JP2010179363A - Aluminum alloy ingot and method for producing the same - Google Patents

Aluminum alloy ingot and method for producing the same Download PDF

Info

Publication number
JP2010179363A
JP2010179363A JP2009288578A JP2009288578A JP2010179363A JP 2010179363 A JP2010179363 A JP 2010179363A JP 2009288578 A JP2009288578 A JP 2009288578A JP 2009288578 A JP2009288578 A JP 2009288578A JP 2010179363 A JP2010179363 A JP 2010179363A
Authority
JP
Japan
Prior art keywords
ingot
crystal grain
grain size
aluminum alloy
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009288578A
Other languages
Japanese (ja)
Other versions
JP5360591B2 (en
Inventor
Hirobumi Nagami
博文 長海
Masahito Yatsukura
政仁 谷津倉
Shingo Koizumi
慎吾 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2009288578A priority Critical patent/JP5360591B2/en
Publication of JP2010179363A publication Critical patent/JP2010179363A/en
Application granted granted Critical
Publication of JP5360591B2 publication Critical patent/JP5360591B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an aluminum alloy ingot in which the crystal grains therein are refined, and also, the standard deviation of the crystal grains is reduced. <P>SOLUTION: When an aluminum alloy molten metal having a componential composition comprising, by mass, 4 to 12% Zn, 1 to 3% Mg and 0.5 to 3% Cu, and further, if required, comprising ≤0.3% Cr and ≤0.3% Zr, and the balance Al with inevitable impurities, and in which the content of Ti as impurities is limited to ≤0.01% is subjected to DC casting, electromagnetic stirring is performed in the form only of a centripetal magnetic force, further, the casting is performed in such a manner that the solid phase ratio of a solid-liquid coexistent part electrically stirred within a rapid cooling mold in the DC casting is controlled to 0.2 to 0.6 so as to obtain an aluminum alloy ingot having a metallic structure where the average value of the crystal grain sizes in the central part of the ingot is ≤50 μm, and also, the standard deviation of the crystal grain sizes is ≤12 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、結晶粒が微細であり、なおかつ結晶粒径のバラツキの小さな展伸材用のアルミニウム−亜鉛系合金鋳塊およびその製造方法に関するものである。   The present invention relates to an aluminum-zinc alloy ingot for a wrought material having fine crystal grains and small variations in crystal grain size, and a method for producing the same.

公知の特許文献、例えば特許文献1によれば、鋳塊の結晶粒の微細化を図ることは、当該鋳塊の加工により得られる材料の性能を向上させる技術の基本であるとされ、また、特許文献2によれば、用途によっては結晶粒径が微細であるのみならず、均一であることが要求される旨が記載されている。前記文献のみならず、種々の特許文献が鋳塊の結晶粒微細化、結晶粒径均一化に関する技術を紹介している。さらに、例えば特許文献3には、結晶粒径が100μm以上になると伸び、破壊靱性値等が低下することが開示されているが、鋳塊の結晶粒を微細化、結晶粒径を均一化することにより、伸び、破壊靱性値等の向上を図ることができ、圧延、押出、鍛造などの塑性加工性を改善する効果が期待できる。   According to a known patent document, for example, Patent Document 1, it is said that the refinement of crystal grains of an ingot is the basis of a technique for improving the performance of a material obtained by processing the ingot, According to Patent Document 2, it is described that the crystal grain size is required to be uniform as well as fine depending on the application. In addition to the above-mentioned documents, various patent documents introduce techniques relating to crystal grain refinement and uniform crystal grain size of ingots. Further, for example, Patent Document 3 discloses that when the crystal grain size becomes 100 μm or more, the elongation and the fracture toughness value decrease, but the crystal grains of the ingot are refined and the crystal grain size is made uniform. Thus, the elongation, fracture toughness and the like can be improved, and the effect of improving plastic workability such as rolling, extrusion, forging and the like can be expected.

すなわち、前記特許文献1では、具体的に、鋳型外側上部に重力方向の直流電磁力を作用させるコイル、該直流電磁力を作用させるコイルの下部に向心方向の低周波の交流電磁力を作用させるコイルを設け、これら両者の相互作用により、半連続鋳造の鋳型内の溶湯に対して電磁的な振動力を発生させており、固相率が0.55を超えた固液共存状態の溶湯への前記電磁的な振動は突き固め力として作用させ、結晶粒径の微細化を図っている。   That is, in Patent Document 1, specifically, a coil that applies a DC electromagnetic force in the direction of gravity to the upper part outside the mold, and a coil that applies a low-frequency AC electromagnetic force in the centripetal direction to the lower part of the coil that applies the DC electromagnetic force. By virtue of the interaction between the two, an electromagnetic vibration force is generated on the molten metal in the semi-continuous casting mold, and the electromagnetic force applied to the molten metal in a solid-liquid coexistence state with a solid phase ratio exceeding 0.55 is provided. Vibration acts as a tamping force to reduce the crystal grain size.

また、特許文献4や特許文献5では、鋳型外側に向心方向の低周波の交流電磁力を作用させるコイルを設け、アルミニウム合金溶湯を向心磁界の態様の低周波電磁場で電磁攪拌しながら半連続鋳造し、結晶粒を微細化している。すなわち、向心磁界の態様での電磁攪拌により、前記特許文献4は、結晶核を連続鋳造の鋳型内を流動させて結晶の成長速度を抑制させる技術を、他方、前記特許文献5は、連続鋳造の鋳型内の熱い溶湯を樹枝状結晶に接触させ、該樹枝状結晶の表面を再溶解させて球形の小塊に転化する技術を、それぞれ開示している。   In Patent Document 4 and Patent Document 5, a coil for applying a centripetal low-frequency AC electromagnetic force is provided outside the mold, and the aluminum alloy melt is half-heated while electromagnetically stirring in a low-frequency electromagnetic field having a centripetal magnetic field. Continuous casting to refine crystal grains. That is, by electromagnetic stirring in the form of a centripetal magnetic field, Patent Document 4 discloses a technique for suppressing crystal growth rate by causing crystal nuclei to flow in a continuous casting mold. A technique is disclosed in which a hot molten metal in a casting mold is brought into contact with a dendritic crystal, and the surface of the dendritic crystal is remelted to be converted into a spherical blob.

さらに、特許文献6や前記特許文献2では、鋳型外側に回転方向の低周波の交流電磁力を作用させるコイルを設け、アルミニウム合金溶湯を回転磁界の態様の低周波電磁場で電磁攪拌しながら半連続鋳造し、結晶粒を微細化している。すなわち、回転磁界の態様での電磁攪拌により、前記特許文献6は、流動する溶湯で樹枝状結晶の樹枝部分を分断する技術を、他方、前記特許文献2は、凝固ゆらぎを効率的に発生させてのセル状結晶の微細化の技術を、それぞれ開示している。   Further, in Patent Document 6 and Patent Document 2, a coil for applying a low-frequency AC electromagnetic force in the rotating direction is provided outside the mold, and the aluminum alloy melt is semi-continuously stirred with a low-frequency electromagnetic field in the form of a rotating magnetic field. The crystal grains are refined by casting. That is, by electromagnetic stirring in the form of a rotating magnetic field, Patent Document 6 discloses a technique for dividing a dendrite portion of a dendritic crystal with a flowing molten metal, while Patent Document 2 efficiently generates a solidification fluctuation. All the techniques for refining cellular crystals are disclosed.

中華人民共和国特許出願公開CN1425519A号公報People's Republic of China Patent Application Publication CN14255519A 特開平7‐51820号公報Japanese Patent Laid-Open No. 7-51820 特開昭56‐87647号公報JP 56-87647 A 中華人民共和国特許出願公開CN1425520A号公報China Patent Application Publication CN14255520A 特開平7‐68345号公報Japanese Patent Laid-Open No. 7-68345 特開昭56‐136262号公報JP 56-136262 A

前記特許文献1および4の発明は、いずれも結晶粒径のバラツキが大きく、均質性が不十分である。特許文献5の段落[0010]に記載されているように、電磁攪拌の態様が回転磁界の場合には機械的な電磁攪拌力により樹枝状結晶の樹枝の分断ができるのに対し、電磁攪拌の態様が向心磁界の場合には樹枝状結晶の樹枝の分断が熱的になされることに起因していると思われる。   The inventions of Patent Documents 1 and 4 both have large variations in crystal grain size and insufficient homogeneity. As described in paragraph [0010] of Patent Document 5, when the electromagnetic stirring mode is a rotating magnetic field, the dendritic tree can be divided by a mechanical electromagnetic stirring force. When the aspect is an centripetal magnetic field, it seems to be due to the fact that the branching of the dendritic crystal is thermally performed.

また、前記特許文献2および6の発明も、いずれも結晶粒径のバラツキが大きく、均一性が不十分である。電磁攪拌の態様が回転磁界の場合には、鋳塊中心部と外周部の間での対流が少ないことに起因していると思われる。
他方、前記特許文献5の発明は、結晶粒の微細化が十分ではない。特許文献2の段落[0011]に記載されているように、電磁攪拌の態様を向心磁界とする場合には、回転磁界とする場合に比較してアルミニウム合金溶湯の流動が劣ることに起因していると思われる。
In addition, the inventions of Patent Documents 2 and 6 both have large variations in crystal grain size and insufficient uniformity. When the mode of electromagnetic stirring is a rotating magnetic field, it seems to be due to the fact that there is little convection between the center part of the ingot and the outer peripheral part.
On the other hand, the invention of Patent Document 5 does not have sufficient crystal grain refinement. As described in paragraph [0011] of Patent Document 2, when the electromagnetic stirring mode is the centripetal magnetic field, the flow of the molten aluminum alloy is inferior to that of the rotating magnetic field. It seems that

このため、これらの発明により得られた鋳塊を圧延、押出、または鍛造加工用素材として利用する場合、圧延、押出、または鍛造の条件によっては、鋳塊の伸びまたは破壊靱性値が低く、圧延、押出、鍛造などの塑性加工性が悪いことに起因する不具合が発生することがある。そのような不具合のひとつに、例えば押出加工におけるテアリングの発生がある。1m/minを超える速度での押出加工において、従来の鋳塊では1mm以上のテアリングが発生し、押出加工の生産効率に限界があった。   For this reason, when the ingot obtained by these inventions is used as a material for rolling, extrusion, or forging, depending on the rolling, extrusion, or forging conditions, the ingot elongation or fracture toughness value is low, and rolling In some cases, defects due to poor plastic workability such as extrusion and forging may occur. One such problem is the occurrence of tearing in, for example, extrusion processing. In extrusion processing at a speed exceeding 1 m / min, tearing of 1 mm or more occurred in the conventional ingot, and the production efficiency of the extrusion processing was limited.

本発明は、このような問題を解消すべく案出されたものであり、鋳塊内の結晶粒を微細化し、かつ結晶粒径の標準偏差を小さくしたアルミニウム合金鋳塊およびその製造方法を提供することであり、具体的には鋳塊中心部の結晶粒径の平均値を50μm以下、かつ結晶粒径の標準偏差を12μm以下としたアルミニウム合金鋳塊およびその製造方法を提供することを目的とする。
そのような鋳塊は、伸びおよび破壊靱性値が高いので、例えば前記のような押出加工におけるテアリングのような、塑性加工性が悪いことに起因する不具合が発生しにくく、生産効率の向上を図ることができる。
The present invention has been devised to solve such problems, and provides an aluminum alloy ingot in which the crystal grains in the ingot are refined and the standard deviation of the crystal grain size is reduced, and a method for producing the same. Specifically, an object of the present invention is to provide an aluminum alloy ingot having an average crystal grain size at the center of the ingot of 50 μm or less and a standard deviation of the crystal grain size of 12 μm or less, and a method for producing the same. And
Since such ingots have high elongation and fracture toughness values, problems such as tearing in the extrusion process as described above due to poor plastic workability are unlikely to occur, and production efficiency is improved. be able to.

本発明のアルミニウム合金鋳塊は、その目的を達成するため、断面形状が、直径150〜600mmの円形、短径150〜600mmの長円形もしくは楕円形、一辺の長さが150〜600mmの正方形、または短辺の長さが150〜600mmの長方形の鋳塊であって、Zn:4〜12質量%、Mg:1〜3質量%、Cu:0.5〜3質量%を含むとともに、必要に応じてCr:0.3質量%以下、Zr:0.3質量%以下を含み、残部がAlおよび不可避不純物からなり、不純物としてのTiの含有量が0.01質量%以下に制限された成分組成と、鋳塊中心部の結晶粒径の平均値が50μm以下であり、かつ結晶粒径の標準偏差が12μm以下である金属組織を有することを特徴とする。   In order to achieve the object, the aluminum alloy ingot of the present invention has a cross-sectional shape of a circle having a diameter of 150 to 600 mm, an oval or ellipse having a short diameter of 150 to 600 mm, a square having a side length of 150 to 600 mm, Or a rectangular ingot having a short side length of 150 to 600 mm, containing Zn: 4 to 12% by mass, Mg: 1 to 3% by mass, Cu: 0.5 to 3% by mass, and if necessary Cr: 0.3% by mass or less, Zr: 0.3% by mass or less, the balance is made of Al and inevitable impurities, the content of Ti as impurities is limited to 0.01% by mass or less, and the ingot center part It has a metal structure having an average value of crystal grain size of 50 μm or less and a standard deviation of crystal grain size of 12 μm or less.

本発明のアルミニウム合金鋳塊は、上記の成分組成を有するアルミニウム合金溶湯をDC鋳造する際に、向心磁界のみの態様で電磁攪拌するとともに、前記DC鋳造の急冷鋳型内で電磁的に撹拌されている固液共存状態部の固相率が0.2〜0.6となるように鋳造することにより製造される。
前記電磁攪拌は、周波数:28exp(‐0.002d)〜40exp(‐0.002d)Hz、および起磁力:10000〜30000Atなる条件で行うことが好ましい。
ここでd(単位mm)は、アルミニウム合金鋳塊の直径(円形断面の場合)、短径(長円形もしくは楕円形断面の場合)、一辺の長さ(正方形断面の場合)、または短辺の長さ(長方形断面の場合)である。
The aluminum alloy ingot of the present invention is electromagnetically stirred in the mode of only the centripetal magnetic field when the aluminum alloy molten metal having the above composition is DC cast, and is electromagnetically stirred in the DC casting quenching mold. The solid-liquid coexistence state portion is produced by casting so that the solid phase ratio is 0.2 to 0.6.
The electromagnetic stirring is preferably performed under the conditions of frequency: 28exp (−0.002d) to 40exp (−0.002d) Hz and magnetomotive force: 10000 to 30000 At.
Here, d (unit: mm) is the diameter of the aluminum alloy ingot (in the case of a circular cross section), the short diameter (in the case of an oval or elliptical cross section), the length of one side (in the case of a square cross section), or the short side Length (in the case of a rectangular cross section).

なお、本発明に係るアルミニウム合金はJIS H4000、JIS H4040、JIS H4080、あるいはAA規格に7XXX系として規定されるAl-Zn-Mg-Cu系のものであり、例えば前記の規格に7075合金などとして登録、規格化されるものであるが、必ずしも特定の登録合金に限定されるものではない。Al-Zn-Mg-Cu系の合金は、アルミニウム合金のなかでも最も高い強度をもつものとして公知である。本発明において、アルミニウム合金は、そのようなAl-Zn-Mg-Cu系の合金を示すものとする。   Note that the aluminum alloy according to the present invention is JIS H4000, JIS H4040, JIS H4080, or Al-Zn-Mg-Cu based as defined in the AA standard as 7XXX, such as 7075 alloy according to the above standard. Although registered and standardized, it is not necessarily limited to a specific registered alloy. Al-Zn-Mg-Cu alloys are known as having the highest strength among aluminum alloys. In the present invention, an aluminum alloy refers to such an Al—Zn—Mg—Cu alloy.

本発明のアルミニウム合金鋳塊は、結晶粒が微細であり、かつ結晶粒径の標準偏差が小さい。このため、当該鋳塊に圧延、押出、鍛造などの塑性加工を施すことにより得られる材料の性能は高く、展伸材としての好適な使用が期待できる。また、本発明のアルミニウム合金鋳塊の製造方法によれば、結晶粒が微細であり、かつ結晶粒径の標準偏差が小さいアルミニウム合金鋳塊が容易に得られる。
本発明により得られる鋳塊は、伸びおよび破壊靱性値が高いので、例えば速度2m/minで押出加工でも1mm以上のテアリングが発生しない。そのため、本発明により得られる鋳塊は、従来のものよりも加工の効率を向上させることができる。しかしながら、本発明より得られる鋳塊は、押出加工用に限られるものではなく、圧延、鍛造加工用素材など、塑性加工される素材として広汎に、好適に利用できるものである。
The aluminum alloy ingot of the present invention has fine crystal grains and a small standard deviation of crystal grain diameter. For this reason, the performance of the material obtained by performing plastic processing, such as rolling, extrusion, forging, etc., on the ingot is high, and a suitable use as a wrought material can be expected. Moreover, according to the method for producing an aluminum alloy ingot of the present invention, an aluminum alloy ingot having fine crystal grains and a small standard deviation of crystal grain size can be easily obtained.
Since the ingot obtained by the present invention has high elongation and fracture toughness values, for example, tearing of 1 mm or more does not occur even when extrusion is performed at a speed of 2 m / min. Therefore, the ingot obtained by the present invention can improve the processing efficiency more than the conventional one. However, the ingot obtained from the present invention is not limited to extrusion processing, and can be widely used suitably as a material to be plastically processed, such as a material for rolling and forging.

結晶粒径の標準偏差の測定のための標本採取位置を説明する図(鋳塊断面形状が円形の場合)Diagram explaining the sampling position for measuring the standard deviation of crystal grain size (when the ingot cross-sectional shape is circular) 結晶粒径の標準偏差の測定のための標本採取位置を説明する図(鋳塊断面形状が長円形の場合)Diagram explaining the sampling position for measuring the standard deviation of crystal grain size (when the ingot cross-sectional shape is oval) 結晶粒径の標準偏差の測定のための標本採取位置を説明する図(鋳塊断面形状が楕円形の場合)Diagram explaining the sampling position for measuring the standard deviation of crystal grain size (when the ingot cross-sectional shape is elliptical) 結晶粒径の標準偏差の測定のための標本採取位置を説明する図(鋳塊断面形状が正方形の場合)Diagram explaining the sampling position for measuring the standard deviation of crystal grain size (when the ingot cross-sectional shape is square) 結晶粒径の標準偏差の測定のための標本採取位置を説明する図(鋳塊断面形状が長方形の場合)Diagram explaining the sampling position for measuring the standard deviation of crystal grain size (when the ingot cross-sectional shape is rectangular) 鋳塊の大きさと周波数の関係を示す図Diagram showing the relationship between ingot size and frequency 試験No.1(本発明例)と試験No.2(比較例)の結晶粒組織を示す顕微鏡写真Micrographs showing the grain structure of Test No. 1 (Example of the present invention) and Test No. 2 (Comparative Example)

本発明者らは、アルミニウム鋳塊の結晶粒を微細化し、かつ結晶粒径の標準偏差を小さくする手段について鋭意検討を重ねてきた。その過程で、Zn、Mg、Cuを含有するアルミニウム合金で、電磁攪拌の態様が向心磁界であっても、機械的な電磁攪拌力により樹枝状結晶の樹枝を分断することにより、鋳塊内の結晶粒を微細化し、かつ結晶粒径の標準偏差を小さくしたアルミニウム合金鋳塊およびその製造方法を得ることに想到した。   The inventors of the present invention have made extensive studies on means for reducing the crystal grain size of the aluminum ingot and reducing the standard deviation of the crystal grain size. In the process, aluminum alloy containing Zn, Mg, and Cu, even if the mode of electromagnetic stirring is a centripetal magnetic field, the dendrite-like tree branches are divided by the mechanical electromagnetic stirring force, so that the inside of the ingot The inventors have conceived of obtaining an aluminum alloy ingot and a method for producing the same in which the crystal grains are refined and the standard deviation of the crystal grain size is reduced.

すなわち、本発明者らによる鋭意研究の結果、向心磁界の態様の電磁攪拌でありながら、Zn:4〜12質量%、Mg:1〜3質量%、Cu:0.5〜3質量%を含有する、特定の成分組成のアルミニウム合金では、DC鋳造に際しての電磁攪拌の条件を調整することにより、機械的な電磁攪拌力で樹枝状結晶の樹枝を適切に分断できることを発見、そのようにして鋳造されたアルミニウム合金鋳塊では、鋳塊内の結晶粒が微細化し、かつ結晶粒径の標準偏差を小さくなることを究明し、本発明を完成させた。   That is, as a result of intensive studies by the present inventors, it contains Zn: 4 to 12% by mass, Mg: 1 to 3% by mass, and Cu: 0.5 to 3% by mass while being electromagnetic stirring in the form of a centripetal magnetic field. In the case of aluminum alloy with a specific component composition, it was discovered that by adjusting the electromagnetic stirring conditions during DC casting, the dendritic dendrites can be appropriately divided by the mechanical electromagnetic stirring force, and thus cast. In the aluminum alloy ingot, the inventors have investigated that the crystal grains in the ingot are refined and the standard deviation of the crystal grain size is reduced, and the present invention has been completed.

以下に本発明を詳細に説明する。
はじめに、本発明に係るAl‐Zn‐Mg‐Cu系の合金の凝固過程を説明する。
本発明に係るAl‐Zn‐Mg‐Cu系の合金は、DC鋳造される。DC鋳造においては、溶湯は鋳塊外周部から凝固を開始し、鋳塊中心部が最終凝固部となる。本発明に係る合金では、凝固に際し、最初に凝固した結晶部分からZn、MgおよびCuを溶湯内へ拡散させながら結晶が成長するため、成長中の該結晶の周囲は、Zn、MgおよびCu含有量が他の結晶の成長にあずからない部分と比較して高濃度となり、該高濃度箇所は凝固開始温度が低くなるとともに結晶の成長速度も遅くなる。
The present invention is described in detail below.
First, the solidification process of the Al-Zn-Mg-Cu alloy according to the present invention will be described.
The Al-Zn-Mg-Cu alloy according to the present invention is DC cast. In DC casting, the molten metal starts to solidify from the outer periphery of the ingot, and the center of the ingot becomes the final solidified portion. In the alloy according to the present invention, at the time of solidification, the crystal grows while diffusing Zn, Mg and Cu from the first solidified crystal portion into the molten metal, so that the periphery of the growing crystal contains Zn, Mg and Cu. The amount is higher than that of a portion that does not contribute to the growth of other crystals, and the high concentration portion has a lower solidification start temperature and a slower growth rate of crystals.

一方、凝固の冷却過程において、前記他の結晶の成長にあずからない部分は前記周囲がZn、MgおよびCuの濃度の高い結晶部分と比較して結晶の成長が促され易く、前記と同様にZn、MgおよびCuを溶湯内へ拡散させながら結晶が成長し、前記と同様にZn、MgおよびCuの濃度の影響を受けて成長速度が遅くなる。このような結晶成長の繰り返しを起こして結晶は樹枝状に成長し、凝固を終了する。   On the other hand, in the cooling process of solidification, the portion that is not involved in the growth of the other crystals is more likely to promote crystal growth compared to the crystal portion where the surroundings are high in the concentration of Zn, Mg, and Cu. Crystals grow while diffusing Zn, Mg, and Cu into the molten metal, and the growth rate is slowed by the influence of the concentrations of Zn, Mg, and Cu as described above. By repeating such crystal growth, the crystal grows in a dendritic shape, and solidification is completed.

本発明は、前記樹枝状結晶の樹枝部を結晶核として有効に利用しようとするものであり、電磁攪拌力により樹枝部を適切なサイズに分断し、この分断された樹枝部を結晶核として溶湯内に多数、均一に分散させて、前記溶湯を固液共存状態にするとともに、当該固液共存状態の溶湯を攪拌することにより、該溶湯の温度を前記結晶核の凝固開始点直下に保持し、そうすることによって前記結晶核の凝固が急速に完了するようにして、鋳塊の結晶粒の微細化を図るとともに、特定の結晶核のみが成長しないようにして、結晶粒径の標準偏差を小さくするものである。   The present invention intends to effectively use the dendritic portion of the dendritic crystal as a crystal nucleus, divide the dendritic portion into an appropriate size by electromagnetic stirring force, and use the divided dendritic portion as a crystal nucleus to melt the molten metal. The molten metal is uniformly dispersed in a solid-liquid coexistence state, and the melt in the solid-liquid coexistence state is agitated to maintain the temperature of the melt immediately below the solidification start point of the crystal nucleus. By doing so, the solidification of the crystal nuclei is rapidly completed, the crystal grains of the ingot are refined, and only specific crystal nuclei do not grow, so that the standard deviation of the crystal grain size is reduced. It is to make it smaller.

次に、合金の成分組成について説明する。
Zn:4〜12質量%、Mg:1〜3質量%、Cu:0.5〜3質量%
本発明に係る合金では、凝固に際して、最初に凝固した結晶部分から、主な合金成分であるZn、MgおよびCuを溶湯内へ拡散させながら成長する樹枝状結晶の樹枝部を結晶核として有効に利用しようとするものであり、電磁攪拌力により樹枝部を適切なサイズに分断するとともに分断された該樹枝部を溶湯内に多数、均一に分散させ、鋳塊の結晶粒の微細化を図るとともに、結晶粒径の標準偏差を小さくするものである。
Next, the component composition of the alloy will be described.
Zn: 4-12% by mass, Mg: 1-3% by mass, Cu: 0.5-3% by mass
In the alloy according to the present invention, during the solidification, the dendritic portion of the dendritic crystal that grows while diffusing Zn, Mg, and Cu, which are the main alloy components, from the first solidified crystal portion is effectively used as the crystal nucleus. It is intended to be utilized, and the branch part is divided into an appropriate size by electromagnetic stirring force and a large number of the split branch parts are uniformly dispersed in the molten metal, and the crystal grains of the ingot are refined. The standard deviation of the crystal grain size is reduced.

そのため、本発明に係る合金は、4〜12質量%のZn、1〜3質量%のMg、0.5〜3質量%のCuを含有する必要がある。Zn、MgおよびCuの含有量が、それぞれの下限値を下回ると結晶の成長速度が遅く、電磁攪拌力による樹枝部の分断が不十分となるため、鋳塊中心部の結晶粒径の平均値を50μm以下、かつ結晶粒径の標準偏差を12μm以下にできない。また、Zn、MgおよびCuの含有量が、それぞれの上限値を超えると、結晶の成長速度が、Zn、Mg、Cuの溶湯内への拡散速度を超え、結晶の成長が樹枝状でなくなるため、鋳塊中心部の結晶粒径の平均値を50μm以下、かつ結晶粒径の標準偏差を12μm以下にできない。   Therefore, the alloy according to the present invention needs to contain 4 to 12% by mass of Zn, 1 to 3% by mass of Mg, and 0.5 to 3% by mass of Cu. If the content of Zn, Mg and Cu is lower than the lower limit of each, the crystal growth rate is slow, and the branching of the branches by electromagnetic stirring force becomes insufficient, so the average value of the crystal grain size at the center of the ingot Cannot be less than 50 μm and the standard deviation of the crystal grain size cannot be less than 12 μm. In addition, if the contents of Zn, Mg and Cu exceed the respective upper limit values, the crystal growth rate exceeds the diffusion rate of Zn, Mg and Cu into the molten metal, and the crystal growth is not dendritic. The average value of the crystal grain size at the center of the ingot cannot be made 50 μm or less, and the standard deviation of the crystal grain size cannot be made 12 μm or less.

Cr:0.3質量%以下、Zr:0.3質量%以下
CrおよびZrは、本発明に係る合金の凝固過程において、樹枝状結晶の成長にほとんど影響を及ぼさない。Al‐Zn‐Mg‐Cu系合金にあって、0.3質量%以下のCrの含有は、耐食性、なかんずく耐SCC性を向上させる効果がある。それゆえ、本発明に係る合金は、耐食性、なかんずく耐SCC性を向上させることを目的として0.3質量%以下のCrを含有することができる。0.3質量%以下のZrの含有は、鋳塊に圧延、押出、鍛造などの塑性加工を施した後の熱処理時に再結晶の粗大化を抑制する効果がある。それゆえ、本発明に係る合金は、圧延、押出、鍛造などの塑性加工を施した後の熱処理時に再結晶の粗大化を抑制することを目的として0.3質量%以下のZrを含有することができる。
Cr: 0.3% by mass or less, Zr: 0.3% by mass or less
Cr and Zr have little influence on the growth of dendrites in the solidification process of the alloy according to the present invention. In an Al-Zn-Mg-Cu alloy, the inclusion of 0.3 mass% or less of Cr has the effect of improving corrosion resistance, especially SCC resistance. Therefore, the alloy according to the present invention can contain 0.3% by mass or less of Cr for the purpose of improving the corrosion resistance, especially the SCC resistance. Inclusion of 0.3% by mass or less of Zr has an effect of suppressing recrystallization coarsening during heat treatment after the ingot is subjected to plastic working such as rolling, extrusion, forging, or the like. Therefore, the alloy according to the present invention can contain 0.3% by mass or less of Zr for the purpose of suppressing the coarsening of recrystallization during heat treatment after performing plastic working such as rolling, extrusion, forging and the like. .

他の元素
Tiは、従来、Al‐Ti合金、Al‐Ti‐B合金、あるいはAl‐Ti‐C合金などの形態で、アルミニウム合金の結晶粒微細化剤の成分として、羽毛状晶や粗大晶の発生を防ぎ、鋳造時の割れ、あるいは圧延中の板割れの防止を目的として添加されている。これはアルミニウム合金の鋳造に際し、TiとB、Cなどとの化合物であるTiB2、TiCなどの粒子がアルミニウムの凝固に先立って溶湯中に晶出し、それがアルミニウムの凝固における結晶核として作用するためである。
Other elements
Conventionally, Ti is in the form of Al-Ti alloy, Al-Ti-B alloy, Al-Ti-C alloy, etc., and as a component of grain refiner of aluminum alloy, generation of feather crystals and coarse crystals is generated. It is added for the purpose of preventing cracking during casting or plate cracking during rolling. This is because during casting of an aluminum alloy, particles such as TiB 2 and TiC, which are compounds of Ti, B, and C, crystallize in the molten metal prior to solidification of the aluminum, which acts as a crystal nucleus in the solidification of the aluminum. Because.

前記のようなアルミニウム合金の結晶粒微細化剤は、Tiの含有量として0.01質量%を超えると微細化の効果が顕在化する。ところが、本発明者らの研究によれば、本発明においてはTiを含有すると電磁攪拌の効果が低下することが突きとめられた。その理由の詳細は不明であるが、Tiの含有量が0.01質量%を超えるとTiB2、TiCなどの粒子がアルミニウムの凝固に先立って溶湯中に晶出し、前記のような樹枝状結晶が成長する前に結晶化してしまうためと考えられる。また、前記TiB2化合物は粗大化すると成形性を阻害する要因となる。そこで本発明においては、合金の溶製にあたって地金、スクラップ、添加合金等の溶解原料を種々選択し、不純物としてのTi含有量を0.01質量%以下とする。 When the grain refiner of aluminum alloy as described above exceeds 0.01% by mass as the Ti content, the effect of refinement becomes obvious. However, according to the study by the present inventors, it was found that the effect of electromagnetic stirring is reduced when Ti is contained in the present invention. The details of the reason are unknown, but when the Ti content exceeds 0.01% by mass, particles such as TiB 2 and TiC crystallize in the melt prior to solidification of the aluminum, and dendritic crystals as described above grow. This is presumably because it crystallizes before it. Further, when the TiB 2 compound is coarsened, it becomes a factor that inhibits moldability. Therefore, in the present invention, various melting raw materials such as ingots, scraps, additive alloys and the like are selected for melting the alloy, and the Ti content as an impurity is set to 0.01% by mass or less.

FeおよびSiは、いずれも不可避不純物としてアルミニウム地金中に含まれる元素であるが、それぞれ0.3質量%以下とすれば、本発明に係る合金の凝固過程において、樹枝状結晶の成長にほとんど影響を及ぼさないので、その範囲内とすることが好ましい。FeおよびSiはアルミニウム地金中の主な不純物であり、これらの不純物含有量の少ないアルミニウム地金の使用はコストアップにつながる。
その他の元素が不可避不純物としてアルミニウム地金中に含まれることがあるが、それぞれ0.15質量%、合計で0.30質量%までであれば本発明の効果を妨げることはないため、その範囲内の含有が許容される。
不可避不純物としてアルミニウム地金中に含まれる元素のうち、Mnは鋳塊に圧延、押出、鍛造などの塑性加工を施した後の熱処理時に再結晶の粗大化を抑制する効果がある。
Fe and Si are both elements contained in the aluminum ingot as unavoidable impurities, but if they are each 0.3% by mass or less, they have little influence on the growth of dendritic crystals during the solidification process of the alloy according to the present invention. Therefore, it is preferable to be within the range. Fe and Si are main impurities in the aluminum ingot, and the use of the aluminum ingot having a low impurity content leads to an increase in cost.
Other elements may be included as inevitable impurities in the aluminum ingot, but each 0.15% by mass, up to a total of 0.30% by mass does not impede the effects of the present invention, so content within that range Permissible.
Of the elements contained in the aluminum ingot as an unavoidable impurity, Mn has the effect of suppressing recrystallization coarsening during heat treatment after the ingot is subjected to plastic working such as rolling, extrusion, forging and the like.

続いて、本発明のもう一つの特徴である金属組織について説明する。
結晶粒径:鋳塊中心部の平均:50μm以下、標準偏差:12μm以下
本発明に係るアルミニウム合金鋳塊の特徴は、鋳塊中心部の結晶粒の平均値が50μm以下であり、かつ結晶粒径の標準偏差が12μm以下であることである。
結晶粒が細かくなると、強度と伸びの両方が向上する。また、標準偏差が小さいということは、結晶粒径が均一化することである。すなわち、結晶粒径の平均と標準偏差の両方が小さくなると、強度と伸びの両方に優れ、さらに前記優れた強度と伸びの両方が、均一化する。このために、結晶粒径に関し、上記の通りに制限した。
Next, the metal structure that is another feature of the present invention will be described.
Crystal grain size: Ingot center average: 50 μm or less, standard deviation: 12 μm or less The characteristics of the aluminum alloy ingot according to the present invention are that the average value of crystal grains in the ingot center is 50 μm or less, and crystal grains The standard deviation of the diameter is 12 μm or less.
As the crystal grains become finer, both strength and elongation improve. Also, the small standard deviation means that the crystal grain size is uniform. That is, when both the average grain size and the standard deviation are small, both strength and elongation are excellent, and both the excellent strength and elongation are uniformized. For this reason, the crystal grain size was limited as described above.

なお、前記鋳塊中心部の結晶粒径は、図1;鋳塊断面形状が円形の場合、図2;鋳塊断面形状が長円形の場合、図3;鋳塊断面形状が楕円形の場合、図4;鋳塊断面形状が正方形の場合、または図5;鋳塊断面形状が長方形の場合のそれぞれについて、図中に「c」として示す、円形、長円形、もしくは楕円形のアルミニウム合金鋳塊断面の中心、または正方形、もしくは長方形のアルミニウム合金鋳塊断面の対角線の交点を中心とする1mm×1mmの範囲を標本採取位置として測定した。
前記範囲の結晶粒をSEM‐EBSDにて解析、15°未満の小傾角の境界を結晶粒内の亜結晶粒界とみなす一方、15°以上の傾角の境界で囲まれる領域をひとつの結晶粒として該結晶粒の円相当径により測定し、その平均値を算出した。
The crystal grain size at the center of the ingot is shown in FIG. 1; when the ingot cross-sectional shape is circular; FIG. 2; when the ingot cross-sectional shape is oval; FIG. 4: When the ingot cross-sectional shape is a square, or FIG. 5: When the ingot cross-sectional shape is a rectangle, a circular, oval, or elliptical aluminum alloy cast indicated as “c” in the figure. A range of 1 mm × 1 mm centered on the center of the lump cross section or the intersection of diagonal lines of the square or rectangular aluminum alloy ingot cross section was measured as the sampling position.
The crystal grains in the above range are analyzed by SEM-EBSD, and a boundary with a small inclination of less than 15 ° is regarded as a sub-grain boundary in the crystal grain, while a region surrounded by a boundary with an inclination of 15 ° or more is regarded as one crystal grain. As a result, the average value was calculated from the equivalent circle diameter of the crystal grains.

また、前記結晶粒径の標準偏差は、図1;鋳塊断面形状が円形の場合、図2;鋳塊断面形状が長円形の場合、図3;鋳塊断面形状が楕円形の場合、図4;鋳塊断面形状が正方形の場合、または図5;鋳塊断面形状が長方形の場合のそれぞれについて、図中に「c」として示す、前記円形、長円形、もしくは楕円形のアルミニウム合金鋳塊断面の中心、または正方形、もしくは長方形のアルミニウム合金鋳塊断面の対角線の交点を中心とする1mm×1mmの範囲、同図に「a」として示す鋳塊表層から5mmの位置を中心とする1mm×1mmの範囲、「b」として示す前記「a」と前記「c」の中間点を中心とする1mm×1mmの範囲を標本採取位置として測定した。
前記範囲内の結晶粒をSEM‐EBSDにて解析、15°未満の小傾角の境界を結晶粒内の亜結晶粒界とみなす一方、15°以上の傾角の境界で囲まれる領域をひとつの結晶粒とし、その結晶粒の円相当径により測定され、その標準偏差を算出した。
In addition, the standard deviation of the crystal grain size is as shown in FIG. 1; when the ingot cross-sectional shape is circular, FIG. 2; when the ingot cross-sectional shape is oval, FIG. 4: When the ingot cross-sectional shape is a square, or FIG. 5: When the ingot cross-sectional shape is a rectangle, the circular, oval, or elliptical aluminum alloy ingot shown as “c” in the figure 1mm × 1mm centered at the center of the cross section or 1mm × 1mm centered on the intersection of the diagonal of the square or rectangular aluminum alloy ingot cross section, and 5mm from the ingot surface layer shown as “a” in the figure A 1 mm × 1 mm range centered on the midpoint between the “a” and the “c” shown as “b” was measured as the sampling position.
Crystal grains within the above range are analyzed by SEM-EBSD, and a boundary with a small inclination of less than 15 ° is regarded as a sub-grain boundary within the crystal grain, while a region surrounded by a boundary with an inclination of 15 ° or more is a single crystal. It was measured by the equivalent circle diameter of the crystal grains, and the standard deviation was calculated.

次に、製造方法について順に説明する。
鋳造方法
本発明では、前記成分組成のアルミニウム合金溶湯を電磁攪拌しながらDC鋳造する。DC鋳造とは、内壁面を水冷した急冷鋳型内に樋で導いた溶湯を注ぎ、この溶湯を急冷鋳型の内壁面で冷却凝固させるとともに、凝固直後の鋳塊を下方または側方へ順次引き出し、さらに当該鋳塊に冷却水を噴射して急冷するという鋳造法であり、アルミニウム合金の鋳造法としては生産性に優れたものとして公知のものである。
また、前記の急冷鋳型の上部に断熱湯溜部を設け、この断熱湯溜部に溶湯を樋で導いて鋳造する、ホットトップDC鋳造もアルミニウム合金の鋳造法として公知のものであるが、このような鋳造法もDC鋳造の範疇であり、本発明の実施にあたっては好適に使用できる。
Next, a manufacturing method is demonstrated in order.
Casting method In the present invention, a molten aluminum alloy having the above-described composition is DC cast while electromagnetically stirring. With DC casting, the molten metal led with a scissors is poured into a quenching mold whose inner wall surface is water-cooled, and this molten metal is cooled and solidified on the inner wall surface of the quenching mold, and the ingot immediately after solidification is sequentially drawn downward or sideward. Further, it is a casting method in which cooling water is jetted into the ingot to quench it, and an aluminum alloy casting method is known as having excellent productivity.
Further, a hot top DC casting is also known as a casting method of an aluminum alloy. Such a casting method is also a category of DC casting, and can be suitably used in the practice of the present invention.

DC鋳造においては、前記のように溶湯は鋳塊外周部から凝固を開始する。従来法では、凝固開始位置となる鋳塊外周部は冷却が速いため、結晶粒径は細かくなるが、最終凝固部となる鋳塊中心部の冷却は遅いため、鋳塊中心部の結晶粒が粗大化し、結晶粒径が不均一になる傾向があった。本発明は、アルミニウム合金の成分組成を特定するとともに、後記するように、DC鋳造に際しての電磁攪拌の条件を調整することによって、機械的な電磁攪拌力で樹枝状結晶の樹枝を適切に分断するものであり、鋳塊中心部の結晶粒を有効に微細化でき、したがって結晶粒径が均一化する。   In DC casting, the molten metal starts to solidify from the outer periphery of the ingot as described above. In the conventional method, since the outer periphery of the ingot that becomes the solidification start position is cooled quickly, the crystal grain size becomes fine, but the cooling of the center of the ingot that becomes the final solidified part is slow, so the crystal grains in the center of the ingot are There was a tendency to become coarse and the crystal grain size to become non-uniform. The present invention specifies the component composition of the aluminum alloy, and appropriately divides the dendritic tree branches with a mechanical electromagnetic stirring force by adjusting the electromagnetic stirring conditions during DC casting as described later. Therefore, the crystal grains at the center of the ingot can be effectively refined, and thus the crystal grain size becomes uniform.

本発明に係るアルミニウム合金鋳塊の断面形状は円形、長円形、楕円形、正方形、または長方形である。
円形の断面形状のアルミニウム合金鋳塊は、押出形材原料として、自動車バンパーの梁、機械部品などの用途がある。長円形、楕円形、正方形の断面形状のアルミニウム合金鋳塊は、鍛造材原料として、機械部品などの用途がある。長方形の断面形状のアルミニウム合金鋳塊は、圧延板材原料として、航空機部品などの用途がある。アルミニウム合金鋳塊の形状と大きさは、前記急冷鋳型の形状と大きさにより定まる。
The cross-sectional shape of the aluminum alloy ingot according to the present invention is a circle, an oval, an ellipse, a square, or a rectangle.
The aluminum alloy ingot having a circular cross-sectional shape has applications such as beams for automobile bumpers and machine parts as an extruded shape material. An aluminum alloy ingot having an oval, elliptical, or square cross-sectional shape has applications such as machine parts as a forging material. An aluminum alloy ingot having a rectangular cross-section has applications such as aircraft parts as a rolled plate material. The shape and size of the aluminum alloy ingot are determined by the shape and size of the quench mold.

鋳塊断面形状が円形の場合は、直径150〜600mm、鋳塊断面形状が長円形もしくは楕円形の場合は、短径150〜600mm、鋳塊断面形状が正方形の場合は、一辺の長さ150〜600mm、鋳塊断面形状が長方形の場合は、短辺の長さ150〜600mmとする。直径、短径、一辺の長さまたは短辺の長さが150mmを下回ると、従来の方法と有意の差が得られない。直径、短径、一辺の長さまたは短辺の長さが600mmを超えると、表面効果のため、電磁攪拌力が鋳塊中心部まで届かず、鋳塊中心部の結晶粒径の平均値が50μm以下にならない。好ましくは、直径、短径、一辺の長さまたは短辺の長さが200〜400mmである。本発明は直径、短径、一辺の長さまたは短辺の長さが200〜400mmの範囲において効果が最大となる。   When the ingot cross-sectional shape is circular, the diameter is 150 to 600 mm, when the ingot cross-sectional shape is oval or elliptical, the short diameter is 150 to 600 mm, and when the ingot cross-sectional shape is square, the length of one side is 150 When the ingot cross-sectional shape is rectangular, the short side length is 150 to 600 mm. If the diameter, minor axis, length of one side or short side is less than 150 mm, a significant difference from the conventional method cannot be obtained. If the diameter, short diameter, side length or short side length exceeds 600 mm, the magnetic stirring force does not reach the ingot center due to surface effects, and the average value of the crystal grain size in the ingot center is It will not be less than 50μm. Preferably, the diameter, the short diameter, the length of one side or the length of the short side is 200 to 400 mm. The present invention is most effective when the diameter, the short diameter, the length of one side, or the length of the short side is in the range of 200 to 400 mm.

電磁攪拌条件
アルミニウム合金溶湯は凝固する際、凝固しやすい位置、すなわち結晶核を中心に結晶が成長する。従来は前述のように、Tiを含有する結晶粒微細化剤を添加、含有させて結晶核としていた。したがって、その結晶核が多ければ鋳塊の結晶粒は小さくなる。本発明では、このTiを含有する結晶粒微細化剤を使用することなく、従来よりも結晶粒を微細化でき、鋳造割れの防止ができる。
Electromagnetic stirring condition When the aluminum alloy melt is solidified, the crystal grows at a position where it is easy to solidify, that is, the crystal nucleus. Conventionally, as described above, a crystal grain refining agent containing Ti is added and contained to form crystal nuclei. Therefore, if there are many crystal nuclei, the crystal grain of an ingot will become small. In the present invention, without using the Ti-containing crystal grain refining agent, crystal grains can be made finer than before and casting cracks can be prevented.

ところで、DC鋳造は前記のように急冷鋳型を用いるものであるが、結晶粒微細化剤を添加しない場合には、鋳型内壁面から凝固が開始する。凝固により生成した結晶は、凝固開始点を根元として樹枝状に成長するが、この樹枝状結晶の樹枝部を分断、溶湯内に分散できれば、この分断された樹枝部を、前記Tiを含有する結晶粒微細化剤の結晶核の代用とすることができ、しかも前記樹枝部の分断箇所が多ければ鋳塊の結晶粒は微細化する。   By the way, although DC casting uses a rapid cooling mold as described above, solidification starts from the inner wall surface of the mold when no crystal grain refining agent is added. Crystals generated by solidification grow in a dendritic shape based on the solidification start point. If the dendritic portion of the dendritic crystal can be divided and dispersed in the molten metal, the divided dendritic portion is converted into a crystal containing Ti. It can be used as a substitute for the crystal nuclei of the grain refining agent, and the crystal grains in the ingot are refined if there are many parting portions of the tree branches.

電磁攪拌の態様として、回転磁界と向心磁界の2種類がある。回転磁界の態様においては、溶湯は鋳型の中心を回転軸として鋳型内を回転流動する。一方、向心磁界の態様においては、電磁攪拌される溶湯は攪拌コイルの上辺付近では鋳型中心部から外周部へ、続いて外周部を固液界面に沿って攪拌コイルの下辺方向へ、さらに鋳型中心部で攪拌コイルの上辺へ向かうように流動する。
本発明者らの研究によれば、電磁攪拌の態様が回転磁界の場合には、鋳塊中心部と外周部の間での対流が少ないため、鋳塊中心部の結晶粒の微細化効果および均一化効果が低く、鋳塊中心部の結晶粒径の平均値を50μm以下、かつ結晶粒径の標準偏差を12μm以下にできない。
There are two types of electromagnetic stirring, a rotating magnetic field and a centripetal magnetic field. In the embodiment of the rotating magnetic field, the molten metal rotates and flows in the mold with the center of the mold as the rotation axis. On the other hand, in the centripetal magnetic field, the electromagnetically stirred molten metal is near the upper side of the stirring coil from the center of the mold to the outer periphery, and then the outer periphery extends along the solid-liquid interface toward the lower side of the stirring coil. It flows toward the upper side of the stirring coil at the center.
According to the study by the present inventors, when the electromagnetic stirring mode is a rotating magnetic field, there is little convection between the ingot center and the outer periphery, so the effect of refining crystal grains in the ingot center and The homogenization effect is low, the average value of the crystal grain size at the center of the ingot is 50 μm or less, and the standard deviation of the crystal grain size cannot be 12 μm or less.

そこで、本発明では、向心磁界の態様で電磁攪拌するとともに、それに伴う、機械的な電磁攪拌力のみにより、鋳型内壁面に結晶成長した樹枝状結晶の樹枝部を微細に分断し、分断された樹枝部を溶湯内に分散させて結晶核とするものである。これにより、従来よりも微細な結晶粒の鋳塊を得るものである。すなわち、前記Tiを含有する結晶粒微細化剤では鋳塊中心部の結晶粒径の平均値を50μm以下にすることはできなかったが、本発明の樹枝状結晶の樹枝部を分断する方法では鋳塊中心部の結晶粒径の平均値を50μm以下にすることができる。   Therefore, in the present invention, electromagnetic stirring is performed in the form of a centripetal magnetic field, and the dendritic portion of the dendritic crystal that has grown on the inner wall surface of the mold is finely divided and divided only by the mechanical electromagnetic stirring force associated therewith. The tree branches are dispersed in the molten metal to form crystal nuclei. Thereby, the ingot of a crystal grain finer than before is obtained. That is, with the grain refiner containing Ti, the average value of the crystal grain size at the center of the ingot could not be reduced to 50 μm or less, but in the method of dividing the dendritic part of the dendritic crystal of the present invention, The average value of the crystal grain size at the center of the ingot can be made 50 μm or less.

円形の断面形状のアルミニウム合金鋳塊の場合は、直径150〜600mm、長円形もしくは楕円形の断面形状のアルミニウム合金鋳塊の場合は、短径150〜600mm、正方形の断面形状のアルミニウム合金鋳塊の場合は、一辺の長さ150〜600mm、長方形の断面形状のアルミニウム合金鋳塊の場合は、短辺の長さ150〜600mmとする。好ましくは、直径、短径、一辺の長さまたは短辺の長さが200〜400mmである。この範囲において、電磁撹拌力の好ましい値は、アルミニウム合金鋳塊断面の形状および大きさに依存して変化するが、起磁力は10000〜30000Atの範囲から選択できる。   In the case of an aluminum alloy ingot having a circular cross-sectional shape, the diameter is 150 to 600 mm, and in the case of an aluminum alloy ingot having an elliptical or elliptical cross-sectional shape, the aluminum alloy ingot having a short cross-section of 150 to 600 mm and a square cross-sectional shape In this case, the length of one side is 150 to 600 mm, and in the case of an aluminum alloy ingot having a rectangular cross section, the length of the short side is 150 to 600 mm. Preferably, the diameter, the short diameter, the length of one side or the length of the short side is 200 to 400 mm. In this range, the preferable value of the electromagnetic stirring force varies depending on the shape and size of the aluminum alloy ingot cross section, but the magnetomotive force can be selected from the range of 10,000 to 30,000 At.

周波数は、円形の鋳塊断面の直径、長円形もしくは楕円形の鋳塊断面の短径、正方形の鋳塊断面の一辺の長さ、または長方形の鋳塊断面の短辺の長さをd(mm)として、28exp(‐0.002d)〜40exp(‐0.002d)Hzの範囲が好ましい。すなわち、例えば鋳塊が、直径250mmの円形断面の場合は、好ましい周波数の範囲は16〜24Hzであり、例えば鋳塊が、短径180mmの長円形断面の場合は、好ましい周波数は19〜28Hz、例えば鋳塊が、短径200mmの楕円形断面の場合は、好ましい周波数は18〜27Hz、例えば鋳塊が、一辺の長さ370mmの正方形断面の場合は、好ましい周波数は13〜19Hz、また例えば鋳塊が、短辺の長さ400mmの長方形断面の場合は、好ましい周波数の範囲は12〜18Hzである。   The frequency is the diameter of the circular ingot cross section, the short diameter of the oval or elliptical ingot cross section, the length of one side of the square ingot cross section, or the length of the short side of the rectangular ingot cross section d ( mm) is preferably in the range of 28exp (−0.002d) to 40exp (−0.002d) Hz. That is, for example, when the ingot has a circular cross section with a diameter of 250 mm, a preferable frequency range is 16 to 24 Hz. For example, when the ingot has an oval cross section with a short diameter of 180 mm, the preferable frequency is 19 to 28 Hz. For example, when the ingot has an elliptical cross section with a minor axis of 200 mm, a preferable frequency is 18 to 27 Hz. For example, when the ingot has a square cross section with a side length of 370 mm, the preferable frequency is 13 to 19 Hz. If the mass is a rectangular cross section with a short side length of 400 mm, the preferred frequency range is 12-18 Hz.

鋳塊の大きさと周波数の関係を図6に示す。図6において、横軸は前記dを、縦軸は周波数を、それぞれ示す。図6の点Aはd=150mm、周波数40exp(‐0.002d)=30Hzを、点Bはd=150mm、周波数28exp(‐0.002d)=21Hzを、点Cはd=600mm、周波数28exp(‐0.002d)=8Hzを、点Dはd=600mm、周波数40exp(‐0.002d)=12Hzを、それぞれ示すが、このABCDに囲まれた領域が鋳塊の大きさと周波数の関係における好ましい範囲である。   FIG. 6 shows the relationship between the size of the ingot and the frequency. In FIG. 6, the horizontal axis indicates d and the vertical axis indicates frequency. In FIG. 6, point A is d = 150 mm, frequency 40exp (−0.002d) = 30 Hz, point B is d = 150 mm, frequency 28exp (−0.002d) = 21 Hz, point C is d = 600 mm, frequency 28exp (− 0.002d) = 8Hz, point D shows d = 600mm, and frequency 40exp (-0.002d) = 12Hz. The area surrounded by ABCD is a preferable range in the relationship between ingot size and frequency. .

このような値への電磁攪拌条件の調整により、前記DC鋳造の急冷鋳型内で電磁攪拌されている固液共存状態部の固相率を0.2〜0.6とすることができる。そうすることによって、従来法では結晶粒が粗大化して、強度と伸びが低かった鋳塊中心部の結晶粒径の平均値を50μm以下とし、かつ結晶粒径の標準偏差を12μm以下とした、強度が均一で、コストの増加の抑制、および軽量化の要求を満足できる、アルミニウム合金鋳塊を得ることができる。   By adjusting the electromagnetic stirring condition to such a value, the solid phase ratio of the solid-liquid coexistence state portion electromagnetically stirred in the DC casting quenching mold can be set to 0.2 to 0.6. By doing so, in the conventional method, the crystal grains are coarsened, the average value of the crystal grain size of the ingot center portion having low strength and elongation is 50 μm or less, and the standard deviation of the crystal grain size is 12 μm or less, It is possible to obtain an aluminum alloy ingot that has a uniform strength, can suppress the increase in cost, and can satisfy the demand for weight reduction.

起磁力または周波数が、前記の鋳塊の直径または短辺の長さに依存して変化する好ましい値を下回る場合は電磁攪拌力が弱く、溶湯中に発生する樹枝状結晶の樹枝部を分断する効果が得られない。そのため、前記DC鋳造の急冷鋳型内で電磁攪拌されている固液共存状態部の固相率が0.2を下回り、電磁攪拌の効果が低くなって、結果的にアルミニウム合金鋳塊中心部の結晶粒径の平均が50μm以下にならない。
起磁力が前記の鋳塊の直径または短辺の長さに依存して変化する好ましい値を超えると電磁攪拌力が強すぎ、樹枝状結晶が根元で折れることがあり、結晶核の数の増加が少なくなるほか、大小の結晶の混在組織となるため、結晶粒径の標準偏差が12μm以下とならない。また、前記DC鋳造の急冷鋳型内で電磁攪拌されている固液共存状態部の固相率が0.6を上回り、固相率が高くなりすぎて、電磁攪拌の効果が低下し、結果的にアルミニウム合金鋳塊中心部の結晶粒径の平均が50μm以下にならない。
When the magnetomotive force or frequency is lower than a preferable value that varies depending on the diameter or the length of the short side of the ingot, the electromagnetic stirring force is weak, and the dendritic portion of the dendritic crystal generated in the molten metal is divided. The effect is not obtained. Therefore, the solid phase ratio of the solid-liquid coexisting state portion that is electromagnetically stirred in the DC casting quenching mold is less than 0.2, and the effect of electromagnetic stirring is reduced, resulting in the crystal grains in the center of the aluminum alloy ingot. The average diameter is not less than 50μm.
When the magnetomotive force exceeds a preferable value that varies depending on the diameter of the ingot or the length of the short side, the electromagnetic stirring force is too strong and the dendritic crystal may be broken at the root, increasing the number of crystal nuclei. In addition, the standard deviation of the crystal grain size does not become 12 μm or less. Further, the solid phase ratio of the solid-liquid coexisting state portion electromagnetically stirred in the DC casting quenching mold exceeds 0.6, the solid phase ratio becomes too high, and the effect of electromagnetic stirring decreases, resulting in aluminum The average crystal grain size at the center of the alloy ingot does not fall below 50 μm.

周波数が前記の鋳塊の直径によって異なる好ましい値を超えると、表皮効果により電磁力が溶湯の鋳型と接触する部分に集中するため、攪拌力が鋳塊中心部まで届かず、前記DC鋳造の急冷鋳型内で電磁攪拌されている固液共存状態部の鋳塊中心部の固相率が0.2を下回って、当該部の結晶粒径の平均値が50μm以下にならない。また、電磁力が集中する鋳型と接触する部分との差が大きくなるため、結果的にアルミニウム合金鋳塊の結晶粒径の標準偏差が12μm以下にならない。   When the frequency exceeds a preferable value that varies depending on the diameter of the ingot, the electromagnetic force concentrates on the portion in contact with the molten metal mold due to the skin effect, so the stirring force does not reach the center of the ingot, and the DC casting is rapidly cooled. The solid phase ratio of the ingot center portion of the solid-liquid coexistence state portion electromagnetically stirred in the mold is less than 0.2, and the average value of the crystal grain size of the portion does not become 50 μm or less. In addition, since the difference from the portion in contact with the mold where the electromagnetic force is concentrated becomes large, the standard deviation of the crystal grain size of the aluminum alloy ingot does not become 12 μm or less as a result.

樹枝状結晶の樹枝部を分断、溶湯内に分散する方法として、電磁攪拌による方法のほかに攪拌棒による機械攪拌法、超音波振動ヘッドによる超音波振動攪拌法などがある。しかしながら、これらの方法は、攪拌棒、超音波振動ヘッドなどを高温の溶湯に浸漬して攪拌力を伝達する方法であるため、攪拌棒が溶湯により浸食される一方、該攪拌棒の浸食減耗により溶湯が汚染されるという欠点がある。これに対し、本発明の電磁攪拌では、攪拌力を溶湯と非接触に伝達できるため、前記のような欠点がなく、好適に攪拌力を溶湯に伝達できる。   In addition to the electromagnetic stirring method, there are a mechanical stirring method using a stirring bar, an ultrasonic vibration stirring method using an ultrasonic vibration head, and the like as a method of dividing the dendritic portion of the dendritic crystal and dispersing it in the molten metal. However, these methods are methods in which the stirring force is transmitted by immersing a stirring rod, an ultrasonic vibration head, etc. in a high-temperature molten metal, so that the stirring rod is eroded by the molten metal, and the erosion of the stirring rod is reduced. There is a disadvantage that the molten metal is contaminated. On the other hand, in the electromagnetic stirring of the present invention, the stirring force can be transmitted in a non-contact manner with the molten metal.

実施例1;
本発明の代表例と、従来技術を比較して示す。
表1に示す成分組成のうち、本発明の代表例としてA、従来技術の例としてHのアルミニウム合金溶湯を溶製し、本発明の代表例は表2の条件で電磁攪拌を施しながら、従来技術の例は電磁攪拌せずに、いずれも50mm/分なる速度でのDC鋳造により、直径325mmの円形断面の鋳塊を得た。得られた鋳塊に関する、鋳塊中心部の結晶粒径の平均値と結晶粒径の標準偏差の測定結果を表2に示す。
Example 1;
A representative example of the present invention is compared with the prior art.
Of the component compositions shown in Table 1, A is a typical example of the present invention, and H is a molten aluminum alloy as an example of the prior art. As an example of the technology, a circular ingot having a diameter of 325 mm was obtained by DC casting at a speed of 50 mm / min without electromagnetic stirring. Table 2 shows the measurement results of the average value of the crystal grain size at the center of the ingot and the standard deviation of the crystal grain size for the obtained ingot.

試験No.1は、本発明の代表例である。鋳塊中心部の結晶粒径の平均値は42μm、結晶粒径の標準偏差は8μmであり、結晶粒径の平均値および標準偏差が小さくなっている。
これに対して、試験No.2は、従来技術の例を示すもので、Al‐Ti系の結晶粒微細化剤を含有するものの、電磁攪拌しない場合の比較例である。鋳塊中心部の結晶粒径は250μm、結晶粒径の標準偏差は20μmであり、結晶粒径の平均値、標準偏差ともに大きくなっている。
試験No.1の本発明の代表例材と試験No.2の従来技術の比較例材の結晶粒組織を図7に示す。図7の「a」、「b」、「c」は、図1に示す標本採取位置に対応している。図7によれば、試験No.1の本発明例材では結晶粒径が均一であるとともに、結晶粒が微細化していることがわかる。他方、試験No.2の比較例材では、粗大結晶が鋳塊中心部に存在しており、結晶粒径が不均一であることがわかる。
Test No. 1 is a representative example of the present invention. The average value of the crystal grain size at the center of the ingot is 42 μm, the standard deviation of the crystal grain size is 8 μm, and the average value and standard deviation of the crystal grain size are small.
On the other hand, Test No. 2 shows an example of the prior art, and is a comparative example in the case where an Al-Ti-based crystal grain refining agent is contained but electromagnetic stirring is not performed. The crystal grain size at the center of the ingot is 250 μm, and the standard deviation of the crystal grain size is 20 μm. Both the average value and the standard deviation of the crystal grain size are large.
The crystal grain structures of the representative example material of the present invention in Test No. 1 and the comparative example material of the prior art in Test No. 2 are shown in FIG. “A”, “b”, and “c” in FIG. 7 correspond to the sample collection positions shown in FIG. According to FIG. 7, it can be seen that the sample material of the present invention of Test No. 1 has a uniform crystal grain size and fine crystal grains. On the other hand, in the comparative example material of Test No. 2, it can be seen that coarse crystals are present in the center of the ingot, and the crystal grain size is not uniform.

実施例2;
アルミニウム合金の成分組成を変化させる一方、鋳造条件および電磁攪拌条件を本発明の範囲内とした例を示す。
表1に示す成分組成のアルミニウム合金溶湯を溶製し、表4の条件で電磁攪拌を施しながら、50mm/分なる速度でのDC鋳造により、直径325mmの円形断面の鋳塊を得た。得られた鋳塊に関する、鋳塊中心部の結晶粒径の平均値と結晶粒径の標準偏差の測定結果を表4に示す。
Example 2;
An example is shown in which the composition of the aluminum alloy is changed while the casting conditions and electromagnetic stirring conditions are within the scope of the present invention.
A molten aluminum alloy having the composition shown in Table 1 was melted, and an ingot having a circular cross-section of 325 mm in diameter was obtained by DC casting at a speed of 50 mm / min while performing electromagnetic stirring under the conditions shown in Table 4. Table 4 shows the measurement results of the average value of the crystal grain size at the center of the ingot and the standard deviation of the crystal grain size for the obtained ingot.

試験No.3〜6は、試験No.1に対し、Znを変化させた例である。これらのうち、試験No.3〜4は、本発明の範囲内である。鋳塊中心部の結晶粒径の平均値は41〜48μm、結晶粒径の標準偏差は10μmであり、結晶粒径の平均値および標準偏差が小さくなっている。
一方、試験No.5は、Znが少なく、本発明の範囲外となる比較例である。鋳塊中心部の結晶粒径の平均値は80μm、結晶粒径の標準偏差は10μmであり、結晶粒径の平均値が大きくなっている。また、試験No.6は、Znが多く、本発明の範囲外となる比較例である。鋳塊中心部の結晶粒径の平均値は65μm、結晶粒径の標準偏差は13μmであり、結晶粒径の平均値、標準偏差ともに大きくなっている。
Test Nos. 3 to 6 are examples in which Zn was changed with respect to test No. 1. Of these, Test Nos. 3 to 4 are within the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 41 to 48 μm, the standard deviation of the crystal grain size is 10 μm, and the average value and standard deviation of the crystal grain size are small.
On the other hand, Test No. 5 is a comparative example with a small amount of Zn and outside the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 80 μm, the standard deviation of the crystal grain size is 10 μm, and the average value of the crystal grain size is large. Test No. 6 is a comparative example with a large amount of Zn and outside the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 65 μm, and the standard deviation of the crystal grain size is 13 μm. Both the average value and the standard deviation of the crystal grain size are large.

試験No.7〜8は、試験No.1に対し、Mgを変化させた例である。試験No.7は、Mgが含有されず、本発明の範囲外となる比較例である。鋳塊中心部の結晶粒径の平均値は70μm、結晶粒径の標準偏差は15μmであり、結晶粒径の平均値、標準偏差ともに大きくなっている。試験No.8は、逆にMgが多く、本発明の範囲外となる比較例である。鋳塊中心部の結晶粒径の平均値は60μm、結晶粒径の標準偏差は10μmであり、結晶粒径の平均値が大きくなっている。   Test Nos. 7 to 8 are examples in which Mg was changed from Test No. 1. Test No. 7 is a comparative example that does not contain Mg and is outside the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 70 μm, and the standard deviation of the crystal grain size is 15 μm. Both the average value and the standard deviation of the crystal grain size are large. Test No. 8 is a comparative example that is conversely rich in Mg and is outside the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 60 μm, the standard deviation of the crystal grain size is 10 μm, and the average value of the crystal grain size is large.

試験No.9〜11は、試験No.1に対し、Cuを変化させた例である。これらのうち、試験No.9は、本発明の範囲内である。鋳塊中心部の結晶粒径の平均値は44μm、結晶粒径の標準偏差は10μmであり、結晶粒径の平均値および標準偏差は小さい。一方、試験No.10は、Cuが少なく、本発明の範囲外となる比較例である。鋳塊中心部の結晶粒径の平均値は75μm、結晶粒径の標準偏差は12μmであり、結晶粒径の平均値が大きくなっている。試験No.11は、逆にCuが多く、本発明の範囲外となる比較例である。鋳塊中心部の結晶粒径の平均値は65μm、結晶粒径の標準偏差は10μmであり、結晶粒径の平均値が大きくなっている。
試験No.12は、試験No.1に対し、Al‐Ti系の結晶粒微細化剤を含有する場合の比較例である。鋳塊中心部の結晶粒径の平均値は85μm、結晶粒径の標準偏差は10μmであり、Al‐Ti系の結晶粒微細化剤を含有すると、電磁攪拌しても結晶粒径の平均値が小さくならない。
Test Nos. 9 to 11 are examples in which Cu is changed with respect to Test No. 1. Of these, test No. 9 is within the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 44 μm, the standard deviation of the crystal grain size is 10 μm, and the average value and standard deviation of the crystal grain size are small. On the other hand, Test No. 10 is a comparative example with less Cu and outside the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 75 μm, the standard deviation of the crystal grain size is 12 μm, and the average value of the crystal grain size is large. Test No. 11 is a comparative example that is conversely rich in Cu and outside the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 65 μm, the standard deviation of the crystal grain size is 10 μm, and the average value of the crystal grain size is large.
Test No. 12 is a comparative example in which an Al—Ti-based crystal grain refining agent is contained compared to Test No. 1. The average value of the crystal grain size at the center of the ingot is 85μm, and the standard deviation of the crystal grain size is 10μm. Does not get smaller.

実施例3;
アルミニウム合金の成分組成を、本発明の範囲内とし、鋳造条件および電磁攪拌条件を変化させた例を示す。
表1に示す成分組成Aのアルミニウム合金溶湯を溶製し、表6に示す条件で電磁攪拌を施しながら、50mm/分なる速度でのDC鋳造により鋳塊を得た。得られた鋳塊に関する、鋳塊中心部の結晶粒径の平均値と結晶粒径の標準偏差の測定結果も表7に示す。
Example 3;
An example is shown in which the composition of the aluminum alloy is within the range of the present invention, and the casting conditions and electromagnetic stirring conditions are changed.
An aluminum alloy melt having the component composition A shown in Table 1 was melted, and an ingot was obtained by DC casting at a speed of 50 mm / min while performing electromagnetic stirring under the conditions shown in Table 6. Table 7 also shows the measurement results of the average value of the crystal grain size at the center of the ingot and the standard deviation of the crystal grain size for the obtained ingot.

試験No.13は、鋳造時に電磁攪拌せず、製造条件が本発明の範囲外となる比較例である。鋳塊中心部に粗大結晶が発生したため、所定の測定方法では結晶粒径は得られなかった。なお、表7中には、( )内表示や“−”表示を行っているが、試験No.13では粗大結晶の発生により所定の測定方法では測定できず、マクロ観察による結晶粒径測定結果(2300μm)を参考値として( )内に表示し、粗大結晶の発生により結晶粒径の統計処理ができず、標準偏差は得られなかったことを“−”で表示したものである。   Test No. 13 is a comparative example in which electromagnetic stirring is not performed during casting and the manufacturing conditions are outside the scope of the present invention. Since coarse crystals were generated at the center of the ingot, the crystal grain size could not be obtained by a predetermined measurement method. In Table 7, the display in parentheses or “-” is displayed, but in Test No. 13, it is not possible to measure with a predetermined measurement method due to the generation of coarse crystals, and the crystal grain size measurement result by macro observation (2300 μm) is indicated in parentheses as a reference value, and “−” indicates that the statistical processing of the crystal grain size could not be performed due to the generation of coarse crystals and the standard deviation was not obtained.

試験No.14〜17は、試験No.1に対し、電磁攪拌の周波数を変化させた例である。これらのうち、試験No.14〜15が本発明の範囲内である。鋳塊中心部の結晶粒径の平均値は41〜46μm、結晶粒径の標準偏差は10μmであり、結晶粒径の平均値および標準偏差が小さくなっている。これに対して、試験No.16は、電磁攪拌の周波数が低く、本発明の範囲外となる比較例である。鋳塊中心部の結晶粒径の平均値は80μm、結晶粒径の標準偏差は15μmであり、結晶粒径の平均値、標準偏差ともに大きくなっている。試験No.17は、電磁攪拌の周波数が高く、本発明の範囲外となる比較例である。鋳塊中心部の結晶粒径の平均値は70μm、結晶粒径の標準偏差は15μmであり、結晶粒径の平均値が大きくなっている。   Test Nos. 14 to 17 are examples in which the frequency of electromagnetic stirring was changed with respect to Test No. 1. Of these, Test Nos. 14 to 15 are within the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 41 to 46 μm, the standard deviation of the crystal grain size is 10 μm, and the average value and standard deviation of the crystal grain size are small. On the other hand, Test No. 16 is a comparative example in which the frequency of electromagnetic stirring is low and is outside the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 80 μm, and the standard deviation of the crystal grain size is 15 μm. Both the average value and the standard deviation of the crystal grain size are large. Test No. 17 is a comparative example in which the frequency of electromagnetic stirring is high and is outside the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 70 μm, the standard deviation of the crystal grain size is 15 μm, and the average value of the crystal grain size is large.

試験No.18〜19は、試験No.1に対し、電磁攪拌の起磁力を変化させた例である。試験No.18は、電磁攪拌の起磁力が低く、本発明の範囲外となる比較例である。鋳塊中心部の結晶粒径の平均値は85μm、結晶粒径の標準偏差は10μmであり、結晶粒径の平均値が大きくなっている。試験No.19は、電磁攪拌の起磁力が高く、本発明の範囲外となる比較例である。鋳塊中心部の結晶粒径の平均値は80μm、結晶粒径の標準偏差は13μmであり、結晶粒径の平均値が大きくなっている。   Test Nos. 18 to 19 are examples in which the magnetomotive force of electromagnetic stirring was changed with respect to Test No. 1. Test No. 18 is a comparative example in which the magnetomotive force of electromagnetic stirring is low and out of the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 85 μm, the standard deviation of the crystal grain size is 10 μm, and the average value of the crystal grain size is large. Test No. 19 is a comparative example in which the magnetomotive force of electromagnetic stirring is high and is outside the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 80 μm, the standard deviation of the crystal grain size is 13 μm, and the average value of the crystal grain size is large.

また、試験No.20〜22は、試験No.1に対し、円形の断面形状のアルミニウム合金鋳塊の直径を変化させた例である。これらのうち、試験No.20〜21が本発明の範囲内である。鋳塊中心部の結晶粒径の平均値は44〜48μm、結晶粒径の標準偏差は10μmであり、結晶粒径の平均値および標準偏差が小さくなっている。試験No.22は、鋳塊の直径が大きく、本発明の範囲外となる比較例である。鋳塊中心部の結晶粒径の平均値は70μm、結晶粒径の標準偏差は13μmであり、結晶粒径の平均値、標準偏差ともに大きくなっている。   Test Nos. 20 to 22 are examples in which the diameter of the aluminum alloy ingot having a circular cross-sectional shape is changed with respect to Test No. 1. Of these, Test Nos. 20 to 21 are within the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 44 to 48 μm, the standard deviation of the crystal grain size is 10 μm, and the average value and standard deviation of the crystal grain size are small. Test No. 22 is a comparative example in which the diameter of the ingot is large and is outside the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 70 μm, and the standard deviation of the crystal grain size is 13 μm. Both the average value and the standard deviation of the crystal grain size are large.

試験No.23〜25は、試験No.1に対し、アルミニウム合金鋳塊の断面形状を長方形とした例である。これらのうち、試験No.23〜24が本発明の範囲内である。鋳塊中心部の結晶粒径の平均値は42〜47μm、結晶粒径の標準偏差は10μmであり、結晶粒径の平均値および標準偏差が小さなっている。試験No.25は、短辺の長さが長く、本発明の範囲外となる比較例である。鋳塊中心部の結晶粒径の平均値は72μm、結晶粒径の標準偏差は15μmであり、結晶粒径の平均値、標準偏差ともに大きくなっている。   Test Nos. 23 to 25 are examples in which the cross-sectional shape of the aluminum alloy ingot is rectangular with respect to Test No. 1. Of these, Test Nos. 23 to 24 are within the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 42 to 47 μm, the standard deviation of the crystal grain size is 10 μm, and the average value and standard deviation of the crystal grain size are small. Test No. 25 is a comparative example in which the length of the short side is long and is outside the scope of the present invention. The average value of the crystal grain size at the center of the ingot is 72 μm, and the standard deviation of the crystal grain size is 15 μm. Both the average value and the standard deviation of the crystal grain size are large.

Claims (5)

断面形状が、直径150〜600mmの円形、短径150〜600mmの長円形もしくは楕円形、一辺の長さが150〜600mmの正方形、または短辺の長さが150〜600mmの長方形の鋳塊であって、Zn:4〜12質量%、Mg:1〜3質量%、Cu:0.5〜3質量%を含み、残部がAlおよび不可避不純物からなり、不純物としてのTiの含有量が0.01質量%以下に制限された成分組成と、鋳塊中心部の結晶粒径の平均値が50μm以下であり、かつ結晶粒径の標準偏差が12μm以下である金属組織を有することを特徴とするアルミニウム合金鋳塊。   A cross-sectional shape of a circular ingot with a diameter of 150 to 600 mm, an oblong or elliptical shape with a short diameter of 150 to 600 mm, a square with a side length of 150 to 600 mm, or a rectangular ingot with a short side length of 150 to 600 mm Zn: 4 to 12% by mass, Mg: 1 to 3% by mass, Cu: 0.5 to 3% by mass, the balance consisting of Al and inevitable impurities, and the content of Ti as impurities is 0.01% by mass or less An aluminum alloy ingot characterized by having a metal structure having a component composition limited to 2 and an average value of crystal grain size at the center of the ingot of 50 μm or less and a standard deviation of crystal grain size of 12 μm or less . さらに0.3質量%以下のCrを含む成分組成を有する請求項1に記載のアルミニウム合金鋳塊。   Furthermore, the aluminum alloy ingot of Claim 1 which has a component composition containing 0.3 mass% or less of Cr. さらに0.3質量%以下のZrを含む成分組成を有する請求項1または2に記載のアルミニウム合金鋳塊。   Furthermore, the aluminum alloy ingot of Claim 1 or 2 which has a component composition containing 0.3 mass% or less Zr. 請求項1から3までのいずれか1項に記載の成分組成を有するアルミニウム合金溶湯をDC鋳造する際に、向心磁界のみの態様で電磁攪拌するとともに、前記DC鋳造の急冷鋳型内で電磁的に撹拌されている固液共存状態部の固相率を0.2〜0.6として鋳造することを特徴とするアルミニウム合金鋳塊の製造方法。   When the aluminum alloy melt having the component composition according to any one of claims 1 to 3 is DC-cast, electromagnetic stirring is performed in an aspect of only a centripetal magnetic field, and electromagnetically generated in the quench casting mold of the DC casting. A solid-liquid coexistence state portion stirred in the process is cast at a solid phase ratio of 0.2 to 0.6. 前記電磁攪拌を、周波数:28exp(‐0.002d)〜40exp(‐0.002d)Hz、および起磁力:10000〜30000Atなる条件で行う請求項4に記載のアルミニウム合金鋳塊の製造方法。
ここでd(単位mm)は、アルミニウム合金鋳塊の直径(円形断面の場合)、短径(長円形もしくは楕円形断面の場合)、一辺の長さ(正方形断面の場合)、または短辺の長さ(長方形断面の場合)である。
The method for producing an aluminum alloy ingot according to claim 4, wherein the electromagnetic stirring is performed under conditions of a frequency: 28exp (-0.002d) to 40exp (-0.002d) Hz and a magnetomotive force: 10000 to 30000At.
Where d (unit: mm) is the diameter of the aluminum alloy ingot (in the case of a circular cross section), the short diameter (in the case of an oval or elliptical cross section), the length of one side (in the case of a square cross section), or the short side Length (in the case of a rectangular cross section).
JP2009288578A 2009-01-08 2009-12-21 Aluminum alloy ingot and method for producing the same Expired - Fee Related JP5360591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009288578A JP5360591B2 (en) 2009-01-08 2009-12-21 Aluminum alloy ingot and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009002107 2009-01-08
JP2009002107 2009-01-08
JP2009288578A JP5360591B2 (en) 2009-01-08 2009-12-21 Aluminum alloy ingot and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010179363A true JP2010179363A (en) 2010-08-19
JP5360591B2 JP5360591B2 (en) 2013-12-04

Family

ID=42761306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288578A Expired - Fee Related JP5360591B2 (en) 2009-01-08 2009-12-21 Aluminum alloy ingot and method for producing the same

Country Status (1)

Country Link
JP (1) JP5360591B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037557A (en) * 2012-08-10 2014-02-27 Nippon Light Metal Co Ltd Aluminum-zinc based alloy extrusion material and method for producing teh same
JP2015016501A (en) * 2013-07-12 2015-01-29 株式会社ブリヂストン Casting method, casting, and tire molding die
KR101511632B1 (en) * 2013-09-05 2015-04-13 한국기계연구원 Method for manufacturing of Al-Zn alloy sheet using twin roll casting and Al-Zn alloy sheet thereby
JP2015208748A (en) * 2014-04-23 2015-11-24 日本軽金属株式会社 Manufacturing method of aluminum alloy billet and aluminum alloy billet
JP2017515687A (en) * 2014-05-21 2017-06-15 ノベリス・インコーポレイテッドNovelis Inc. Non-contact molten metal flow control
WO2018100867A1 (en) * 2016-11-30 2018-06-07 アイシン軽金属株式会社 Aluminum alloy for extruded material, extruded material using same, and extruded material production method
EP3441491A4 (en) * 2016-03-30 2019-09-25 Aisin Keikinzoku Co., Ltd. High strength extruded aluminum alloy material with excellent corrosion resistance and favorable quenching properties and manufacturing method therefor
JP2021514850A (en) * 2018-03-01 2021-06-17 ノルスク・ヒドロ・アーエスアーNorsk Hydro Asa Casting method
JP2022532347A (en) * 2019-06-03 2022-07-14 ノベリス・インコーポレイテッド Ultra-high-strength aluminum alloy products and their manufacturing methods
CN115679169A (en) * 2022-10-17 2023-02-03 广州和信实业有限责任公司 High-strength aluminum alloy die casting for automobile engine bracket and preparation method thereof
CN117470617A (en) * 2023-12-28 2024-01-30 中铝材料应用研究院有限公司 Method for determining shape and position of solidification front in casting process of aluminum alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109439981A (en) * 2019-01-11 2019-03-08 华劲新材料研究院(广州)有限公司 A kind of heat transmission high strength die-casting aluminum alloy and preparation method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687647A (en) * 1979-12-14 1981-07-16 Sumitomo Light Metal Ind Ltd Airplane stringer material and its manufacture
JPS56136262A (en) * 1980-03-26 1981-10-24 Sumitomo Light Metal Ind Ltd Continuous casting method for aluminum or aluminum alloy
JPS57127553A (en) * 1981-01-30 1982-08-07 Sumitomo Light Metal Ind Ltd Hot top continuous casting method for aluminum
JPS5994555A (en) * 1982-11-22 1984-05-31 Showa Alum Ind Kk Cast ingot of aluminum or aluminum alloy to be worked to irregular section
JPH0255650A (en) * 1988-07-07 1990-02-26 Alum Pechiney Manufacture of thixotropic metallic product through continuous casting
JPH04333548A (en) * 1991-02-12 1992-11-20 Sumitomo Light Metal Ind Ltd Manufacture of high strength aluminum alloy extruded material
JPH0751820A (en) * 1993-08-20 1995-02-28 Sumitomo Chem Co Ltd Method for continuously casting high purity aluminum alloy
JPH0768345A (en) * 1990-01-04 1995-03-14 Alum Pechiney Method of manufacturing metal article of thixotropy by continuous casting by polyphase alternate current electromagnetic agitation
JP2000005852A (en) * 1998-06-23 2000-01-11 Furukawa Electric Co Ltd:The Cracking prevention device for aluminum alloy ingot, and dc casting method
CN1425520A (en) * 2002-10-25 2003-06-25 东北大学 Alumium alloy low frequency electromagnetic semi-continuous casting method and device
CN1425519A (en) * 2002-10-25 2003-06-25 东北大学 Aluminium alloy low frequency electromagnetic oscillation semicontinuous casting crystal grain fining method and device
JP2004002983A (en) * 2002-03-27 2004-01-08 Kobe Steel Ltd Bat made of aluminium alloy
JP2006257475A (en) * 2005-03-16 2006-09-28 Sumitomo Light Metal Ind Ltd Al-Mg-Si ALLOY SHEET SUPERIOR IN PRESS FORMABILITY, MANUFACTURING METHOD THEREFOR AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET MATERIAL
JP2008012545A (en) * 2006-07-03 2008-01-24 Shoda Seisakusho:Kk Aluminum alloy solidified body and its production method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687647A (en) * 1979-12-14 1981-07-16 Sumitomo Light Metal Ind Ltd Airplane stringer material and its manufacture
JPS56136262A (en) * 1980-03-26 1981-10-24 Sumitomo Light Metal Ind Ltd Continuous casting method for aluminum or aluminum alloy
JPS57127553A (en) * 1981-01-30 1982-08-07 Sumitomo Light Metal Ind Ltd Hot top continuous casting method for aluminum
JPS5994555A (en) * 1982-11-22 1984-05-31 Showa Alum Ind Kk Cast ingot of aluminum or aluminum alloy to be worked to irregular section
JPH0255650A (en) * 1988-07-07 1990-02-26 Alum Pechiney Manufacture of thixotropic metallic product through continuous casting
JPH0768345A (en) * 1990-01-04 1995-03-14 Alum Pechiney Method of manufacturing metal article of thixotropy by continuous casting by polyphase alternate current electromagnetic agitation
JPH04333548A (en) * 1991-02-12 1992-11-20 Sumitomo Light Metal Ind Ltd Manufacture of high strength aluminum alloy extruded material
JPH0751820A (en) * 1993-08-20 1995-02-28 Sumitomo Chem Co Ltd Method for continuously casting high purity aluminum alloy
JP2000005852A (en) * 1998-06-23 2000-01-11 Furukawa Electric Co Ltd:The Cracking prevention device for aluminum alloy ingot, and dc casting method
JP2004002983A (en) * 2002-03-27 2004-01-08 Kobe Steel Ltd Bat made of aluminium alloy
CN1425520A (en) * 2002-10-25 2003-06-25 东北大学 Alumium alloy low frequency electromagnetic semi-continuous casting method and device
CN1425519A (en) * 2002-10-25 2003-06-25 东北大学 Aluminium alloy low frequency electromagnetic oscillation semicontinuous casting crystal grain fining method and device
JP2006257475A (en) * 2005-03-16 2006-09-28 Sumitomo Light Metal Ind Ltd Al-Mg-Si ALLOY SHEET SUPERIOR IN PRESS FORMABILITY, MANUFACTURING METHOD THEREFOR AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET MATERIAL
JP2008012545A (en) * 2006-07-03 2008-01-24 Shoda Seisakusho:Kk Aluminum alloy solidified body and its production method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037557A (en) * 2012-08-10 2014-02-27 Nippon Light Metal Co Ltd Aluminum-zinc based alloy extrusion material and method for producing teh same
JP2015016501A (en) * 2013-07-12 2015-01-29 株式会社ブリヂストン Casting method, casting, and tire molding die
KR101511632B1 (en) * 2013-09-05 2015-04-13 한국기계연구원 Method for manufacturing of Al-Zn alloy sheet using twin roll casting and Al-Zn alloy sheet thereby
US10226813B2 (en) 2013-09-05 2019-03-12 Korea Institute Of Machinery And Materials Method of manufacturing aluminum-zinc-based alloy sheet using twin-roll casting and aluminum-zinc-based alloy sheet manufactured thereby
JP2015208748A (en) * 2014-04-23 2015-11-24 日本軽金属株式会社 Manufacturing method of aluminum alloy billet and aluminum alloy billet
JP7242754B2 (en) 2014-05-21 2023-03-20 ノベリス・インコーポレイテッド Mixing eductor nozzle and flow control device
JP2017515687A (en) * 2014-05-21 2017-06-15 ノベリス・インコーポレイテッドNovelis Inc. Non-contact molten metal flow control
US10464127B2 (en) 2014-05-21 2019-11-05 Novelis Inc. Non-contacting molten metal flow control
US10835954B2 (en) 2014-05-21 2020-11-17 Novelis Inc. Mixing eductor nozzle and flow control device
US11383296B2 (en) 2014-05-21 2022-07-12 Novelis, Inc. Non-contacting molten metal flow control
JP2021121448A (en) * 2014-05-21 2021-08-26 ノベリス・インコーポレイテッドNovelis Inc. Mixing eductor nozzle and flow control device
EP3441491B1 (en) 2016-03-30 2021-12-01 Aisin Keikinzoku Co., Ltd. Manufacturing method for a high strength extruded aluminum alloy material
EP3441491A4 (en) * 2016-03-30 2019-09-25 Aisin Keikinzoku Co., Ltd. High strength extruded aluminum alloy material with excellent corrosion resistance and favorable quenching properties and manufacturing method therefor
US11136658B2 (en) 2016-03-30 2021-10-05 Aisin Keikinzoku Co., Ltd. High strength aluminum alloy extruded material with excellent corrosion resistance and favorable quenching properties and manufacturing method therefor
WO2018100867A1 (en) * 2016-11-30 2018-06-07 アイシン軽金属株式会社 Aluminum alloy for extruded material, extruded material using same, and extruded material production method
JP7093611B2 (en) 2016-11-30 2022-06-30 アイシン軽金属株式会社 Aluminum alloy for extruded material and method for manufacturing extruded material and extruded material using it
JP2018090839A (en) * 2016-11-30 2018-06-14 アイシン軽金属株式会社 Extrusion material aluminium alloy, extrusion material using the same and method for manufacturing extrusion material
JP2021514850A (en) * 2018-03-01 2021-06-17 ノルスク・ヒドロ・アーエスアーNorsk Hydro Asa Casting method
JP2022532347A (en) * 2019-06-03 2022-07-14 ノベリス・インコーポレイテッド Ultra-high-strength aluminum alloy products and their manufacturing methods
US11746400B2 (en) 2019-06-03 2023-09-05 Novelis Inc. Ultra-high strength aluminum alloy products and methods of making the same
CN115679169A (en) * 2022-10-17 2023-02-03 广州和信实业有限责任公司 High-strength aluminum alloy die casting for automobile engine bracket and preparation method thereof
CN117470617A (en) * 2023-12-28 2024-01-30 中铝材料应用研究院有限公司 Method for determining shape and position of solidification front in casting process of aluminum alloy
CN117470617B (en) * 2023-12-28 2024-03-12 中铝材料应用研究院有限公司 Method for determining shape and position of solidification front in casting process of aluminum alloy

Also Published As

Publication number Publication date
JP5360591B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5360591B2 (en) Aluminum alloy ingot and method for producing the same
Shi et al. Effects of Sc addition on the microstructure and mechanical properties of cast Al-3Li-1.5 Cu-0.15 Zr alloy
JP5698695B2 (en) Aluminum alloy forgings for automobiles and manufacturing method thereof
WO2021098044A1 (en) High-performance aluminum alloy for semi-solid die casting, and preparation method thereof
Kumar et al. Influence of Al grain structure on Fe bearing intermetallics during DC casting of an Al-Mg-Si alloy
Wei et al. Microstructure and mechanical properties of A356 alloy with yttrium addition processed by hot extrusion
Yan et al. Effects of lanthanum addition on microstructure and mechanical properties of as-cast pure copper
JP5233607B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
Milman et al. Microstructure and mechanical properties of cast and wrought Al-Zn-Mg-Cu alloys modified with Zr and Sc
Yeganeh et al. The influence of Cu–15P master alloy on the microstructure and tensile properties of Al–25 wt% Mg2Si composite before and after hot-extrusion
CN111304473B (en) Preparation method of free-cutting aluminum alloy extruded bar without coarse crystal ring
EP2885437A1 (en) Al-nb-b master alloy for grain refining
Peng et al. Effect of solution treatment on microstructure and mechanical properties of cast Al–3Li–1.5 Cu–0.2 Zr alloy
Parizi et al. Optimizing and investigating influence of manufacturing techniques on the microstructure and mechanical properties of AZ80-0.5 Ca-1.5 Al2O3 nanocomposite
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
CN112430767A (en) Large-size hollow ingot casting and ingot casting method
KR20160136832A (en) High strength wrought magnesium alloys and method for manufacturing the same
EP3284840B1 (en) Aluminum alloy casting having superior high-temperature strength and thermal conductivity, method for manufacturing same, and aluminum alloy casting piston for internal combustion engine
JP2009249647A (en) Magnesium alloy excellent in creep characteristics at high temperature, and manufacturing method therefor
RU2432411C1 (en) Procedure for production of alunimium-silicon alloy
CN112159917A (en) Large-size high-purity homogeneous fine-grain aluminum alloy ingot and casting method
Arhami et al. Microstructural characterization of squeeze-cast Al–8Fe–1.4 V–8Si
CN102418009A (en) Aluminum alloy capable of digesting high-hardness compounds and smelting method of aluminum alloy
KR20160089794A (en) Method for manufacturing high-strength wrought magnesium alloy by conducting aging treatment prior to plastic working and high-strength wrought magnesium alloy manufactured thereby
Malekan et al. Effects of Al 3 Ni and Al 7 Cr Intermetallics and T 6 Heat Treatment on the Microstructure and Tensile Properties of Al-Zn-Mg-Cu Alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5360591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees