン(内燃機関)、12…冷却水循環流路、13…ラジエータ、15…電動ウォータポンプ(排気熱回収量調整手段)、16…サーモスタット、17…排気管、19…排気熱回収器、23…ECU(排気熱回収制御手段)、24…排気タービン式過給機、27…流量調整バルブ(排気熱回収量調整手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Cooling water circulation flow path, 13 ... Radiator, 15 ... Electric water pump (exhaust heat recovery amount adjusting means), 16 ... Thermostat, 17 ... Exhaust pipe, 19 ... Exhaust heat recovery device, 23 ... ECU (exhaust heat recovery control means), 24 ... exhaust turbine supercharger, 27 ... flow rate adjustment valve (exhaust heat recovery amount adjustment means)

Claims (9)

内燃機関の排出ガスと冷却水との間で熱交換を行って排気熱を回収する排気熱回収器を備えた内燃機関の排気熱回収制御装置において、
前記排気熱回収器による排気熱回収量を調整する排気熱回収量調整手段と、
内燃機関の出力又はこれに関連性のある情報(以下これらを「機関出力情報」と総称する)に応じて前記排気熱回収量を変化させるように前記排気熱回収量調整手段を制御する排気熱回収制御手段と
を備えていることを特徴とする内燃機関の排気熱回収制御装置。
In an exhaust heat recovery control device for an internal combustion engine equipped with an exhaust heat recovery device that recovers exhaust heat by exchanging heat between exhaust gas and cooling water of the internal combustion engine,
Exhaust heat recovery amount adjusting means for adjusting the exhaust heat recovery amount by the exhaust heat recovery device;
Exhaust heat for controlling the exhaust heat recovery amount adjusting means so as to change the exhaust heat recovery amount in accordance with the output of the internal combustion engine or information related thereto (hereinafter collectively referred to as “engine output information”) An exhaust heat recovery control device for an internal combustion engine, comprising: a recovery control means.
前記排気熱回収制御手段は、前記機関出力情報が所定の高出力側の領域のときに前記排気熱回収量を増加させるように前記排気熱回収量調整手段を制御し、前記機関出力情報が所定の低出力側の領域のときに前記排気熱回収量を減少させるように前記排気熱回収量調整手段を制御する手段を有することを特徴とする請求項1に記載の内燃機関の排気熱回収制御装置。   The exhaust heat recovery control means controls the exhaust heat recovery amount adjusting means so as to increase the exhaust heat recovery amount when the engine output information is in a predetermined high output side region, and the engine output information is predetermined. 2. The exhaust heat recovery control for an internal combustion engine according to claim 1, further comprising means for controlling the exhaust heat recovery amount adjusting means so as to reduce the exhaust heat recovery amount in the low output side region. apparatus. 前記排気熱回収制御手段は、前記機関出力情報として、内燃機関の目標出力と目標燃料噴射量とアクセル開度のうちの少なくとも1つを用いることを特徴とする請求項1又は2に記載の内燃機関の排気熱回収制御装置。   The internal combustion engine according to claim 1 or 2, wherein the exhaust heat recovery control means uses at least one of a target output, a target fuel injection amount, and an accelerator opening of the internal combustion engine as the engine output information. Engine exhaust heat recovery control device. 前記排気熱回収制御手段は、前記機関出力情報として、内燃機関の排出ガス温度と排出ガス体積流量と触媒温度のうちの少なくとも1つを用いることを特徴とする請求項1又は2に記載の内燃機関の排気熱回収制御装置。   The internal combustion engine according to claim 1 or 2, wherein the exhaust heat recovery control means uses at least one of an exhaust gas temperature, an exhaust gas volume flow rate, and a catalyst temperature of the internal combustion engine as the engine output information. Engine exhaust heat recovery control device. 内燃機関の排出ガスと冷却水との間で熱交換を行って排気熱を回収する排気熱回収器と、内燃機関の排出ガスで排気タービンを回転駆動することでコンプレッサを回転駆動して吸入空気を過給する排気タービン式過給機とを備えた内燃機関の排気熱回収制御装置において、
前記排気熱回収器による排気熱回収量を調整する排気熱回収量調整手段と、
内燃機関の目標過給圧と実過給圧に応じて前記排気熱回収量を変化させるように前記排気熱回収量調整手段を制御する排気熱回収制御手段と
を備えていることを特徴とする内燃機関の排気熱回収制御装置。
Exhaust heat recovery unit that recovers exhaust heat by exchanging heat between exhaust gas and cooling water of the internal combustion engine, and rotationally driving the compressor by rotating the exhaust turbine with the exhaust gas of the internal combustion engine to intake air In an exhaust heat recovery control device for an internal combustion engine comprising an exhaust turbine supercharger for supercharging
Exhaust heat recovery amount adjusting means for adjusting the exhaust heat recovery amount by the exhaust heat recovery device;
Exhaust heat recovery control means for controlling the exhaust heat recovery amount adjusting means so as to change the exhaust heat recovery amount in accordance with a target boost pressure and an actual boost pressure of the internal combustion engine. An exhaust heat recovery control device for an internal combustion engine.
前記排気熱回収制御手段は、前記実過給圧が前記目標過給圧よりも低いときに前記排気熱回収量を減少させるように前記排気熱回収量調整手段を制御し、前記実過給圧が前記目標過給圧よりも高いときに前記排気熱回収量を増加させるように前記排気熱回収量調整手段を制御する手段を有することを特徴とする請求項5に記載の内燃機関の排気熱回収制御装置。   The exhaust heat recovery control means controls the exhaust heat recovery amount adjusting means so as to decrease the exhaust heat recovery amount when the actual supercharging pressure is lower than the target supercharging pressure, and the actual supercharging pressure 6. The exhaust heat of the internal combustion engine according to claim 5, further comprising means for controlling the exhaust heat recovery amount adjusting means so as to increase the exhaust heat recovery amount when the pressure is higher than the target boost pressure. Collection control device. 前記排気熱回収制御手段は、内燃機関の目標出力が所定値以下のときには前記目標過給圧と前記実過給圧に応じた排気熱回収量の制御を停止して他の要求に応じた排気熱回収量の制御を実行する手段を有することを特徴とする請求項5又は6に記載の内燃機関の排気熱回収制御装置。   The exhaust heat recovery control means stops the control of the exhaust heat recovery amount according to the target boost pressure and the actual boost pressure when the target output of the internal combustion engine is equal to or less than a predetermined value, and performs exhaust according to other requirements. The exhaust heat recovery control device for an internal combustion engine according to claim 5 or 6, further comprising means for controlling a heat recovery amount. 車両に搭載した内燃機関の排出ガスと冷却水との間で熱交換を行って排気熱を回収する排気熱回収器を備えた内燃機関の排気熱回収制御装置において、
前記排気熱回収器による排気熱回収量を調整する排気熱回収量調整手段と、
車両の運転者によって操作される操作手段と、
前記操作手段の操作状態に応じて前記排気熱回収量を変化させるように前記排気熱回収量調整手段を制御する排気熱回収制御手段と
を備えていることを特徴とする内燃機関の排気熱回収制御装置。
In an exhaust heat recovery control device for an internal combustion engine comprising an exhaust heat recovery device that recovers exhaust heat by exchanging heat between exhaust gas and cooling water of an internal combustion engine mounted on a vehicle,
Exhaust heat recovery amount adjusting means for adjusting the exhaust heat recovery amount by the exhaust heat recovery device;
Operating means operated by a driver of the vehicle;
Exhaust heat recovery control means for controlling the exhaust heat recovery amount adjustment means so as to change the exhaust heat recovery amount in accordance with the operating state of the operation means. Control device.
前記排気熱回収量調整手段は、前記排気熱回収器に循環させる冷却水の流量を調整する手段であることを特徴とする請求項1乃至8のいずれかに記載の内燃機関の排気熱回収制御装置。   The exhaust heat recovery control of an internal combustion engine according to any one of claims 1 to 8, wherein the exhaust heat recovery amount adjusting means is means for adjusting a flow rate of cooling water to be circulated through the exhaust heat recovery unit. apparatus.
JP2009032209A 2009-02-16 2009-02-16 Exhaust heat recovery control device for internal combustion engine Pending JP2010190046A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009032209A JP2010190046A (en) 2009-02-16 2009-02-16 Exhaust heat recovery control device for internal combustion engine
DE102010001953A DE102010001953A1 (en) 2009-02-16 2010-02-15 Control device for exhaust gas heat recovery of internal-combustion engine of motor vehicle, has electronic control unit controlling water pump to change exhaust heat recovery amount referred to engine energy output information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009032209A JP2010190046A (en) 2009-02-16 2009-02-16 Exhaust heat recovery control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010190046A true JP2010190046A (en) 2010-09-02

Family

ID=42338916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009032209A Pending JP2010190046A (en) 2009-02-16 2009-02-16 Exhaust heat recovery control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2010190046A (en)
DE (1) DE102010001953A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537142A (en) * 2012-10-17 2015-12-24 ノアグレン リミテッド Vehicle waste heat recovery system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997448B1 (en) * 2012-10-31 2018-11-09 Renault S.A.S COOLING MANAGEMENT OF A MOTOR SYSTEM EQUIPPED WITH A PARTIAL EXHAUST GAS RECIRCULATION DEVICE
CN105259952B (en) * 2015-10-10 2017-11-07 广西百特汽车技术有限公司 The temperature control system and method for a kind of automobile engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190437A (en) 2007-02-06 2008-08-21 Toyota Motor Corp Exhaust heat recovery device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537142A (en) * 2012-10-17 2015-12-24 ノアグレン リミテッド Vehicle waste heat recovery system

Also Published As

Publication number Publication date
DE102010001953A1 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
US10330033B2 (en) Method and system for exhaust heat recovery
JP5993759B2 (en) Engine intake cooling system
JP5293235B2 (en) Engine intake control method and apparatus
CN109944718B (en) Control device for internal combustion engine
JP2004116310A (en) Control system for internal combustion engine
JP6213322B2 (en) Internal combustion engine
JP2009287495A (en) Method and system for warming up exhaust emission control catalyst
JP2008232031A (en) Exhaust heat recovery device
JP4114535B2 (en) Thermoelectric generator
JP5262788B2 (en) Control device for an internal combustion engine with a supercharger
KR102217930B1 (en) Hybrid vehicle
JP2016211430A (en) Cooling control device of internal combustion engine
JP2010190046A (en) Exhaust heat recovery control device for internal combustion engine
JP2006046199A (en) Device and method for controlling start of diesel engine
JP6852180B2 (en) Internal combustion engine cooling control device
JP3329123B2 (en) Diesel engine intake temperature control system
JP5573795B2 (en) Exhaust gas purification system for internal combustion engine
JP2012082723A (en) Cooling device of internal combustion engine
JP6399198B1 (en) Turbocharged engine
ES2875367T3 (en) Internal combustion engine layout and operation
JP6763488B2 (en) Control method and control device for internal combustion engine for vehicles
JP7009832B2 (en) Supercharging system
JP5332684B2 (en) Internal combustion engine with a supercharger
JP7359031B2 (en) supercharged engine
JP2011220171A (en) Apparatus for controlling internal combustion engine