JP2010183655A - Rotating electrical machine - Google Patents

Rotating electrical machine Download PDF

Info

Publication number
JP2010183655A
JP2010183655A JP2009022340A JP2009022340A JP2010183655A JP 2010183655 A JP2010183655 A JP 2010183655A JP 2009022340 A JP2009022340 A JP 2009022340A JP 2009022340 A JP2009022340 A JP 2009022340A JP 2010183655 A JP2010183655 A JP 2010183655A
Authority
JP
Japan
Prior art keywords
pole
magnetic flux
magnetic
magnet
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009022340A
Other languages
Japanese (ja)
Inventor
Tsutomu Tanimoto
勉 谷本
Yasuhiro Yanagihara
康宏 柳原
Kazuhiro Oki
和弘 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009022340A priority Critical patent/JP2010183655A/en
Publication of JP2010183655A publication Critical patent/JP2010183655A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce torque ripple of a rotating electrical machine. <P>SOLUTION: The rotating electrical machine has: a rotor 13 which includes a magnetic flux generating member that adds up and generates the magnetic flux of permanent magnets equivalent to the number of a plurality of different magnetic poles on its surface; and a stator 12 which adds up a plurality of current fields corresponding to the number of plural magnetic poles and gives a current for rotating the rotor 13. In the machine, permanent magnets 131N and 131S are arranged so that the widths of magnetic poles for the gap magnetic flux density of an N pole and an S pole that constitute one pole pair of a rotor 13 may be different from each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、異なる複数の磁極数に相当する磁石磁束を発生する回転電機に関する。   The present invention relates to a rotating electrical machine that generates a magnetic flux corresponding to a plurality of different numbers of magnetic poles.

従来、この種の技術としては、例えば以下に示す文献に記載されたものが知られている(特許文献1参照)。この文献には、N極とS極の磁石を等間隔に配置せずに、すなわちN極とS極の磁石を不等間隔に配置することで、単位磁石当たりのトルクを向上し、かつ磁石の配置間隔を適切に設定することで、トルクの最大化を図った発明が記載されている。   Conventionally, as this type of technology, for example, those described in the following documents are known (see Patent Document 1). In this document, the torque per unit magnet is improved by arranging N pole and S pole magnets at equal intervals, that is, by arranging N pole and S pole magnets at unequal intervals. An invention is described in which torque is maximized by appropriately setting the arrangement interval.

特開2007−151236号公報JP 2007-151236 A

しかし、N極とS極の磁石を等間隔に配置しない構成を採用することで、磁石の配置間隔が不均一となり、モータのトルクリップルが大きくなるといった不具合を招いていた。   However, by adopting a configuration in which the N-pole and S-pole magnets are not arranged at equal intervals, the magnet arrangement interval becomes non-uniform and the torque ripple of the motor increases.

そこで、本発明は、上記に鑑みてなされたものであり、その目的とするところは、トルクリップルを低減した回転電機を提供することにある。   Accordingly, the present invention has been made in view of the above, and an object of the present invention is to provide a rotating electrical machine with reduced torque ripple.

上記目的を達成するために、本発明の課題を解決する手段は、異なる複数の磁極数に相当する磁石の磁束をその表面に合算して発生させる磁束発生部材を備えた回転子の一極対を構成するN極とS極のギャップ磁束密度の磁極幅が異なるように、回転電機の磁石を配置したことを特徴とする。   In order to achieve the above object, a means for solving the problems of the present invention is a pole pair of a rotor provided with a magnetic flux generating member that generates a magnetic flux corresponding to a plurality of different magnetic poles on the surface. The magnets of the rotating electrical machine are arranged so that the magnetic pole widths of the gap magnetic flux density between the N pole and the S pole constituting the same are different.

本発明によれば、回転子の一極対を構成するN極とS極のギャップ磁束密度の磁極幅が異なるようにしたので、トルクリップルを低減することができる。   According to the present invention, since the magnetic pole width of the gap magnetic flux density between the N pole and the S pole constituting one pole pair of the rotor is different, torque ripple can be reduced.

本発明の実施例1に係る回転電機の構成を示す図である。It is a figure which shows the structure of the rotary electric machine which concerns on Example 1 of this invention. 永久磁石の他の構成を示す図である。It is a figure which shows the other structure of a permanent magnet. 永久磁石の他の構成を示す図である。It is a figure which shows the other structure of a permanent magnet. 電気角1周期分のギャップ磁束密度波形を示す図である。It is a figure which shows the gap magnetic flux density waveform for one electrical angle period. 従来の回転電機の構成を示す図である。It is a figure which shows the structure of the conventional rotary electric machine. 基本波1周期分のリニアモデルを示す図である。It is a figure which shows the linear model for 1 period of fundamental waves. 極中心と磁石中心のずれ量とトルクとの関係を示す図である。It is a figure which shows the relationship between the deviation | shift amount of a pole center and a magnet center, and a torque. 極中心と磁石中心のずれ量とトルクリップル率との関係を示す図である。It is a figure which shows the relationship between the deviation | shift amount of a pole center and a magnet center, and a torque ripple rate. 基本波1周期分のギャップ磁束密度パターンモデルを示す図である。It is a figure which shows the gap magnetic flux density pattern model for 1 period of fundamental waves. 磁極中心間距離/極節長とトルクリップル率との関係を示す図である。It is a figure which shows the relationship between magnetic pole center distance / pole node length, and a torque ripple rate. 磁極中心間距離/極節長とトルク比との関係を示す図である。It is a figure which shows the relationship between magnetic pole center distance / pole node length, and a torque ratio.

以下、図面を用いて本発明を実施するための実施例を説明する。   Embodiments for carrying out the present invention will be described below with reference to the drawings.

図1は本発明の実施例1に係る回転電機の構成を示す断面図である。図1に示す実施例1の回転電機は、埋め込み磁石型の回転子(ロータ)を備えた同期型の電動機として機能し、シャフト11を中心に固定子(ステータ)12とロータ13が同軸上に配置されている。   FIG. 1 is a cross-sectional view showing a configuration of a rotating electrical machine according to Embodiment 1 of the present invention. The rotating electrical machine of the first embodiment shown in FIG. 1 functions as a synchronous motor having an embedded magnet type rotor (rotor), and a stator (stator) 12 and a rotor 13 are coaxially centered around a shaft 11. Has been placed.

ステータ12は、24個のステータティース121から構成され、これらのステータティース121には、それぞれコイル122が集中的に巻かれている。この巻線は、3個おきに配置されている8個が1セットとなっており、直列あるいは並列に接続され、その一方が中性点として他の相の一方と接続され、他方は図示しないインバータの内部で、電源ラインのP側・N側にスイッチング素子を介して接続されている。このインバータは、3相の電動機を制御する構成となっている。なお、コイルは集中巻に限らず分布巻でも適用可能である。   The stator 12 is composed of 24 stator teeth 121, and coils 122 are wound around these stator teeth 121 in a concentrated manner. This winding is a set of eight windings arranged every three windings, connected in series or in parallel, one of which is connected to one of the other phases as a neutral point, the other not shown Inside the inverter, it is connected to the P side and the N side of the power supply line via a switching element. This inverter is configured to control a three-phase electric motor. The coil is applicable not only to concentrated winding but also distributed winding.

ロータ13は、この実施例では8極対と16極対の2種類の極対数を備えるものとなっている。また、N極の永久磁石131Nは平板状であり、S極の永久磁石131SはV字形状で配置してある。なお、図1ではS極の永久磁石131SはV字形状で構成してあるが、この形状に限定されることはない。   In this embodiment, the rotor 13 has two types of pole pairs, an 8-pole pair and a 16-pole pair. The N-pole permanent magnet 131N has a flat plate shape, and the S-pole permanent magnet 131S is arranged in a V shape. In FIG. 1, the S-pole permanent magnet 131 </ b> S has a V shape, but is not limited to this shape.

永久磁石は、例えば図2(1/8モデルを示す)に示すように、磁石の厚さの異なる永久磁石によって構成してもよく、例えばN極とS極の磁石幅比が1:2、厚さ比が2:1の場合は、幅と厚さをそれぞれ両者の最大公約数の大きさで分割することによって磁石の最小単位を揃えることができ、磁石コストを低減することができる。   For example, as shown in FIG. 2 (showing a 1/8 model), the permanent magnet may be composed of permanent magnets having different magnet thicknesses. For example, the magnet width ratio between the N pole and the S pole is 1: 2. When the thickness ratio is 2: 1, the minimum unit of magnets can be aligned by dividing the width and thickness by the magnitude of the greatest common divisor of both, and the magnet cost can be reduced.

また、永久磁石は、図3(1/8モデルを示す)に示すように、電気的特性が異なる永久磁石によって構成してもよく、例えばN極をアルニコ磁石、S極をネオジ系磁石によって構成してもよい。   Further, as shown in FIG. 3 (showing a 1/8 model), the permanent magnet may be composed of permanent magnets having different electrical characteristics. For example, the N pole is composed of an alnico magnet and the S pole is composed of a neodymium magnet. May be.

なお、要求される磁石特性とコストの兼ね合いから、上記以外にも様々な特性の磁石の組み合わせが考えられる。   In addition, from the balance of required magnet characteristics and cost, combinations of magnets having various characteristics other than the above can be considered.

次に、図4を参照して図1に示す構成の回転電機の動作を説明する。   Next, the operation of the rotating electrical machine having the configuration shown in FIG. 1 will be described with reference to FIG.

図4は、図1において8極対を構成する磁石磁束の電気角1周期分に相当するA〜A’の区間のギャップ磁束密度波形を示す図である。図4において、N極側はS極側と比べて磁極幅が広いが、磁束密度の大きさは小さい。これは、S極側の磁石をV字磁石で構成しているためである。この実施例では、N極とS極の磁石量は同じであるため、図4の横軸の0[T]と磁束密度で囲まれるN極側の面積(S(N))とS極側の面積S(S)は等しくなる。   FIG. 4 is a diagram showing a gap magnetic flux density waveform in a section from A to A ′ corresponding to one period of the electrical angle of the magnet magnetic flux constituting the 8-pole pair in FIG. 1. In FIG. 4, the N pole side has a wider magnetic pole width than the S pole side, but the magnetic flux density is small. This is because the magnet on the S pole side is composed of a V-shaped magnet. In this embodiment, since the amount of N pole and S pole magnets is the same, the area (S (N)) on the N pole side surrounded by 0 [T] on the horizontal axis and the magnetic flux density in FIG. Are equal in area S (S).

このような磁束密度波形をフーリエ変換すると、8極対と16極対とに対応する磁石磁束が基本波と二次高調波のスペクトルとして表れることがわかる。したがって、この磁束に対応した複合電流をステータ12のコイル122に通電することによって、8極対と16極対のそれぞれの磁石のトルクを合算したトルクを得ることができる。また、後述するが、N極とS極の磁極幅と磁束密度の大きさを変えることにより、磁石磁束の基本波と二次高調波の磁束割合を変えることが可能となる。   When such a magnetic flux density waveform is Fourier transformed, it can be seen that magnet magnetic fluxes corresponding to the 8-pole pair and the 16-pole pair appear as the spectrum of the fundamental wave and the second harmonic. Therefore, by applying a composite current corresponding to the magnetic flux to the coil 122 of the stator 12, a torque obtained by adding the torques of the magnets of the 8-pole pair and the 16-pole pair can be obtained. Further, as will be described later, by changing the magnetic pole width and magnetic flux density of the N pole and S pole, it is possible to change the magnetic flux ratio between the fundamental wave and the second harmonic of the magnet magnetic flux.

次に、先の背景技術の欄で触れた従来技術と本実施例とを対比することで、従来の技術に対する本実施例の有利な効果を説明する。   Next, the advantageous effects of the present embodiment over the prior art will be described by comparing the conventional technique mentioned in the background section with the present embodiment.

先ず、図5に本実施例と対比する従来技術を採用した回転電機の断面構成を示す。図5に示すような回転電機では、極(節)中心と磁石中心とのずれ量によってトルク比が変化し、磁石幅に応じた最適なずれ量が存在した。図6(a)、(b)にこの回転電機の基本波1周期分のリニアモデルを示し、図7に極中心と磁石中心のずれ量とトルク比の関係を示す。ここで、基本波の極中心までの距離をKとし、磁石幅中心までの距離をKmとすると、ずれ量(%)は(K−Km)/Kで表される。   First, FIG. 5 shows a cross-sectional configuration of a rotating electrical machine that employs a conventional technique as compared with the present embodiment. In the rotating electrical machine as shown in FIG. 5, the torque ratio changes depending on the amount of deviation between the pole (node) center and the magnet center, and there is an optimum amount of deviation according to the magnet width. FIGS. 6A and 6B show a linear model for one period of the fundamental wave of the rotating electrical machine, and FIG. 7 shows the relationship between the deviation amount between the pole center and the magnet center and the torque ratio. Here, when the distance to the pole center of the fundamental wave is K and the distance to the magnet width center is Km, the deviation amount (%) is expressed by (K−Km) / K.

図7に示すトルク比は、ギャップ磁束密度波形をフーリエ変換し、基本波と二次高調波磁束の振幅を抽出し、次式(1)を用いて磁石トルクを算出した後、各磁石幅に関してずれ量ゼロのトルク値で規格化している。なお、基本波ならびに二次高調波の各電流成分は、電流実効値を固定するため、次式(2)、(3)を用いて磁束成分の割合に基づいて算出している。   The torque ratio shown in FIG. 7 is obtained by performing Fourier transform on the gap magnetic flux density waveform, extracting the amplitude of the fundamental wave and the second harmonic magnetic flux, calculating the magnet torque using the following equation (1), and then regarding each magnet width. Normalized with a torque value of zero deviation. Note that each current component of the fundamental wave and the second harmonic is calculated based on the ratio of the magnetic flux component using the following equations (2) and (3) in order to fix the effective current value.

Figure 2010183655
Figure 2010183655
Figure 2010183655
ここで、T:トルク[Nm]、p1:基本波極対数、p2:二次高調波極対数、Ψ1:基本波無負荷磁束[Wb]、Ψ2:二次高調波無負荷磁束[Wb]、I1:基本波電流[A]、I2:二次高調波電流[A]、k:比例定数とする。
Figure 2010183655
Figure 2010183655
Figure 2010183655
Here, T: torque [Nm], p1: number of fundamental wave pole pairs, p2: number of second harmonic pole pairs, Ψ1: fundamental wave no-load magnetic flux [Wb], Ψ2: second harmonic no-load magnetic flux [Wb], I1: Fundamental wave current [A], I2: Second harmonic current [A], k: Proportional constant.

次に、図7に示す関係を有する場合のずれ量とリップル率の関係を図8に示す。図8において、リップル率は平均トルクに対するトルクの振動成分の振幅値の割合である。トルクの振動成分は、基本波の磁束成分と二次高調波の電流成分との積と、二次高調波の磁束成分と基本波の電流成分との積の和から求められる。図8からわかるように、トルクの向上とトルクリップルはトレードオフの関係にある。これは、トルク比が大きい領域は基本波と二次高調波との磁束が同じ割合になるので、振動成分の項が大きくなるためであると考えられる。   Next, FIG. 8 shows the relationship between the deviation amount and the ripple rate when the relationship shown in FIG. 7 is provided. In FIG. 8, the ripple rate is the ratio of the amplitude value of the vibration component of the torque to the average torque. The vibration component of the torque is obtained from the sum of the product of the magnetic flux component of the fundamental wave and the current component of the second harmonic, and the product of the magnetic flux component of the second harmonic and the current component of the fundamental wave. As can be seen from FIG. 8, torque improvement and torque ripple are in a trade-off relationship. This is considered to be because the term of the vibration component becomes large because the magnetic flux of the fundamental wave and the second harmonic becomes the same ratio in a region where the torque ratio is large.

次に、先に触れた従来の回転電機において最適な磁石配置の一つであるモデルAとほぼ等しい磁石量とした場合の本実施例の効果を説明する。   Next, the effect of the present embodiment in the case where the magnet amount is approximately equal to that of the model A which is one of the optimum magnet arrangements in the conventional rotating electric machine mentioned above will be described.

図9に基本波磁束1周期分におけるギャップ磁束密度のパターンモデルを示す。W1とW2、P1とP2は、N極とS極の磁極幅、磁極ずれ量を示している。ここでは、理解を容易にするために磁極の強さを「1」と「−W2/W1」とし、横軸の0[T]で囲まれるN極側とS極側の面積を等しい条件で説明する。また、等間隔に磁石を配置した場合の磁極中心間距離を極節長さとしている。   FIG. 9 shows a pattern model of the gap magnetic flux density for one period of the fundamental wave magnetic flux. W1 and W2, and P1 and P2 indicate the magnetic pole width and magnetic pole deviation amount of the N pole and the S pole. Here, in order to facilitate understanding, the magnetic pole strength is “1” and “−W2 / W1”, and the areas on the N pole side and the S pole side surrounded by 0 [T] on the horizontal axis are the same. explain. In addition, the distance between magnetic pole centers when magnets are arranged at equal intervals is the pole node length.

図10と図11にW1:W2=3:2の場合における、トルクリップル率とトルク比を示す。トルク比は図7に示すモデルAのトルクで規格化している。図10ならびに図11を参照すると、本実施例で採用したように磁石を配置することで、トルクは従来とほぼ同等であるのに対してトルクリップル率は低減されていることがわかる。また、トルクリップル率とトルク比の間にはトレードオフの関係があるので、いずれを優先させるかは要求される仕様に応じて磁極中心間距離を適宜選択することで決められる。   FIGS. 10 and 11 show the torque ripple ratio and the torque ratio when W1: W2 = 3: 2. The torque ratio is normalized by the torque of model A shown in FIG. Referring to FIG. 10 and FIG. 11, it can be seen that the torque ripple rate is reduced by arranging the magnet as employed in the present embodiment, while the torque is almost the same as the conventional one. Further, since there is a trade-off relationship between the torque ripple rate and the torque ratio, which one is prioritized can be determined by appropriately selecting the distance between the magnetic pole centers according to the required specifications.

なお、上記図9〜図11に示す例は一例であり、W1とW2が3:2以外でも同じことが言える。また、N極とS極の永久磁石のうち、磁石厚さが薄い、永久磁石外部から与えられる磁界が強い方の永久磁石を保持力の高いものとしたり、熱減磁の小さい永久磁石で構成することで、減磁を抑制することが可能である。   The examples shown in FIGS. 9 to 11 are examples, and the same can be said even when W1 and W2 are other than 3: 2. In addition, among permanent magnets of N pole and S pole, the permanent magnet having a thin magnet thickness and having a strong magnetic field applied from the outside of the permanent magnet is made of a permanent magnet having a high holding power or a small thermal demagnetization. By doing so, it is possible to suppress demagnetization.

以上説明したように、上記実施例において、ロータに永久磁石を等間隔に配置せず、すなわち不均一に配置することで、異なる複数の磁極数に相当する磁石磁束をその表面に合算して発生させる磁束発生部材をロータに設け、この複数の磁極数に対応した複数の電流磁界を合算し、かつロータを回転させることができるように電流を与えられるコイルをステータに設けることで、ロータの一極対を構成するN極とS極のギャップ磁束密度の磁極幅が異なるようにしたので、永久磁石を等間隔に配置した一般的な永久磁石モータに対して磁石量を低減できる効果を損なうことなく、トルクリップルを低減することができる。   As described above, in the above embodiment, the permanent magnets are not arranged at equal intervals on the rotor, that is, non-uniformly arranged, so that magnetic fluxes corresponding to different numbers of magnetic poles are added to the surface and generated. A magnetic flux generating member is provided on the rotor, a plurality of current magnetic fields corresponding to the number of magnetic poles are added together, and a coil to which current can be applied so that the rotor can be rotated is provided on the stator. Since the magnetic pole widths of the gap magnetic flux density of the N pole and S pole constituting the pole pair are made different, the effect of reducing the magnet amount with respect to a general permanent magnet motor having permanent magnets arranged at equal intervals is impaired. Torque ripple can be reduced.

N極とS極のギャップ磁束密度の磁極幅をW1,W2とし、磁束密度の大きさをB1,B2とすると、W1>W2かつB1<B2とすることで、磁石量あたりのトルクを大きくすることが可能となる。また、一極対を構成するN極,S極の総磁束量に大きな差がないため、容易に磁気回路を構成することが可能となる。   When the magnetic pole width of the gap magnetic flux density between the N pole and the S pole is W1 and W2, and the magnitude of the magnetic flux density is B1 and B2, the torque per magnet amount is increased by setting W1> W2 and B1 <B2. It becomes possible. Further, since there is no large difference in the total magnetic flux amount between the N pole and S pole constituting one pole pair, a magnetic circuit can be easily configured.

ギャップ磁束密度0[T]を基準として、磁極幅と磁束密度の大きさで囲まれる面積をN極とS極で等しくする(W1×B1=W2×B2)ことで、N極とS極の磁石量を等しくすることができる。一方、ギャップ磁束密度0[T]を基準として、磁極幅と磁束密度の大きさで囲まれる面積がN極とS極で異なる(W1×B1≠W2×B2)ように設定することで、N極とS極の磁束量のバランスが異なり、磁束量が少ない極に見かけ上の磁極が発生し、磁石量を低減することができる。   With the gap magnetic flux density of 0 [T] as a reference, the area surrounded by the magnetic pole width and the magnetic flux density is made equal between the N pole and the S pole (W1 × B1 = W2 × B2), so that the N pole and the S pole The amount of magnets can be made equal. On the other hand, with the gap magnetic flux density of 0 [T] as a reference, by setting the area surrounded by the magnetic pole width and the magnetic flux density to be different between the N pole and the S pole (W1 × B1 ≠ W2 × B2), The balance of the magnetic flux amount between the pole and the S pole is different, and an apparent magnetic pole is generated in a pole with a small amount of magnetic flux, and the amount of magnet can be reduced.

N極とS極の磁極中心間距離とロータの極節距離とを等しくすることで、トルクリップルを最小にすることができる。一方、N極とS極の磁極中心間距離とロータの極節距離とを異なるように設定することで、平均トルクを増加することができる。   By making the distance between the magnetic pole centers of the N pole and S pole equal to the pole node distance of the rotor, the torque ripple can be minimized. On the other hand, the average torque can be increased by setting the distance between the magnetic pole centers of the N pole and the S pole to be different from the pole nodal distance of the rotor.

N極とS極の磁極幅W1,W2の比と磁極中心間距離を選択する際に、トルクリップルを極小値と極大値の間に設定し、かつトルクの変化を極小値と極大値の間で設定することで、トルクリップルの減少率およびトルクの要求値に応じて磁石配置の選択幅を広げることができる。   When selecting the ratio of the magnetic pole widths W1 and W2 of the N pole and S pole and the distance between the magnetic pole centers, the torque ripple is set between the minimum value and the maximum value, and the change in torque is between the minimum value and the maximum value. By setting at, it is possible to widen the selection range of the magnet arrangement according to the torque ripple reduction rate and the required torque value.

N極とS極の永久磁石を異なる厚さに設定することで、N極とS極の各磁石厚さ及び磁石幅を両者の最大公約数の大きさで分割することによって磁石の最小単位を等しくすることが可能となり、磁石のコストを低減することができる。   By setting the N-pole and S-pole permanent magnets to different thicknesses, the magnet's smallest unit can be reduced by dividing the N-pole and S-pole magnet thicknesses and magnet widths by the greatest common divisor. It becomes possible to make it equal, and the cost of the magnet can be reduced.

N極とS極のいずれか一方または両方の永久磁石をV字状に配置することで、狭い磁極幅で高磁束密度のギャップ磁束密度波形を得ることができる。   By disposing one or both of the N poles and the S poles in a V shape, a gap magnetic flux density waveform having a high magnetic flux density with a narrow magnetic pole width can be obtained.

N極とS極の永久磁石を異なる特性を有する磁石によって構成することで、ギャップ磁束密度波形を制御する選択肢を広げることが可能となる。また、例えばアルニコやフェライト系磁石を用いることによって、ネオジ系磁石を用いる場合に比べて磁石のコストを低減することができる。   By configuring the N-pole and S-pole permanent magnets with magnets having different characteristics, options for controlling the gap magnetic flux density waveform can be expanded. Further, for example, by using an alnico or ferrite magnet, the cost of the magnet can be reduced as compared with the case of using a neodymium magnet.

N極とS極の永久磁石のうち、動作点がクニック点に近い方の永久磁石を他方の永久磁石に比べて保持力の高い永久磁石とすることで、例えば保持力が高い材料で常に強い磁界がかかる方の永久磁石を構成し、減磁を抑制することができる。   Of the N and S permanent magnets, the permanent magnet whose operating point is closer to the knick point is a permanent magnet having a higher holding force than the other permanent magnet, so that it is always strong with a material having a high holding force, for example. A permanent magnet to which a magnetic field is applied can be configured to suppress demagnetization.

N極とS極の永久磁石のうち、動作点の磁束密度が高い方の永久磁石を他方の永久磁石に比べて熱減磁の小さい永久磁石とすることで、例えば常に強い磁界がかかり、渦電流による発熱が生じた場合でも熱減磁を低減することができる。   Of the N-pole and S-pole permanent magnets, the permanent magnet having the higher magnetic flux density at the operating point is a permanent magnet having a smaller thermal demagnetization than the other permanent magnet. Even when heat is generated by current, thermal demagnetization can be reduced.

11…シャフト
12…ステータ
13…ロータ
121…ステータティース
122…コイル
131N,131S…永久磁石
DESCRIPTION OF SYMBOLS 11 ... Shaft 12 ... Stator 13 ... Rotor 121 ... Stator teeth 122 ... Coil 131N, 131S ... Permanent magnet

Claims (12)

異なる複数の磁極数に相当する磁石の磁束をその表面に合算して発生させる磁束発生部材を備えた回転子と、前記複数の磁極数に対応した複数の電流磁界を合算し、かつ前記回転子を回転させる電流を与える固定子とを有する回転電機において、
前記回転子の一極対を構成するN極とS極のギャップ磁束密度の磁極幅が異なるように前記磁石を配置した
ことを特徴とする回転電機。
A rotor provided with a magnetic flux generating member for generating a magnetic flux corresponding to a plurality of different magnetic poles on the surface thereof; a plurality of current magnetic fields corresponding to the plurality of magnetic poles; and the rotor In a rotating electrical machine having a stator for supplying a current for rotating
A rotating electrical machine characterized in that the magnets are arranged such that the magnetic pole widths of the gap magnetic flux density of the N pole and S pole constituting one pole pair of the rotor are different.
N極、S極のギャップ磁束密度の磁極幅をW1,W2とし、磁束密度の大きさをB1,B2とすると、W1>W2かつB1<B2である
ことを特徴とする請求項1に記載の回転電機。
2. The W 1> W 2 and B 1 <B 2, wherein the magnetic pole widths of the gap magnetic flux density of the N pole and the S pole are W 1 and W 2 and the magnitudes of the magnetic flux densities are B 1 and B 2, respectively. Rotating electric machine.
0[T]のギャップ磁束密度を基準として、磁極幅と磁束密度の大きさで囲まれる面積をN極側とS極側で等しくする
ことを特徴とする請求項1または2に記載の回転電機。
3. The rotating electrical machine according to claim 1, wherein an area surrounded by a magnetic pole width and a magnetic flux density is made equal on the N pole side and the S pole side with a gap magnetic flux density of 0 [T] as a reference. .
N極とS極の磁極中心間距離と前記回転子の極節距離が等しい
ことを特徴とする請求項1〜3のいずれか1項に記載の回転電機。
The rotating electrical machine according to any one of claims 1 to 3, wherein a distance between the magnetic pole centers of the N pole and the S pole is equal to a pole node distance of the rotor.
N極とS極の磁極中心間距離と前記回転子の極節距離が異なる
ことを特徴とする請求項1〜3のいずれか1項に記載の回転電機。
The rotating electrical machine according to any one of claims 1 to 3, wherein a distance between the magnetic pole centers of the N pole and the S pole is different from a pole node distance of the rotor.
N極とS極の磁極幅の比と磁極中心間距離を設定する際に、トルクリップルの変化幅が極小値と極大値の間であり、かつトルクの変化幅が極小値と極大値の間である
ことを特徴とする請求項1〜4のいずれか1項に記載の回転電機。
When setting the ratio of the magnetic pole width of the N pole and the S pole and the distance between the magnetic pole centers, the change width of the torque ripple is between the minimum value and the maximum value, and the change width of the torque is between the minimum value and the maximum value. The rotating electrical machine according to claim 1, wherein the rotating electrical machine is a rotating electrical machine.
0[T]のギャップ磁束密度を基準として、磁極幅と磁束密度の大きさで囲まれる面積がN極側とS極側で異なる
ことを特徴とする請求項1または2に記載の回転電機。
3. The rotating electrical machine according to claim 1, wherein the area surrounded by the magnetic pole width and the magnetic flux density is different between the N pole side and the S pole side with a gap magnetic flux density of 0 [T] as a reference.
N極とS極の前記磁石は、異なる厚さの永久磁石で構成されている
ことを特徴とする請求項1〜7のいずれか1項に記載の回転電機。
The rotating electric machine according to any one of claims 1 to 7, wherein the N-pole and S-pole magnets are composed of permanent magnets having different thicknesses.
N極とS極のいずれか一方または双方の前記磁石は、V字状に配置された永久磁石で構成されている
ことを特徴とする請求項1〜7のいずれか1項に記載の回転電機。
The rotating electric machine according to any one of claims 1 to 7, wherein the magnet of one or both of the N pole and the S pole is configured by a permanent magnet arranged in a V shape. .
N極とS極の前記磁石は、異なる特性を有する永久磁石で構成されている
ことを特徴とする請求項1〜7のいずれか1項に記載の回転電機。
The rotating electric machine according to any one of claims 1 to 7, wherein the N-pole and S-pole magnets are composed of permanent magnets having different characteristics.
N極とS極の前記磁石のうち、動作点がクニック点に近い方の磁石は他方の磁石よりも保持力の高い永久磁石で構成されている
ことを特徴とする請求項1〜10のいずれか1項に記載の回転電機。
11. The magnet according to claim 1, wherein the magnet having an operating point closer to the knick point among the N-pole and S-pole magnets is a permanent magnet having a higher holding force than the other magnet. The rotating electrical machine according to claim 1.
N極とS極の前記磁石のうち、動作点の磁束密度が高い方の磁石は他方の磁石よりも熱減磁の小さい永久磁石で構成されている
ことを特徴とする請求項1〜10のいずれか1項に記載の回転電機。
11. The magnet having a higher magnetic flux density at the operating point among the N-pole and S-pole magnets is composed of a permanent magnet having a smaller thermal demagnetization than the other magnet. The rotating electrical machine according to any one of claims.
JP2009022340A 2009-02-03 2009-02-03 Rotating electrical machine Pending JP2010183655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009022340A JP2010183655A (en) 2009-02-03 2009-02-03 Rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022340A JP2010183655A (en) 2009-02-03 2009-02-03 Rotating electrical machine

Publications (1)

Publication Number Publication Date
JP2010183655A true JP2010183655A (en) 2010-08-19

Family

ID=42764735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022340A Pending JP2010183655A (en) 2009-02-03 2009-02-03 Rotating electrical machine

Country Status (1)

Country Link
JP (1) JP2010183655A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159681A (en) * 2014-02-25 2015-09-03 アスモ株式会社 motor
US10734852B2 (en) 2013-03-06 2020-08-04 Asmo Co., Ltd. Motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660269U (en) * 1993-01-19 1994-08-19 株式会社三協精機製作所 Small motor
JPH11103545A (en) * 1997-09-26 1999-04-13 Fujitsu General Ltd Permanent magnet motor
JP2005065415A (en) * 2003-08-13 2005-03-10 Fuji Electric Holdings Co Ltd Magnetic pole position detector for permanent-magnet synchronous motor
JP2007151236A (en) * 2005-11-24 2007-06-14 Nissan Motor Co Ltd Synchronous motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660269U (en) * 1993-01-19 1994-08-19 株式会社三協精機製作所 Small motor
JPH11103545A (en) * 1997-09-26 1999-04-13 Fujitsu General Ltd Permanent magnet motor
JP2005065415A (en) * 2003-08-13 2005-03-10 Fuji Electric Holdings Co Ltd Magnetic pole position detector for permanent-magnet synchronous motor
JP2007151236A (en) * 2005-11-24 2007-06-14 Nissan Motor Co Ltd Synchronous motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734852B2 (en) 2013-03-06 2020-08-04 Asmo Co., Ltd. Motor
JP2015159681A (en) * 2014-02-25 2015-09-03 アスモ株式会社 motor

Similar Documents

Publication Publication Date Title
Gaussens et al. A hybrid-excited flux-switching machine for high-speed DC-alternator applications
Du et al. High torque density and low torque ripple shaped-magnet machines using sinusoidal plus third harmonic shaped magnets
JP4269953B2 (en) Rotating electric machine
KR101011396B1 (en) Motor and motor system
US8421294B2 (en) Rotary electric machine including auxiliary slot with center opposed to specified rotor portion
US7414343B2 (en) Hybrid-excited rotating machine, and vehicle with the hybrid-excited rotating machine
JP6332011B2 (en) Axial gap type rotating electrical machine
Wu et al. Electromagnetic performance of novel synchronous machines with permanent magnets in stator yoke
US7482724B2 (en) Ipm electric rotating machine
JP6097024B2 (en) Electric machine
JP2017514453A (en) Permanent magnet synchronous motor and its rotor
JP2003299330A (en) Rotating electric machine
Hua et al. Novel hybrid-excited switched-flux machine having separate field winding stator
JP6002617B2 (en) Permanent magnet synchronous machine
JP2012175738A (en) Permanent magnet type rotary electric machine
US10432043B2 (en) Slotted rotor-bridge for electrical machines
JP5985119B1 (en) Permanent magnet rotating electric machine
JP6138075B2 (en) 2-phase synchronous motor
JP2007252077A (en) Magnet structure
Putri et al. Comparison of the characteristics of cost-oriented designed high-speed low-power interior PMSM
Wang et al. Design and experimental verification of an 18-slot/10-pole fractional-slot surface-mounted permanent-magnet machine
Barman et al. Cogging torque reduction in surface mounted permanent magnet synchronous machine
JP2010233308A (en) Synchronous motor
JP2010183655A (en) Rotating electrical machine
Liu et al. Influence of gear ratio on electromagnetic performance and geometries of vernier permanent magnet synchronous machines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507