JP2010185131A - METHOD FOR MANUFACTURING ZnO VAPOR DEPOSITION MATERIAL - Google Patents

METHOD FOR MANUFACTURING ZnO VAPOR DEPOSITION MATERIAL Download PDF

Info

Publication number
JP2010185131A
JP2010185131A JP2010002912A JP2010002912A JP2010185131A JP 2010185131 A JP2010185131 A JP 2010185131A JP 2010002912 A JP2010002912 A JP 2010002912A JP 2010002912 A JP2010002912 A JP 2010002912A JP 2010185131 A JP2010185131 A JP 2010185131A
Authority
JP
Japan
Prior art keywords
powder
zno
rare earth
earth element
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010002912A
Other languages
Japanese (ja)
Other versions
JP5428870B2 (en
Inventor
Yoshiaki Mayuzumi
良享 黛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010002912A priority Critical patent/JP5428870B2/en
Publication of JP2010185131A publication Critical patent/JP2010185131A/en
Application granted granted Critical
Publication of JP5428870B2 publication Critical patent/JP5428870B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a ZnO vapor deposition material which is excellent in composition uniformity by suppressing the segregation of rare earth oxides containing one element selected from the rare earth group to be added to ZnO raw material powder, and to manufacture a ZnO vapor deposition material capable of obtaining a ZnO film uniform in deposition film composition. <P>SOLUTION: The ZnO raw material powder 15 having the average grain size of 0.1-10 μm is set in a transferring condition, a coating liquid 14 containing rare earth oxide powder 11 containing one kind of rare earth having the average grain size of 0.05-5 μm is sprayed or jetted in the ZnO powder to form a coating layer having the thickness of 0.05-5 μm on its surface to form granular material 19. By using the granular material 19 or calcinated powder 24 obtained by calcinating the granular material, and then, disintegrating it, the first granulated powder 20 or the second granulated powder 29 is produced, and the ZnO vapor deposition material consisting of ZnO sintered compact 22 or 32 is produced through molding and sintering. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば太陽電池などに用いられる透明導電膜や、液晶表示装置、エレクトロルミネッセンス表示装置、タッチパネル装置の透明圧電センサーの透明電極、また表示装置を構成するアクティブマトリックス駆動装置、帯電防止導電膜コーティング、ガスセンサー、電磁遮蔽パネル、圧電デバイス、光電変換装置、発光装置、薄膜型二次電池などに用いられる導電膜を成膜するために用いられるZnO蒸着材の製造方法に関するものである。   The present invention relates to a transparent conductive film used for, for example, a solar cell, a liquid crystal display device, an electroluminescence display device, a transparent electrode of a transparent piezoelectric sensor of a touch panel device, an active matrix driving device constituting the display device, and an antistatic conductive film The present invention relates to a method for producing a ZnO vapor deposition material used for forming a conductive film used in coatings, gas sensors, electromagnetic shielding panels, piezoelectric devices, photoelectric conversion devices, light-emitting devices, thin-film secondary batteries, and the like.

近年、太陽電池などの光電変換装置などを製造する場合には、透明導電膜が不可欠である。従来の透明導電膜としては、ITO膜(錫をドープしたインジウム酸化物膜)が知られている。ITO膜は、透明性に優れ、低抵抗であるという利点を有する。   In recent years, a transparent conductive film is indispensable when manufacturing photoelectric conversion devices such as solar cells. An ITO film (indium oxide film doped with tin) is known as a conventional transparent conductive film. The ITO film has the advantages of excellent transparency and low resistance.

一方、太陽電池や液晶表示装置等にあっては、その低コスト化が求められている。しかし、インジウムが高価なことから、ITO膜を透明導電膜として用いると、その太陽電池も必然的に高価なものになってしまう難点があった。また、太陽電池などを製造する場合などには、透明導電膜上にアモルファスシリコンをプラズマCVD法により成膜することになるが、その際に、透明導電膜がITO膜であると、プラズマCVD時の水素プラズマにより、ITO膜が劣化するという問題点もあった。   On the other hand, cost reduction is required for solar cells, liquid crystal display devices, and the like. However, since indium is expensive, when an ITO film is used as a transparent conductive film, the solar cell inevitably becomes expensive. In addition, when manufacturing solar cells or the like, amorphous silicon is deposited on the transparent conductive film by plasma CVD. At that time, if the transparent conductive film is an ITO film, There was also a problem that the ITO film deteriorated by the hydrogen plasma.

これらの点を解消するために、一層安価に作製することのできるAl、B、Si、Ge、Y、La、Sc、Ce、Pr、Nd、Pm、Smなどの導電活性元素をドープした酸化亜鉛系膜を太陽電池等の透明導電膜として使用することが提案され、この酸化亜鉛系膜を蒸着により形成するための酸化亜鉛系蒸着材が開示されている(例えば、特許文献1参照。)。   In order to eliminate these points, zinc oxide doped with conductive active elements such as Al, B, Si, Ge, Y, La, Sc, Ce, Pr, Nd, Pm, and Sm can be manufactured at a lower cost. It has been proposed to use a system film as a transparent conductive film for solar cells or the like, and a zinc oxide-based vapor deposition material for forming this zinc oxide-based film by vapor deposition has been disclosed (for example, see Patent Document 1).

特開2008−088544号公報(請求項1、明細書[0005]〜[0008])JP 2008-088544 A (Claim 1, specifications [0005] to [0008])

上記特許文献1に示されたZnO蒸着材は、図7の断面構造に示すようにZnO粉末1と導電性を向上するための添加物粉末2とを混合して原料混合粉末3とし、この粉末から成形体5を得た後、ZnO蒸着材となる焼結体6を作製している。ここでZnO粉末1と導電性を向上するための添加物粉末2との混合が不十分であると、添加物2が偏析することがあり、添加物粉末の凝集体4が僅かな比率で存在する。このような添加物粉末の分布が不均一な原料混合粉末3を用いて成形体5を作製し、この成形体5により作製した焼結体6では、その焼結組織中には添加物の偏析した部分7が存在することになる。組成分布が不均一な焼結体6を電子ビーム蒸着やプラズマ蒸着などの蒸着材に用いて成膜を行うと、膜組成が一定にならず、膜の組成制御が困難になる。また、膜中の添加元素濃度が低くなる問題も発生する。更に、添加物が偏析すると蒸発が不安定となってスプラッシュが発生する。スプラッシュが発生した場合の膜組織は不均一となり、それに伴い膜の比抵抗も上昇することになる。   As shown in the cross-sectional structure of FIG. 7, the ZnO vapor deposition material disclosed in Patent Document 1 is obtained by mixing a ZnO powder 1 and an additive powder 2 for improving conductivity to obtain a raw material mixed powder 3, and this powder. After obtaining the molded body 5 from the above, a sintered body 6 to be a ZnO vapor deposition material is produced. Here, when the mixing of the ZnO powder 1 and the additive powder 2 for improving the conductivity is insufficient, the additive 2 may segregate, and the aggregate 4 of the additive powder exists in a small ratio. To do. A molded body 5 is produced using the raw material mixed powder 3 having a non-uniform distribution of the additive powder. In the sintered body 6 produced by using the molded body 5, segregation of additives is present in the sintered structure. There will be a portion 7 that has been removed. When film formation is performed using the sintered body 6 having a non-uniform composition distribution as a deposition material such as electron beam vapor deposition or plasma vapor deposition, the film composition is not constant, making it difficult to control the composition of the film. There is also a problem that the concentration of the additive element in the film is lowered. Furthermore, if the additive segregates, evaporation becomes unstable and splash occurs. When splash occurs, the film structure becomes non-uniform, and the specific resistance of the film increases accordingly.

本発明の目的は、ZnO原料粉末に添加される、希土類元素を1種含む希土類元素酸化物粉末の偏析を抑制し、組成均一性に優れたZnO蒸着材の製造方法を提供することにある。本発明の別の目的は、膜組成が均一なZnO膜が得られるZnO蒸着材の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a ZnO vapor deposition material excellent in composition uniformity by suppressing segregation of a rare earth element oxide powder containing one kind of rare earth element added to a ZnO raw material powder. Another object of the present invention is to provide a method for producing a ZnO vapor deposition material from which a ZnO film having a uniform film composition can be obtained.

本発明の第1の観点は、平均粒径が0.1〜10μmで純度が98%以上のZnO粉末と平均粒径が0.05〜5μmで純度が98%以上の希土類元素酸化物粉末とから第1造粒粉末を作製し、この第1造粒粉末をペレット状、タブレット状又は板状に成形した後、この成形体を焼結して、上記希土類元素を0.1〜15質量%含むZnO蒸着材を製造する方法であって、図1に示すように、上記希土類元素酸化物粉末11が希土類元素群から選ばれた1種の元素を含み、上記希土類元素酸化物粉末と有機溶媒12とをバインダ13とともに混合して、濃度が20〜90質量%のコーティング液14を調製する工程と、上記ZnO粉末15を移動した状態にする工程と、この移動状態のZnO粉末に上記コーティング液を噴霧又は噴射しながら上記ZnO粉末の表面に付着したコーティング液を乾燥することにより、上記ZnO粉末を核として、その表面を厚さが0.05〜5μmの上記希土類元素酸化物粉末の層で被覆した粒状体19を得る工程と、この粒状体により第1造粒粉末20を作製する工程とを含むことを特徴とする。   A first aspect of the present invention is a ZnO powder having an average particle size of 0.1 to 10 μm and a purity of 98% or more, and a rare earth element oxide powder having an average particle size of 0.05 to 5 μm and a purity of 98% or more, From this, the first granulated powder is prepared, and the first granulated powder is molded into a pellet, tablet or plate, and then the molded body is sintered, and the rare earth element is added in an amount of 0.1 to 15% by mass. A method for producing a ZnO vapor deposition material comprising the rare earth element oxide powder 11 containing one element selected from a group of rare earth elements, as shown in FIG. 12 is mixed with a binder 13 to prepare a coating solution 14 having a concentration of 20 to 90% by mass, a step of moving the ZnO powder 15 and a coating solution applied to the moved ZnO powder. While spraying or jetting By drying the coating liquid adhering to the surface of the ZnO powder, the granular body 19 in which the surface of the ZnO powder is coated with the layer of the rare earth element oxide powder having a thickness of 0.05 to 5 μm is formed. And a step of producing the first granulated powder 20 from the granular material.

本発明の第2の観点は、平均粒径が0.1〜10μmで純度が98%以上のZnO粉末と平均粒径が0.05〜5μmで純度が98%以上の希土類元素酸化物粉末とから第2造粒粉末を作製し、この第2造粒粉末をペレット状、タブレット状又は板状に成形した後、この成形体を焼結して、上記希土類元素を0.1〜15質量%含むZnO蒸着材を製造する方法であって、図1に示すように、上記希土類元素酸化物粉末11が希土類元素群から選ばれた1種の元素を含み、上記希土類元素酸化物粉末と有機溶媒12とをバインダ13とともに混合して、濃度が20〜90質量%のコーティング液14を調製する工程と、上記ZnO粉末15を移動した状態にする工程と、この移動状態のZnO粉末に上記コーティング液を噴霧又は噴射しながら上記ZnO粉末の表面に付着したコーティング液を乾燥することにより、上記ZnO粉末を核として、その表面を厚さが0.05〜5μmの上記希土類元素酸化物粉末の層で被覆した粒状体19を得る工程と、この粒状体を大気、窒素ガス、還元性ガス、不活性ガス又は真空の雰囲気中、800〜1200℃で仮焼することにより仮焼体23を得る工程と、この仮焼体を解砕することにより仮焼粉末24を作製する工程と、この仮焼粉末により第2造粒粉末29を作製する工程を含むことを特徴とする。   A second aspect of the present invention is a ZnO powder having an average particle diameter of 0.1 to 10 μm and a purity of 98% or more, and a rare earth element oxide powder having an average particle diameter of 0.05 to 5 μm and a purity of 98% or more. The second granulated powder is prepared from the above, and the second granulated powder is molded into a pellet, tablet or plate, and then the molded body is sintered, and the rare earth element is added in an amount of 0.1 to 15% by mass. A method for producing a ZnO vapor deposition material comprising the rare earth element oxide powder 11 containing one element selected from a group of rare earth elements, as shown in FIG. 12 is mixed with a binder 13 to prepare a coating solution 14 having a concentration of 20 to 90% by mass, a step of moving the ZnO powder 15 and a coating solution applied to the moved ZnO powder. While spraying or jetting By drying the coating liquid adhering to the surface of the ZnO powder, the granular body 19 in which the surface of the ZnO powder is coated with the layer of the rare earth element oxide powder having a thickness of 0.05 to 5 μm is formed. A step of obtaining the calcined body 23 by calcining the granular body at 800 to 1200 ° C. in an atmosphere of air, nitrogen gas, reducing gas, inert gas or vacuum, and the calcined body. It includes a step of producing a calcined powder 24 by pulverization and a step of producing a second granulated powder 29 with this calcined powder.

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、更に上記希土類元素群から選ばれた1種の元素がSc、Y、La、Ce、Pr、Nd、Pm又はSmであることを特徴とする。   A third aspect of the present invention is the invention based on the first or second aspect, wherein one element selected from the rare earth element group is Sc, Y, La, Ce, Pr, Nd, Pm. Or it is Sm.

本発明の第4の観点は、第1ないし第3の観点の方法で製造されたZnO蒸着材22をターゲット材として真空成膜法により形成されたZnO膜である。   A fourth aspect of the present invention is a ZnO film formed by a vacuum film formation method using the ZnO vapor deposition material 22 manufactured by the method of the first to third aspects as a target material.

本発明の第1ないし第3の観点の方法によれば、造粒粉末中の希土類元素酸化物の分散性が向上し、これを用いて作製するZnO焼結体中の、希土類元素酸化物の分散性は向上する。その結果、希土類元素の偏析が抑制され組成均一性に優れたZnO焼結体であるZnO蒸着材が得られる。本発明の第2の観点の方法によれば、造粒粉末中のZnOと希土類元素酸化物とが擬似固溶体を形成することによって、更に希土類元素の分散性が向上し、組成均一性に優れたZnO蒸着材が得られる。本発明の第3の観点の蒸着材を用いると、成膜されるZnO膜が広い温度範囲にわたって良好な導電性を有する。とりわけCeは、高い導電率が得られる。本発明の第1ないし第3の観点の蒸着材を用いると、安定した蒸着が可能となり、膜組成が均一で、成膜時の膜組成変化も少なく、所望の導電性及び可視光透過性を有するZnO膜が得られる。この素材は、透明導電膜の形成用に限らず、ガスセンサー、電磁遮蔽パネル、圧電デバイスなどの導電膜の形成用としても用いることが可能である。   According to the methods of the first to third aspects of the present invention, the dispersibility of the rare earth element oxide in the granulated powder is improved, and the rare earth element oxide in the ZnO sintered body produced using this is improved. Dispersibility is improved. As a result, it is possible to obtain a ZnO vapor deposition material which is a ZnO sintered body with suppressed segregation of rare earth elements and excellent composition uniformity. According to the method of the second aspect of the present invention, ZnO and the rare earth element oxide in the granulated powder form a pseudo solid solution, so that the dispersibility of the rare earth element is further improved and the composition uniformity is excellent. A ZnO vapor deposition material is obtained. When the vapor deposition material according to the third aspect of the present invention is used, the formed ZnO film has good conductivity over a wide temperature range. In particular, Ce can provide high conductivity. When the vapor deposition material according to the first to third aspects of the present invention is used, stable vapor deposition is possible, the film composition is uniform, there is little change in the film composition at the time of film formation, and the desired conductivity and visible light transmittance are obtained. A ZnO film is obtained. This material can be used not only for forming a transparent conductive film but also for forming a conductive film such as a gas sensor, an electromagnetic shielding panel, and a piezoelectric device.

本発明第1及び第2の実施形態における、各工程を示す図である。It is a figure which shows each process in 1st and 2nd embodiment of this invention. 本発明第1及び第2の実施形態における、粒状体の微視的な断面構造を示す模式図である。It is a schematic diagram which shows the microscopic cross-sectional structure of a granular material in 1st and 2nd embodiment of this invention. 本発明第1の実施形態における、第1造粒粉末の微視的な断面構造を示す模式図である。It is a schematic diagram which shows the microscopic cross-sectional structure of the 1st granulated powder in the 1st Embodiment of this invention. 本発明第2の実施形態における、第2造粒粉末の微視的な表面構造を示す模式図である。It is a schematic diagram which shows the microscopic surface structure of the 2nd granulated powder in the 2nd Embodiment of this invention. 本発明第1の実施形態における、第1造粒粉末から焼結体までの微視的な断面構造を示す模式図である。It is a schematic diagram which shows the microscopic cross-section from the 1st granulated powder to a sintered compact in the 1st Embodiment of this invention. 本発明第2の実施形態における、第2造粒粉末から焼結体までの微視的な表面構造(焼結体は断面構造)を示す模式図である。It is a schematic diagram which shows the microscopic surface structure (sintered body is cross-sectional structure) from the 2nd granulated powder in the 2nd Embodiment of this invention to a sintered compact. 従来の方法における、原料混合粉末からZnO焼結体までの微視的な断面構造を示す模式図である。It is a schematic diagram which shows the microscopic cross-sectional structure from the raw material mixed powder to the ZnO sintered compact in the conventional method.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

A.第1の実施形態
<希土類元素酸化物粉末を含むコーティング液の調製工程>
図1に示すように、純度98%以上である希土類元素酸化物粉末11を有機溶媒12中に分散させ、これにバインダ13を添加し、コーティング液14を調製する。好ましくは、純度99.9%以上の希土類元素酸化物粉末を用いる。上記希土類元素酸化物粉末11の平均粒径は、0.05〜5μmであることが好ましい。0.05μm未満であると粉末の凝集が著しくなり、5μmを越えると希土類元素酸化物との擬似固溶体を形成する効果が十分に得られないからである。これらの粉末の平均粒径は、レーザー回折・散乱法(マイクロトラック法)に従い、日機装社製(FRA型)を用い、分散媒としてヘキサメタりん酸Naを使用し、1回の測定時間を30秒として3回測定した値を平均化した値である。上記希土類元素酸化物粉末11は希土類元素群から選ばれた1種の元素を含み、その元素はSc、Y、La、Ce、Pr、Nd、Pm又はSmからなる元素群から選ばれた1種であることが好ましい。上記元素を選択した理由としては、実験から効果があることが確認できたこと、原料粉末が入手し易く、比較的安価で、かつ比較的安全性が高いことなどが挙げられる。
A. First embodiment <Preparation process of coating liquid containing rare earth element oxide powder>
As shown in FIG. 1, a rare earth element oxide powder 11 having a purity of 98% or more is dispersed in an organic solvent 12, and a binder 13 is added thereto to prepare a coating liquid. Preferably, rare earth element oxide powder having a purity of 99.9% or more is used. The average particle size of the rare earth element oxide powder 11 is preferably 0.05 to 5 μm. If the thickness is less than 0.05 μm, the aggregation of the powder becomes remarkable, and if it exceeds 5 μm, the effect of forming a pseudo solid solution with the rare earth element oxide cannot be obtained sufficiently. The average particle size of these powders was determined by laser diffraction / scattering method (microtrack method), using Nikkiso Co., Ltd. (FRA type), using hexametaphosphate Na as a dispersion medium, and measuring time for one second for 30 seconds. Is a value obtained by averaging the values measured three times. The rare earth element oxide powder 11 contains one element selected from a rare earth element group, and the element is one element selected from the element group consisting of Sc, Y, La, Ce, Pr, Nd, Pm or Sm. It is preferable that The reasons for selecting the above elements include that it has been confirmed that there is an effect from experiments, that the raw material powder is easily available, is relatively inexpensive, and is relatively safe.

分散媒として用いる有機溶媒12としては、エタノール、プロパノール、アセトンが好ましい。添加するバインダ13としては、ポリエチレングリコール、ポリビニルブチラール等が挙げられる。バインダの添加量は、コーティング液14が100質量%に対して、0.5〜5質量%が好ましい。調製するコーティング液の濃度(全質量に対する粉末の質量)は30〜70質量%が好ましい。30質量%未満であると希土類元素酸化物層の密度が低下する問題が発生し、70質量%を越えるとコーティングが困難となる。これは、流動性が低下することにより、ZnO粉末に均一にコーティングすることが難しくなるからである。また、コーティング液に分散剤を添加しても良い。分散装置としては、インペラ式攪拌混合機が主に用いられるが、ボールミルなどの回転式混合機等を用いても良い。   As the organic solvent 12 used as the dispersion medium, ethanol, propanol, and acetone are preferable. Examples of the binder 13 to be added include polyethylene glycol and polyvinyl butyral. The addition amount of the binder is preferably 0.5 to 5% by mass with respect to 100% by mass of the coating liquid 14. As for the density | concentration (mass of the powder with respect to total mass) of the coating liquid to prepare, 30-70 mass% is preferable. If the amount is less than 30% by mass, the density of the rare earth element oxide layer is lowered. If the amount exceeds 70% by mass, coating becomes difficult. This is because it becomes difficult to uniformly coat ZnO powder due to the decrease in fluidity. Further, a dispersant may be added to the coating liquid. As the dispersing device, an impeller type stirring mixer is mainly used, but a rotary mixer such as a ball mill may be used.

<ZnO粉末を移動した状態にする工程>
図1に示すように、純度98%以上であるZnO粉末15を移動した状態にする装置(以下、移動装置という。)に投入して運転し、移動状態のZnO粉末にする。好ましくは、純度99.9%以上のZnO粉末を用いる。その移動方法には、流動層を用いる方法、攪拌又は転動させる方法、或いはこれらを組み合わせた方法が用いられる。移動装置の種類としては、流動層造粒装置、攪拌造粒装置、転動造粒装置或いは上記方法を組み合わせた装置などが挙げられる。好ましくは流動層造粒装置を用いる。これは、ZnO粉末の造粒が起こる前に、その粒子表面を上記希土類元素酸化物粉末層で被覆することが可能であるからである。通常は、移動装置として造粒装置を用いるが、単に粒子を運動させるための移動装置、例えば流動層乾燥機などであっても構わない。
<Step of moving the ZnO powder to a moving state>
As shown in FIG. 1, the ZnO powder 15 having a purity of 98% or more is put into a moving device (hereinafter referred to as a moving device) and operated to obtain a moved ZnO powder. Preferably, ZnO powder having a purity of 99.9% or more is used. As the moving method, a method using a fluidized bed, a method of stirring or rolling, or a method combining these is used. Examples of the moving device include a fluidized bed granulating device, a stirring granulating device, a rolling granulating device, and a device combining the above methods. Preferably, a fluidized bed granulator is used. This is because the particle surface can be covered with the rare earth element oxide powder layer before the ZnO powder is granulated. Usually, a granulating device is used as the moving device, but it may be a moving device for simply moving particles, such as a fluidized bed dryer.

<ZnO粉末を希土類元素酸化物粉末層で被覆する工程>
図2の断面構造に示すように、ZnO粉末15を核として、その表面を上記希土類元素酸化物粉末11の層で被覆する。その被覆方法は、図1に示すように、移動装置内でZnO粉末15を移動状態にし、その装置内部に取り付けた噴霧又は噴射装置(例えば、スプレーガンなどを用いる。)によりコーティング液14を移動状態のZnO粉末に噴霧又は噴射し、その表面にコーティング液を付着させて被覆層を形成する。具体的な噴霧又は噴射方法としては、スプレー法、インクジェット法、ミスト法などが挙げられる。付着を良好にするために、予め有機溶媒12とバインダ13のみで作製したコーティング液14を移動状態のZnO粉末に噴霧又は噴射しておくと、ZnO粉末表面に希土類元素酸化物粉末が付着し易くなる。
<Step of coating ZnO powder with rare earth oxide powder layer>
As shown in the cross-sectional structure of FIG. 2, the surface of the ZnO powder 15 is covered with the layer of the rare earth element oxide powder 11 using the ZnO powder 15 as a nucleus. As shown in FIG. 1, in the coating method, the ZnO powder 15 is moved in a moving device, and the coating liquid 14 is moved by a spraying or spraying device (for example, using a spray gun) attached inside the device. The ZnO powder is sprayed or sprayed, and the coating liquid is attached to the surface to form a coating layer. Specific spraying or jetting methods include a spray method, an ink jet method, a mist method, and the like. In order to improve the adhesion, when the coating liquid 14 prepared only with the organic solvent 12 and the binder 13 in advance is sprayed or sprayed on the ZnO powder in a moving state, the rare earth element oxide powder easily adheres to the ZnO powder surface. Become.

この希土類元素酸化物粉末11が被覆されたZnO粉末を乾燥することにより粒状体19を得る。この乾燥工程は、通常同じ移動装置内で行われる。乾燥機能が無い移動装置を用いる場合は、被覆が終了した後に粒状体を取り出して、乾燥機で乾燥する。乾燥温度は60〜200℃が好ましい。60℃未満であると溶剤が残留し、その後の造粒および焼成工程に悪い影響を与える可能性があり、200℃を越えると急速乾燥によりコーティング層のクラックおよび被覆層の脱落が発生する。   The granular material 19 is obtained by drying the ZnO powder coated with the rare earth element oxide powder 11. This drying process is usually performed in the same mobile device. In the case of using a moving device having no drying function, the granular material is taken out after the coating is completed, and dried with a dryer. The drying temperature is preferably 60 to 200 ° C. If the temperature is lower than 60 ° C., the solvent remains, which may adversely affect the subsequent granulation and firing processes. If the temperature exceeds 200 ° C., cracks in the coating layer and dropping of the coating layer occur due to rapid drying.

希土類元素の分散性の高いZnO焼結体が得られる、最も好ましい粒状体19の被覆形態は、図2に示すようにZnO粉末15表面を希土類元素酸化物粉末11の層が完全に被覆し、その被覆された粒状体19同士が分離している状態である。しかし、図3の断面構造に示すように、表面の被覆が十分に行われた粒状体が集合し第1造粒粉末20を形成したものであっても良い。この第1造粒粉末で成形体21を作製すると、希土類元素酸化物粉末11の分散効果が同様に得られる。核となるZnO粉末15の平均粒径は、0.1〜10μmが好ましく、0.1〜5μmが特に好ましい。0.1μm未満であるとZnO粒子の凝集が顕著になり、粒子表面の完全な被覆が困難になるためであり、10μmを越えると希土類元素酸化物との擬似固溶体を形成する効果が十分に得られないからである。希土類元素酸化物粉末11は、全てのZnO粒子表面にできるだけ薄く被覆されていることが好ましい。この希土類元素酸酸化物粉末層の厚さは0.05〜5μmが好ましく、0.05〜2μmの範囲内であることが特に好ましい。0.05μm未満は完全に被覆できる層さの限界であり、また5μmを越えると均一に被覆することが困難となる。移動装置に流動層造粒装置を用いる場合、被覆する希土類元素酸化物粉末層の厚さの制御は、コーティング液の濃度、噴霧又は噴射装置へのエア流量、コーティング液の流量、処理時間等で行う。   The most preferable coating form of the granular material 19 from which a ZnO sintered body with a high dispersibility of rare earth elements is obtained is as shown in FIG. The coated granular materials 19 are in a separated state. However, as shown in the cross-sectional structure of FIG. 3, the first granulated powder 20 may be formed by agglomeration of granular bodies sufficiently covered on the surface. When the molded body 21 is produced from the first granulated powder, the dispersion effect of the rare earth element oxide powder 11 is obtained in the same manner. The average particle diameter of the ZnO powder 15 serving as the nucleus is preferably 0.1 to 10 μm, and particularly preferably 0.1 to 5 μm. If the thickness is less than 0.1 μm, the aggregation of ZnO particles becomes remarkable, and it is difficult to completely cover the particle surface. If the thickness exceeds 10 μm, the effect of forming a pseudo solid solution with a rare earth element oxide is sufficiently obtained. Because it is not possible. The rare earth element oxide powder 11 is preferably coated as thinly as possible on the surface of all ZnO particles. The rare earth element oxide powder layer preferably has a thickness of 0.05 to 5 μm, particularly preferably 0.05 to 2 μm. If it is less than 0.05 μm, it is the limit of the layer that can be completely coated, and if it exceeds 5 μm, it is difficult to coat uniformly. When a fluidized bed granulator is used for the moving device, the thickness of the rare earth oxide powder layer to be coated is controlled by the concentration of the coating liquid, the air flow rate to the spraying or spraying device, the flow rate of the coating liquid, the processing time, etc. Do.

被覆する希土類元素酸化物粉末層の厚さの制御により、ZnO粉末と希土類酸化物粉末の組成を制御する。ZnO粉末15と希土類元素酸化物粉末11との比率は、ZnOと希土類元素酸化物との合計質量を100質量%として、希土類元素を0.1〜15質量%含む比率になるようにする。希土類元素が上記下限値未満であると膜の導電性向上のために必要な希土類元素の濃度が確保できなくなり、上記上限値を越えるとZnO導電膜として基本的な性能が得られなくなるためである。好ましい希土類元素の含有量は3〜6質量%である。なお、粒状体19の組成を上記範囲に制御することにより、ZnO蒸着材に含まれる希土類元素の含有量を0.1〜15質量%の範囲に制御することができる。   The composition of the ZnO powder and the rare earth oxide powder is controlled by controlling the thickness of the rare earth element oxide powder layer to be coated. The ratio of the ZnO powder 15 to the rare earth element oxide powder 11 is such that the total mass of ZnO and the rare earth element oxide is 100% by mass, and the ratio includes 0.1 to 15% by mass of the rare earth element. If the rare earth element is less than the lower limit, the concentration of the rare earth element necessary for improving the conductivity of the film cannot be secured, and if the upper limit is exceeded, basic performance as a ZnO conductive film cannot be obtained. . A preferable rare earth element content is 3 to 6% by mass. In addition, by controlling the composition of the granular material 19 in the above range, the content of rare earth elements contained in the ZnO vapor deposition material can be controlled in the range of 0.1 to 15% by mass.

<造粒工程>
造粒機能を有する移動装置を用いた場合には、ZnO粉末15への希土類元素酸化物粉末11の被覆と造粒が同一装置内で行われ、第1造粒粉末20が得られる。この第1造粒粉末は、このまま成形工程に用いることができる。一方、造粒機能を持たない移動装置を用いた場合においては、回収した粒状体19を更に造粒する必要がある。この造粒方法は、スプレードライヤが好ましい。その詳細は第2の実施形態に示すスプレードライヤによる造粒工程に準ずる。
<Granulation process>
When a moving device having a granulating function is used, the ZnO powder 15 is coated with the rare earth element oxide powder 11 and granulated in the same device, whereby the first granulated powder 20 is obtained. This first granulated powder can be used in the molding process as it is. On the other hand, when a moving device having no granulation function is used, it is necessary to further granulate the recovered granular material 19. This granulation method is preferably a spray dryer. The details are based on the granulation process by the spray dryer shown in the second embodiment.

被覆と造粒を同一装置内で行う流動層造粒装置で第1造粒粉末20を作製する場合、その平均粒径は0.1〜7μmであることが好ましい。0.1μm未満であると粉末の凝集が著しくなり、7μmを越えるとZnOとの擬似固溶体を形成する効果が十分に得られないからである。一方、被覆と造粒を同一装置内で行う攪拌造粒装置又は転動造粒装置で造粒する場合、その平均粒径は0.3〜3mmであることが好ましい。0.3mm未満であると成形工程における成形装置への粉体供給に支障きたす問題が生じ、3mmを越えると成形体の密度ばらつきや空孔発生の原因となる。粒状体19及び第1造粒粉末20の平均粒径は、レーザー回折・散乱法(マイクロトラック法)に従い、日機装社製(FRA型)を用い、分散媒としてヘキサメタりん酸Naを使用し、1回の測定時間を30秒として3回測定した値を平均化した値である。   When the 1st granulated powder 20 is produced with the fluidized-bed granulator which coat | covers and granulates within the same apparatus, it is preferable that the average particle diameter is 0.1-7 micrometers. When the thickness is less than 0.1 μm, the aggregation of the powder becomes remarkable. When the thickness exceeds 7 μm, the effect of forming a pseudo solid solution with ZnO cannot be sufficiently obtained. On the other hand, when granulating with a stirring granulator or rolling granulator that performs coating and granulation in the same apparatus, the average particle diameter is preferably 0.3 to 3 mm. If the thickness is less than 0.3 mm, there is a problem that hinders the powder supply to the molding apparatus in the molding process. If the thickness exceeds 3 mm, the density of the molded body is varied and voids are generated. The average particle diameters of the granular material 19 and the first granulated powder 20 are Nikkiso Co., Ltd. (FRA type) according to the laser diffraction / scattering method (microtrack method), and hexametaphosphate Na is used as the dispersion medium. It is a value obtained by averaging values measured three times with a measurement time of 30 seconds.

<成形工程>
この第1造粒粉末20を所定の型に入れて所定の圧力で成形し、成形体21を作製する。所定の型は一軸プレス装置又は冷間静水圧成形装置(CIP(Cold Isostatic Press)成形装置)が用いられる。また、タブレットマシンやブリケットマシン等を用いてもよい。一軸プレス装置では、第1造粒粉末を750〜2000kg/cm(73.5〜196.1MPa)、好ましくは1000〜1500kg/cm(98.1〜147.1MPa)の圧力で一軸加圧成形し、CIP成形装置では、第1造粒粉末を1000〜3000kg/cm(98.0〜294.2MPa)、好ましくは1500〜2000kg/cm(147.1〜196.1MPa)の圧力でCIP成形する。圧力を上記範囲に限定したのは、成形体21の密度を高めるとともに焼結後の変形を防止し、後加工を不要にするためである。
<Molding process>
The first granulated powder 20 is put into a predetermined mold and molded at a predetermined pressure to produce a molded body 21. As the predetermined mold, a uniaxial pressing device or a cold isostatic pressing device (CIP (Cold Isostatic Press) forming device) is used. A tablet machine, a briquette machine, or the like may be used. In uniaxial pressing apparatus, the first granulated powder 750~2000kg / cm 2 (73.5~196.1MPa), preferably uniaxial pressing at a pressure of 1000~1500kg / cm 2 (98.1~147.1MPa) In the CIP molding apparatus, the first granulated powder is formed at a pressure of 1000 to 3000 kg / cm 2 (98.0 to 294.2 MPa), preferably 1500 to 2000 kg / cm 2 (147.1 to 196.1 MPa). CIP molding. The reason why the pressure is limited to the above range is to increase the density of the molded body 21 and prevent deformation after sintering, thereby making post-processing unnecessary.

<焼結工程>
上記成形体21を所定の温度で焼結し、ZnO焼結体(ZnO蒸着材)22を作製する。焼結は大気、不活性ガス、真空又は還元ガス雰囲気中で1000℃以上、好ましくは1200〜1400℃の温度で1〜10時間、好ましくは2〜5時間行う。これにより相対密度が90%以上のペレットが得られる。上記焼結は大気圧下で行うが、ホットプレス(HP)焼結や熱間静水圧プレス(HIP、Hot Isostatic Press)焼結のように加圧焼結を行う場合には、不活性ガス、真空又は還元ガス雰囲気中で1000℃以上の温度で1〜5時間行うことが好ましい。また、一軸プレス成型により板状の焼結体としても良い。
<Sintering process>
The molded body 21 is sintered at a predetermined temperature to produce a ZnO sintered body (ZnO vapor deposition material) 22. Sintering is carried out at a temperature of 1000 ° C. or higher, preferably 1200 to 1400 ° C. for 1 to 10 hours, preferably 2 to 5 hours in the atmosphere, inert gas, vacuum or reducing gas atmosphere. Thereby, a pellet having a relative density of 90% or more is obtained. The above sintering is performed under atmospheric pressure, but when performing pressure sintering such as hot pressing (HP) sintering or hot isostatic pressing (HIP) sintering, an inert gas, It is preferable to carry out in a vacuum or reducing gas atmosphere at a temperature of 1000 ° C. or higher for 1 to 5 hours. Moreover, it is good also as a plate-shaped sintered compact by uniaxial press molding.

このようにして、図5に示すように、ZnOマトリックス中の希土類元素の偏析が抑制され、組成均一性に優れたZnO焼結体(ZnO蒸着材)22を得ることができる。   In this way, as shown in FIG. 5, segregation of rare earth elements in the ZnO matrix is suppressed, and a ZnO sintered body (ZnO vapor deposition material) 22 excellent in composition uniformity can be obtained.

<成膜工程>
このようにして得られたZnO焼結体(ZnO蒸着材)22を蒸着源として、真空成膜法により基板表面にZnO膜を形成する。上記ZnO膜を形成するための真空成膜法としては、電子ビーム蒸着法、反応性プラズマ蒸着法、イオンプレーティング法又はスパッタリング法などが挙げられる。
<Film formation process>
Using the thus obtained ZnO sintered body (ZnO vapor deposition material) 22 as a vapor deposition source, a ZnO film is formed on the substrate surface by a vacuum film formation method. Examples of the vacuum film forming method for forming the ZnO film include an electron beam evaporation method, a reactive plasma evaporation method, an ion plating method, and a sputtering method.

3価又は4価の希土類添加元素がZnO膜中に添加された場合、2価であるZnに対して過剰のキャリア電子を発生させるため、広い温度範囲にわたってZnO膜の導電率を向上させることができる。   When a trivalent or tetravalent rare earth additive element is added to the ZnO film, excessive carrier electrons are generated with respect to the divalent Zn, so that the conductivity of the ZnO film can be improved over a wide temperature range. it can.

B.第2の実施形態
<希土類元素酸化物粉末を含むコーティング液の調製工程>
図1に示すように、希土類元素酸化物粉末11のコーティング液14を調製する。その方法は、第1の実施形態に準ずる。
B. Second Embodiment <Preparation Step of Coating Solution Containing Rare Earth Oxide Powder>
As shown in FIG. 1, a coating liquid 14 of rare earth element oxide powder 11 is prepared. The method is in accordance with the first embodiment.

<ZnO粉末を移動した状態にする工程>
図1に示すように、ZnO粉末15を移動した状態にする。その方法は、第1の実施形態に準ずる。
<Step of moving the ZnO powder to a moving state>
As shown in FIG. 1, the ZnO powder 15 is moved. The method is in accordance with the first embodiment.

<ZnO粉末を希土類元素酸化物粉末層で被覆する工程>
図2の断面構造に示すように、ZnO粉末15を希土類元素酸化物粉末11の層で被覆し、粒状体19を作製する。その方法は、第1の実施形態に準ずる。ただし、造粒機能を有する移動装置を用いた場合には、粒状体が集合した第1造粒粉末20が形成される。
<Step of coating ZnO powder with rare earth oxide powder layer>
As shown in the cross-sectional structure of FIG. 2, ZnO powder 15 is covered with a layer of rare earth element oxide powder 11 to produce granular body 19. The method is in accordance with the first embodiment. However, when a moving device having a granulating function is used, the first granulated powder 20 in which the granular materials are aggregated is formed.

<粒状体を仮焼する工程>
図1に示すように、粒状体19、又はこれを造粒して作製した第1造粒粉末20の仮焼を行い、仮焼体23を作製する。仮焼は大気、窒素ガス、還元性ガス、不活性ガス又は真空の雰囲気中で行う。好ましい雰囲気は、大気である。その焼成温度は800℃以上、好ましくは1000〜1200℃の温度である。保持時間は、1〜10時間、好ましくは2〜5時間である。仮焼の目的は、図4中の仮焼粉末24に示すように、ZnO粉末15と、その表面に被覆された希土類元素酸化物粉末11との界面で反応を起こし、ZnOと希土類元素酸化物との擬似固溶体30を形成することである。これにより、ZnOマトリックスに対する希土類元素の分散性が向上する効果が期待できる。また、その反応性は焼結温度により制御することが可能である。
<Step of calcining granular material>
As shown in FIG. 1, the granulated body 19 or the first granulated powder 20 produced by granulating the granulated body 19 is calcined to produce a calcined body 23. Calcination is performed in the atmosphere of air, nitrogen gas, reducing gas, inert gas, or vacuum. A preferred atmosphere is air. The baking temperature is 800 ° C. or higher, preferably 1000 to 1200 ° C. The holding time is 1 to 10 hours, preferably 2 to 5 hours. The purpose of the calcination is to cause a reaction at the interface between the ZnO powder 15 and the rare earth element oxide powder 11 coated on the surface thereof, as shown by the calcined powder 24 in FIG. And forming a pseudo solid solution 30. Thereby, the effect which the dispersibility of the rare earth element with respect to a ZnO matrix improves can be anticipated. In addition, the reactivity can be controlled by the sintering temperature.

<仮焼体を解砕する工程>
図1に示すように、上記仮焼により得られた仮焼体23を機械的に解砕し、仮焼粉末24を作製する。解砕装置には、ジョークラッシャ、ロールクラッシャ、ハンマークラッシャ、ディスククラッシャ、スタンプミル、ボールミル、ビーズミル、振動ミル、ジェットミル等を用いる。平均粒径が0.05〜5μm、好ましくは0.1〜5μmの範囲に入るまで解砕する。この範囲に平均粒径を制御したのは、0.05μm未満では粉末の凝集が著しくなり、5μmを越えると希土類元素酸化物との擬似固溶体を形成する効果が十分に得られないからである。特に好ましい仮焼粉末の平均粒径は0.1〜3μm、更には0.3〜3μmである。
<Process of crushing calcined body>
As shown in FIG. 1, the calcined body 23 obtained by the calcining is mechanically crushed to produce a calcined powder 24. As the crusher, a jaw crusher, a roll crusher, a hammer crusher, a disc crusher, a stamp mill, a ball mill, a bead mill, a vibration mill, a jet mill, or the like is used. Grind until the average particle size is in the range of 0.05-5 μm, preferably 0.1-5 μm. The reason why the average particle size is controlled within this range is that the powder aggregation is remarkable when the particle diameter is less than 0.05 μm, and if it exceeds 5 μm, the effect of forming a pseudo solid solution with the rare earth element oxide cannot be obtained sufficiently. The average particle diameter of the calcined powder is particularly preferably 0.1 to 3 μm, and more preferably 0.3 to 3 μm.

仮焼粉末24の表面を微視的に観察すると、図4に示すように、ZnOと希土類元素酸化物との間で擬似固溶体30が形成され、希土類元素の分散性が向上していることが判る。   When the surface of the calcined powder 24 is observed microscopically, as shown in FIG. 4, a pseudo solid solution 30 is formed between ZnO and the rare earth element oxide, and the dispersibility of the rare earth element is improved. I understand.

<仮焼粉末を造粒する工程>
図1に示すように、上記仮焼粉末24と、有機溶媒25と、バインダ26とを混合して、濃度が30〜75質量%のスラリー27を調製する。好ましい濃度は40〜65質量%である。スラリー27の濃度を30〜75質量%に限定したのは、75質量%を越えると上記スラリー27が非水系であるため、安定した混合造粒が難しい問題点があり、30質量%未満では均一な組織を有する緻密なZnO焼結体が得られないからである。仮焼粉末24の平均粒径は0.1〜0.5μmの範囲内にあることが好ましい。上記範囲内に規定したのは、0.1μm未満であると粉末が細かすぎて凝集するため、粉末のハンドリングが悪くなり、高濃度スラリーを調製することが困難となる問題点があり、0.5μmを越えると、微細構造の制御が難しく、緻密なペレットが得られない問題点があるからである。
<Step of granulating calcined powder>
As shown in FIG. 1, the calcined powder 24, the organic solvent 25, and a binder 26 are mixed to prepare a slurry 27 having a concentration of 30 to 75% by mass. A preferable concentration is 40 to 65% by mass. The reason why the concentration of the slurry 27 is limited to 30 to 75% by mass is that when it exceeds 75% by mass, the slurry 27 is non-aqueous, so that there is a problem that stable mixed granulation is difficult. This is because a dense ZnO sintered body having a precise structure cannot be obtained. The average particle size of the calcined powder 24 is preferably in the range of 0.1 to 0.5 μm. Within the above range, if it is less than 0.1 μm, the powder is too fine and agglomerates, so that there is a problem that the handling of the powder becomes worse and it becomes difficult to prepare a high concentration slurry. If it exceeds 5 μm, it is difficult to control the fine structure, and there is a problem that a dense pellet cannot be obtained.

有機溶媒25としてはエタノールやプロパノール等を用いることが好ましく、バインダ26としてはポリエチレングリコールやポリビニルブチラール等が好ましい。このバインダの添加量は0.2〜5.0質量%であることが好ましい。また、仮焼粉末24とバインダ26と有機溶媒25との湿式混合は、撹拌ミルを用いることが好ましい。次に上記スラリー27を噴霧乾燥して平均粒径が0.1〜5mm、好ましくは0.5〜2mmの第2造粒粉末29を得る。上記噴霧乾燥はスプレードライヤを用いて行われることが好ましい。   As the organic solvent 25, ethanol or propanol is preferably used, and as the binder 26, polyethylene glycol, polyvinyl butyral, or the like is preferable. It is preferable that the addition amount of this binder is 0.2-5.0 mass%. Moreover, it is preferable to use a stirring mill for the wet mixing of the calcined powder 24, the binder 26 and the organic solvent 25. Next, the slurry 27 is spray-dried to obtain a second granulated powder 29 having an average particle size of 0.1 to 5 mm, preferably 0.5 to 2 mm. The spray drying is preferably performed using a spray dryer.

この第2造粒粉末の平均粒径は、レーザー回折・散乱法(マイクロトラック法)に従い、日機装社製(FRA型)を用い、分散媒としてヘキサメタりん酸Naを使用し、1回の測定時間を30秒として3回測定した値を平均化した値である。   The average particle size of the second granulated powder is determined by one measurement time using Nikkiso Co., Ltd. (FRA type) according to the laser diffraction / scattering method (microtrack method) and using sodium hexametaphosphate as a dispersion medium. Is a value obtained by averaging values measured three times for 30 seconds.

この造粒工程に、噴霧乾燥造粒装置の代わりに、粒状体の作製に使用した流動層造粒装置、攪拌型造粒装置、転動型造粒装置などの造粒装置を用いても構わない。   In this granulation step, a granulation apparatus such as a fluidized bed granulation apparatus, a stirring granulation apparatus, or a rolling granulation apparatus used for the production of granules may be used instead of the spray drying granulation apparatus. Absent.

<成形工程>
図1に示すように、第2造粒粉末29を用いて成形体31を作製する。その方法は、第1の実施形態に準ずる。
<Molding process>
As shown in FIG. 1, a molded body 31 is produced using the second granulated powder 29. The method is in accordance with the first embodiment.

<焼結工程>
図1に示すように、成形体31を焼成して焼結体32を作製する。その方法は、第1の実施形態に準ずる。
<Sintering process>
As shown in FIG. 1, the molded body 31 is fired to produce a sintered body 32. The method is in accordance with the first embodiment.

このようにして、図6に示すように、ZnOマトリックス中の希土類元素の偏析が抑制され、更に組成均一性に優れたZnO焼結体(ZnO蒸着材)32を得ることができる。   In this way, as shown in FIG. 6, it is possible to obtain a ZnO sintered body (ZnO vapor deposition material) 32 in which segregation of rare earth elements in the ZnO matrix is suppressed and the composition uniformity is further improved.

<成膜工程>
第2の実地形態により作製したZnO焼結体(ZnO蒸着材)32を蒸着源とするZnO膜の作製は、第1の実施形態に準ずる。
<Film formation process>
The production of the ZnO film using the ZnO sintered body (ZnO vapor deposition material) 32 produced according to the second actual form as a vapor deposition source is in accordance with the first embodiment.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
先ず、希土類元素酸化物粉末として純度が99.5%、平均粒径が0.8μmのCeO2粉末と、有機溶媒と、バインダとを撹拌ミルにより混合し、濃度(全質量に対する粉末の質量)が30質量%のコーティング液を調製した。有機溶媒としてはエタノールを用い、バインダとしてはポリビニルブチラールを用いた。また、バインダの添加量はコーティング液100質量%に対して、2質量%とした。
<Example 1>
First, CeO 2 powder having a purity of 99.5% and an average particle diameter of 0.8 μm, an organic solvent, and a binder are mixed by a stirring mill as a rare earth element oxide powder, and the concentration (mass of the powder with respect to the total mass) is obtained. A coating solution of 30% by mass was prepared. Ethanol was used as the organic solvent, and polyvinyl butyral was used as the binder. The amount of the binder added was 2% by mass with respect to 100% by mass of the coating liquid.

次いで、平均粒径2.0μmで純度99.7%のZnO粉末を流動層造粒装置に投入してZnO粉末を移動状態とし、スプレー法により上記調製したコーティング液をこの移動状態のZnO粉末に噴霧して、その表面にコーティング液を付着させた。そして、コーティング液を付着させたZnO粉末を150℃で乾燥することにより、ZnO粉末を核として、その表面を希土類元素酸化物粉末層で被覆した、平均粒径が4μmの粒状体を作製した。ここで、ZnO粉末の被覆条件は、粒状体の組成について、ZnOとCeO2との合計質量を100質量%としたとき、Ce(希土類元素)の含有割合が2質量%になるように制御し、また、希土類元素酸化物粉末層の厚さが1.0μmになるように制御した。 Next, a ZnO powder having an average particle size of 2.0 μm and a purity of 99.7% is put into a fluidized bed granulator to bring the ZnO powder into a moving state, and the coating solution prepared above by spraying is applied to the moving ZnO powder. The coating liquid was adhered to the surface by spraying. Then, the ZnO powder with the coating liquid adhered was dried at 150 ° C. to produce a granular body having an average particle diameter of 4 μm, the surface of which was coated with a rare earth element oxide powder layer with the ZnO powder as a core. Here, the coating condition of the ZnO powder is controlled so that the content ratio of Ce (rare earth element) is 2% by mass when the total mass of ZnO and CeO 2 is 100% by mass. In addition, the rare earth element oxide powder layer was controlled to have a thickness of 1.0 μm.

次に、上記作製した粒状体に有機溶媒とバインダとを添加して混合して、濃度が50質量%のスラリーを調製した。有機溶媒としてはエタノールを用い、バインダとしてはポリビニルブチラールを用いた。また、粒状体を100質量%とするとき、バインダの添加量は0.5質量%であった。粒状体と有機溶媒とバインダとの湿式混合は、撹拌ミルにより行った。上記スラリーを、スプレードライヤを用いて噴霧乾燥し、平均粒径200μmの第1造粒粉末を得た。この第1造粒粉末を一軸プレス装置(理研精機社製、型式名:CD型)を用いて、圧力1000kg/cm2(98MPa)にて一軸加圧成形することにより成形体を作製した。更に、大気焼成炉を用いて上記成形体を大気雰囲気中、1200℃の温度で5時間焼結することにより、ZnO蒸着材(ZnO焼結体)を得た。 Next, an organic solvent and a binder were added to the produced granular material and mixed to prepare a slurry having a concentration of 50% by mass. Ethanol was used as the organic solvent, and polyvinyl butyral was used as the binder. Moreover, when the granular material was 100% by mass, the amount of binder added was 0.5% by mass. The wet mixing of the granular material, the organic solvent, and the binder was performed by a stirring mill. The slurry was spray-dried using a spray dryer to obtain a first granulated powder having an average particle size of 200 μm. The first granulated powder was uniaxially pressed at a pressure of 1000 kg / cm 2 (98 MPa) using a uniaxial press device (manufactured by Riken Seiki Co., Ltd., model name: CD type) to produce a compact. Furthermore, a ZnO vapor deposition material (ZnO sintered body) was obtained by sintering the molded body in an air atmosphere at a temperature of 1200 ° C. for 5 hours using an air firing furnace.

<実施例2>
次の表1に示すように、Ce(希土類元素)の含有割合を5質量%とした以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 2>
As shown in the following Table 1, a ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the content ratio of Ce (rare earth element) was 5 mass%.

<実施例3>
次の表1に示すように、Ce(希土類元素)の含有割合を10質量%とした以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 3>
As shown in the following Table 1, a ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the content ratio of Ce (rare earth element) was 10 mass%.

<実施例4>
次の表1に示すように、Ce(希土類元素)の含有割合を15質量%とした以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 4>
As shown in the following Table 1, a ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the content ratio of Ce (rare earth element) was 15% by mass.

<実施例5>
次の表1に示すように、希土類元素酸化物粉末層の厚さを2.5μmとした以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 5>
As shown in the following Table 1, a ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the thickness of the rare earth element oxide powder layer was 2.5 μm.

<実施例6>
次の表1に示すように、Ce(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを2.5μmとした以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 6>
As shown in Table 1 below, ZnO sintering was carried out in the same manner as in Example 1 except that the Ce (rare earth element) content was 5 mass% and the rare earth oxide powder layer thickness was 2.5 μm. A bonded body (ZnO vapor deposition material) was obtained.

<実施例7>
次の表1に示すように、Ce(希土類元素)の含有割合を10質量%とし、希土類元素酸化物粉末層の厚さを2.5μmとした以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 7>
As shown in Table 1 below, ZnO was sintered in the same manner as in Example 1 except that the Ce (rare earth element) content was 10 mass% and the rare earth oxide powder layer thickness was 2.5 μm. A bonded body (ZnO vapor deposition material) was obtained.

<実施例8>
次の表1に示すように、希土類元素酸化物粉末として平均粒径が0.1μmのCeO2粉末を用い、Ce(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを0.2μmとした以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 8>
As shown in Table 1 below, CeO 2 powder having an average particle diameter of 0.1 μm was used as the rare earth element oxide powder, the content ratio of Ce (rare earth element) was 5 mass%, and the rare earth element oxide powder layer A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the thickness was 0.2 μm.

<実施例9>
次の表1に示すように、希土類元素酸化物粉末として平均粒径が0.1μmのCeO2粉末を用い、Ce(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを1.2μmとした以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 9>
As shown in Table 1 below, CeO 2 powder having an average particle diameter of 0.1 μm was used as the rare earth element oxide powder, the content ratio of Ce (rare earth element) was 5 mass%, and the rare earth element oxide powder layer A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the thickness was 1.2 μm.

<実施例10>
先ず、実施例1と同様の方法及び同条件で作製した粒状体について、大気雰囲気中、1000℃の仮焼温度で、3時間仮焼を行い、仮焼体を作製した。次に、作製した仮焼体を、ハンマークラッシャによって機械的に解砕することにより、平均粒径が0.4μmの仮焼粉末を得た。次に、この仮焼粉末について、実施例1と同様の方法及び同条件で、噴霧乾燥造粒することにより、平均粒径が200μmの第2造粒粉末を作製した。更に、この第2造粒粉末を用いて、実施例1と同様の方法及び同条件で成形体を作製し、焼結してZnO焼結体(ZnO蒸着材)を得た。
<Example 10>
First, about the granular material produced by the method and the same conditions as Example 1, it calcined at 1000 degreeC calcination temperature in the air atmosphere for 3 hours, and produced the calcined body. Next, the prepared calcined body was mechanically crushed with a Hanmark crusher to obtain a calcined powder having an average particle size of 0.4 μm. Next, the calcined powder was spray-dried and granulated in the same manner and under the same conditions as in Example 1 to produce a second granulated powder having an average particle size of 200 μm. Furthermore, using this second granulated powder, a molded body was produced in the same manner and under the same conditions as in Example 1, and sintered to obtain a ZnO sintered body (ZnO vapor deposition material).

<実施例11>
次の表1に示すように、Ce(希土類元素)の含有割合を5質量%とした以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 11>
As shown in the following Table 1, a ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10 except that the content ratio of Ce (rare earth element) was 5 mass%.

<実施例12>
次の表1に示すように、Ce(希土類元素)の含有割合を10質量%とした以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 12>
As shown in the following Table 1, a ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10 except that the content ratio of Ce (rare earth element) was 10 mass%.

<実施例13>
次の表1に示すように、希土類元素酸化物粉末として平均粒径が0.1μmのCeO2粉末を用い、Ce(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを0.5μmとし、解砕した仮焼粉末の平均粒径を0.3μmとした以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 13>
As shown in Table 1 below, CeO 2 powder having an average particle diameter of 0.1 μm was used as the rare earth element oxide powder, the content ratio of Ce (rare earth element) was 5 mass%, and the rare earth element oxide powder layer A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10 except that the thickness was 0.5 μm and the average particle size of the pulverized calcined powder was 0.3 μm.

<実施例14>
次の表1に示すように、希土類元素酸化物粉末として平均粒径が2.5μmのCeO2粉末を用い、Ce(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを3.0μmとし、解砕した仮焼粉末の平均粒径を0.5μmとした以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 14>
As shown in the following Table 1, CeO 2 powder having an average particle diameter of 2.5 μm was used as the rare earth element oxide powder, the Ce (rare earth element) content ratio was 5 mass%, and the rare earth element oxide powder layer A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10 except that the thickness was 3.0 μm and the average particle size of the pulverized calcined powder was 0.5 μm.

<実施例15>
次の表1に示すように、平均粒径が0.3μmのZnO粉末を用い、希土類元素酸化物粉末として平均粒径が0.1μmのCeO2粉末を用い、Ce(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを0.3μmとし、解砕した仮焼粉末の平均粒径を0.2μmとした以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 15>
As shown in the following Table 1, a ZnO powder having an average particle diameter of 0.3 μm is used, CeO 2 powder having an average particle diameter of 0.1 μm is used as a rare earth element oxide powder, and the content ratio of Ce (rare earth element) ZnO sintered in the same manner as in Example 10 except that the thickness of the rare earth element oxide powder layer was 0.3 μm, and the average particle size of the pulverized calcined powder was 0.2 μm. The body (ZnO vapor deposition material) was obtained.

<実施例16>
次の表1に示すように、平均粒径が10.0μmのZnO粉末を用い、希土類元素酸化物粉末として平均粒径が0.1μmのCeO2粉末を用い、Ce(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを0.3μmとし、解砕した仮焼粉末の平均粒径を0.2μmとした以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 16>
As shown in the following Table 1, a ZnO powder having an average particle diameter of 10.0 μm is used, CeO 2 powder having an average particle diameter of 0.1 μm is used as a rare earth element oxide powder, and the content ratio of Ce (rare earth element) ZnO sintered in the same manner as in Example 10 except that the thickness of the rare earth element oxide powder layer was 0.3 μm, and the average particle size of the pulverized calcined powder was 0.2 μm. The body (ZnO vapor deposition material) was obtained.

<実施例17>
次の表1に示すように、平均粒径が10.0μmのZnO粉末を用い、希土類元素酸化物粉末として平均粒径が2.5μmのCeO2粉末を用い、Ce(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを3.0μmとした以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 17>
As shown in the following Table 1, a ZnO powder having an average particle diameter of 10.0 μm is used, a CeO 2 powder having an average particle diameter of 2.5 μm is used as a rare earth element oxide powder, and the content ratio of Ce (rare earth element) A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10 except that the content was 5 mass% and the rare earth element oxide powder layer thickness was 3.0 μm.

<実施例18>
次の表1に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのSc23粉末を用い、Sc(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを0.5μmとして、ZnO粉末の表面をSc23で被覆した以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 18>
As shown in Table 1 below, Sc 2 O 3 powder having an average particle size of 0.8 μm is used as the rare earth element oxide powder, the content ratio of Sc (rare earth element) is 5 mass%, and the rare earth element oxide powder is used. A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the layer thickness was 0.5 μm and the surface of the ZnO powder was coated with Sc 2 O 3 .

<実施例19>
次の表1に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのSc23粉末を用い、Sc(希土類元素)の含有割合を5質量%とし、解砕した仮焼粉末の平均粒径を0.6μmとして、ZnO粉末の表面をSc23で被覆した以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 19>
As shown in the following Table 1, Sc 2 O 3 powder having an average particle diameter of 0.8 μm was used as the rare earth element oxide powder, the content ratio of Sc (rare earth element) was set to 5 mass%, and pulverized calcined A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10 except that the average particle diameter of the powder was 0.6 μm and the surface of the ZnO powder was coated with Sc 2 O 3 .

<実施例20>
次の表1に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのY23粉末を用い、Y(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを0.5μmとして、ZnO粉末の表面をY23で被覆した以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 20>
As shown in the following Table 1, Y 2 O 3 powder having an average particle diameter of 0.8 μm is used as the rare earth element oxide powder, the content ratio of Y (rare earth element) is 5 mass%, and the rare earth element oxide powder A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the layer thickness was 0.5 μm and the surface of the ZnO powder was coated with Y 2 O 3 .

<実施例21>
次の表2に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのY23粉末を用い、Y(希土類元素)の含有割合を5質量%とし、解砕した仮焼粉末の平均粒径を0.6μmとして、ZnO粉末の表面をY23で被覆した以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 21>
As shown in the following Table 2, Y 2 O 3 powder having an average particle diameter of 0.8 μm was used as the rare earth element oxide powder, the content ratio of Y (rare earth element) was set to 5% by mass, and the calcined calcination A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10 except that the average particle size of the powder was 0.6 μm and the surface of the ZnO powder was coated with Y 2 O 3 .

<実施例22>
次の表2に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのLa23粉末を用い、La(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを0.5μmとして、ZnO粉末の表面をLa23で被覆した以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 22>
As shown in Table 2 below, La 2 O 3 powder having an average particle diameter of 0.8 μm is used as the rare earth element oxide powder, the content ratio of La (rare earth element) is 5 mass%, and the rare earth element oxide powder A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the layer thickness was 0.5 μm and the surface of the ZnO powder was coated with La 2 O 3 .

<実施例23>
次の表2に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのLa23粉末を用い、La(希土類元素)の含有割合を5質量%とし、解砕した仮焼粉末の平均粒径を0.6μmとして、ZnO粉末の表面をLa23で被覆した以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 23>
As shown in Table 2 below, La 2 O 3 powder having an average particle diameter of 0.8 μm was used as the rare earth element oxide powder, the content ratio of La (rare earth element) was set to 5 mass%, and the calcined calcined powder A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10, except that the average particle size of the powder was 0.6 μm and the surface of the ZnO powder was coated with La 2 O 3 .

<実施例24>
次の表2に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのPr611粉末を用い、Pr(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを0.5μmとして、ZnO粉末の表面をPr611で被覆した以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 24>
As shown in Table 2 below, Pr 6 O 11 powder having an average particle size of 0.8 μm was used as the rare earth element oxide powder, the content ratio of Pr (rare earth element) was 5% by mass, and the rare earth element oxide powder A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the layer thickness was 0.5 μm and the surface of the ZnO powder was coated with Pr 6 O 11 .

<実施例25>
次の表2に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのPr611粉末を用い、Pr(希土類元素)の含有割合を5質量%とし、解砕した仮焼粉末の平均粒径を0.6μmとして、ZnO粉末の表面をPr611で被覆した以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 25>
As shown in Table 2 below, Pr 6 O 11 powder having an average particle diameter of 0.8 μm was used as the rare earth element oxide powder, and the content ratio of Pr (rare earth element) was set to 5% by mass. A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10 except that the average particle diameter of the powder was 0.6 μm and the surface of the ZnO powder was coated with Pr 6 O 11 .

<実施例26>
次の表2に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのNd23粉末を用い、Nd(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを0.5μmとして、ZnO粉末の表面をNd23で被覆した以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 26>
As shown in Table 2 below, Nd 2 O 3 powder having an average particle diameter of 0.8 μm is used as the rare earth element oxide powder, the content ratio of Nd (rare earth element) is 5 mass%, and the rare earth element oxide powder A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the layer thickness was 0.5 μm and the surface of the ZnO powder was coated with Nd 2 O 3 .

<実施例27>
次の表2に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのNd23粉末を用い、Nd(希土類元素)の含有割合を5質量%とし、解砕した仮焼粉末の平均粒径を0.6μmとして、ZnO粉末の表面をNd23で被覆した以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 27>
As shown in Table 2 below, Nd 2 O 3 powder having an average particle diameter of 0.8 μm was used as the rare earth element oxide powder, the content ratio of Nd (rare earth element) was set to 5% by mass, and the calcined calcination A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10 except that the average particle size of the powder was 0.6 μm and the surface of the ZnO powder was coated with Nd 2 O 3 .

<実施例28>
次の表2に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのPm23粉末を用い、Pm(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを0.5μmとして、ZnO粉末の表面をPm23で被覆した以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 28>
As shown in Table 2 below, Pm 2 O 3 powder having an average particle diameter of 0.8 μm is used as the rare earth element oxide powder, the content ratio of Pm (rare earth element) is 5 mass%, and the rare earth element oxide powder A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the layer thickness was 0.5 μm and the surface of the ZnO powder was coated with Pm 2 O 3 .

<実施例29>
次の表2に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのPm23粉末を用い、Pm(希土類元素)の含有割合を5質量%とし、解砕した仮焼粉末の平均粒径を0.6μmとして、ZnO粉末の表面をPm23で被覆した以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 29>
As shown in Table 2 below, Pm 2 O 3 powder having an average particle diameter of 0.8 μm was used as the rare earth element oxide powder, the content ratio of Pm (rare earth element) was set to 5 mass%, and the calcined calcination A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10, except that the average particle size of the powder was 0.6 μm and the surface of the ZnO powder was coated with Pm 2 O 3 .

<実施例30>
次の表2に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのSm23粉末を用い、Sm(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを0.5μmとして、ZnO粉末の表面をSm23で被覆した以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 30>
As shown in Table 2 below, Sm 2 O 3 powder having an average particle diameter of 0.8 μm is used as the rare earth element oxide powder, the Sm (rare earth element) content is 5 mass%, and the rare earth element oxide powder is used. A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the layer thickness was 0.5 μm and the surface of the ZnO powder was coated with Sm 2 O 3 .

<実施例31>
次の表2に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのSm23粉末を用い、Sm(希土類元素)の含有割合を5質量%とし、解砕した仮焼粉末の平均粒径を0.6μmとして、ZnO粉末の表面をSm23で被覆した以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Example 31>
As shown in Table 2 below, Sm 2 O 3 powder having an average particle diameter of 0.8 μm was used as the rare earth element oxide powder, the Sm (rare earth element) content ratio was 5% by mass, and the calcination was crushed A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10 except that the average particle diameter of the powder was 0.6 μm and the surface of the ZnO powder was coated with Sm 2 O 3 .

<比較例1>
先ず、純度が99%、平均粒径が2μmのZnO粉末と、希土類元素酸化物粉末として純度が99%、平均粒径が0.8μmのCeO2粉末と、有機溶媒と、バインダとを撹拌ミルにより混合し、濃度が30質量%のスラリーを調製した。有機溶媒としてはエタノールを用い、バインダとしてはポリビニルブチラールを用いた。また、バインダの添加量は10質量%とした。また、ZnO粉末とCeO2粉末との配合比率は、最終的に得られるZnO蒸着材中のZnOと希土類元素酸化物との合計質量を100質量%としたとき、希土類元素が5質量%含まれるように調整した。
<Comparative Example 1>
First, a stirring mill is used to stir a ZnO powder having a purity of 99% and an average particle diameter of 2 μm, a CeO 2 powder having a purity of 99% and an average particle diameter of 0.8 μm, an organic solvent, and a binder. To prepare a slurry having a concentration of 30% by mass. Ethanol was used as the organic solvent, and polyvinyl butyral was used as the binder. The amount of binder added was 10% by mass. Moreover, the compounding ratio of the ZnO powder and the CeO 2 powder includes 5% by mass of rare earth elements when the total mass of ZnO and rare earth element oxide in the finally obtained ZnO vapor deposition material is 100% by mass. Adjusted as follows.

次に、スプレードライヤを用いて上記スラリーを噴霧乾燥して平均粒径が250μmの造粒粉末を得た。次いで、この造粒粉末を用い、実施例1と同じ装置を用いて成形体を作製し、最後にこの成形体を実施例1と同様の方法及び同条件で焼結することにより、ZnO焼結体(ZnO蒸着材)を得た。   Next, the slurry was spray-dried using a spray dryer to obtain a granulated powder having an average particle size of 250 μm. Next, using this granulated powder, a molded body was produced using the same apparatus as in Example 1. Finally, this molded body was sintered in the same manner and under the same conditions as in Example 1 to sinter ZnO. The body (ZnO vapor deposition material) was obtained.

<比較例2>
次の表3に示すように、Ce(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを15.0μmとし、解砕した仮焼粉末の平均粒径を10.0μmとした以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative example 2>
As shown in the following Table 3, the content ratio of Ce (rare earth element) is 5 mass%, the thickness of the rare earth element oxide powder layer is 15.0 μm, and the average particle size of the pulverized calcined powder is 10 A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10 except that the thickness was 0.0 μm.

<比較例3>
次の表3に示すように、最終的に得られるZnO蒸着材中の希土類元素が0.1質量%含まれるようにスラリーを調製したこと以外は、比較例1と同様に、ZnO焼結体(ZnO蒸着材)を得た。
<Comparative Example 3>
As shown in the following Table 3, a ZnO sintered body was prepared in the same manner as in Comparative Example 1 except that the slurry was prepared so that the rare earth element in the finally obtained ZnO vapor deposition material was contained by 0.1 mass%. (ZnO vapor deposition material) was obtained.

<比較例4>
次の表3に示すように、Ce(希土類元素)の含有割合を30質量%とし、希土類元素酸化物粉末層の厚さを1.0μmとし、解砕した仮焼粉末の平均粒径を0.4μmとした以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative example 4>
As shown in the following Table 3, the Ce (rare earth element) content is 30% by mass, the rare earth oxide powder layer thickness is 1.0 μm, and the average particle size of the pulverized calcined powder is 0. A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10 except that the thickness was 0.4 μm.

<比較例5>
次の表3に示すように、Ce(希土類元素)の含有割合を30質量%とし、希土類元素酸化物粉末層の厚さを1.0μmとした以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative Example 5>
As shown in Table 3 below, ZnO was sintered in the same manner as in Example 1 except that the Ce (rare earth element) content was 30% by mass and the rare earth element oxide powder layer thickness was 1.0 μm. A bonded body (ZnO vapor deposition material) was obtained.

<比較例6>
次の表3に示すように、希土類元素酸化物粉末として平均粒径が2.5μmのCeO2粉末を用い、Ce(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを10.0μmとした以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative Example 6>
As shown in Table 3 below, CeO 2 powder having an average particle size of 2.5 μm was used as the rare earth element oxide powder, the Ce (rare earth element) content ratio was 5 mass%, and the rare earth element oxide powder layer A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the thickness was 10.0 μm.

<比較例7>
次の表3に示すように、希土類元素酸化物粉末として平均粒径が2.5μmのCeO2粉末を用い、Ce(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを15.0μmとし、解砕した仮焼粉末の平均粒径を10.0μmとした以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative Example 7>
As shown in Table 3 below, CeO 2 powder having an average particle size of 2.5 μm was used as the rare earth element oxide powder, the Ce (rare earth element) content ratio was 5 mass%, and the rare earth element oxide powder layer A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10, except that the thickness was 15.0 μm and the average particle size of the pulverized calcined powder was 10.0 μm.

<比較例8>
次の表3に示すように、希土類元素酸化物粉末として平均粒径が10.0μmのCeO2粉末を用い、Ce(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを20.0μmとした以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative Example 8>
As shown in Table 3 below, CeO 2 powder having an average particle size of 10.0 μm was used as the rare earth element oxide powder, the Ce (rare earth element) content ratio was 5 mass%, and the rare earth element oxide powder layer A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the thickness was 20.0 μm.

<比較例9>
次の表3に示すように、希土類元素酸化物粉末として平均粒径が10.0μmのCeO2粉末を用い、Ce(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを20.0μmとし、解砕した仮焼粉末の平均粒径を15.0μmとした以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative Example 9>
As shown in Table 3 below, CeO 2 powder having an average particle size of 10.0 μm was used as the rare earth element oxide powder, the Ce (rare earth element) content ratio was 5 mass%, and the rare earth element oxide powder layer A ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 10, except that the thickness was 20.0 μm and the average particle diameter of the pulverized calcined powder was 15.0 μm.

<比較例10>
次の表3に示すように、平均粒径が25.0μmのZnO粉末を用い、希土類元素酸化物粉末として平均粒径が2.5μmのCeO2粉末を用い、Ce(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを10.0μmとした以外は、実施例1と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative Example 10>
As shown in Table 3 below, a ZnO powder having an average particle diameter of 25.0 μm was used, a CeO 2 powder having an average particle diameter of 2.5 μm was used as the rare earth element oxide powder, and the Ce (rare earth element) content ratio The ZnO sintered body (ZnO vapor deposition material) was obtained in the same manner as in Example 1 except that the content was 5 mass% and the rare earth element oxide powder layer thickness was 10.0 μm.

<比較例11>
次の表3に示すように、平均粒径が25.0μmのZnO粉末を用い、希土類元素酸化物粉末として平均粒径が10.0μmのCeO2粉末を用い、Ce(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを15.0μmとし、解砕した仮焼粉末の平均粒径を10.0μmとした以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative Example 11>
As shown in the following Table 3, a ZnO powder having an average particle diameter of 25.0 μm is used, CeO 2 powder having an average particle diameter of 10.0 μm is used as a rare earth element oxide powder, and the content ratio of Ce (rare earth element) ZnO sintered in the same manner as in Example 10 except that the mass of the rare earth element oxide powder layer was 15.0 μm, and the average particle size of the pulverized calcined powder was 10.0 μm. The body (ZnO vapor deposition material) was obtained.

<比較例12>
次の表3に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのSc23粉末を用い、Sc(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを15.0μmとし、解砕した仮焼粉末の平均粒径を10.0μmとして、ZnO粉末の表面をSc23で被覆した以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative Example 12>
As shown in the following Table 3, Sc 2 O 3 powder having an average particle diameter of 0.8 μm was used as the rare earth element oxide powder, the content ratio of Sc (rare earth element) was 5 mass%, and the rare earth element oxide powder The ZnO firing was carried out in the same manner as in Example 10 except that the layer thickness was 15.0 μm, the average particle size of the pulverized calcined powder was 10.0 μm, and the surface of the ZnO powder was coated with Sc 2 O 3. A bonded body (ZnO vapor deposition material) was obtained.

<比較例13>
次の表3に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのY23粉末を用い、Y(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを15.0μmとし、解砕した仮焼粉末の平均粒径を10.0μmとして、ZnO粉末の表面をY23で被覆した以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative Example 13>
As shown in Table 3 below, Y 2 O 3 powder having an average particle diameter of 0.8 μm is used as the rare earth element oxide powder, the content ratio of Y (rare earth element) is 5 mass%, and the rare earth element oxide powder The ZnO firing was carried out in the same manner as in Example 10 except that the layer thickness was 15.0 μm, the average particle size of the pulverized calcined powder was 10.0 μm, and the surface of the ZnO powder was coated with Y 2 O 3. A bonded body (ZnO vapor deposition material) was obtained.

<比較例14>
次の表3に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのLa23粉末を用い、La(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを15.0μmとし、解砕した仮焼粉末の平均粒径を10.0μmとして、ZnO粉末の表面をLa23で被覆した以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative example 14>
As shown in Table 3 below, La 2 O 3 powder having an average particle diameter of 0.8 μm is used as the rare earth element oxide powder, the content ratio of La (rare earth element) is 5 mass%, and the rare earth element oxide powder The ZnO firing was carried out in the same manner as in Example 10 except that the layer thickness was 15.0 μm, the average particle size of the pulverized calcined powder was 10.0 μm, and the surface of the ZnO powder was coated with La 2 O 3. A bonded body (ZnO vapor deposition material) was obtained.

<比較例15>
次の表3に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのPr611粉末を用い、Pr(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを15.0μmとし、解砕した仮焼粉末の平均粒径を10.0μmとして、ZnO粉末の表面をPr611で被覆した以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative Example 15>
As shown in the following Table 3, Pr 6 O 11 powder having an average particle diameter of 0.8 μm was used as the rare earth element oxide powder, the content ratio of Pr (rare earth element) was 5% by mass, and the rare earth element oxide powder The ZnO firing was carried out in the same manner as in Example 10 except that the layer thickness was 15.0 μm, the average particle size of the pulverized calcined powder was 10.0 μm, and the surface of the ZnO powder was coated with Pr 6 O 11. A bonded body (ZnO vapor deposition material) was obtained.

<比較例16>
次の表3に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのNd23粉末を用い、Nd(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを15.0μmとし、解砕した仮焼粉末の平均粒径を10.0μmとして、ZnO粉末の表面をNd23で被覆した以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative Example 16>
As shown in the following Table 3, Nd 2 O 3 powder having an average particle diameter of 0.8 μm is used as the rare earth element oxide powder, the content ratio of Nd (rare earth element) is 5 mass%, and the rare earth element oxide powder The ZnO firing was carried out in the same manner as in Example 10 except that the layer thickness was 15.0 μm, the average particle size of the pulverized calcined powder was 10.0 μm, and the surface of the ZnO powder was coated with Nd 2 O 3. A bonded body (ZnO vapor deposition material) was obtained.

<比較例17>
次の表3に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのPm23粉末を用い、Pm(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを15.0μmとし、解砕した仮焼粉末の平均粒径を10.0μmとして、ZnO粉末の表面をPm23で被覆した以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative Example 17>
As shown in Table 3 below, Pm 2 O 3 powder having an average particle diameter of 0.8 μm was used as the rare earth element oxide powder, the content ratio of Pm (rare earth element) was 5% by mass, and the rare earth element oxide powder The ZnO firing was carried out in the same manner as in Example 10 except that the layer thickness was 15.0 μm, the average particle size of the pulverized calcined powder was 10.0 μm, and the surface of the ZnO powder was coated with Pm 2 O 3. A bonded body (ZnO vapor deposition material) was obtained.

<比較例18>
次の表3に示すように、希土類元素酸化物粉末として平均粒径が0.8μmのSm23粉末を用い、Sm(希土類元素)の含有割合を5質量%とし、希土類元素酸化物粉末層の厚さを15.0μmとし、解砕した仮焼粉末の平均粒径を10.0μmとして、ZnO粉末の表面をSm23で被覆した以外は、実施例10と同様にしてZnO焼結体(ZnO蒸着材)を得た。
<Comparative Example 18>
As shown in Table 3 below, Sm 2 O 3 powder having an average particle size of 0.8 μm was used as the rare earth element oxide powder, the Sm (rare earth element) content was 5% by mass, and the rare earth element oxide powder was used. The ZnO firing was carried out in the same manner as in Example 10 except that the layer thickness was 15.0 μm, the average particle size of the pulverized calcined powder was 10.0 μm, and the surface of the ZnO powder was coated with Sm 2 O 3. A bonded body (ZnO vapor deposition material) was obtained.

<比較試験及び評価>
実施例1〜31及び比較例1〜18で得られたZnO蒸着材を用いて、ガラス基板の上に、電子ビーム蒸着法により、所定の膜厚のZnO膜を形成した。成膜条件は、到達真空度が1.0×10-4Paであり、酸素ガス分圧が1.0×10-2Paであり、基板温度が200℃であり、成膜速度が0.5nm/秒であった。形成されたZnO膜について、それぞれ膜厚、透過率及び比抵抗を評価した。これらの結果を次の表1〜表3に示す。
<Comparison test and evaluation>
Using the ZnO vapor deposition materials obtained in Examples 1 to 31 and Comparative Examples 1 to 18, a ZnO film having a predetermined thickness was formed on a glass substrate by an electron beam vapor deposition method. The film formation conditions are as follows: the ultimate vacuum is 1.0 × 10 −4 Pa, the oxygen gas partial pressure is 1.0 × 10 −2 Pa, the substrate temperature is 200 ° C., and the film formation rate is 0.8. It was 5 nm / second. About the formed ZnO film | membrane, the film thickness, the transmittance | permeability, and the specific resistance were evaluated, respectively. These results are shown in the following Tables 1 to 3.

膜厚は、ULVAC社製のDektak6M型接触式膜厚計で測定した。透過率は、測定器として株式会社日立製作所社製の分光光度計U−4000を用い、380〜780nmの可視光波長域について、成膜後の基板を測定光に対して垂直に設置して測定した。また、比抵抗は、三菱化学社製のロレスタ(HP型、MCP−T410、プローブは直列1.5mmピッチ)を用い、雰囲気が25℃の所謂常温において定電流印加による4端子4探針法により測定した。体積抵抗の測定可能範囲は1.0×10-6〜1.0×108Ω・cmである。 The film thickness was measured with a Dektak 6M type contact film thickness meter manufactured by ULVAC. The transmittance is measured by using a spectrophotometer U-4000 manufactured by Hitachi, Ltd. as a measuring instrument, and placing the substrate after film formation perpendicular to the measurement light in the visible wavelength range of 380 to 780 nm. did. The specific resistance is determined by a 4-terminal 4-probe method by applying a constant current at a so-called normal temperature at 25 ° C. using a Loresta (HP type, MCP-T410, probe in series 1.5 mm pitch) manufactured by Mitsubishi Chemical Corporation. It was measured. The measurable range of the volume resistance is 1.0 × 10 −6 to 1.0 × 10 8 Ω · cm.

Figure 2010185131
Figure 2010185131

Figure 2010185131
Figure 2010185131

Figure 2010185131
表1〜表3から明らかなように、実施例2,6,11と比較例1をそれぞれ比較すると、平均粒径の同じ希土類元素を同じ割合で含んでいるにもかかわらず、被覆によって希土類元素酸化物粉末層を形成した実施例2,6,11では、希土類元素酸化物をそのまま添加した比較例1よりも、比抵抗がそれぞれ低くなり、導電性の高い蒸着膜を成膜できることが確認された。
Figure 2010185131
As is apparent from Tables 1 to 3, when Examples 2, 6, 11 and Comparative Example 1 are respectively compared, the rare earth elements having the same average particle diameter are contained in the same ratio, although they contain the same ratio. In Examples 2, 6, and 11 in which the oxide powder layer was formed, it was confirmed that the specific resistance was lower than that of Comparative Example 1 in which the rare earth element oxide was added as it was, and a highly conductive deposited film could be formed. It was.

また、Ceを添加した実施例1〜17及び比較例2〜11とをそれぞれ比較すると、ZnO粉末の平均粒径、CeO2粉末の平均粒径、希土類元素酸化物粉末層の厚さ、仮焼体粉砕処理後の粉末粒径の大きさ、希土類元素の添加量によって、それぞれ比抵抗値に変動が見られ、上記各要素には、適切な範囲が存在することが確認された。特に、比較例3〜5では、比抵抗値が極めて大きい結果となり、希土類元素の含有割合が比抵抗値に大きく影響している。 Further, when Examples 1 to 17 and Comparative Examples 2 to 11 to which Ce was added were respectively compared, the average particle diameter of the ZnO powder, the average particle diameter of the CeO 2 powder, the thickness of the rare earth element oxide powder layer, and calcining Depending on the size of the powder particle size after the body pulverization treatment and the amount of rare earth element added, the specific resistance value fluctuated, and it was confirmed that there was an appropriate range for each element. In particular, in Comparative Examples 3 to 5, the resistivity value is extremely large, and the content ratio of the rare earth element greatly affects the resistivity value.

また、実施例18〜31と、比較例12〜18について、同種の希土類元素を含むもの同士をそれぞれ比較すると、希土類元素酸化物粉末層の厚さ、仮焼体粉砕処理後の粉末粒径の大きさによって、比抵抗値に変動が見られることから、希土類元素酸化物粉末層の厚さ、仮焼体粉砕処理後の粉末粒径の大きさには、適切な範囲が存在することが確認された。   Moreover, about Examples 18-31 and Comparative Examples 12-18, when the thing containing the same kind of rare earth elements was compared with each other, the thickness of the rare earth element oxide powder layer, the powder particle size after the calcined body pulverization treatment, Since the resistivity value varies depending on the size, it is confirmed that there is an appropriate range for the thickness of the rare earth element oxide powder layer and the particle size of the powder after calcination. It was.

更に、実施例1〜31では、比較例1〜18と同等の高い透過率が得られることが確認された。   Furthermore, in Examples 1-31, it was confirmed that the high transmittance | permeability equivalent to Comparative Examples 1-18 is obtained.

11 希土類元素群から選ばれた1種の元素を含む希土類元素酸化物粉末
12 コーティング液に用いる有機溶媒
13 コーティング液に用いるバインダ
14 コーティング液
15 ZnO粉末
19 粒状体
20 第1造粒粉末
21 成形体
22 ZnO焼結体(ZnO蒸着材)
23 仮焼体
24 仮焼粉末
29 第2造粒粉末
31 成形体
32 ZnO焼結体(ZnO蒸着材)
DESCRIPTION OF SYMBOLS 11 Rare earth element oxide powder containing one element selected from the group of rare earth elements 12 Organic solvent used for coating liquid 13 Binder used for coating liquid 14 Coating liquid 15 ZnO powder 19 Granule 20 First granulated powder 21 Molded body 22 ZnO sintered body (ZnO vapor deposition material)
23 Calcined body 24 Calcined powder 29 Second granulated powder 31 Molded body 32 ZnO sintered body (ZnO vapor deposition material)

Claims (4)

平均粒径が0.1〜10μmで純度が98%以上のZnO粉末と平均粒径が0.05〜5μmで純度が98%以上の希土類元素酸化物粉末とから第1造粒粉末を作製し、前記第1造粒粉末をペレット状、タブレット状又は板状に成形した後、この成形体を焼結して、前記希土類元素を0.1〜15質量%含むZnO蒸着材を製造する方法であって、
前記希土類元素酸化物粉末が希土類元素群から選ばれた1種の元素を含み、
前記希土類元素酸化物粉末と有機溶媒とをバインダとともに混合して、濃度が20〜90質量%のコーティング液を調製する工程と、
前記ZnO粉末を移動した状態にする工程と、
前記移動状態のZnO粉末に前記コーティング液を噴霧又は噴射しながら前記ZnO粉末の表面に付着したコーティング液を乾燥することにより、前記ZnO粉末を核として前記ZnO粉末の表面を厚さが0.05〜5μmの前記希土類元素酸化物粉末の層で被覆した粒状体を得る工程と、
前記粒状体により前記第1造粒粉末を作製する工程と
を含むことを特徴とするZnO蒸着材の製造方法。
A first granulated powder is prepared from a ZnO powder having an average particle size of 0.1 to 10 μm and a purity of 98% or more and a rare earth element oxide powder having an average particle size of 0.05 to 5 μm and a purity of 98% or more. After the first granulated powder is formed into a pellet, tablet or plate, the molded body is sintered to produce a ZnO vapor deposition material containing 0.1 to 15% by mass of the rare earth element. There,
The rare earth oxide powder contains one element selected from the group of rare earth elements,
Mixing the rare earth element oxide powder and an organic solvent together with a binder to prepare a coating liquid having a concentration of 20 to 90% by mass;
Bringing the ZnO powder into a moved state;
The coating liquid adhering to the surface of the ZnO powder is dried while spraying or spraying the coating liquid onto the moved ZnO powder, so that the surface of the ZnO powder has a thickness of 0.05 with the ZnO powder as a core. Obtaining a granule coated with a layer of the rare earth element oxide powder of ˜5 μm;
A step of producing the first granulated powder from the granular material.
平均粒径が0.1〜10μmで純度が98%以上のZnO粉末と平均粒径が0.05〜5μmで純度が98%以上の希土類元素酸化物粉末とから第2造粒粉末を作製し、前記第2造粒粉末をペレット状、タブレット状又は板状に成形した後、この成形体を焼結して、前記希土類元素を0.1〜15質量%含むZnO蒸着材を製造する方法であって、
前記希土類元素酸化物粉末が希土類元素群から選ばれた1種の元素を含み、
前記希土類元素酸化物粉末と有機溶媒とをバインダとともに混合して、濃度が20〜90質量%のコーティング液を調製する工程と、
前記ZnO粉末を移動した状態にする工程と、
前記移動状態のZnO粉末に前記コーティング液を噴霧又は噴射しながら前記ZnO粉末の表面に付着したコーティング液を乾燥することにより、前記ZnO粉末を核として前記ZnO粉末の表面を厚さが0.05〜5μmの前記希土類元素酸化物粉末の層で被覆した粒状体を得る工程と、
前記粒状体を大気、窒素ガス、還元性ガス、不活性ガス又は真空の雰囲気中、800〜1200℃で仮焼することにより仮焼体を得る工程と、
前記仮焼体を解砕することにより仮焼粉末を作製する工程と、
前記仮焼粉末により前記第2造粒粉末を作製する工程と
を含むことを特徴とするZnO蒸着材の製造方法。
A second granulated powder is prepared from a ZnO powder having an average particle diameter of 0.1 to 10 μm and a purity of 98% or more and a rare earth element oxide powder having an average particle diameter of 0.05 to 5 μm and a purity of 98% or more. After the second granulated powder is formed into a pellet, tablet or plate, the formed body is sintered to produce a ZnO vapor deposition material containing 0.1 to 15% by mass of the rare earth element. There,
The rare earth oxide powder contains one element selected from the group of rare earth elements,
Mixing the rare earth element oxide powder and an organic solvent together with a binder to prepare a coating liquid having a concentration of 20 to 90% by mass;
Bringing the ZnO powder into a moved state;
The coating liquid adhering to the surface of the ZnO powder is dried while spraying or spraying the coating liquid onto the moved ZnO powder, so that the surface of the ZnO powder has a thickness of 0.05 with the ZnO powder as a core. Obtaining a granule coated with a layer of the rare earth element oxide powder of ˜5 μm;
A step of obtaining a calcined body by calcining the granular body at 800 to 1200 ° C. in an atmosphere of air, nitrogen gas, reducing gas, inert gas or vacuum;
Producing a calcined powder by crushing the calcined body;
And a step of producing the second granulated powder by the calcined powder.
希土類元素群から選ばれた1種の元素がSc、Y、La、Ce、Pr、Nd、Pm又はSmである請求項1又は2記載のZnO蒸着材の製造方法。   The method for producing a ZnO vapor deposition material according to claim 1 or 2, wherein one element selected from the group of rare earth elements is Sc, Y, La, Ce, Pr, Nd, Pm or Sm. 請求項1ないし3のいずれか1項に記載の方法で製造されたZnO蒸着材をターゲット材として真空成膜法により形成されたZnO膜。   A ZnO film formed by a vacuum film formation method using the ZnO vapor deposition material manufactured by the method according to claim 1 as a target material.
JP2010002912A 2009-01-13 2010-01-08 Method for producing ZnO vapor deposition material Expired - Fee Related JP5428870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010002912A JP5428870B2 (en) 2009-01-13 2010-01-08 Method for producing ZnO vapor deposition material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009004427 2009-01-13
JP2009004427 2009-01-13
JP2010002912A JP5428870B2 (en) 2009-01-13 2010-01-08 Method for producing ZnO vapor deposition material

Publications (2)

Publication Number Publication Date
JP2010185131A true JP2010185131A (en) 2010-08-26
JP5428870B2 JP5428870B2 (en) 2014-02-26

Family

ID=42765958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010002912A Expired - Fee Related JP5428870B2 (en) 2009-01-13 2010-01-08 Method for producing ZnO vapor deposition material

Country Status (1)

Country Link
JP (1) JP5428870B2 (en)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272033A (en) * 1993-03-22 1994-09-27 Japan Energy Corp Production of abox high dielectric target for sputtering
JP2005232471A (en) * 2004-02-17 2005-09-02 Nikko Materials Co Ltd Sputtering target, optical information recording medium, and production method therefor
JP2008088544A (en) * 2006-04-26 2008-04-17 Mitsubishi Materials Corp ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME
JP2009097089A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009096714A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp Zno vapor deposition material, its production method, and zno film and the like formed therefrom
JP2009097088A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009097087A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009097086A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009096713A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp Zno vapor deposition material, its production method, and zno film and the like formed therefrom
JP2009097090A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009097091A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009132997A (en) * 2007-10-30 2009-06-18 Mitsubishi Materials Corp VAPOR DEPOSITION MATERIAL OF ZnO AND MANUFACTURING METHOD THEREFOR
JP2009132998A (en) * 2007-10-30 2009-06-18 Mitsubishi Materials Corp SPUTTERING TARGET OF ZnO AND MANUFACTURING METHOD THEREFOR
JP2010133013A (en) * 2008-10-27 2010-06-17 Mitsubishi Materials Corp METHOD OF PRODUCING ZnO VAPOR DEPOSITION MATERIAL
JP2010132535A (en) * 2008-10-27 2010-06-17 Mitsubishi Materials Corp METHOD OF MANUFACTURING ZnO DEPOSITION MATERIAL
JP2010185130A (en) * 2009-01-13 2010-08-26 Mitsubishi Materials Corp METHOD FOR MANUFACTURING ZnO VAPOR DEPOSITION MATERIAL
JP2010185129A (en) * 2009-01-13 2010-08-26 Mitsubishi Materials Corp METHOD FOR MANUFACTURING ZnO VAPOR DEPOSITION MATERIAL

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272033A (en) * 1993-03-22 1994-09-27 Japan Energy Corp Production of abox high dielectric target for sputtering
JP2005232471A (en) * 2004-02-17 2005-09-02 Nikko Materials Co Ltd Sputtering target, optical information recording medium, and production method therefor
JP2008088544A (en) * 2006-04-26 2008-04-17 Mitsubishi Materials Corp ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME
JP2009097089A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009096714A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp Zno vapor deposition material, its production method, and zno film and the like formed therefrom
JP2009097088A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009097087A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009097086A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009096713A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp Zno vapor deposition material, its production method, and zno film and the like formed therefrom
JP2009097090A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009097091A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009132997A (en) * 2007-10-30 2009-06-18 Mitsubishi Materials Corp VAPOR DEPOSITION MATERIAL OF ZnO AND MANUFACTURING METHOD THEREFOR
JP2009132998A (en) * 2007-10-30 2009-06-18 Mitsubishi Materials Corp SPUTTERING TARGET OF ZnO AND MANUFACTURING METHOD THEREFOR
JP2010133013A (en) * 2008-10-27 2010-06-17 Mitsubishi Materials Corp METHOD OF PRODUCING ZnO VAPOR DEPOSITION MATERIAL
JP2010132535A (en) * 2008-10-27 2010-06-17 Mitsubishi Materials Corp METHOD OF MANUFACTURING ZnO DEPOSITION MATERIAL
JP2010185130A (en) * 2009-01-13 2010-08-26 Mitsubishi Materials Corp METHOD FOR MANUFACTURING ZnO VAPOR DEPOSITION MATERIAL
JP2010185129A (en) * 2009-01-13 2010-08-26 Mitsubishi Materials Corp METHOD FOR MANUFACTURING ZnO VAPOR DEPOSITION MATERIAL

Also Published As

Publication number Publication date
JP5428870B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5109418B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming ZnO film
TWI645059B (en) Indium oxide-zinc oxide (IZO) sputtered palladium and manufacturing method thereof
JP2008088544A5 (en)
JP5082928B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5418751B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5082927B2 (en) Method for producing ZnO vapor deposition material
JP5418752B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5418747B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5428872B2 (en) Method for producing ZnO vapor deposition material
JP5381725B2 (en) Method for producing ZnO vapor deposition material
JP5381724B2 (en) Method for producing ZnO vapor deposition material
JP4962355B2 (en) ZnO vapor deposition material and ZnO film formed thereby
JP5532093B2 (en) ZnO vapor deposition material and method of forming ZnO film using the same
JP5499453B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5402520B2 (en) Method for producing ZnO vapor deposition material
JP5568946B2 (en) Method for producing ZnO vapor deposition material
JP5418748B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5018553B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5428870B2 (en) Method for producing ZnO vapor deposition material
JP5428871B2 (en) Method for producing ZnO vapor deposition material
JP5428873B2 (en) Method for producing ZnO vapor deposition material
JP4962356B2 (en) ZnO vapor deposition material and ZnO film formed thereby
JP2009096714A (en) Zno vapor deposition material, its production method, and zno film and the like formed therefrom
JP5018552B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5428870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees