JP2010182596A - Charged particle beam apparatus - Google Patents

Charged particle beam apparatus Download PDF

Info

Publication number
JP2010182596A
JP2010182596A JP2009026833A JP2009026833A JP2010182596A JP 2010182596 A JP2010182596 A JP 2010182596A JP 2009026833 A JP2009026833 A JP 2009026833A JP 2009026833 A JP2009026833 A JP 2009026833A JP 2010182596 A JP2010182596 A JP 2010182596A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
sample
tube
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009026833A
Other languages
Japanese (ja)
Other versions
JP5280238B2 (en
Inventor
Kazuhiro Honda
田 和 広 本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2009026833A priority Critical patent/JP5280238B2/en
Publication of JP2010182596A publication Critical patent/JP2010182596A/en
Application granted granted Critical
Publication of JP5280238B2 publication Critical patent/JP5280238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable to detect charged particles discharged along on an optical axis. <P>SOLUTION: The charged particle beam apparatus is provided with an acceleration tube electrode 30 for accelerating primary electron beams 1 from an electron gun, a magnetic field lens 2 converging the primary electron beams on a test piece 3, a speed-reduction electrode 6 for speed-reducing the primary electron beams, a scanning coil 4 for scanning on the testpiece by the primary electron beams, a detection system for detecting secondary electrons generated from the test piece 3, and a display unit 13 for displaying a secondary electron image based on the detected secondary electrons. Between the electron gun and the acceleration tube electrode 30, there are arranged a reflection electrode 34 of a doughnut shape to which a negative voltage is impressed and an Einzel lens 32 for focusing the secondary electrons from the test piece 3 on the optical axis in the tube before the reflection electrode 34 in the tube of the acceleration tube electrode 30, respectively, and the detection system is composed of a first detecting unit which has an open port through which the primary electron beams from the electron gun are passed and detects the secondary electrons from the test piece 3 and a second detecting unit which has an open port through which the primary electron beams from the electron gun are passed and detects the secondary electrons which are sent back by the reflection electrode 34 in the test piece direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、試料からの荷電粒子を検出する検出器を備えた荷電粒子ビーム装置に関する。   The present invention relates to a charged particle beam apparatus including a detector that detects charged particles from a sample.

近年、半導体集積回路における回路パターンの検査等に走査型電子顕微鏡が用いられている。   In recent years, scanning electron microscopes have been used for inspection of circuit patterns in semiconductor integrated circuits.

この様な走査型電子顕微鏡の中には、例えば、一次電子ビームを加速場でエネルギーを高く維持することにより色収差の影響を低減した状態で合焦点制御し、減速場で試料に入射する一次電子ビームのエネルギーを小さなものにして、低加速電圧で高分解能の試料観察を行うものがある。   In such a scanning electron microscope, for example, the primary electron beam is controlled in focus in a state in which the influence of chromatic aberration is reduced by maintaining high energy in the acceleration field, and the primary electrons incident on the sample in the deceleration field. There is a technique for observing a sample with a low acceleration voltage and a high resolution by reducing the beam energy.

図1はこの様な走査型電子顕微鏡の一概略例を示す。   FIG. 1 shows a schematic example of such a scanning electron microscope.

図中1は電子銃(図示せず)から放出された電子ビーム(一次電子ビーム)、2は該一次電子ビームを試料3上に集束させるための磁界を形成する磁界レンズ、4は前記一次電子ビーム1で前記試料3上をそれぞれX方向,Y方向に走査するための偏向場を形成する走査コイル、5は前記一次電子ビーム1を前記試料方向に加速させる電界を形成する円筒型の加速管電極で、前記走査コイル4と前記磁界レンズ2に沿って設けられている。   In the figure, 1 is an electron beam (primary electron beam) emitted from an electron gun (not shown), 2 is a magnetic lens that forms a magnetic field for focusing the primary electron beam on the sample 3, and 4 is the primary electron. A scanning coil for forming a deflection field for scanning the sample 3 with the beam 1 in the X and Y directions, respectively, and a cylindrical acceleration tube 5 for forming an electric field for accelerating the primary electron beam 1 in the sample direction An electrode is provided along the scanning coil 4 and the magnetic lens 2.

6は該加速された前記一次電子ビーム1を試料直前で減速させる減速場を形成する円錐形状の減速電極、7は前記試料3を載置する試料ステージである。   Reference numeral 6 denotes a conical deceleration electrode that forms a deceleration field for decelerating the accelerated primary electron beam 1 immediately before the sample, and 7 is a sample stage on which the sample 3 is placed.

8は各種指令及び演算等を行う制御装置、9は該制御装置の指令に基づいて走査信号を作成し、該走査信号を前記走査コイル4に送る走査制御装置、10は前記制御装置8の指令に基づいて前記磁界レンズ2に励磁電流を送る磁界レンズ制御装置である。   8 is a control device that performs various commands and calculations, 9 is a scanning control device that creates a scanning signal based on the command from the control device, and sends the scanning signal to the scanning coil 4. 10 is a command from the control device 8 The magnetic field lens control device sends an exciting current to the magnetic field lens 2 based on the above.

11a,11bは前記一次電子ビーム1による走査により前記試料3から放出された二次電子12a,12bをそれぞれ検出する二次電子検出器で、光軸Oに沿って設けられている。尚、該各二次電子検出器は増幅器(図示せず)、AD変換器(図示せず)を介して前記制御装置8に繋がっている。   Reference numerals 11a and 11b denote secondary electron detectors that respectively detect secondary electrons 12a and 12b emitted from the sample 3 by scanning with the primary electron beam 1, and are provided along the optical axis O. Each secondary electron detector is connected to the control device 8 via an amplifier (not shown) and an AD converter (not shown).

13は前記制御装置8に送られて来た二次電子信号に基づいて前記試料3上の観察領域に関する二次電子像等を表示する表示装置である。   Reference numeral 13 denotes a display device that displays a secondary electron image and the like regarding the observation region on the sample 3 based on the secondary electron signal sent to the control device 8.

14は前記制御装置8の指令に基づいて前記加速管電極5に正の電圧を印加する可変電源、15は前記制御装置8の指令に基づいて前記減速電極6に正の電圧を印加する可変電源である。尚、Oは光軸(電子光学の中心軸)である。   14 is a variable power source that applies a positive voltage to the acceleration tube electrode 5 based on a command from the control device 8, and 15 is a variable power source that applies a positive voltage to the deceleration electrode 6 based on a command from the control device 8. It is. O is the optical axis (electron optical central axis).

この様な構成の走査型電子顕微鏡において、例えば+1KVの加速電圧でエネルギー付勢された電子銃(図示せず)からの一次電子ビーム1は、例えば+5KVが印加された加速管電極5の加速場で+6KVでエネルギー付勢されることになり、例えば、+5KVが印加された減速電極6を同一エネルギー付勢状態で通過する。そして、この様な一次電子ビームは該減速電極とアース電位にある試料との間に形成された減速場の減速レンズLにより減速され、+1KVの加速電圧でエネルギー付勢された状態で前記試料3に入射することになる。この際、前記一次電子ビーム1は前記磁界レンズ2により前記試料3上に集束し、前記走査コイル4により該試料上の所定領域を走査する。   In the scanning electron microscope having such a configuration, the primary electron beam 1 from an electron gun (not shown) energized with an acceleration voltage of, for example, +1 KV is applied to the acceleration field of the acceleration tube electrode 5 to which, for example, +5 KV is applied. Thus, the energy is energized at +6 KV. For example, the decelerating electrode 6 to which +5 KV is applied passes in the same energy energized state. Such a primary electron beam is decelerated by the decelerating lens L formed between the decelerating electrode and the sample at the ground potential, and the sample 3 is energized with an acceleration voltage of +1 KV. Will be incident on. At this time, the primary electron beam 1 is focused on the sample 3 by the magnetic lens 2, and a predetermined region on the sample is scanned by the scanning coil 4.

この様な走査により前記試料3から放出された二次電子は、前記試料3と減速電極6との間に形成される加速場の加速レンズL(前記一次電子ビーム1に対して減速場として作用する前記減速レンズLは試料からの二次電子から見ると加速レンズとして作用する)により加速されて、該減速電極の開口部を介して前記加速管電極5内に入る。   The secondary electrons emitted from the sample 3 by such scanning act as an acceleration lens L (acceleration field L for the primary electron beam 1) formed between the sample 3 and the deceleration electrode 6. The decelerating lens L acts as an accelerating lens when viewed from the secondary electrons from the sample) and enters the accelerating tube electrode 5 through the opening of the decelerating electrode.

そして、前記磁界レンズ2の磁場により一旦集束されてから、発散して行き、発散角の大きい二次電子12aは前記二次電子検出器11aに、発散角の小さい二次電子12bは前記二次電子検出器11bにそれぞれ検出される。   Then, the light is once focused by the magnetic field of the magnetic lens 2 and then diverges. Secondary electrons 12a having a large divergence angle are transmitted to the secondary electron detector 11a, and secondary electrons 12b having a small divergence angle are converted to the secondary electrons. Each is detected by the electron detector 11b.

そして、前記各二次電子検出器11a,11bからの出力信号は、それぞれ、増幅器(図示せず)、AD変換器(図示せず)を介して制御装置8に送られる。そして、該制御装置の指令により、前記表示装置12の表示画面に、前記各二次電子信号に基づく試料の二次電子像がそれぞれ表示される。尚、前記両二次電子信号を加算し、該加算信号に基づく像を表示する様にしても良い。   The output signals from the secondary electron detectors 11a and 11b are sent to the control device 8 via an amplifier (not shown) and an AD converter (not shown), respectively. And according to the command from the control device, a secondary electron image of the sample based on each secondary electron signal is displayed on the display screen of the display device 12. The secondary electron signals may be added and an image based on the added signal may be displayed.

特開2004−221089号公報Japanese Patent Application Laid-Open No. 2004-221089

さて、前記試料3から放出される二次電子の量は方向依存性を持つ。
図2は試料3の表面に対して一次電子ビーム1を垂直に入射させた場合の各放出角度θ(一次電子ビーム上を0度とし、時計方向に角度を増した時の試料表面上を+90度とし、逆に反時計方向に角度を増した時の試料表面上を−90度とする)に対する二次電子の放出量を示したもので、放出角度θの絶対値が小さい程二次電子放出量は大きく、放出角度の絶対値が大きくなるに従って二次電子放出量は小さくなる。
Now, the amount of secondary electrons emitted from the sample 3 has direction dependency.
FIG. 2 shows each emission angle θ when the primary electron beam 1 is perpendicularly incident on the surface of the sample 3 (0 degree on the primary electron beam and +90 on the sample surface when the angle is increased clockwise). In contrast, the amount of secondary electrons emitted with respect to the sample surface when the angle is increased counterclockwise is assumed to be −90 degrees). The smaller the absolute value of the emission angle θ, the smaller the secondary electrons. The amount of emission is large, and the amount of secondary electron emission decreases as the absolute value of the emission angle increases.

この様な二次電子放出量の方向依存性を考慮して、前記図1に示す走査型電子顕微鏡では、光軸Oに沿って上下に二次電子検出器11a,11bを配置し、前記試料3から放出された二次電子の内、放出角度の比較的大きいもの(発散角度の比較的大きいもの)12aを下段の二次電子検出器11aで、放出角度の比較的小さいもの(発散角度の比較的小さいもの)12bを上段の二次電子検出器11bでそれぞれ検出している。   In consideration of the direction dependency of the amount of secondary electron emission, the scanning electron microscope shown in FIG. 1 has secondary electron detectors 11a and 11b arranged vertically along the optical axis O, and the sample. Among the secondary electrons emitted from 3, those having a relatively large emission angle (with a relatively large divergence angle) 12 a are converted into those having a relatively small emission angle (with a divergence angle of 12) by the secondary electron detector 11 a at the lower stage. (Relatively small) 12b is detected by the upper secondary electron detector 11b.

しかし乍ら、光軸Oの極近傍に沿って放出される二次電子(光軸Oの極近傍に沿って発散される二次電子)、即ち、放出角度の絶対値が極めて小さい(発散角度の極めて小さい)二次電子については、前記何れの二次電子検出器11a,11bでも検出することが出来ない。   However, secondary electrons emitted along the vicinity of the optical axis O (secondary electrons emitted along the vicinity of the optical axis O), that is, the absolute value of the emission angle is extremely small (divergence angle). Secondary electrons (which are extremely small) cannot be detected by any of the secondary electron detectors 11a and 11b.

所で、この様な放出角度の絶対値が極めて小さい二次電子は、図2に示す通り、極めてその量が多い。   However, the amount of such secondary electrons having an extremely small absolute value of the emission angle is extremely large as shown in FIG.

その為、前記表示装置13の二次電子像表示に寄与する二次電子信号量は十分ではなく、画質が劣化に繋がってしまう。   For this reason, the amount of secondary electron signals contributing to the secondary electron image display of the display device 13 is not sufficient, and the image quality is deteriorated.

本発明は、この様な問題点を解決する為になされたもので、新規な荷電粒子ビーム装置を提供することを目的とする。   The present invention has been made to solve such problems, and an object thereof is to provide a novel charged particle beam apparatus.

本発明の荷電粒子ビーム装置は、荷電粒子ビーム発生源、該荷電粒子ビーム源からの荷電粒子ビームを加速するための管状の加速レンズ系、該荷電粒子ビーム源から荷電粒子ビームを試料上に集束する集束レンズ系、該加速及び集束された荷電粒子ビームを減速する減速レンズ系、該荷電粒子ビームで前記試料上を走査させるための走査レンズ系、該走査により試料から発生する二次荷電粒子を検出する検出系、及び、該検出された二次荷電粒子に基づいて前記試料の二次荷電粒子像を表示する表示手段を備えた荷電粒子ビーム装置において、前記荷電粒子ビーム源と加速レンズ系との間に、前記試料からの二次荷電粒子を該試料方向に追い返すための電圧が印加されるドーナツ形状の反射電極を,前記加速レンズ系の管内に前記試料からの二次荷電粒子を前記反射電極の手前の該管内光軸上に集束させる第2の集束レンズ系をそれぞれ配置し、前記検出系を、前記荷電粒子ビーム源からの荷電粒子ビームを通過させる開口を有し、前記試料からの二次荷電粒子を検出する第1検出器と、前記荷電粒子ビーム源からの荷電粒子ビームを通過させる開口を有し、前記反射電極によって前記試料方向に追い返された二次荷電粒子を検出する第2検出器とから成したことを特徴とする。   The charged particle beam apparatus of the present invention includes a charged particle beam generation source, a tubular acceleration lens system for accelerating the charged particle beam from the charged particle beam source, and focuses the charged particle beam from the charged particle beam source onto a sample. A focusing lens system for accelerating and decelerating the focused charged particle beam, a scanning lens system for scanning the sample with the charged particle beam, and secondary charged particles generated from the sample by the scanning. In a charged particle beam apparatus comprising a detection system for detecting and a display means for displaying a secondary charged particle image of the sample based on the detected secondary charged particles, the charged particle beam source and the acceleration lens system, A donut-shaped reflective electrode to which a voltage for repelling secondary charged particles from the sample in the direction of the sample is applied between the sample and the sample in the tube of the acceleration lens system. A second focusing lens system for focusing the next charged particles on the optical axis in the tube in front of the reflecting electrode is disposed, and the detection system has an opening through which the charged particle beam from the charged particle beam source passes. And a second detector that detects secondary charged particles from the sample and an aperture through which the charged particle beam from the charged particle beam source passes, and is returned to the sample by the reflective electrode. And a second detector for detecting charged particles.

本発明によれば、放出量が多い光軸Oの極近傍に沿って放出される二次電子(光軸Oの極近傍に沿って発散される二次電子)、即ち、放出角度の絶対値が極めて小さい(発散角度の極めて小さい)二次電子についても効率的に検出することが出来る。従って、高画質の試料像を得ることが出来る。   According to the present invention, secondary electrons emitted along the vicinity of the optical axis O with a large amount of emission (secondary electrons emitted along the vicinity of the optical axis O), that is, the absolute value of the emission angle. Can be detected efficiently even for secondary electrons having a very small (a very small divergence angle). Therefore, a high quality sample image can be obtained.

従来の走査型電子顕微鏡の一構成例を示す図である。It is a figure which shows the example of 1 structure of the conventional scanning electron microscope. 二次電子放出量の方向依存性を示した分布の一例を示す図である。It is a figure which shows an example of the distribution which showed the direction dependence of the amount of secondary electron emission. 本発明の荷電粒子ビーム装置の一例である走査型電子顕微鏡の一構成例を示す図である。It is a figure which shows the example of 1 structure of the scanning electron microscope which is an example of the charged particle beam apparatus of this invention. 本発明の荷電粒子ビーム装置の一例である走査型電子顕微鏡の他の構成例を示す図である。It is a figure which shows the other structural example of the scanning electron microscope which is an example of the charged particle beam apparatus of this invention. 本発明の荷電粒子ビーム装置の一例である走査型電子顕微鏡の他の構成例を示す図である。It is a figure which shows the other structural example of the scanning electron microscope which is an example of the charged particle beam apparatus of this invention.

以下、図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図3は本発明の荷電粒子ビーム装置の一例である走査型電子顕微鏡の一概略例を示している。図中、前記図1にて使用した記号と同一記号の付されたものは同一構成要素を示す。   FIG. 3 shows a schematic example of a scanning electron microscope which is an example of the charged particle beam apparatus of the present invention. In the figure, the same reference numerals as those used in FIG. 1 denote the same components.

図中30は円筒形状の加速管電極で、電子銃(図示せず)に対向する上端には、ドーナツ形状の電極31が取り付けられ、該加速管電極内の側壁部中央付近には、共にドーナツ形状の三枚の電極から成るアインツェルレンズ32の両外側の電極が取り付けられている。該アインツェルレンズの中央電極32cには、制御装置8からの指令に基づいて作動する可変電源33から制御電圧が印加されている。   In the figure, reference numeral 30 denotes a cylindrical acceleration tube electrode, and a donut-shaped electrode 31 is attached to the upper end facing an electron gun (not shown), and both the donuts are located near the center of the side wall in the acceleration tube electrode. The electrodes on both outer sides of the Einzel lens 32 made up of three shaped electrodes are attached. A control voltage is applied to the central electrode 32c of the Einzel lens from a variable power source 33 that operates based on a command from the control device 8.

34はドーナッ形状の反射電極で、前記制御装置8からの指令に基づいて作動する可変電源35から負の電圧が印加されている。   Reference numeral 34 denotes a donut-shaped reflective electrode to which a negative voltage is applied from a variable power source 35 that operates based on a command from the control device 8.

図中40は二次電子検出ユニットで、ライトガイド36a,36b、両面(上面と下面)が反射面を成すドーナツ形状の反射板37、ドーナツ形状のシンチレーター38a,38b、貫通管39、及び、光電子増倍管40a,40bから成る。以下に、その構成を詳細に説明する。   In the figure, reference numeral 40 denotes a secondary electron detection unit, which includes light guides 36a and 36b, a donut-shaped reflecting plate 37 whose both surfaces (upper and lower surfaces) form a reflecting surface, donut-shaped scintillators 38a and 38b, a through tube 39, and photoelectrons. It consists of multipliers 40a and 40b. The configuration will be described in detail below.

前記ライトガイド36a(以後、第1ライドガイドと称す)と36b(以後、第2ライドガイドと称す)は、共に先端が斜め45度にカットされ、該両カット面が前記光反射板37を挟んで突き合わされ、それぞれの他端部が、前記加速電極管30壁を貫通する様に該加速電極管壁に取り付けられている。尚、前記光反射板37を挟んで突き合わされたライトガイド36a,36bの先端部の中央には孔が形成されている。   The light guides 36a (hereinafter referred to as the first ride guide) and 36b (hereinafter referred to as the second ride guide) are both cut at an oblique angle of 45 degrees, and both the cut surfaces sandwich the light reflecting plate 37. The other end of each is attached to the acceleration electrode tube wall so as to penetrate the wall of the acceleration electrode tube 30. In addition, a hole is formed in the center of the tip portion of the light guides 36a and 36b abutted with each other with the light reflection plate 37 interposed therebetween.

前記第1ライトガイド36aの先端部の下側の面には電子検出面を試料側に向けたシンチレータ38a(以後、第1シンチレーターと称す)が、前記第2ライトガイド36bの先端部の上側の面に電子検出面を電子銃(図示せず)側に向けたシンチレータ38b(以後、第2シンチレーターと称す)が取り付けられている。尚、該各シンチレーターの中央には孔が形成されている。   A scintillator 38a (hereinafter referred to as a first scintillator) having an electron detection surface facing the sample side is provided on the lower surface of the front end portion of the first light guide 36a, and is located above the front end portion of the second light guide 36b. A scintillator 38b (hereinafter referred to as a second scintillator) having an electron detection surface facing the electron gun (not shown) is attached to the surface. A hole is formed in the center of each scintillator.

又、前記第1シンチレータ38aの中央部の孔,前記第1ライトガイド36aと第2ライトガイド36bの突き合わせ面の中央部の孔,及び、前記第2シンチレータ38bの中央部の孔に沿う様に前記貫通管39が該孔内に嵌入されている。   Further, it follows the hole in the center of the first scintillator 38a, the hole in the center of the abutting surface of the first light guide 36a and the second light guide 36b, and the hole in the center of the second scintillator 38b. The through pipe 39 is fitted into the hole.

又、前記第1,第2ライトガイド36a,36bの他端にはそれぞれ前記光電子増倍管40a,40bが設けられている。尚、該各光電子増倍管は増幅器(図示せず)、AD変換(図示せず)を介して前記制御装置8に繋がっている。   The photomultiplier tubes 40a and 40b are provided at the other ends of the first and second light guides 36a and 36b, respectively. Each photomultiplier tube is connected to the control device 8 via an amplifier (not shown) and AD conversion (not shown).

この様に構成された走査型電子顕微鏡において、例えば、+1KVの加速電圧でエネルギー付勢された電子銃(図示せず)からの一次電子ビーム1は、例えば+5KVが印加された加速管電極30の加速場で+6KVでエネルギー付勢されることになり、例えば、+5KVが印加された減速電極6を同一エネルギー付勢状態で通過する。そして、この様な一次電子ビームは該減速電極とアース電位にある試料との間に形成された減速場の減速レンズLにより減速され、+1KVの加速電圧でエネルギー付勢された状態で前記試料3に入射することになる。この際、前記一次電子ビーム1は前記磁界レンズ2により前記試料3上に集束し、前記走査コイル4により該試料上の所定領域を走査する。   In the scanning electron microscope thus configured, for example, the primary electron beam 1 from an electron gun (not shown) energized with an acceleration voltage of +1 KV is applied to the acceleration tube electrode 30 to which, for example, +5 KV is applied. The energy is energized at +6 KV in the acceleration field, and, for example, passes through the deceleration electrode 6 to which +5 KV is applied in the same energy energized state. Such a primary electron beam is decelerated by the decelerating lens L formed between the decelerating electrode and the sample at the ground potential, and the sample 3 is energized with an acceleration voltage of +1 KV. Will be incident on. At this time, the primary electron beam 1 is focused on the sample 3 by the magnetic lens 2, and a predetermined region on the sample is scanned by the scanning coil 4.

この様な走査により前記試料3から放出された、例えば、数eV〜数10eVの二次電子は、前記試料3と減速電極6との間に形成される加速場の加速レンズLにより加速されて、該減速電極の開口部を介して前記加速管電極5内に入る。この時、前記二次電子は前記減速電極6と加速管電極30の加速場で+5KVでエネルギー付勢され、前記磁界レンズ2の磁場により一旦集束されてから、発散して行く。   For example, secondary electrons of several eV to several tens eV emitted from the sample 3 by such scanning are accelerated by an acceleration lens L of an acceleration field formed between the sample 3 and the deceleration electrode 6. , And enters the acceleration tube electrode 5 through the opening of the deceleration electrode. At this time, the secondary electrons are energized at +5 KV in the acceleration field of the deceleration electrode 6 and the acceleration tube electrode 30 and once converged by the magnetic field of the magnetic lens 2 and then diverge.

さて、該発散された二次電子の内、比較的発散角の大きい(放出角の比較的大きい)二次電子60aは前記第1シンチレータ38aに当たり、該シンチレーターは該二次電子量に対応する量の光を発生する。該光は前記反射板37で反射し、前記第1ライトガイド36aを通って前記第1光電子増倍管40aに検出される。該光電子増倍管は検出された光を電気信号に変換し、増幅器(図示せず)、AD変換器(図示せず)を介して前記制御装置8に送る。該制御装置は前記表示装置13に指令を送り、前記表示装置13の表示画面には、前記二次電子信号に基づく試料の二次電子像が表示される。   Of the emitted secondary electrons, secondary electrons 60a having a relatively large divergence angle (relatively large emission angle) hit the first scintillator 38a, and the scintillator corresponds to the amount of secondary electrons. Generating light. The light is reflected by the reflecting plate 37 and is detected by the first photomultiplier tube 40a through the first light guide 36a. The photomultiplier tube converts the detected light into an electrical signal and sends it to the control device 8 via an amplifier (not shown) and an AD converter (not shown). The control device sends a command to the display device 13, and a secondary electron image of the sample based on the secondary electron signal is displayed on the display screen of the display device 13.

一方、前記発散された二次電子の内、比較的発散角の小さい(放出角の小さい)二次電子や光軸Oを含む該光軸の極近傍に沿って発散する二次電子60bは前記貫通管39内を通過し、前記アインツェルレンズ32に差し掛かる。尚、前記比較的発散角の小さい二次電子の中で、相対的に発散角の大きなものの中には、前記貫通管39内に入らないものがある。その様なものも前記貫通管39内に入れるために、前記減速電極6に印加される電圧を変化させて、二次電子の軌道を変える様にしても良い。   On the other hand, among the scattered secondary electrons, secondary electrons 60b that diverge along the very vicinity of the optical axis including secondary electrons having a relatively small divergence angle (small emission angle) and the optical axis O are It passes through the through pipe 39 and reaches the Einzel lens 32. Among the secondary electrons having a relatively small divergence angle, some of the relatively large divergence angles do not enter the through tube 39. In order to put such a thing into the through-tube 39, the voltage applied to the deceleration electrode 6 may be changed to change the trajectory of the secondary electrons.

さて、前記アインツェルレンズ32の中央電極32cには、前記制御装置8の指令に従って前記可変電源33から正又は負の電圧が印加されている。その為、前記アインツェルレンズ32に差し掛かった二次電子は該アインツェルレンズのレンズ作用によって、前記加速管電極30内の光軸O上に集束する。   A positive or negative voltage is applied to the central electrode 32 c of the Einzel lens 32 from the variable power source 33 in accordance with a command from the control device 8. Therefore, the secondary electrons approaching the Einzel lens 32 are focused on the optical axis O in the acceleration tube electrode 30 by the lens action of the Einzel lens.

この様に一旦集束した二次電子は、その後、発散して上昇し、前記加速管電極先端に取り付けられた電極31の孔を通過する。   The secondary electrons once focused in this manner diverge and rise thereafter, and pass through the hole of the electrode 31 attached to the tip of the acceleration tube electrode.

この時、前記反射電極34には、前記制御装置8の指令に基づいて前記可変電源35から、試料放出時の二次電子のエネルギー値(数eV〜数10eV)の最大エネルギー値を考慮したマイナス数10Vが印加されている。   At this time, the reflective electrode 34 is minus in consideration of the maximum energy value of secondary electrons (several eV to several 10 eV) at the time of sample emission from the variable power source 35 based on the command of the control device 8. Several tens of volts are applied.

すると、前記電極31の孔を通過した二次電子は、該電極と反射電極34との間に形成されている減速レンズWの作用を受けて減速し、前記試料放出時の二次電子のエネルギー値(数eV〜数10eV)近くまで減速され、前記反射電極34に接近する。   Then, the secondary electrons that have passed through the hole of the electrode 31 are decelerated by the action of the deceleration lens W formed between the electrode and the reflective electrode 34, and the energy of the secondary electrons when the sample is emitted. It is decelerated to a value (several eV to several tens eV) and approaches the reflective electrode 34.

この様に反射電極34に接近した二次電子は、今度は、該反射電極により前記試料3方向に追い返されると同時に、該反射電極と前記電極31との間に形成されている加速レンズW(前記二次電子に対して減速場として作用する前記減速レンズWは前記反射電極34で追い返される二次電子から見ると加速レンズとして作用する)により加速されて、前記電極31の孔を通過して前記加速管電極30内に入り、該加速管電極の加速場により+5KVでエネルギー付勢される。   The secondary electrons approaching the reflective electrode 34 in this way are repulsed in the direction of the sample 3 by the reflective electrode, and at the same time, the acceleration lens W ( The deceleration lens W acting as a deceleration field for the secondary electrons acts as an acceleration lens when viewed from the secondary electrons repelled by the reflective electrode 34) and passes through the hole of the electrode 31. It enters the accelerator tube electrode 30 and is energized at +5 KV by the acceleration field of the accelerator tube electrode.

そして、該二次電子は前記第1シンチレータ38bに当たり、該シンチレーターは該二次電子量に対応する量の光を発生する。該光は前記反射板37で反射し、前記第2ライトガイド36bを通って前記第2光電子増倍管40bに検出される。該光電子増倍管は検出された光を電気信号に変換し、増幅器(図示せず)、AD変換器(図示せず)を介して前記制御装置8に送る。該制御装置は前記表示装置13に指令を送り、前記表示装置13の表示画面には、前記二次電子信号に基づく試料の二次電子像が表示される。   The secondary electrons hit the first scintillator 38b, and the scintillator generates an amount of light corresponding to the amount of secondary electrons. The light is reflected by the reflection plate 37, passes through the second light guide 36b, and is detected by the second photomultiplier tube 40b. The photomultiplier tube converts the detected light into an electrical signal and sends it to the control device 8 via an amplifier (not shown) and an AD converter (not shown). The control device sends a command to the display device 13, and a secondary electron image of the sample based on the secondary electron signal is displayed on the display screen of the display device 13.

この様に本実施形態においては、光軸Oの極近傍に沿って放出される二次電子(光軸Oの極近傍に沿って発散される二次電子)についても、二次電子検出器により検出することが出来きるので、高画質の二次電子像を得ることが出来る。   Thus, in the present embodiment, secondary electrons emitted along the vicinity of the optical axis O (secondary electrons emitted along the vicinity of the optical axis O) are also detected by the secondary electron detector. Since it can be detected, a high-quality secondary electron image can be obtained.

尚、前記光電子増倍管40aからの二次電子信号(比較的発散角の大きい(放出角の大きい)二次電子に基づく信号)に基づく二次電子像と前記光電子増倍管40bからの二次電子信号(比較的発散角の小さい(放出角の小さい)二次電子や光軸Oを含む該光軸の極近傍に沿って発散する二次電子)に基づく二次電子像を別々表示する様にしたが、両二次電子信号を加算し、該加算信号に基づく二次電子像を表示させる様にしても良い。   A secondary electron image based on a secondary electron signal from the photomultiplier tube 40a (a signal based on a secondary electron having a relatively large divergence angle (a large emission angle)) and a secondary electron image from the photomultiplier tube 40b. Secondary electron images based on secondary electron signals (secondary electrons having a relatively small divergence angle (small emission angle) and secondary electrons radiating along the vicinity of the optical axis including the optical axis O) are separately displayed. However, the secondary electron signals may be added and a secondary electron image based on the added signal may be displayed.

又、前記反射電極34には試料放出時の二次電子のエネルギー値(数eV〜数10eV)の最大エネルギー値を考慮したマイナス数10Vを印加し、該反射電極に向かってくる種々のエネルギーを有する二次電子を全て該反射電極により追い返す様にしたが、該反射電極に印加される負の電圧値を、得たいエネルギー値域の二次電子を考慮して可変する様にしても良い。例えば、AeVからBeVの範囲のエネルギー値を有する二次電子が得たければ、前記反射電極34にマイナスA′Vを印加してAeV以下のエネルギー値を有する二次電子を得、次に、前記反射電極34にマイナスB′Vを印加してBeV以下のエネルギー値を有する二次電子を得た後、後者の二次電子と前者の二次電子の差分を求めればよい。   Further, a minus several tens of volts in consideration of the maximum energy value of secondary electrons (several eV to several tens of eV) at the time of sample emission is applied to the reflective electrode 34, and various energy coming toward the reflective electrode is applied. Although all the secondary electrons are repelled by the reflective electrode, the negative voltage value applied to the reflective electrode may be varied in consideration of the secondary electrons in the energy value range to be obtained. For example, if a secondary electron having an energy value in the range of AeV to BeV is to be obtained, a negative A′V is applied to the reflective electrode 34 to obtain a secondary electron having an energy value equal to or lower than AeV. After applying negative B′V to the reflective electrode 34 to obtain secondary electrons having an energy value of BeV or less, the difference between the latter secondary electrons and the former secondary electrons may be obtained.

又、図3に示す例では、第1ライトガイド36aと第2ライトガイド36bそれぞれの斜めカット状の先端面を、両面反射面を成す光反射板37を介して突き合わし、前記第1シンチレータ38aの中央部の孔,前記第1ライトガイド36aと第2ライトガイド36bの突き合わせ面の中央部の孔,及び、前記第2シンチレータ38bの中央部の孔に沿う様に貫通管39を該孔内に嵌入する様に成したが、図4(図中、前記図3にて使用した記号と同一記号の付されたものは同一構成要素を示す)に示す様に、前記第1ライトガイド36aと第2ライトガイド36bの各先端面を突き合わさずに、前記アインツェルレンズ32を挟んで、下方に第1ライトガイド36a′を、上方に第2ライトガイド36b′を配置する様にしても良い。尚、この場合、前記試料3に対向する側が反射面を成す光反射板37a,電子銃(図示せず)に対向する側が反射面を成す反射板37bが、それぞれ、前記第1,第2ライトガイドの斜めカット状の先端面に設けられ、見かけ上、分割された形の貫通管39a,39bが、図に示す様に、該第1,第2ライトガイドの先端部に設けられる。   In the example shown in FIG. 3, the obliquely cut end surfaces of the first light guide 36a and the second light guide 36b are abutted with each other via a light reflecting plate 37 that forms a double-side reflecting surface, and the first scintillator 38a. The through-tube 39 in the hole so as to be along the hole in the center of the first light guide 36a and the hole in the center of the butted surface of the second light guide 36b and the hole in the center of the second scintillator 38b. The first light guide 36a and the first light guide 36a are arranged as shown in FIG. 4 (in the figure, the same reference numerals as those used in FIG. 3 indicate the same components). The first light guide 36a 'may be disposed below and the second light guide 36b' may be disposed above the Einzel lens 32 with the respective end surfaces of the second light guide 36b not being in contact with each other. . In this case, the light reflecting plate 37a having a reflecting surface on the side facing the sample 3 and the reflecting plate 37b having a reflecting surface on the side facing the electron gun (not shown) are respectively the first and second lights. As shown in the drawing, through-tubes 39a and 39b, which are provided on the front end surface of the guide in an oblique cut shape and are apparently divided, are provided at the front end portions of the first and second light guides.

この様な構成の装置では、比較的発散角の大きい(放出角の大きい)二次電子60aに基づく信号は、前記第1シンチレータ38a,反射板37a,及び前記第1ライトガイド36a´を通じて前記第1光電子増倍管40aにて得られ、光軸Oを含む該光軸の極近傍に沿って発散する二次電子を含む比較的発散角の小さい(放出角の小さい)二次電子60bに基づく信号は、前記貫通管39a,39b,反射電極34,第2シンチレータ38b,反射板37b,及び前記第2ライトガイド36b´を通じて前記第2光電子増倍管40bにて得られる。   In the apparatus having such a configuration, a signal based on the secondary electrons 60a having a relatively large divergence angle (a large emission angle) is transmitted through the first scintillator 38a, the reflector 37a, and the first light guide 36a ′. Based on secondary electrons 60b obtained by a single photomultiplier tube 40a and including secondary electrons that diverge along the vicinity of the optical axis including the optical axis O and have a relatively small divergence angle (small emission angle). The signal is obtained in the second photomultiplier tube 40b through the through tubes 39a and 39b, the reflective electrode 34, the second scintillator 38b, the reflective plate 37b, and the second light guide 36b ′.

又、シンチレータ38a,38b、ライトガイド36a,36b、光反射板37、光電子増倍管40a,40bを使用せず、その代わりに、図5に示す様に(図中、前記図3にて使用した記号と同一記号の付されたものは同一構成要素を示す)、マイクロチャンネルプレートの如き環状の電子検出増幅器200a(第1電子検出増幅器と称す),200b(第2電子検出増幅器と称す)を用い、中央の空間部に貫通管201を嵌入させて、前記アインツェルレンズ32下の光軸O上に上下に配置しても良い。尚、この場合、前記電子検出増幅器200a,200bは増幅器(図示せず)、電流電圧変換器(図示せず)、AD変換器(図示せず)を介して前記制御装置8に繋がれている。   Further, the scintillators 38a and 38b, the light guides 36a and 36b, the light reflecting plate 37, and the photomultiplier tubes 40a and 40b are not used. Instead, as shown in FIG. The same reference numerals as those shown in FIG. 1 indicate the same components), and an annular electronic detection amplifier 200a (referred to as a first electronic detection amplifier) and 200b (referred to as a second electronic detection amplifier) such as a microchannel plate. Alternatively, the through-tube 201 may be fitted into the central space, and may be arranged vertically on the optical axis O below the Einzel lens 32. In this case, the electronic detection amplifiers 200a and 200b are connected to the control device 8 via amplifiers (not shown), current-voltage converters (not shown), and AD converters (not shown). .

この様な構成の装置では、比較的発散角の大きい(放出角の大きい)二次電子60aに基づく信号は、前記第1電子検出増幅器200aで得られ、光軸Oを含む該光軸の極近傍に沿って発散する二次電子を含む比較的発散角の小さい(放出角の小さい)二次電子60bに基づく信号は、前記貫通管201及び反射電極34を通じて前記第2電子検出増幅器200bにて得られる。   In the apparatus having such a configuration, a signal based on the secondary electrons 60a having a relatively large divergence angle (a large emission angle) is obtained by the first electron detection amplifier 200a and includes the optical axis O including the optical axis O. A signal based on a secondary electron 60b having a relatively small divergence angle (a small emission angle) including secondary electrons diverging along the vicinity is transmitted through the through-tube 201 and the reflective electrode 34 to the second electron detection amplifier 200b. can get.

尚、前記例におけるアインツェルレンズ32の代わりに、回転対称レンズである磁界コイルを設けても良い。   A magnetic field coil that is a rotationally symmetric lens may be provided instead of the Einzel lens 32 in the above example.

又、前記例では前記ステージ7を大地に接地して前記試料3をアース電位にするものを示したが、該ステージに電圧を印加して、前記加速管電極30と試料との間に減速レンズ(加速レンズ)を形成する様にしても良い。   In the above example, the stage 7 is grounded to the ground and the sample 3 is set to the ground potential. However, a voltage is applied to the stage, and a deceleration lens is provided between the acceleration tube electrode 30 and the sample. (Acceleration lens) may be formed.

又、前記例では二次電子を検出して試料の二次電子像を表示するものを示したが、反射電子を検出して試料の反射電子像を表示する様にしても良い。   In the above example, the secondary electrons are detected to display the secondary electron image of the sample. However, the reflected electrons may be detected to display the reflected electron image of the sample.

又、前記例では、本発明の荷電粒子ビーム装置の一例として走査型電子顕微鏡を示したが、本発明は、他の荷電粒子ビーム装置、例えば、集束イオンビーム等にも応用可能である。   In the above example, a scanning electron microscope is shown as an example of the charged particle beam apparatus of the present invention. However, the present invention can also be applied to other charged particle beam apparatuses such as a focused ion beam.

尚、集束イオンビーム装置に応用した場合には、試料からの二次イオンを検出して試料の二次イオン像を表示する様に成しても良い。この場合には、前記反射電極34には試料からの二次イオン(通常、正の二次イオン)を試料方向に追い返すために、正の電圧が印加される。又、当然のことながら、検出系には二次電子検出器或いは反射電子検出器に代わって二次イオン検出器が用いられる。   When applied to a focused ion beam apparatus, secondary ions from the sample may be detected and a secondary ion image of the sample may be displayed. In this case, a positive voltage is applied to the reflective electrode 34 in order to drive back secondary ions (usually positive secondary ions) from the sample toward the sample. As a matter of course, a secondary ion detector is used in the detection system in place of the secondary electron detector or the backscattered electron detector.

1 一次電子ビーム
2 磁界レンズ
3 試料
4 走査コイル
5、30 加速管電極
6 減速電極
7 ステージ
8 制御装置
9 走査制御装置
10 磁界レンズ制御装置
11a,11b 二次電子検出器
12a,12b 二次電子
13 表示装置
14、15 可変電源
31 電極
32 アインツェルレンズ
33 可変電源
34 反射電極
35 二次電子検出ユニット
36a,36b,36a′,36b′ ライトガイド
37,37a,37b 反射板
38a,38b シンチレータ
39,39a,39b 貫通管
40a,40b 光電子増倍管
60a,60b 二次電子
200a,200b 電子検出増幅器
201 貫通管
DESCRIPTION OF SYMBOLS 1 Primary electron beam 2 Magnetic lens 3 Sample 4 Scan coil 5, 30 Acceleration tube electrode 6 Deceleration electrode 7 Stage 8 Controller 9 Scan controller
DESCRIPTION OF SYMBOLS 10 Magnetic lens control apparatus 11a, 11b Secondary electron detector 12a, 12b Secondary electron 13 Display apparatus 14, 15 Variable power supply 31 Electrode 32 Einzel lens 33 Variable power supply 34 Reflective electrode 35 Secondary electron detection unit 36a, 36b, 36a ', 36b' Light guide
37, 37a, 37b Reflector
38a, 38b scintillator
39, 39a, 39b Through pipe
40a, 40b Photomultiplier tubes 60a, 60b Secondary electrons 200a, 200b Electron detection amplifier 201 Through tube

Claims (6)

荷電粒子ビーム発生源、該荷電粒子ビーム源からの荷電粒子ビームを加速するための管状の加速レンズ系、該荷電粒子ビーム源から荷電粒子ビームを試料上に集束する集束レンズ系、該加速及び集束された荷電粒子ビームを減速する減速レンズ系、該荷電粒子ビームで前記試料上を走査させるための走査レンズ系、該走査により試料から発生する二次荷電粒子を検出する検出系、及び、該検出された二次荷電粒子に基づいて前記試料の二次荷電粒子像を表示する表示手段を備えた荷電粒子ビーム装置において、前記荷電粒子ビーム源と加速レンズ系との間に、前記試料からの二次荷電粒子を該試料方向に追い返すための電圧が印加されるドーナツ形状の反射電極を,前記加速レンズ系の管内に前記試料からの二次荷電粒子を前記反射電極の手前の該管内光軸上に集束させる第2の集束レンズ系をそれぞれ配置し、前記検出系を、前記荷電粒子ビーム源からの荷電粒子ビームを通過させる開口を有し、前記試料からの二次荷電粒子を検出する第1検出器と、前記荷電粒子ビーム源からの荷電粒子ビームを通過させる開口を有し、前記反射電極によって前記試料方向に追い返された二次荷電粒子を検出する第2検出器とから成した荷電粒子ビーム装置。   Charged particle beam generation source, tubular acceleration lens system for accelerating the charged particle beam from the charged particle beam source, focusing lens system for focusing the charged particle beam from the charged particle beam source onto the sample, the acceleration and focusing A decelerating lens system for decelerating the charged particle beam, a scanning lens system for scanning the sample with the charged particle beam, a detection system for detecting secondary charged particles generated from the sample by the scanning, and the detection In a charged particle beam apparatus having display means for displaying a secondary charged particle image of the sample based on the secondary charged particles, a secondary particle from the sample is interposed between the charged particle beam source and an acceleration lens system. A doughnut-shaped reflective electrode to which a voltage for repelling secondary charged particles in the direction of the sample is applied, and secondary charged particles from the sample are placed in the tube of the acceleration lens system. A second focusing lens system for focusing on the optical axis of the tube, and an aperture through which the charged particle beam from the charged particle beam source passes, and the secondary charging from the sample. A first detector for detecting particles, and a second detector for detecting secondary charged particles repelled in the direction of the sample by the reflective electrode, having an aperture through which the charged particle beam from the charged particle beam source passes. A charged particle beam system consisting of 前記第1検出器を、先端が斜めにカットされ、先端部下面にドーナッ状のシンチレーターが取り付けられた第1ライトガイドと該ライトガイドからの光信号を電気信号に変換する光電子増倍管から成し、前記第2検出器を、先端が斜めにカットされ、先端部上面にドーナッ状のシンチレーターが取り付けられた第2ライトガイドと該ライトガイドからの光信号を電気信号に変換する光電子増倍管から成し、前記各ライトガイドの先端面をドーナツ形状の光反射板を介して突き合わせた請求項1記載の荷電粒子ビーム装置。   The first detector includes a first light guide whose tip is cut obliquely and a doughnut-shaped scintillator is attached to the lower surface of the tip, and a photomultiplier tube that converts an optical signal from the light guide into an electric signal. The second detector includes a second light guide whose tip is cut obliquely and a donut-shaped scintillator is attached to the top of the tip, and a photomultiplier tube that converts an optical signal from the light guide into an electrical signal. The charged particle beam device according to claim 1, wherein the tip surfaces of the light guides are abutted via a donut-shaped light reflecting plate. 前記第1検出器は、先端が斜めにカットされ、先端部下面にドーナッ状のシンチレーターが取り付けられ、前記カット面にドーナツ形状の光反射板が取り付けられた第1ライトガイドと該ライトガイドからの光信号を電気信号に変換する光電子増倍管から成し、前記第2検出器は、先端が斜めにカットされ、先端部上面にドーナッ状のシンチレーターが取り付けられ、前記カット面にドーナツ形状の光反射板が取り付けられた第2ライトガイドと該ライトガイドからの光信号を電気信号に変換する光電子増倍管から成し、前記第2集束レンズ系を挟んで、前者は前記試料側の前記加速系の管内に、後者は前記反射電極側の前記加速系の管内にそれぞれ配置した請求項1記載の荷電粒子ビーム装置。   The first detector includes a first light guide having a tip cut obliquely, a doughnut-shaped scintillator attached to the lower surface of the tip, and a donut-shaped light reflecting plate attached to the cut surface. The second detector comprises a photomultiplier tube for converting an optical signal into an electrical signal. The second detector has a tip cut obliquely, a donut-shaped scintillator attached to the top surface of the tip, and a donut-shaped light on the cut surface. The second light guide is provided with a reflector and a photomultiplier tube for converting an optical signal from the light guide into an electric signal. The former is the acceleration on the sample side with the second focusing lens system in between. The charged particle beam apparatus according to claim 1, wherein the latter is disposed in a tube of the system, and the latter is disposed in the tube of the acceleration system on the reflective electrode side. 前記第1検出器と第2検出器を共に電子増幅器から成し、前者の電子増幅器を前記試料側の前記加速系の管内に、後者の電子増幅器を前記反射電極側の前記加速系の管内にそれぞれ配置したことを特徴とする請求項1記載の荷電粒子ビーム装置   The first detector and the second detector are both composed of an electronic amplifier. The former electronic amplifier is placed in the tube of the acceleration system on the sample side, and the latter electronic amplifier is placed in the tube of the acceleration system on the reflective electrode side. 2. The charged particle beam apparatus according to claim 1, wherein each of the charged particle beam apparatuses is arranged. 前記第2集束レンズ系はアインツェルレンズから成る請求項1記載の荷電粒子ビーム装置。   The charged particle beam apparatus according to claim 1, wherein the second focusing lens system comprises an Einzel lens. 前記電子増幅器はマイクロチャンネルプレートである請求項4記載の荷電粒子ビーム装置。 The charged particle beam apparatus according to claim 4, wherein the electronic amplifier is a microchannel plate.
JP2009026833A 2009-02-09 2009-02-09 Charged particle beam equipment Active JP5280238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009026833A JP5280238B2 (en) 2009-02-09 2009-02-09 Charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009026833A JP5280238B2 (en) 2009-02-09 2009-02-09 Charged particle beam equipment

Publications (2)

Publication Number Publication Date
JP2010182596A true JP2010182596A (en) 2010-08-19
JP5280238B2 JP5280238B2 (en) 2013-09-04

Family

ID=42764013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009026833A Active JP5280238B2 (en) 2009-02-09 2009-02-09 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP5280238B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199052A (en) * 2011-03-22 2012-10-18 Jeol Ltd Electron detection mechanism and charged particle beam device equipped with the same
JP2013058314A (en) * 2011-09-07 2013-03-28 Hitachi High-Technologies Corp Scanning electron microscope
WO2013129125A1 (en) * 2012-02-28 2013-09-06 株式会社 日立ハイテクノロジーズ Scanning electron microscope
WO2017080146A1 (en) * 2015-11-10 2017-05-18 华中科技大学 Method and device for simultaneously measuring electron and ion velocity images

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955181A (en) * 1995-08-11 1997-02-25 Jeol Ltd Scanning electron microscope
JP2005129345A (en) * 2003-10-23 2005-05-19 Toshiba Corp Charged particle beam apparatus and charged particle detecting method
JP2008198471A (en) * 2007-02-13 2008-08-28 Jeol Ltd Charged particle beam device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955181A (en) * 1995-08-11 1997-02-25 Jeol Ltd Scanning electron microscope
JP2005129345A (en) * 2003-10-23 2005-05-19 Toshiba Corp Charged particle beam apparatus and charged particle detecting method
JP2008198471A (en) * 2007-02-13 2008-08-28 Jeol Ltd Charged particle beam device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199052A (en) * 2011-03-22 2012-10-18 Jeol Ltd Electron detection mechanism and charged particle beam device equipped with the same
EP2503586A3 (en) * 2011-03-22 2014-12-31 JEOL Ltd. Electron detecting mechanism and charged particle beam system equipped therewith
JP2013058314A (en) * 2011-09-07 2013-03-28 Hitachi High-Technologies Corp Scanning electron microscope
CN103733299A (en) * 2011-09-07 2014-04-16 株式会社日立高新技术 Scanning electron microscope
WO2013129125A1 (en) * 2012-02-28 2013-09-06 株式会社 日立ハイテクノロジーズ Scanning electron microscope
JP2013178879A (en) * 2012-02-28 2013-09-09 Hitachi High-Technologies Corp Scanning electron microscope
US9305745B2 (en) 2012-02-28 2016-04-05 Hitachi High-Technologies Corporation Scanning electron microscope
WO2017080146A1 (en) * 2015-11-10 2017-05-18 华中科技大学 Method and device for simultaneously measuring electron and ion velocity images

Also Published As

Publication number Publication date
JP5280238B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP4037533B2 (en) Particle beam equipment
EP0872873B1 (en) Scanning electron microscope
US7425701B2 (en) Electron-beam device and detector system
CN111837214A (en) Scanning electron microscope objective lens system and sample detection method
JP4977509B2 (en) Scanning electron microscope
US6501077B1 (en) Scanning electron microscope
JP2010055756A (en) Method of irradiating charged corpuscular particle beam, and charged corpuscular particle beam apparatus
EP1288996B1 (en) Particle beam apparatus
US3717761A (en) Scanning electron microscope
JP5280238B2 (en) Charged particle beam equipment
JP2008198471A (en) Charged particle beam device
WO2019064496A1 (en) Scanning electron microscope
US7645988B2 (en) Substrate inspection method, method of manufacturing semiconductor device, and substrate inspection apparatus
JP2003068241A (en) Scanning electron beam device
JPH10302705A (en) Scanning electron microscope
US6710340B2 (en) Scanning electron microscope and method of detecting electrons therein
JP5478683B2 (en) Charged particle beam irradiation method and charged particle beam apparatus
JP2008004329A (en) Charged particle beam device
JP3432091B2 (en) Scanning electron microscope
JP2002025492A (en) Method and apparatus for imaging sample using low profile electron detector for charged particle beam imaging system containing electrostatic mirror
JP2007250223A (en) Scanning electron microscope
JP4792074B2 (en) Substrate inspection method and substrate inspection apparatus
CN116646228B (en) Fast focusing scanning deflection device and scanning electron microscope
JPH03295141A (en) Detector
JP2001057172A (en) Scanning electron microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5280238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150