JP2010179218A - Method for manufacturing pure water - Google Patents

Method for manufacturing pure water Download PDF

Info

Publication number
JP2010179218A
JP2010179218A JP2009023542A JP2009023542A JP2010179218A JP 2010179218 A JP2010179218 A JP 2010179218A JP 2009023542 A JP2009023542 A JP 2009023542A JP 2009023542 A JP2009023542 A JP 2009023542A JP 2010179218 A JP2010179218 A JP 2010179218A
Authority
JP
Japan
Prior art keywords
exchange resin
anion exchange
basic anion
pure water
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009023542A
Other languages
Japanese (ja)
Other versions
JP5402034B2 (en
Inventor
Yasuaki Hashimoto
泰明 橋本
Chiho Sanada
千穂 眞田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Original Assignee
Nippon Rensui Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co filed Critical Nippon Rensui Co
Priority to JP2009023542A priority Critical patent/JP5402034B2/en
Publication of JP2010179218A publication Critical patent/JP2010179218A/en
Application granted granted Critical
Publication of JP5402034B2 publication Critical patent/JP5402034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing pure water which uses a pure water manufacturing apparatus including at least an anion exchange tower where a strongly basic anion exchange resin is charged or a mixed bed tower where the strongly basic anion exchange resin and a cation exchange resin are charged, and which is improved so that performance that the strongly basic anion exchange resin in the tower actually demonstrates can be correctly evaluated. <P>SOLUTION: As a method for evaluating the performance of the strongly basic anion exchange resin, a method for measuring silicic acid ion adsorptivity by adsorbing silicic acid ion while agitated in a silicate aqueous solution after a resin sample is regenerated and using a change in obtained silicic acid ion adsorptivity as an index is used. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は純水の製造方法に関する。   The present invention relates to a method for producing pure water.

純水製造装置は、強塩基性陰イオン交換樹脂が充填された陰イオン交換塔または強塩基性陰イオン交換樹脂と陽イオン交換樹脂が充填された混床塔を少なくとも含み、その形式としては、複層床式、多塔式、混床式などが知られている。純水製造装置に通水する原水としては、河川水などの表流水、地下水またはそれらの混合水が使用される。そして、イオン交換能力が低下するとイオン交換樹脂の再生を行う。また、イオン交換樹脂を長期間使用すると、樹脂の酸化、交換基の分解、樹脂母体の汚染などによってイオン交換樹脂の性能劣化を生じる。   The pure water production apparatus includes at least an anion exchange column filled with a strong basic anion exchange resin or a mixed bed column filled with a strong basic anion exchange resin and a cation exchange resin. Multi-layered, multi-tower, and mixed-bed types are known. As raw water that passes through the pure water production apparatus, surface water such as river water, ground water, or a mixed water thereof is used. When the ion exchange capacity decreases, the ion exchange resin is regenerated. Further, when the ion exchange resin is used for a long period of time, the performance of the ion exchange resin is deteriorated due to oxidation of the resin, decomposition of the exchange group, contamination of the resin matrix, and the like.

従って、純水製造装置への通水においては、イオン交換樹脂の性能評価を行う必要があり、その方法の1つとして、単位樹脂量当たりの製造能力を示す指標である中性塩分解容量を利用する方法が知られている(特許文献1)。ここで、中性塩分解容量は、強塩基性陰イオン交換樹脂または強酸性陽イオン交換樹脂を完全再生した後、大過剰の食塩水を流して遊離してくる塩酸または苛性ソーダを定量することにより、求められる。   Therefore, it is necessary to evaluate the performance of the ion exchange resin in passing water to the pure water production apparatus. As one of the methods, the neutral salt decomposition capacity, which is an index indicating the production capacity per unit resin amount, is used. A method of using is known (Patent Document 1). Here, the neutral salt decomposition capacity is determined by quantifying hydrochloric acid or caustic soda released by flowing a large excess of saline after completely regenerating the strong base anion exchange resin or strong acid cation exchange resin. ,Desired.

特開平7−213923号公報Japanese Patent Laid-Open No. 7-213923

ところで、イオン交換樹脂の性能評価法として中性塩分解容量を利用した場合は、塔内のイオン交換樹脂が現実に発揮している性能を正しく評価できないという問題がある。斯かる問題は、イオン交換樹脂を長期間使用した際に惹起され、特に強塩基性陰イオン交換樹脂において顕著である。   By the way, when the neutral salt decomposition capacity is used as the performance evaluation method of the ion exchange resin, there is a problem that the performance actually exhibited by the ion exchange resin in the tower cannot be evaluated correctly. Such a problem is caused when the ion exchange resin is used for a long time, and is particularly remarkable in a strongly basic anion exchange resin.

本発明は、上記実情に鑑みなされたものであり、その目的は、強塩基性陰イオン交換樹脂が充填された陰イオン交換塔または強塩基性陰イオン交換樹脂と陽イオン交換樹脂が充填された混床塔を少なくとも含む純水製造装置を使用する純水の製造方法であって、塔内の強塩基性陰イオン交換樹脂が現実に発揮している性能を正しく評価し得るように改良された純水の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and the purpose thereof is an anion exchange tower packed with a strongly basic anion exchange resin or a strongly basic anion exchange resin and a cation exchange resin. A pure water production method using a pure water production apparatus including at least a mixed bed tower, which has been improved so that the performance of the strong basic anion exchange resin in the tower can be accurately evaluated. The object is to provide a method for producing pure water.

本発明者らは、上記の目的を達成すべく鋭意検討を重ねた結果、次のような意外な知見を得た。すなわち、原水中には有機不純物として高分子量のフミン酸やフルボ酸が含まれているが、これらの有機不純物は強塩基性陰イオン交換樹脂の表面に付着して次第に被膜を形成する(以下「有機不純物被膜汚染」ということがある)。その結果、強塩基性陰イオン交換樹脂の内部に存在する交換基は次第に活用されなくなり、イオン交換容量が低下する。ところが、中性塩分解容量の測定においては、強塩基性陰イオン交換樹脂の内部に存在する交換基も中性塩の分解に寄与するため、塔内の強塩基性陰イオン交換樹脂が現実に発揮している性能が正しく反映されない。   As a result of intensive studies to achieve the above object, the present inventors have obtained the following surprising findings. That is, although raw water contains high molecular weight humic acid and fulvic acid as organic impurities, these organic impurities adhere to the surface of the strongly basic anion exchange resin and gradually form a film (hereinafter “ It may be called “organic impurity film contamination”). As a result, the exchange groups present in the strongly basic anion exchange resin are gradually not utilized and the ion exchange capacity is reduced. However, in the measurement of the neutral salt decomposition capacity, the exchange group present in the strong basic anion exchange resin also contributes to the decomposition of the neutral salt. Therefore, the strong basic anion exchange resin in the tower is actually used. The performance being demonstrated is not reflected correctly.

本発明は、上記の知見を基に更に検討を重ねて完成されたものであり、その要旨は、強塩基性陰イオン交換樹脂が充填された陰イオン交換塔または強塩基性陰イオン交換樹脂と陽イオン交換樹脂が充填された混床塔を少なくとも含む純水製造装置に原水を通水して純水を製造するに際し、強塩基性陰イオン交換樹脂の性能評価方法として、樹脂試料を再生した後、珪酸塩水溶液中で攪拌してケイ酸イオンを吸着させてケイ酸イオン吸着率を測定し、得られたケイ酸イオン吸着率の変化を指標とする方法を用いることを特徴とする純水の製造方法に存する。   The present invention has been completed based on the above findings, and has been completed. The gist of the present invention is an anion exchange column or a strong basic anion exchange resin packed with a strong basic anion exchange resin. A resin sample was regenerated as a method for evaluating the performance of a strongly basic anion exchange resin when pure water was produced by passing raw water through a pure water production apparatus including at least a mixed bed tower filled with a cation exchange resin. Thereafter, stirring in an aqueous silicate solution to adsorb silicate ions to measure the adsorption rate of silicate ions, and using pure water characterized by using the resulting change in the adsorption rate of silicate ions as an index Exist in the manufacturing method.

本発明によれば、塔内の強塩基性陰イオン交換樹脂が現実に発揮している性能を正しく評価することが出来るため、強塩基性陰イオン交換樹脂の交換のタイミングを誤ることなく、品質良好な純水を確実に製造することが出来る。   According to the present invention, it is possible to correctly evaluate the performance of the strong basic anion exchange resin in the column in practice, so that the quality of the strong basic anion exchange resin can be changed without mistakes. Good pure water can be produced reliably.

以下、本発明を詳細に説明する。純水製造装置としては、前述した各種の型式のものを採用し得るが、最も簡単な型式のものは強塩基性陰イオン交換樹脂と陽イオン交換樹脂が充填された混床塔から成るものである。   Hereinafter, the present invention will be described in detail. As the pure water production apparatus, the above-mentioned various types can be adopted, but the simplest type consists of a mixed bed column packed with a strongly basic anion exchange resin and a cation exchange resin. is there.

強塩基性陰イオン交換樹脂としては、例えば、三菱化学社製のダイヤイオン(登録商標:以下同様)SA10A、SA11A、PA306、PA308(以上「I型」)、SA20A、PA408、PA412、PA418(以上「II型」)等が挙げられる。また、強酸性陽イオン交換樹脂としては、例えば、三菱化学社製のダイヤイオンSK1B、SK102、PK208、PK212、PK218等が挙げられる。これらの中では、ポーラス型(PAシリーズ又はPKシリーズ)より、ゲル型(SAシリーズ又はSKシリーズ)の方が安価であり好ましい。   Examples of strongly basic anion exchange resins include Diaion (registered trademark: the same applies hereinafter) SA10A, SA11A, PA306, PA308 (hereinafter “I-type”), SA20A, PA408, PA412, PA418 (and above) manufactured by Mitsubishi Chemical Corporation. "Type II"). Examples of the strongly acidic cation exchange resin include Diaion SK1B, SK102, PK208, PK212, and PK218 manufactured by Mitsubishi Chemical Corporation. Among these, the gel type (SA series or SK series) is cheaper and preferable than the porous type (PA series or PK series).

本発明に係る純水の製造方法は、基本的には、従来の方法と同じであり、イオン交換能力が低下すると、通水を停止して再生を行う。そして、本発明の特徴は、強塩基性陰イオン交換樹脂の性能評価として、樹脂試料を再生した後、珪酸塩水溶液中で攪拌してケイ酸イオンを吸着させてケイ酸イオン吸着率を測定し、得られたケイ酸イオン吸着率の変化を指標とする方法を用いる点にある。   The method for producing pure water according to the present invention is basically the same as the conventional method. When the ion exchange capacity is lowered, the water flow is stopped and the regeneration is performed. And, the feature of the present invention is that, as a performance evaluation of a strongly basic anion exchange resin, after regenerating a resin sample, it is stirred in an aqueous silicate solution to adsorb silicate ions, and the silicate ion adsorption rate is measured. The method uses the change of the obtained silicate ion adsorption rate as an index.

樹脂試料の塔内からのサンプリングは、通水を一旦停止した後に行うことも出来るし、塔の適宜の箇所に設けたサンプリング管を利用して通水を停止することなく行うことも出来る。樹脂試料のサンプリングの時期は、過去の通水実績などを考慮して適宜に決定すればよい。一般的には樹脂を新品に交換してから数ヶ月経過後に行う。また、サンプリングの頻度は、1回でも複数回でもよい。例えば1〜2ヶ月の間隔で複数回行ってもよい。そして、強塩基性陰イオン交換樹脂と陽イオン交換樹脂が充填された混床塔から樹脂試料のサンプリングを行った場合は、比重差により、両樹脂を分離し、強塩基性陰イオン交換樹脂を回収する。   Sampling of the resin sample from the tower can be performed after the water flow is temporarily stopped, or can be performed without stopping the water flow using a sampling pipe provided at an appropriate position of the tower. The sampling time of the resin sample may be appropriately determined in consideration of the past water flow record. Generally, it is carried out several months after the resin is replaced with a new one. Further, the sampling frequency may be one time or a plurality of times. For example, it may be performed a plurality of times at intervals of 1 to 2 months. When sampling a resin sample from a mixed bed tower packed with a strongly basic anion exchange resin and a cation exchange resin, the two resins are separated due to the difference in specific gravity, and the strongly basic anion exchange resin is removed. to recover.

珪酸塩水溶液の調製に使用する珪酸塩としては、メタケイ酸ナトリウム等のポリケイ酸塩、ケイ酸ナトリウム等のケイ酸塩などが挙げられ、水溶液中のケイ酸塩の濃度は、通常10〜100mg/Lである。   Examples of the silicate used for the preparation of the aqueous silicate solution include polysilicates such as sodium metasilicate, silicates such as sodium silicate, and the concentration of the silicate in the aqueous solution is usually 10 to 100 mg / L.

ケイ酸イオン吸着率の測定は、次のように行う。   The silicate ion adsorption rate is measured as follows.

先ず、樹脂試料(強塩基性陰イオン交換樹脂)を常法に従って苛性ソーダ水溶液により完全再生する。この操作は、次に使用する珪酸塩水溶液中のケイ酸イオン:SiO 2-(一般にシリカ成分ともいう)が強塩基性陰イオン交換樹脂によって吸着されるため、樹脂試料毎に異なるイオン交換容量を統一して有機不純物被膜汚染の差異のみを相対的に評価し得るようにするために行う。 First, a resin sample (strongly basic anion exchange resin) is completely regenerated with an aqueous caustic soda solution according to a conventional method. In this operation, silicate ions: SiO 2 2− (generally also referred to as a silica component) in the silicate aqueous solution to be used next are adsorbed by the strongly basic anion exchange resin, so that the ion exchange capacity varies depending on the resin sample. This is done so that only the difference in organic impurity film contamination can be relatively evaluated.

次いで、ビーカーに所定量(例えば50〜500mLの範囲の一定量)の珪酸塩水溶液と所定量(例えば1〜50mLの範囲の一定量)の樹脂試料を入れ、恒温槽(例えば25〜60℃の範囲の一定温度)内にセットして所定時間(例えば5〜60分の範囲の一定時間)攪拌を行う。攪拌には例えばマグネットスターラーが好適に使用される。   Next, a predetermined amount (for example, a certain amount in the range of 50 to 500 mL) of the silicate aqueous solution and a predetermined amount (for example, a certain amount in the range of 1 to 50 mL) of the resin sample are put into a beaker, and a thermostat (for example, 25 to 60 ° C.). The stirring is carried out for a predetermined time (for example, for a fixed time in the range of 5 to 60 minutes). For stirring, for example, a magnetic stirrer is preferably used.

次いで、ビーカー内の珪酸塩水溶液中の珪酸塩の濃度を測定し、その減少量から樹脂試料に吸着された珪酸塩の量を算出し、更に、ケイ酸イオン吸着率(重量%)を算出する。   Next, the concentration of silicate in the silicate aqueous solution in the beaker is measured, the amount of silicate adsorbed on the resin sample is calculated from the decrease amount, and further the silicate ion adsorption rate (% by weight) is calculated. .

上記のようにして求められるケイ酸イオン吸着率の変化(減少)により、塔内の強塩基性陰イオン交換樹脂が現実に発揮している性能を正しく評価できる理由は、次のように考えられる。すなわち、前述の様に、有機不純物被膜汚染により、強塩基性陰イオン交換樹脂の内部に存在する交換基は次第に活用されなくなるが、斯かる有機不純物被膜汚染の状態は、上記の完全再生の操作によっても損なわれずに維持される。そして、ケイ酸イオン吸着率の測定の際、ケイ酸イオン(SiO 2-)はイオン径が大きいために樹脂表面の有機不純物被膜により遮断されて樹脂内部に侵入することが出来ない。つまり、樹脂の内部に存在する交換基はケイ酸イオン吸着に寄与することが出来ない。その結果、ケイ酸イオン吸着率の変化(減少)は、塔内の強塩基性陰イオン交換樹脂が現実に発揮している性能を正しく反映していると考えられる。 The reason why the performance of the strongly basic anion exchange resin in the column can be evaluated correctly by the change (decrease) in the silicate ion adsorption rate obtained as described above is considered as follows. . That is, as described above, due to the contamination of the organic impurity film, the exchange groups present in the strongly basic anion exchange resin are gradually not utilized. However, the state of such organic impurity film contamination is the operation of the above complete regeneration. Maintained without damage. When measuring the silicate ion adsorption rate, silicate ions (SiO 2 2− ) have a large ion diameter and are blocked by the organic impurity film on the resin surface and cannot enter the resin. That is, the exchange group present inside the resin cannot contribute to silicate ion adsorption. As a result, it is considered that the change (decrease) in the adsorption rate of silicate ions correctly reflects the performance of the strong base anion exchange resin in the tower.

以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded.

実施例1:
純水製造装置として、強塩基性陰イオン交換樹脂と陽イオン交換樹脂が2:1容量比で充填された混床塔(塔高2400mm、樹脂充填量600L)から成るものを使用した。強塩基性陰イオン交換樹脂としては三菱化学社製の「ダイヤイオンSA20A」を使用した。陽イオン交換樹脂としては三菱化学社製の「ダイヤイオンSK1B」を使用した。原水としては河川水を濾過した水を使用した。通水量は10m/hの割合で行った。
Example 1:
As a pure water production apparatus, a device comprising a mixed bed tower (a tower height of 2400 mm, a resin filling amount of 600 L) packed with a 2: 1 volume ratio of a strongly basic anion exchange resin and a cation exchange resin was used. As the strongly basic anion exchange resin, “Diaion SA20A” manufactured by Mitsubishi Chemical Corporation was used. “Diaion SK1B” manufactured by Mitsubishi Chemical Corporation was used as the cation exchange resin. As raw water, water obtained by filtering river water was used. The water flow rate was 10 m 3 / h.

新品樹脂充填から6ヶ月後および12ヶ月後に、樹脂試料をサンプリングし、比重差を利用して強塩基性陰イオン交換樹脂(「ダイヤイオンSA20A」)を回収し、中性塩分解容量とケイ酸イオン吸着率を測定した。結果を表1に示す。   6 months and 12 months after filling with a new resin, a resin sample is sampled and a strongly basic anion exchange resin (“Diaion SA20A”) is collected by utilizing the difference in specific gravity. The ion adsorption rate was measured. The results are shown in Table 1.

Figure 2010179218
Figure 2010179218

なお、上記のケイ酸イオン吸着率(%)を次のようにして測定した。ただし、樹脂との接触時間30分後にサンプル濃度を測定し、原液のケイ酸イオン濃度を100%としたときの値を意味する。   In addition, said silicate ion adsorption rate (%) was measured as follows. However, it means a value when the sample concentration is measured after 30 minutes of contact with the resin and the silicate ion concentration of the stock solution is taken as 100%.

Figure 2010179218
Figure 2010179218

Claims (1)

強塩基性陰イオン交換樹脂が充填された陰イオン交換塔または強塩基性陰イオン交換樹脂と陽イオン交換樹脂が充填された混床塔を少なくとも含む純水製造装置に原水を通水して純水を製造するに際し、強塩基性陰イオン交換樹脂の性能評価方法として、樹脂試料を再生した後、珪酸塩水溶液中で攪拌してケイ酸イオンを吸着させてケイ酸イオン吸着率を測定し、得られたケイ酸イオン吸着率の変化を指標とする方法を用いることを特徴とする純水の製造方法。   Pure water is passed through a pure water production apparatus including at least an anion exchange column filled with a strong basic anion exchange resin or a mixed bed tower filled with a strong basic anion exchange resin and a cation exchange resin. When producing water, as a method for evaluating the performance of a strongly basic anion exchange resin, after regenerating the resin sample, stirring in a silicate aqueous solution to adsorb silicate ions and measuring the silicate ion adsorption rate, A method for producing pure water, characterized in that a method using the obtained change in adsorption rate of silicate ions as an index is used.
JP2009023542A 2009-02-04 2009-02-04 Pure water production method Active JP5402034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009023542A JP5402034B2 (en) 2009-02-04 2009-02-04 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023542A JP5402034B2 (en) 2009-02-04 2009-02-04 Pure water production method

Publications (2)

Publication Number Publication Date
JP2010179218A true JP2010179218A (en) 2010-08-19
JP5402034B2 JP5402034B2 (en) 2014-01-29

Family

ID=42761175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023542A Active JP5402034B2 (en) 2009-02-04 2009-02-04 Pure water production method

Country Status (1)

Country Link
JP (1) JP5402034B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131130A (en) * 2019-02-20 2020-08-31 水ing株式会社 Method for evaluating performance of anion exchange resin, method for producing pure water and water treatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178737A (en) * 1995-12-27 1997-07-11 Japan Organo Co Ltd Performance evaluation method for anion exchange resin and method for managing water treatment system using the performance evaluation method
JP2001296285A (en) * 2000-04-17 2001-10-26 Japan Organo Co Ltd Performance evaluation method of cation-exchange resin, and control method of water treatment system using the method
JP2002361247A (en) * 2001-06-11 2002-12-17 Kurita Water Ind Ltd Method for manufacturing pure water
JP2004137652A (en) * 2002-06-13 2004-05-13 Chubu Kiresuto Kk Chelate-forming fiber and method for treating metal ion-containing water by using the same
WO2005087664A1 (en) * 2004-03-16 2005-09-22 Waseda University Hydrotalcite-like substance, process for producing the same and method of immobilizing hazardous substance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178737A (en) * 1995-12-27 1997-07-11 Japan Organo Co Ltd Performance evaluation method for anion exchange resin and method for managing water treatment system using the performance evaluation method
JP2001296285A (en) * 2000-04-17 2001-10-26 Japan Organo Co Ltd Performance evaluation method of cation-exchange resin, and control method of water treatment system using the method
JP2002361247A (en) * 2001-06-11 2002-12-17 Kurita Water Ind Ltd Method for manufacturing pure water
JP2004137652A (en) * 2002-06-13 2004-05-13 Chubu Kiresuto Kk Chelate-forming fiber and method for treating metal ion-containing water by using the same
WO2005087664A1 (en) * 2004-03-16 2005-09-22 Waseda University Hydrotalcite-like substance, process for producing the same and method of immobilizing hazardous substance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131130A (en) * 2019-02-20 2020-08-31 水ing株式会社 Method for evaluating performance of anion exchange resin, method for producing pure water and water treatment system
JP7179641B2 (en) 2019-02-20 2022-11-29 水ing株式会社 Method for evaluating performance of anion exchange resin, method for producing pure water, and water treatment system

Also Published As

Publication number Publication date
JP5402034B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
Yang et al. Fabrication of a reusable polymer-based cerium hydroxide nanocomposite with high stability for preferable phosphate removal
JP5450979B2 (en) Conditioning of ion exchangers to adsorb oxoanions
KR101933728B1 (en) Method for the separation of metal ions that are divalent or higher from strong acids or highly acidic media
JP6618803B2 (en) A method for selective removal of strontium radionuclides from water streams.
JP2008031004A (en) Method for producing high purity alkali metal hydroxide
CN103357375B (en) Magnetic mesoporous silica adsorbent for removing organic pollutants in water body and preparation method and application thereof
JP2007275887A (en) Amphoteric ion exchanger for adsorbing oxo anion
KR20100034011A (en) Regeneration of a hexachlorostannate-loaded anion exchanger
CN104936691B (en) Zeolite composite materials and application thereof containing the iodine or bromine being limited in hole
Cukierman et al. Removal of emerging pollutants from water through adsorption onto carbon-based materials
JP5402034B2 (en) Pure water production method
KR20150048866A (en) Method of desalinating boron-containing solution
JP2013040852A (en) Mesoporous silica supporting cesium ion adsorptive compound, and cesium ion collector and cesium collecting method using the same
US6331261B1 (en) Water softener salt formulation
JP6250505B2 (en) Method and system for measuring bromate ion concentration
CN103071456B (en) Organic amine iodine ion adsorbent as well as preparation method and application thereof
CN108786933A (en) A kind of low sodium type cation resin regeneration agent and its preparation method and application
JP6716247B2 (en) Radioactive antimony, radioiodine and radioruthenium adsorbents, and radioactive waste liquid treatment methods using the adsorbents
US20090294367A1 (en) Method and apparatus for condensate demineralization
JP2017116407A5 (en)
EA019142B1 (en) Method of separating platinum (ii, iv) and rhodium (iii) in hydrochloric aqueous solutions
WO2018066634A1 (en) Method for treating radioactive liquid waste containing radioactive cesium
Goscianska et al. Identification of the Physicochemical Factors Involved in the Dye Separation via Methionine‐Functionalized Mesoporous Carbons
JP4622056B2 (en) Operation method of pure water production equipment
Xiong Sorption behaviour of D 155 resin for Ce (III)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5402034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350