JP2010180788A - Internal combustion engine having plasma igniter - Google Patents

Internal combustion engine having plasma igniter Download PDF

Info

Publication number
JP2010180788A
JP2010180788A JP2009025313A JP2009025313A JP2010180788A JP 2010180788 A JP2010180788 A JP 2010180788A JP 2009025313 A JP2009025313 A JP 2009025313A JP 2009025313 A JP2009025313 A JP 2009025313A JP 2010180788 A JP2010180788 A JP 2010180788A
Authority
JP
Japan
Prior art keywords
ignition device
discharge
internal combustion
motoring
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009025313A
Other languages
Japanese (ja)
Other versions
JP5035262B2 (en
Inventor
Daichi Okumura
大地 奥村
Koichi Nakada
浩一 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009025313A priority Critical patent/JP5035262B2/en
Publication of JP2010180788A publication Critical patent/JP2010180788A/en
Application granted granted Critical
Publication of JP5035262B2 publication Critical patent/JP5035262B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine having a plasma igniter capable of miniaturizing a power source part by lowering discharge voltage required in cold starting. <P>SOLUTION: In the cold starting when the engine temperature is the preset temperature or lower (Step 102), motoring is performing for starting discharge of the plasma igniter before starting fuel injection (Step 104), and an intake quantity is reduced more than after starting the fuel injection when performing the motoring (Step 103). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、プラズマ点火装置を備える内燃機関に関する。   The present invention relates to an internal combustion engine including a plasma ignition device.

内燃機関において、点火装置により気筒内全体の均質混合気又は気筒内の一部に存在する混合気を確実に着火させなければならない。しかしながら、点火ギャップに火花を発生させる一般的な点火装置は、混合気の一点を着火させるものであり、それほど高い着火性を有してはいない。   In an internal combustion engine, it is necessary to reliably ignite a homogeneous mixture in the entire cylinder or a mixture existing in a part of the cylinder by an ignition device. However, a general ignition device that generates a spark in the ignition gap ignites one point of the air-fuel mixture and does not have a very high ignitability.

着火性に優れた点火装置として、プラズマジェットを噴射するプラズマ点火装置が提案されている(例えば、特許文献1参照)。プラズマ点火装置は、絶縁体側壁により形成されたチャンバと、チャンバの一端側に配置された中心電極と、チャンバの他端側に配置された接地電極とを具備し、中心電極と接地電極との間に電圧を印加して発生させた放電によってチャンバ内のガスをプラズマ化させ、こうしてチャンバ内の高温高圧のプラズマをプラズマジェットとしてチャンバと気筒内とを連通する噴孔から噴射するものであり、プラズマジェットの断面積に相当する混合気の所定面積を同時に着火させることによって、高い着火性を実現することができる。   As an ignition device having excellent ignitability, a plasma ignition device that injects a plasma jet has been proposed (see, for example, Patent Document 1). The plasma ignition device includes a chamber formed by an insulator side wall, a center electrode disposed on one end side of the chamber, and a ground electrode disposed on the other end side of the chamber. The gas in the chamber is turned into plasma by the discharge generated by applying a voltage between them, and thus the high-temperature and high-pressure plasma in the chamber is injected as a plasma jet from the nozzle hole communicating between the chamber and the cylinder, High ignitability can be realized by simultaneously igniting a predetermined area of the air-fuel mixture corresponding to the cross-sectional area of the plasma jet.

特開平06−066236JP 06-066236

このようなプラズマ点火装置において、冷間始動時にはチャンバ内の温度が低く、確実に放電を発生させるためには非常に高い放電電圧が必要とされ、この非常に高い放電電圧を発生させるためにプラズマ点火装置の電源部は大型化されていた。   In such a plasma ignition device, the temperature in the chamber is low at the time of cold start, and a very high discharge voltage is required to surely generate a discharge, and plasma is generated to generate this very high discharge voltage. The power unit of the ignition device has been enlarged.

従って、本発明の目的は、冷間始動時に必要な放電電圧を低くして電源部の小型化を可能としたプラズマ点火装置を備える内燃機関を提供することである。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an internal combustion engine including a plasma ignition device capable of reducing the discharge voltage required at the time of cold start and reducing the size of the power supply unit.

本発明による請求項1に記載のプラズマ点火装置を備える内燃機関は、機関温度が設定温度以下である場合の冷間始動時において、燃料噴射を開始する前にプラズマ点火装置の放電を開始するモータリングを実施し、前記モータリングの実施中には燃料噴射の開始後に比較して吸気量を減少させることを特徴とする。   An internal combustion engine comprising the plasma ignition device according to claim 1 of the present invention is a motor that starts discharge of the plasma ignition device before starting fuel injection during cold start when the engine temperature is equal to or lower than a set temperature. Ring, and the amount of intake air is reduced during the motoring compared to after the start of fuel injection.

本発明による請求項2に記載のプラズマ点火装置を備える内燃機関は、請求項1に記載のプラズマ点火装置を備える内燃機関において、前記モータリングの実施中には燃料噴射の開始後に比較してスロットル弁の開度を小さくして吸気量を減少させることを特徴とする。   An internal combustion engine comprising the plasma ignition device according to claim 2 according to the present invention is an internal combustion engine comprising the plasma ignition device according to claim 1, wherein the throttle is compared with that after the start of fuel injection during the motoring. It is characterized in that the intake amount is reduced by reducing the opening of the valve.

本発明による請求項3に記載のプラズマ点火装置を備える内燃機関は、請求項1に記載のプラズマ点火装置を備える内燃機関において、前記モータリングの実施中には燃料噴射の開始後に比較して吸気弁の閉弁時期を遅角して吸気量を減少させることを特徴とする。   An internal combustion engine comprising the plasma ignition device according to claim 3 according to the present invention is an internal combustion engine comprising the plasma ignition device according to claim 1, wherein the intake air is compared to after the start of fuel injection during the motoring. The intake air amount is decreased by retarding the valve closing timing.

本発明による請求項1に記載のプラズマ点火装置を備える内燃機関によれば、機関温度が設定温度以下である場合の冷間始動時において、燃料噴射を開始する前にプラズマ点火装置の放電を開始するモータリングを実施し、モータリングの実施中には燃料噴射の開始後に比較して吸気量を減少させるようにしている。モータリング中は燃焼が実施されないために吸気量を減少させても特に問題はなく、吸気量の減少により圧縮行程末期の筒内圧力が低くなって放電し易くなり、冷間始動時であっても、放電のために非常に高い電圧は必要なく、モータリング中の比較的低い電圧での放電によってプラズマ点火装置が暖機されれば、燃料噴射が開始されて吸気量が増量されても、放電電圧は比較的低いままで確実な放電が可能となるために、冷間始動時のための非常に高い放電電圧は必要なく、プラズマ点火装置の電源部の小型化が可能となる。   According to the internal combustion engine comprising the plasma ignition device according to claim 1 of the present invention, at the cold start when the engine temperature is equal to or lower than the set temperature, the discharge of the plasma ignition device is started before the fuel injection is started. The motoring is performed, and the intake air amount is decreased during the motoring as compared with after the start of fuel injection. Since no combustion is performed during motoring, there is no particular problem even if the intake air amount is reduced, and the reduction of the intake air amount decreases the in-cylinder pressure at the end of the compression stroke, and discharge tends to occur. However, a very high voltage is not necessary for the discharge, and if the plasma ignition device is warmed up by a discharge at a relatively low voltage during motoring, even if the fuel injection is started and the intake air amount is increased, Since the discharge voltage remains relatively low and reliable discharge is possible, a very high discharge voltage for cold start is not required, and the power source unit of the plasma ignition device can be downsized.

本発明による請求項2に記載のプラズマ点火装置を備える内燃機関によれば、請求項1に記載のプラズマ点火装置を備える内燃機関において、モータリングの実施中には燃料噴射の開始後に比較してスロットル弁の開度を小さくして吸気量を減少させている。   According to the internal combustion engine comprising the plasma ignition device according to claim 2 of the present invention, the internal combustion engine comprising the plasma ignition device according to claim 1 is compared with after the start of fuel injection during motoring. The intake amount is reduced by reducing the opening of the throttle valve.

本発明による請求項3に記載のプラズマ点火装置を備える内燃機関によれば、請求項1に記載のプラズマ点火装置を備える内燃機関において、モータリングの実施中には燃料噴射の開始後に比較して吸気弁の閉弁時期を遅角して筒内へ吸入された吸気の一部を吸気ポートへ戻すことにより吸気量を減少させている。また、吸気弁の閉弁時期の遅角により実圧縮比も低下するために、圧縮行程末期の筒内圧力はさらに低下し、モータリング中に必要な放電電圧をさらに低くすることができる。   According to an internal combustion engine comprising the plasma ignition device according to claim 3 of the present invention, the internal combustion engine comprising the plasma ignition device according to claim 1 is compared with after the start of fuel injection during motoring. The intake amount is reduced by delaying the closing timing of the intake valve and returning a part of the intake air drawn into the cylinder to the intake port. Further, since the actual compression ratio also decreases due to the delay of the closing timing of the intake valve, the in-cylinder pressure at the end of the compression stroke further decreases, and the discharge voltage required during motoring can be further decreased.

本発明による内燃機関に取り付けられるプラズマ点火装置を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the plasma ignition apparatus attached to the internal combustion engine by this invention. 図1のプラズマ点火装置の先端部の拡大断面図である。It is an expanded sectional view of the front-end | tip part of the plasma ignition apparatus of FIG. 機関始動時の制御を示す第一フローチャートである。It is a 1st flowchart which shows the control at the time of engine starting. 機関始動時の制御を示す第二フローチャートである。It is a 2nd flowchart which shows the control at the time of engine starting.

図1は本発明による内燃機関に取り付けられるプラズマ点火装置を示す概略縦断面図である。同図において、1は点火装置の軸線方向に延在するように絶縁体2の側壁により形成されてプラズマを生成する円筒状のチャンバであり、3はチャンバ1の基端側に配置された中心電極であり、4はチャンバ1の先端側に配置された接地電極である。5はチャンバ1と気筒内とを連通する噴孔である。6は、接地電極4を電気的及び機械的に固定すると共に絶縁体2を覆う金属製のハウジングである。   FIG. 1 is a schematic longitudinal sectional view showing a plasma ignition device attached to an internal combustion engine according to the present invention. In the figure, 1 is a cylindrical chamber that is formed by a side wall of an insulator 2 so as to extend in the axial direction of the ignition device and generates plasma, and 3 is a center disposed on the base end side of the chamber 1. 4 is a ground electrode disposed on the front end side of the chamber 1. Reference numeral 5 denotes an injection hole that communicates the chamber 1 with the inside of the cylinder. A metal housing 6 fixes the ground electrode 4 electrically and mechanically and covers the insulator 2.

本実施形態においては、噴孔5は、接地電極4に形成されているが、これは本発明を限定するものではなく、絶縁体2とハウジング6とを貫通するように形成することも可能であり、また、接地電極4又は絶縁体2の形状によってはハウジング6だけを貫通するように形成することも可能である。   In the present embodiment, the nozzle hole 5 is formed in the ground electrode 4, but this does not limit the present invention, and can be formed to penetrate the insulator 2 and the housing 6. In addition, depending on the shape of the ground electrode 4 or the insulator 2, it can be formed so as to penetrate only the housing 6.

中心電極3及び接地電極4は、耐熱性と高い導電性とを有する金属、例えば、ステンレス等の鉄系金属、ニッケル系金属、又は、イリジウム系金属又はイリジウム合金とすることができる。中心電極3に対して接地電極4を絶縁するための絶縁体2の材質は、セラミックス(例えばアルミナセラミックス)とすることが好ましい。7は絶縁体2とハウジング6との間の隙間を密閉するための金属ガスケットである。   The center electrode 3 and the ground electrode 4 can be made of a metal having heat resistance and high conductivity, for example, an iron-based metal such as stainless steel, a nickel-based metal, an iridium-based metal, or an iridium alloy. The material of the insulator 2 for insulating the ground electrode 4 from the center electrode 3 is preferably ceramics (for example, alumina ceramics). 7 is a metal gasket for sealing a gap between the insulator 2 and the housing 6.

図2は図1の点火装置のチャンバ1近傍の拡大図である。チャンバ1内のガスをプラズマ化させるには、先ずは、中心電極3と接地電極4との間に高電圧を印加し、絶縁体2の側壁内面上に沿面放電S1を発生させる。こうして、チャンバ1内の沿面放電近傍のガス(混合気)をプラズマ化してイオン及び電子が生成されると、プラズマ化されたガスを通って比較的低い電圧での気中放電が可能となり、次いで、この気中放電S2を発生させる。   FIG. 2 is an enlarged view of the vicinity of the chamber 1 of the ignition device of FIG. In order to turn the gas in the chamber 1 into plasma, first, a high voltage is applied between the center electrode 3 and the ground electrode 4 to generate a creeping discharge S 1 on the inner surface of the side wall of the insulator 2. Thus, when ions and electrons are generated by converting the gas (mixture) in the vicinity of the creeping discharge in the chamber 1 into plasma, air discharge at a relatively low voltage is possible through the plasmaized gas, This air discharge S2 is generated.

こうして、気中放電S2によってチャンバ1内のガスの大部分がプラズマ化されると、チャンバ1内のガスは高温高圧となってプラズマジェットとして噴孔5から噴射され、気筒内の混合気を良好に着火させる。   Thus, when most of the gas in the chamber 1 is converted into plasma by the air discharge S2, the gas in the chamber 1 becomes high temperature and high pressure and is injected from the nozzle hole 5 as a plasma jet, and the mixture in the cylinder is excellent. Ignite.

ところで、沿面放電及び気中放電のいずれにおいても、冷間始動時のようにチャンバ1内の温度が低いと必要な放電電圧が非常に高くなり、前述のように沿面放電及び気中放電によりチャンバ1内のガスをプラズマ化する場合だけでなく、沿面放電又は気中放電だけによりチャンバ1内のガスをプラズマ化する場合においても、一般的には、冷間始動時に備えて非常に高い放電電圧を発生可能とするようにプラズマ点火装置の電源部は大型化されていた。   By the way, in any of the creeping discharge and the air discharge, the required discharge voltage becomes very high when the temperature in the chamber 1 is low as in the cold start, and the chamber is caused by the creeping discharge and the air discharge as described above. In general, not only when the gas in the chamber 1 is turned into plasma but also when the gas in the chamber 1 is turned into a plasma only by creeping discharge or air discharge, a very high discharge voltage is generally prepared for cold start. The power source portion of the plasma ignition device has been enlarged so that it can be generated.

これに対して本実施形態の内燃機関は、始動時において図3に示す第一フローチャートの制御を実施することにより冷間始動時に必要な放電電圧を比較的低くしてプラズマ点火装置の電源部の小型化を可能としている。第一フローチャートを以下に説明する。先ず、ステップ101において、始動時であるか否かが判断される。この判断が否定される時にはそのまま終了するが、肯定される時には、ステップ102において冷却水温THWが設定温度THW1以下であるか否かが判断される。   On the other hand, the internal combustion engine of the present embodiment performs the control of the first flowchart shown in FIG. 3 at the time of starting to relatively reduce the discharge voltage required at the time of cold starting, Miniaturization is possible. The first flowchart will be described below. First, in step 101, it is determined whether or not it is a start time. When this determination is denied, the process is terminated as it is. When the determination is affirmed, it is determined at step 102 whether or not the coolant temperature THW is equal to or lower than the set temperature THW1.

ステップ102の判断が否定される時には温間始動時であり、プラズマ点火装置においてチャンバ1内に放電を発生させるのにそれほど高い電圧は必要なく、ステップ105において、スロットル弁の開度Aは通常の始動時開度A1とされ、ステップ106において、最初に始動する気筒から燃料噴射を開始し、燃料噴射を開始した気筒から点火時期においてプラズマ点火装置による点火を開始する。ここで、最初に始動する気筒とは、例えば、吸気非同期ポート噴射の場合には最初に膨張行程となると判断された気筒であり、吸気同期ポート噴射の場合には最初に吸気行程となると判断された気筒であり、吸気行程筒内噴射の場合には最初に吸気行程となると判断された気筒であり、圧縮行程筒内噴射の場合には最初に圧縮行程となると判断された気筒である。   When the determination in step 102 is negative, it is a warm start, and the plasma ignition device does not require a very high voltage to generate a discharge in the chamber 1, and in step 105, the opening A of the throttle valve is a normal value. The starting opening is set to A1, and in step 106, fuel injection is started from the cylinder to be started first, and ignition by the plasma ignition device is started at the ignition timing from the cylinder that has started fuel injection. Here, the cylinder that starts first is, for example, a cylinder that is first determined to be in the expansion stroke in the case of the intake asynchronous port injection, and is determined to be the intake stroke in the first case in the case of the intake synchronous port injection. In the case of the intake stroke in-cylinder injection, the cylinder is determined to be the intake stroke first, and in the case of the compression stroke in-cylinder injection, the cylinder is determined to be the compression stroke first.

しかしながら、ステップ102の判断が肯定される時には冷間始動時であり、チャンバ1内の温度が低いために、そのままでは小型化された電源部により発生可能な電圧ではチャンバ1内に放電を発生させることはできない。それにより、本フローチャートでは、ステップ103において、スロットル弁の開度Aを通常の始動時開度A1から設定量aだけ小さくし、ステップ104において、燃料噴射を開始することなくスタータモータにより機関駆動して点火時期においてプラズマ点火装置のチャンバ1内の放電を開始するモータリングを実施する。   However, when the determination in step 102 is affirmative, it is a cold start and the temperature in the chamber 1 is low, so that a discharge can be generated in the chamber 1 at a voltage that can be generated by a miniaturized power supply unit. It is not possible. Accordingly, in this flowchart, in step 103, the throttle valve opening A is reduced by a set amount a from the normal starting opening A1, and in step 104, the engine is driven by the starter motor without starting fuel injection. Then, motoring for starting discharge in the chamber 1 of the plasma ignition device is performed at the ignition timing.

モータリング時においては、燃焼が実施されないためにスロットル弁の開度を小さくして吸気量を減少させても特に問題はなく、吸気量の減少により圧縮行程末期の点火時期における筒内圧力が低くなって放電し易くなるために、冷間始動時であっても、小型化された電源部により発生可能な電圧によりプラズマ点火装置のチャンバ1内に放電を発生させることができる。   During motoring, since combustion is not performed, there is no particular problem even if the throttle valve opening is reduced to reduce the intake air amount, and the in-cylinder pressure at the ignition timing at the end of the compression stroke is lowered due to the reduction of the intake air amount. Therefore, even during cold start, a discharge can be generated in the chamber 1 of the plasma ignition device by a voltage that can be generated by the miniaturized power supply unit.

こうして、各気筒において数回の点火時期での放電が実施されれば、各プラズマ点火装置のチャンバ1内の温度が高まり、筒内圧力が高くても小型化された電源部により発生可能な電圧でプラズマ点火装置のチャンバ1内に放電を発生させることができるようになり、ステップ105において、スロットル弁の開度Aは通常の始動時開度A1とされ、ステップ106において燃料噴射時期(例えば、吸気非同期ポート噴射の場合には膨張行程、吸気同期ポート噴射の場合には吸気行程、筒内噴射の場合には吸気行程又は圧縮行程)となっている気筒から燃料噴射を開始し、圧縮行程末期の点火時期においてプラズマ点火装置の点火を開始する。   Thus, if the discharge at several ignition timings is performed in each cylinder, the temperature in the chamber 1 of each plasma ignition device increases, and the voltage that can be generated by the reduced power supply unit even if the in-cylinder pressure is high. Thus, discharge can be generated in the chamber 1 of the plasma ignition device. In step 105, the opening A of the throttle valve is set to the normal starting opening A1, and in step 106, the fuel injection timing (for example, In the case of intake asynchronous port injection, fuel injection is started from the cylinder that is in the expansion stroke, in the case of intake synchronous port injection, the intake stroke, and in the case of in-cylinder injection, the end of the compression stroke. The ignition of the plasma ignition device is started at the ignition timing.

このような制御により、冷間始動時であっても、放電のために非常に高い電圧は必要なく、プラズマ点火装置の電源部の小型化が可能となる。第一フローチャートにおいて、スロットル弁の始動時開度A1は、早期暖機のために、温間始動時に比較して冷間始動時(THW<=THW1)には大きくするようにしても良く、また、冷却水温THWが低いほど大きくするようにしても良い。   Such a control does not require a very high voltage for discharging even during cold start, and allows the power source unit of the plasma ignition device to be downsized. In the first flowchart, the opening A1 at the time of starting the throttle valve may be set larger at the time of cold start (THW <= THW1) than at the time of warm start for early warm-up. The lower the coolant temperature THW, the larger the temperature may be.

図4は、図3に代えて実施される第二フローチャートであり、第一フローチャートとの違いについてのみ以下に説明する。第二フローチャートにおいては、ステップ203において、吸気弁の閉弁時期VCは、通常の始動時閉弁時期VC1から設定値bだけ遅角しており、また、温間始動時及びモータリングの終了後には、ステップ205において、吸気弁の閉弁時期VCは通常の始動時閉弁時期VC1としている。   FIG. 4 is a second flowchart implemented in place of FIG. 3, and only differences from the first flowchart will be described below. In the second flowchart, in step 203, the closing timing VC of the intake valve is retarded by the set value b from the normal starting closing timing VC1, and at the time of warm starting and after the end of motoring. In step 205, the intake valve closing timing VC is set to the normal starting valve closing timing VC1.

それにより、モータリング時においては、吸気弁の閉弁時期の遅角により、一部の吸気が吸気ポートへ戻されて吸気量が減少し、圧縮行程末期の点火時期における筒内圧力が低くなることに加えて、実圧縮比も低下して圧縮行程末期の点火時期における筒内圧力がさらに低くなって、さらに放電し易くなるために、冷間始動時であっても、さらに低い電圧でプラズマ点火装置のチャンバ1内に放電を発生させることができる。こうして、第二フローチャートの制御によれば、プラズマ点火装置の電源部のさらなる小型化も可能となる。   As a result, during motoring, due to the delay in the closing timing of the intake valve, a portion of the intake air is returned to the intake port and the intake air amount decreases, and the in-cylinder pressure at the ignition timing at the end of the compression stroke decreases. In addition, since the actual compression ratio also decreases and the in-cylinder pressure at the ignition timing at the end of the compression stroke becomes lower and discharge becomes easier, plasma is generated at a lower voltage even during cold start. A discharge can be generated in the chamber 1 of the ignition device. Thus, according to the control of the second flowchart, the power supply unit of the plasma ignition device can be further reduced in size.

第二フローチャートにおいて、可変動弁機構によっては、吸気弁の閉弁時期VCの遅角と同時に吸気弁の開弁時期も遅角されることとなるが、例えば、吸気弁が電磁又は油圧アクチュエータ等により駆動される場合には、吸気弁の閉弁時期だけを遅角するようにすることも可能である。   In the second flowchart, depending on the variable valve mechanism, the intake valve opening timing is also delayed at the same time as the intake valve closing timing VC. For example, the intake valve may be an electromagnetic or hydraulic actuator or the like. It is also possible to retard only the valve closing timing of the intake valve.

第一及び第二フローチャートの制御において、モータリング中におけるプラズマ点火装置の放電は、圧縮行程末期の点火時期だけとしたが、さらに、圧縮行程末期以外の時期(吸気行程、末期を除く圧縮行程、膨張行程、排気行程)は点火時期より筒内圧力が低く放電し易いために、追加してプラズマ点火装置の放電を実施しても良く、それにより、プラズマ点火装置のチャンバ1内の温度を早期に高めることができ、モータリング期間を短縮することができる。   In the control of the first and second flowcharts, the discharge of the plasma ignition device during motoring is only the ignition timing at the end of the compression stroke, but further, the timing other than the end of the compression stroke (the intake stroke, the compression stroke excluding the end, In the expansion stroke and the exhaust stroke), since the in-cylinder pressure is lower than the ignition timing and discharge is easy, the discharge of the plasma ignition device may be additionally performed, so that the temperature in the chamber 1 of the plasma ignition device is increased early. The motoring period can be shortened.

また、モーリング中においては、排気弁を閉弁させたままとすることが好ましい。それにより、圧縮行程において圧縮して温度を高めた筒内の吸気は、排気系に排出せず、排気行程末期の吸気弁の開弁により吸気系へ逆流するが、吸気行程において再び筒内へ吸入され次の圧縮行程において再び圧縮されて温度がさらに高められ、このように高められた吸気温度によりプラズマ点火装置のチャンバ1内の温度を早期に高めることができ、モータリング期間を短縮することができる。   Further, it is preferable to keep the exhaust valve closed during the mooring. As a result, the intake air in the cylinder, which has been compressed during the compression stroke and whose temperature has been increased, is not discharged into the exhaust system, but flows back into the intake system due to the opening of the intake valve at the end of the exhaust stroke. The air is sucked and compressed again in the next compression stroke to further increase the temperature, and the temperature in the chamber 1 of the plasma ignition device can be increased early by the intake air temperature thus increased, and the motoring period can be shortened. Can do.

また、モータリング中において吸気弁及び排気弁がいずれも開弁するバルブオーバーラップ期間を長くするようにすれば、圧縮行程において圧縮により温度が高められた吸気は、吸気系へ逆流して再び筒内へ吸入され、また、排気系へ排出しても一部は筒内へ戻され、筒内へ残留する量が増大するために、次の圧縮行程において再び圧縮されて温度がさらに高められ、このように高められた吸気温度によりプラズマ点火装置のチャンバ1内の温度を早期に高めることができ、モータリング期間を短縮することができる。   In addition, if the valve overlap period during which both the intake valve and the exhaust valve are opened during motoring is lengthened, the intake air whose temperature has been increased by the compression in the compression stroke flows back to the intake system and again becomes a cylinder. Even if it is sucked in and exhausted to the exhaust system, a part of it is returned into the cylinder, and the amount remaining in the cylinder increases, so that it is compressed again in the next compression stroke, and the temperature is further increased. The intake air temperature thus increased can raise the temperature in the chamber 1 of the plasma ignition device at an early stage, and the motoring period can be shortened.

1 チャンバ
2 絶縁体
3 中心電極
4 接地電極
5 噴孔
DESCRIPTION OF SYMBOLS 1 Chamber 2 Insulator 3 Center electrode 4 Ground electrode 5 Injection hole

Claims (3)

機関温度が設定温度以下である場合の冷間始動時において、燃料噴射を開始する前にプラズマ点火装置の放電を開始するモータリングを実施し、前記モータリングの実施中には燃料噴射の開始後に比較して吸気量を減少させることを特徴とするプラズマ点火装置を備える内燃機関。   At the time of cold start when the engine temperature is equal to or lower than the set temperature, motoring for starting the discharge of the plasma ignition device is performed before starting fuel injection, and after the start of fuel injection during the motoring, An internal combustion engine comprising a plasma ignition device characterized in that the intake air amount is reduced in comparison. 前記モータリングの実施中には燃料噴射の開始後に比較してスロットル弁の開度を小さくして吸気量を減少させることを特徴とする請求項1に記載のプラズマ点火装置を備える内燃機関。   2. The internal combustion engine having a plasma ignition device according to claim 1, wherein during the motoring, the amount of intake air is reduced by making the opening of the throttle valve smaller than after the start of fuel injection. 前記モータリングの実施中には燃料噴射の開始後に比較して吸気弁の閉弁時期を遅角して吸気量を減少させることを特徴とする請求項1に記載のプラズマ点火装置を備える内燃機関。   2. The internal combustion engine having a plasma ignition device according to claim 1, wherein during the motoring, the intake air amount is decreased by retarding a closing timing of the intake valve as compared with after the start of fuel injection. .
JP2009025313A 2009-02-05 2009-02-05 Internal combustion engine with plasma ignition device Expired - Fee Related JP5035262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009025313A JP5035262B2 (en) 2009-02-05 2009-02-05 Internal combustion engine with plasma ignition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009025313A JP5035262B2 (en) 2009-02-05 2009-02-05 Internal combustion engine with plasma ignition device

Publications (2)

Publication Number Publication Date
JP2010180788A true JP2010180788A (en) 2010-08-19
JP5035262B2 JP5035262B2 (en) 2012-09-26

Family

ID=42762489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009025313A Expired - Fee Related JP5035262B2 (en) 2009-02-05 2009-02-05 Internal combustion engine with plasma ignition device

Country Status (1)

Country Link
JP (1) JP5035262B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187418A (en) * 2014-03-27 2015-10-29 ダイハツ工業株式会社 internal combustion engine

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726274A (en) * 1980-07-23 1982-02-12 Nissan Motor Co Ltd Engine starter using plasma ignition
JPH04231667A (en) * 1990-12-27 1992-08-20 Fuji Heavy Ind Ltd Start controlling method for ffv engine
JPH0666236A (en) * 1992-08-20 1994-03-08 Honda Motor Co Ltd Plasma-jet ignition device
JPH08277768A (en) * 1995-04-05 1996-10-22 Fuji Heavy Ind Ltd Method of controlling start of engine
JPH09161946A (en) * 1995-12-13 1997-06-20 Mitsubishi Heavy Ind Ltd Spark plug for internal combustion engine
JP2003176741A (en) * 2001-10-05 2003-06-27 Denso Corp Controller for internal combustion engine
JP2004116333A (en) * 2002-09-25 2004-04-15 Nissan Motor Co Ltd Cylinder direct fuel injection type spark ignition internal combustion engine
JP2004263695A (en) * 2003-02-06 2004-09-24 Boeing Co:The Engine assembly, afterburner apparatus, and device for exerting propulsive force
JP2004270691A (en) * 2003-02-06 2004-09-30 Boeing Co:The Detailed description of combined cycle engine
JP2007056796A (en) * 2005-08-25 2007-03-08 Toyota Motor Corp Internal combustion engine equipped with variable compression ratio mechanism
JP2007192198A (en) * 2006-01-23 2007-08-02 Toyota Motor Corp Fuel supply device for internal combustion engine
JP2007205200A (en) * 2006-01-31 2007-08-16 Toyota Motor Corp Exhaust gas bypass device for internal combustion engine and control method
JP2007211719A (en) * 2006-02-10 2007-08-23 Toyota Motor Corp Internal combustion engine and control device for internal combustion engine
JP2010038044A (en) * 2008-08-05 2010-02-18 Toyota Motor Corp Abrasion determination device
JP2010038008A (en) * 2008-08-04 2010-02-18 Toyota Motor Corp Control device for internal combustion engine
JP2010101177A (en) * 2008-10-21 2010-05-06 Daihatsu Motor Co Ltd Method for controlling combustion of spark-ignition internal combustion engine
JP2010174691A (en) * 2009-01-28 2010-08-12 Denso Corp Method for controlling ignition of plasma-type igniter and plasma-type igniter using the method

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726274A (en) * 1980-07-23 1982-02-12 Nissan Motor Co Ltd Engine starter using plasma ignition
JPH04231667A (en) * 1990-12-27 1992-08-20 Fuji Heavy Ind Ltd Start controlling method for ffv engine
JPH0666236A (en) * 1992-08-20 1994-03-08 Honda Motor Co Ltd Plasma-jet ignition device
JPH08277768A (en) * 1995-04-05 1996-10-22 Fuji Heavy Ind Ltd Method of controlling start of engine
JPH09161946A (en) * 1995-12-13 1997-06-20 Mitsubishi Heavy Ind Ltd Spark plug for internal combustion engine
JP2003176741A (en) * 2001-10-05 2003-06-27 Denso Corp Controller for internal combustion engine
JP2004116333A (en) * 2002-09-25 2004-04-15 Nissan Motor Co Ltd Cylinder direct fuel injection type spark ignition internal combustion engine
JP2004270691A (en) * 2003-02-06 2004-09-30 Boeing Co:The Detailed description of combined cycle engine
JP2004263695A (en) * 2003-02-06 2004-09-24 Boeing Co:The Engine assembly, afterburner apparatus, and device for exerting propulsive force
JP2007056796A (en) * 2005-08-25 2007-03-08 Toyota Motor Corp Internal combustion engine equipped with variable compression ratio mechanism
JP2007192198A (en) * 2006-01-23 2007-08-02 Toyota Motor Corp Fuel supply device for internal combustion engine
JP2007205200A (en) * 2006-01-31 2007-08-16 Toyota Motor Corp Exhaust gas bypass device for internal combustion engine and control method
JP2007211719A (en) * 2006-02-10 2007-08-23 Toyota Motor Corp Internal combustion engine and control device for internal combustion engine
JP2010038008A (en) * 2008-08-04 2010-02-18 Toyota Motor Corp Control device for internal combustion engine
JP2010038044A (en) * 2008-08-05 2010-02-18 Toyota Motor Corp Abrasion determination device
JP2010101177A (en) * 2008-10-21 2010-05-06 Daihatsu Motor Co Ltd Method for controlling combustion of spark-ignition internal combustion engine
JP2010174691A (en) * 2009-01-28 2010-08-12 Denso Corp Method for controlling ignition of plasma-type igniter and plasma-type igniter using the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187418A (en) * 2014-03-27 2015-10-29 ダイハツ工業株式会社 internal combustion engine

Also Published As

Publication number Publication date
JP5035262B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP7413746B2 (en) Spark plug for internal combustion engine and internal combustion engine equipped with the same
JP2009019538A (en) Control device for cylinder injection type internal combustion engine
JP6445928B2 (en) Ignition device for internal combustion engine
JP6217490B2 (en) Start-up control device for direct injection gasoline engine
US20140216406A1 (en) Combustion Method for Piston Combustion Engines
EP4194672A1 (en) Ignition system
JP5035262B2 (en) Internal combustion engine with plasma ignition device
JP6942885B2 (en) Control device for internal combustion engine
JP2006233778A (en) Controller for internal combustion engine
US6244247B1 (en) Ignition device for internal combustion engines
JP7363438B2 (en) Ignition system for internal combustion engines
JP2006046140A (en) Internal combustion engine and operation control device and operation control method for internal combustion engine
JP6281368B2 (en) Control unit for direct injection engine
JP2004197593A (en) Pre-mixed compression ignition internal combustion engine
WO2019064932A1 (en) Device for controlling internal combustion engine and method for controlling internal combustion engine
JP2006017082A (en) Control device for internal combustion engine
JP5316056B2 (en) Internal combustion engine with plasma ignition device
JP2011149406A (en) Ignition control device for internal combustion engine
JP2010144592A (en) Ignition control device, control method and ignition device for internal combustion engine
JP2010144618A (en) Plasma ignition device
JP6149765B2 (en) Control unit for direct injection gasoline engine
JP6445322B2 (en) Internal combustion engine and control method thereof
US11815008B1 (en) Ignition system for internal combustion engine
JP2010209837A (en) Plasma ignition device
JP2006037727A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110606

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees