JP2010178499A - Noncontact charger, distance measuring unit of positional relation detector for noncontact charger, and distance measurement unit of positional relation detector - Google Patents

Noncontact charger, distance measuring unit of positional relation detector for noncontact charger, and distance measurement unit of positional relation detector Download PDF

Info

Publication number
JP2010178499A
JP2010178499A JP2009018283A JP2009018283A JP2010178499A JP 2010178499 A JP2010178499 A JP 2010178499A JP 2009018283 A JP2009018283 A JP 2009018283A JP 2009018283 A JP2009018283 A JP 2009018283A JP 2010178499 A JP2010178499 A JP 2010178499A
Authority
JP
Japan
Prior art keywords
distance measuring
primary
side device
positional relationship
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009018283A
Other languages
Japanese (ja)
Inventor
Ryoichi Yamanouchi
良一 山之内
Masaki Ito
雅樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin AW Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2009018283A priority Critical patent/JP2010178499A/en
Publication of JP2010178499A publication Critical patent/JP2010178499A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/37Means for automatic or assisted adjustment of the relative position of charging devices and vehicles using optical position determination, e.g. using cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact charger capable of precisely and quickly detecting the relative positional relation between a primary device and a secondary device. <P>SOLUTION: The noncontact charger includes a positional relation detector M which detects the relative positional relation between the primary device E1 connected to a charging power supply and the secondary device E2 connected to a power accumulating device. The positional relation detector M has a distance measurement unit Mp disposed on the secondary device E2, and a distance measuring unit Ma disposed on the primary device E1. The distance measurement unit Mp has a distance measurement surface 3 counter to the distance measuring unit Ma, the distance measurement surface 3 having a circular sectional shape on a plane perpendicular to a given distance measuring direction and a radius gradually increasing toward one side of the distance measuring direction. The distance measuring unit Ma has three or more distance measuring portions 4 dispersedly arranged on the same circumference on a plane perpendicular to the distance measuring direction, the distance measuring portions 4 measuring the distance up to the distance measurement surface 3 in the distance measuring direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、充電用電源に接続される一次側装置と蓄電装置に接続される二次側装置との相対位置関係を検出する位置関係検出装置を備えた無接点充電装置、その無接点充電装置用の位置関係検出装置の測距装置、及び、位置関係検出装置の被測距装置に関する。   The present invention relates to a non-contact charging device including a positional relationship detection device for detecting a relative positional relationship between a primary device connected to a charging power source and a secondary device connected to a power storage device, and the non-contact charging device thereof The present invention relates to a distance measuring device of a positional relationship detection device for use and a distance measuring device of a positional relationship detection device.

かかる無接点充電装置は、充電用電源に接続される一次側装置と蓄電装置に接続される二次側装置とを非接触状態で適正な相対位置関係に位置させて、充電用電源により蓄電装置を充電するものであり、用途としては、例えば、電気自動車に搭載された蓄電装置を充電する用途が挙げられる。
そして、一次側装置と二次側装置とを適切な相対位置関係に位置させるために、それら一次側装置と二次側装置との相対位置関係を検出する位置関係検出装置が設けられている。
Such a non-contact charging apparatus is configured such that a primary side device connected to a charging power source and a secondary side device connected to a power storage device are positioned in an appropriate relative positional relationship in a non-contact state, and the power storage device is powered by the charging power source. As an application, for example, an application for charging a power storage device mounted on an electric vehicle can be cited.
In order to position the primary device and the secondary device in an appropriate relative positional relationship, a positional relationship detection device that detects the relative positional relationship between the primary device and the secondary device is provided.

従来、このような無接点充電装置の位置関係検出装置は、二次側装置に備えられた二次コイルの前方を横切る状態で一次側装置に備えられた一次コイルを移動させる移動手段と、その移動手段にて一次コイルが移動されるときの一次コイル又は二次コイルの電力変動に基づいて一次側装置と二次側装置との相対位置関係が適正か否かを判定する適正位置判定手段とを備えて構成されていた。
つまり、移動手段により一次コイルが二次コイルの前方を横切る状態で移動されると、一次コイルが二次コイルに近づくに連れて二次コイルの誘導起電力が大きくなり、一次コイルが二次コイルから遠ざかるに連れて二次コイルの誘導起電力が小さくなる。従って、一次コイルが二次コイルの前方を横切る状態で移動されるときの一次コイル又は二次コイルの電力変動に基づいて、一次側装置と二次側装置との相対位置関係が適正か否かを判定するのである(例えば、特許文献1参照。)。
Conventionally, the positional relationship detection device of such a non-contact charging device includes a moving means for moving a primary coil provided in the primary side device in a state crossing the front of the secondary coil provided in the secondary side device, Appropriate position determining means for determining whether or not the relative positional relationship between the primary side device and the secondary side device is appropriate based on the power fluctuation of the primary coil or the secondary coil when the primary coil is moved by the moving means; It was configured with.
That is, when the primary coil is moved by the moving means so as to cross the front of the secondary coil, the induced electromotive force of the secondary coil increases as the primary coil approaches the secondary coil, and the primary coil becomes the secondary coil. As it moves away, the induced electromotive force of the secondary coil decreases. Therefore, whether or not the relative positional relationship between the primary side device and the secondary side device is appropriate based on the power fluctuation of the primary coil or the secondary coil when the primary coil is moved across the front of the secondary coil. (For example, refer to Patent Document 1).

特開平8−265992号公報JP-A-8-265992

しかしながら、従来の位置関係検出装置では、二次コイルの周囲に金属により構成される金属構成物(例えば、電気自動車の車体)が存在すると、その金属構成物にも誘導起電力が発生する。そして、その金属構成物から発生する誘導起電力により、一次コイル及び二次コイルそれぞれの電力が変動するので、一次側装置と二次側装置との相対位置関係を精度良く検出することができない虞があった。
又、一次コイルを二次コイルの前方を横切る状態で移動させないと一次側装置と二次側装置との相対位置関係を検出することができないので、一次側装置と二次側装置との相対位置関係の検出を迅速に行うことができないという問題もあった。
However, in the conventional positional relationship detection apparatus, when a metal component (for example, a vehicle body of an electric vehicle) made of metal exists around the secondary coil, an induced electromotive force is also generated in the metal component. And since the electric power of the primary coil and the secondary coil fluctuates due to the induced electromotive force generated from the metal component, the relative positional relationship between the primary device and the secondary device may not be detected with high accuracy. was there.
In addition, since the relative positional relationship between the primary side device and the secondary side device cannot be detected unless the primary coil is moved across the front of the secondary coil, the relative position between the primary side device and the secondary side device can be detected. There was also a problem that the relationship could not be detected quickly.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、一次側装置と二次側装置との相対位置関係の検出を精度良くしかも迅速に行い得る無接点充電装置、その無接点充電装置用の位置関係検出装置の測距装置及び被測距装置を提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a contactless charging apparatus capable of accurately and quickly detecting a relative positional relationship between a primary side device and a secondary side device, and the contactless device thereof. An object of the present invention is to provide a distance measuring device and a distance measuring device for a positional relationship detection device for a charging device.

本発明の無接点充電装置は、充電用電源に接続される一次側装置と蓄電装置に接続される二次側装置との相対位置関係を検出する位置関係検出装置を備えたものであって、
その第1特徴構成は、前記位置関係検出装置が、前記一次側装置及び前記二次側装置の一方に設けられた被測距装置と、前記一次側装置及び前記二次側装置の他方に設けられた測距装置とを有し、
前記被測距装置が、所定の測距方向に直交する面での横断形状が円形であって、その径が前記測距方向一方側へ向かって漸減又は漸増する被測距面を、前記測距装置に対向するように備え、
前記測距装置が、前記測距方向に前記被測距面までの距離を計測する3個以上の複数の測距部を、前記測距方向に直交する面内における同一円周上に分散配置して備える点にある。
The contactless charging device of the present invention includes a positional relationship detection device that detects a relative positional relationship between a primary device connected to a charging power source and a secondary device connected to a power storage device,
The first characteristic configuration is that the positional relationship detection device is provided on a distance measuring device provided on one of the primary device and the secondary device, and on the other of the primary device and the secondary device. A distance measuring device,
The distance measuring device has a distance measuring surface in which a transverse shape on a surface orthogonal to a predetermined distance measuring direction is circular and the diameter thereof gradually decreases or gradually increases toward one side of the distance measuring direction. Prepare to face the distance device,
The distance measuring device has a plurality of three or more distance measuring units that measure the distance to the surface to be measured in the distance measuring direction in a distributed manner on the same circumference in a plane orthogonal to the distance measuring direction. It is in the point to be prepared.

即ち、一次側装置と二次側装置との相対位置関係が、被測距面の軸心と複数の測距部が分散配置される円周の軸心(以下、測距部配置用軸心と記載する場合がある)とが同軸状となる位置関係のときは、複数の測距部それぞれにより計測される被測距面までの距離が同一となる。
又、被測距面が、その径が測距装置側へ向かって漸減する凸面状に構成される場合、一次側装置と二次側装置との相対位置関係が、例えば、測距部配置用軸心が被測距面の軸心と同軸状となる位置から複数の測距部のうちの1つの設置位置の方向にずれたときは、複数の測距部による計測距離の相対関係は、そのずれた方向に位置する測距部による計測距離が最大となる相対関係になる。
又、被測距面が、その径が測距装置側へ向かって漸増する凹面状に構成される場合、一次側装置と二次側装置との相対位置関係が、例えば、測距部配置用軸心が被測距面の軸心と同軸状となる位置から複数の測距部のうちの1つの設置位置の方向にずれたときは、複数の測距部による計測距離の相対関係は、そのずれた方向に位置する測距部による計測距離が最小となる相対関係になる。
つまり、複数の測距部による計測距離の相対関係は、測距部配置用軸心が被測距面の軸心と同軸状となる位置からずれる方向に応じて、そのずれた方向に特徴的な関係となるので、複数の測距部による計測距離の相対関係に基づいて、一次側装置と二次側装置との相対位置関係を検出することができるのである。
That is, the relative positional relationship between the primary side device and the secondary side device is such that the axis of the surface to be measured and the axis of the circumference where the plurality of distance measuring units are distributed (hereinafter referred to as the distance measuring unit arrangement axis). And the distance to the distance measuring surface measured by each of the plurality of distance measuring units is the same.
In addition, when the surface to be measured is configured to have a convex shape whose diameter gradually decreases toward the distance measuring device side, the relative positional relationship between the primary side device and the secondary side device is, for example, for the arrangement of the distance measuring unit. When the axis is shifted from the position coaxial with the axis of the surface to be measured in the direction of one of the plurality of distance measuring units, the relative relationship of the measurement distances by the plurality of distance measuring units is The relative relationship is such that the distance measured by the distance measuring unit located in the shifted direction is maximized.
Further, when the surface to be measured is configured in a concave shape whose diameter gradually increases toward the distance measuring device side, the relative positional relationship between the primary side device and the secondary side device is, for example, for the distance measuring unit arrangement. When the axis is shifted from the position coaxial with the axis of the surface to be measured in the direction of one of the plurality of distance measuring units, the relative relationship of the measurement distances by the plurality of distance measuring units is The relative relationship is such that the distance measured by the distance measuring unit located in the shifted direction is minimized.
In other words, the relative relationship of the measurement distances by the plurality of distance measuring units is characteristic in the direction of the deviation depending on the direction in which the distance measurement unit placement axis is displaced from the position that is coaxial with the axis of the surface to be measured. Therefore, the relative positional relationship between the primary device and the secondary device can be detected based on the relative relationship between the measurement distances of the plurality of distance measuring units.

そして、測距部と被測距面との間に障害物がない限り、測距部により被測距面までの距離を適正に計測することができるので、複数の測距部による計測距離の相対関係に基づいて、一次側装置と二次側装置との相対位置関係を精度良く検出することができるのである。
又、このような一次側装置と二次側装置との相対位置関係の検出は、一次側装置及び二次側装置を移動させることなく、複数の測距部により被測距面までの距離を計測することにより行うことができるので、迅速に行うことができる。
従って、一次側装置と二次側装置との相対位置関係の検出を精度良くしかも迅速に行い得る無接点充電装置を提供することができるようになった。
As long as there are no obstacles between the distance measuring unit and the surface to be measured, the distance measuring unit can properly measure the distance to the surface to be measured, Based on the relative relationship, the relative positional relationship between the primary device and the secondary device can be accurately detected.
In addition, the relative positional relationship between the primary side device and the secondary side device can be detected by measuring the distance to the surface to be measured by a plurality of ranging units without moving the primary side device and the secondary side device. Since it can be performed by measuring, it can be performed quickly.
Accordingly, it is possible to provide a contactless charging apparatus that can detect the relative positional relationship between the primary device and the secondary device with high accuracy and speed.

無接点充電装置の第2特徴構成は、上記第1特徴構成に加えて、
前記一次側装置に、前記充電用電源により励磁される一次コイルが設けられ、
前記二次側装置に、前記一次コイルに電磁結合されて誘導起電力を発生させ且つその発生誘導起電力を前記蓄電装置に充電する二次コイルが、その軸心を前記一次コイルの軸心と平行にして設けられ、
前記測距方向が、前記一次コイル及び前記二次コイルの軸心と平行な方向に設定されている点にある。
In addition to the first feature configuration described above, the second feature configuration of the contactless charging device includes:
The primary device is provided with a primary coil that is excited by the power source for charging,
A secondary coil that is electromagnetically coupled to the primary coil to generate an induced electromotive force in the secondary device and charges the generated induced electromotive force to the power storage device has its axis as the axis of the primary coil. Provided in parallel,
The distance measuring direction is set in a direction parallel to the axis of the primary coil and the secondary coil.

即ち、一次コイル及び二次コイルがそれぞれの軸心を平行にして設けられ、複数の測距部それぞれにより、一次コイル及び二次コイルの軸心と平行な方向での被測距面までの距離が計測されるので、一次側装置及び二次側装置のいずれか一方をその軸心に直交する面に沿って移動させることにより、一次側装置と二次側装置とを一次コイルと二次コイルとが同軸状又は略同軸状となるように位置合わせすることが可能となる。
そして、一次コイルと二次コイルとが同軸状又は略同軸状になると、二次コイルにより極力高効率に誘導起電力を発生させることができるので、蓄電装置を効率良く充電することができる。
従って、蓄電装置を効率良く充電できるように、一次側装置と二次側装置とを位置合わせすることができるようになった。
That is, the primary coil and the secondary coil are provided with their respective axes parallel to each other, and the distance to the surface to be measured in a direction parallel to the axes of the primary coil and the secondary coil by each of the plurality of distance measuring units. Therefore, by moving one of the primary side device and the secondary side device along a plane orthogonal to the axis, the primary side device and the secondary side device are connected to the primary coil and the secondary coil. Can be aligned so as to be coaxial or substantially coaxial.
When the primary coil and the secondary coil are coaxial or substantially coaxial, an induced electromotive force can be generated as efficiently as possible by the secondary coil, so that the power storage device can be charged efficiently.
Accordingly, the primary device and the secondary device can be aligned so that the power storage device can be charged efficiently.

無接点充電装置の第3特徴構成は、上記第2特徴構成に加えて、
前記被測距面が、前記一次側装置及び前記二次側装置の一方に前記被測距装置と一体的に設けられる前記一次コイル及び前記二次コイルの一方の軸心と同軸に設けられ、
前記複数の測距部が、前記一次側装置及び前記二次側装置の他方に前記測距装置と一体的に設けられる前記一次コイル及び前記二次コイルの他方の軸心と同軸の同一円周上に配置されている点にある。
In addition to the second feature configuration, the third feature configuration of the non-contact charging device includes:
The distance measuring surface is provided coaxially with one axis of the primary coil and the secondary coil provided integrally with the distance measuring device on one of the primary side device and the secondary side device,
The plurality of distance measuring sections are the same circumference coaxial with the other axial center of the primary coil and the secondary coil provided integrally with the distance measuring device on the other of the primary side device and the secondary side device. It is in the point arranged above.

即ち、測距方向に平行な軸周りでの一次側装置と二次側装置の回転方向の相対位置が異なっても、複数の測距部それぞれにより計測される被測距面までの距離が同一になれば、一次コイルと二次コイルとが同軸状となり、二次コイルにより極力高効率に誘導起電力を発生させることができる。
例えば、二次側装置が電気自動車に搭載されている場合、その電気自動車が駐車される方向が傾いていても、複数の測距部それぞれにより計測される被測距面までの距離が同一になるように一次側装置と二次側装置とが位置合わせされれば、一次コイルと二次コイルとが同軸状となり、電気自動車に搭載された蓄電装置を効率良く充電することができるのである。
従って、測距方向に平行な軸周りでの一次側装置と二次側装置の回転方向の相対位置の違いに拘わらず、蓄電装置を効率良く充電できるように一次側装置と二次側装置とを位置合わせすることができるようになった。
That is, even if the relative position in the rotation direction of the primary device and the secondary device around the axis parallel to the distance measuring direction is different, the distance to the surface to be measured measured by each of the plurality of distance measuring units is the same. If it becomes, a primary coil and a secondary coil will become coaxial, and an induced electromotive force can be generated with high efficiency as much as possible by a secondary coil.
For example, when the secondary device is mounted on an electric vehicle, even if the direction in which the electric vehicle is parked is inclined, the distance to the surface to be measured that is measured by each of the plurality of distance measuring units is the same. If the primary side device and the secondary side device are aligned as described above, the primary coil and the secondary coil are coaxial, and the power storage device mounted on the electric vehicle can be efficiently charged.
Therefore, the primary side device and the secondary side device can be charged efficiently so that the power storage device can be efficiently charged regardless of the relative position difference between the primary side device and the secondary side device around the axis parallel to the distance measuring direction. Can now be aligned.

無接点充電装置の第4特徴構成は、上記第1〜第3特徴構成のいずれか1つに加えて、
記複数の測距部のそれぞれにより計測される前記被測距面までの距離が互いに同一又は略同一である場合に、前記一次側装置と前記二次側装置との相対位置関係が適正であると判定する判定手段を備える点にある。
In addition to any one of the first to third characteristic configurations described above, the fourth characteristic configuration of the contactless charging apparatus is:
The relative positional relationship between the primary side device and the secondary side device is appropriate when the distances to the distance measuring surfaces measured by each of the plurality of distance measuring units are the same or substantially the same. It is in the point provided with the determination means to determine.

即ち、複数の測距部のそれぞれにより計測される被測距面までの距離が互いに同一又は略同一である場合は、判定手段により、一次側装置と二次側装置との相対位置関係が適正であると判定される。
そして、判定手段の判定結果により、一次側装置と二次側装置とが適正に位置合わせされていることが的確に分かる。
例えば、判定手段により一次側装置と二次側装置との相対位置関係が適正であると判定された場合に、一次側装置と二次側装置とが適正に位置合わせされていることを示す情報を出力する出力手段を設けても好適である。このようにすると、無接点充電装置の操作者は、出力手段による出力情報に基づいて、一次側装置と二次側装置とが適正に位置合わせされていることを的確に知ることができるので、使い勝手が向上する。
従って、一次側装置と二次側装置とが適正に位置合わせされていることが的確に分かるようにすることができた。
That is, when the distances to the surface to be measured measured by each of the plurality of distance measuring units are the same or substantially the same, the relative positional relationship between the primary side device and the secondary side device is determined appropriately by the determination unit. It is determined that
From the determination result of the determination means, it can be accurately understood that the primary device and the secondary device are properly aligned.
For example, when the determination unit determines that the relative positional relationship between the primary device and the secondary device is appropriate, information indicating that the primary device and the secondary device are properly aligned. It is also preferable to provide output means for outputting. In this way, the operator of the contactless charging device can accurately know that the primary side device and the secondary side device are properly aligned based on the output information by the output means. Usability is improved.
Accordingly, it can be accurately understood that the primary side device and the secondary side device are properly aligned.

無接点充電装置の第5特徴構成は、上記第1〜第4特徴構成のいずれか1つに加えて、
前記被測距装置が前記二次側装置に設けられ、
前記測距装置が前記一次側装置に設けられ、
前記一次側装置が、前記複数の測距部を前記測距方向に直交する面に沿って移動自在とする位置調整装置と、前記複数の測距部による計測情報に基づいて、前記一次側装置が前記二次側装置に対して適正位置となるように前記位置調整装置の作動を制御する制御手段と、を備える点にある。
In addition to any one of the first to fourth characteristic configurations described above, the fifth characteristic configuration of the contactless charging apparatus is:
The distance measuring device is provided in the secondary side device,
The distance measuring device is provided in the primary side device;
Based on the position adjustment device that enables the primary side device to move the plurality of distance measuring units along a surface orthogonal to the distance measuring direction, and the measurement information by the plurality of distance measuring units, the primary side device. And a control means for controlling the operation of the position adjusting device so as to be in an appropriate position with respect to the secondary side device.

即ち、一次側装置に、複数の測距部を測距方向に直交する面に沿って移動自在とする位置調整装置と、その位置調整装置の作動を制御する制御手段とが備えられているので、一次側装置と二次側装置との間で情報を通信する通信装置を設けることなく、制御手段により、複数の測距部による計測情報に基づいて、一次側装置が二次側装置に対して適正位置となるように位置調整装置の作動を制御させることができる。そして、通信装置を設けないようにすれば、無接点充電装置の低廉化が可能となる。   That is, the primary side device is provided with a position adjusting device that allows a plurality of distance measuring units to move along a plane orthogonal to the distance measuring direction, and a control means that controls the operation of the position adjusting device. Without the communication device for communicating information between the primary side device and the secondary side device, the primary side device to the secondary side device by the control means based on the measurement information by the plurality of distance measuring units Therefore, the operation of the position adjusting device can be controlled so as to be in an appropriate position. If the communication device is not provided, the contactless charging device can be reduced in price.

又、二次側装置に設けられる被測距装置は、軽量化が可能な被測距面を備えるものであるため、被測距装置を軽量化することが可能であるので、二次側装置が電気自動車等の移動体に設けられる場合、被測距装置を設けても移動体の重量の増加を抑制することが可能となり、その結果、移動体の走行のための消費エネルギの増加を抑制することができる。
又、一次側装置に設けられる複数の測距部、位置調整装置及び制御手段を合わせた価格は、二次側装置に設けられる被測距装置に比べてかなり高くなるが、それら複数の測距部、位置調整装置及び制御手段を共通化して継続して使用するようにし、買い替えが行われる電気自動車等、新規なものに変更される可能性のある移動体に、安価な被測距装置を設けるようにすることにより、蓄電装置の充電に係わるランニングコストを低減することができる。
従って、一次側装置と二次側装置とを自動的に適正な相対位置関係に位置合わせ可能な無接点充電装置を低廉化することができ、しかも、無接点充電装置が移動体に搭載された蓄電装置の充電用として用いられる場合は、移動体の走行のための消費エネルギ及び蓄電装置の充電に係わるランニングコストを低減することができる。
In addition, since the distance measuring device provided in the secondary side device has a distance measuring surface that can be reduced in weight, the distance measuring device can be reduced in weight. Is provided on a moving body such as an electric vehicle, it is possible to suppress an increase in the weight of the moving body even if a distance measuring device is provided. As a result, an increase in energy consumption for traveling of the moving body is suppressed. can do.
In addition, the combined price of a plurality of distance measuring units, position adjusting devices, and control means provided in the primary side device is considerably higher than that of the distance measuring device provided in the secondary side device. Common use of the unit, position adjustment device, and control means, and an inexpensive distance measuring device for a mobile object that may be changed to a new one such as an electric vehicle to be replaced. By providing, the running cost concerning charge of an electrical storage apparatus can be reduced.
Therefore, the contactless charging device that can automatically align the primary side device and the secondary side device in an appropriate relative positional relationship can be reduced in price, and the contactless charging device is mounted on the moving body. When used for charging the power storage device, it is possible to reduce energy consumption for traveling of the mobile body and running cost related to charging of the power storage device.

無接点充電装置の第6特徴構成は、上記第5特徴構成に加えて、
前記被測距面が、凹面状に構成されている点にある。
In addition to the fifth characteristic configuration described above, the sixth characteristic configuration of the contactless charging apparatus includes:
The distance-measuring surface is configured to be concave.

即ち、被測距面が凹面状に構成されているので、例えば、被測距面が移動体に設けられる場合、被測距面が外部に突出しないように電気自動車等の移動体に設けることが可能となる。
例えば、複数の測距部が床面に設けられる場合、被測距面を下方側に突出しないように移動体の底部に設けることができるので、移動体の最低地上高さが低くなるのを回避することができる。
従って、被測距面が移動体に設けられる場合に、移動体の走行に悪影響を与えるのを回避しながら、被測距面を移動体に設けることができる。
In other words, since the distance measuring surface is configured in a concave shape, for example, when the distance measuring surface is provided on a moving object, the distance measuring surface is provided on a moving object such as an electric vehicle so that the distance measuring surface does not protrude outside. Is possible.
For example, when a plurality of distance measuring units are provided on the floor surface, the distance measuring surface can be provided at the bottom of the moving body so as not to protrude downward. It can be avoided.
Therefore, when the distance measuring surface is provided on the moving object, the distance measuring surface can be provided on the moving object while avoiding adverse effects on the traveling of the moving object.

無接点充電装置の第7特徴構成は、上記第1〜第4特徴構成のいずれか1つに加えて、
前記被測距装置が前記一次側装置に設けられ、
前記測距装置が前記二次側装置に設けられ、
前記二次側装置が、前記複数の測距部を前記測距方向に直交する面に沿って移動自在とする位置調整装置と、前記複数の測距部による計測情報に基づいて、前記二次側装置が前記一次側装置に対して適正位置となるように前記位置調整装置の作動を制御する制御手段と、を備える点にある。
In addition to any one of the first to fourth characteristic configurations described above, the seventh characteristic configuration of the contactless charging apparatus is:
The distance measuring device is provided in the primary side device;
The distance measuring device is provided in the secondary side device,
Based on the position adjustment device that enables the secondary side device to move the plurality of distance measuring units along a plane orthogonal to the distance measuring direction, and the secondary information based on the measurement information by the plurality of distance measuring units. Control means for controlling the operation of the position adjusting device so that the side device is in an appropriate position with respect to the primary side device.

即ち、二次側装置に、複数の測距部を測距方向に直交する面に沿って移動自在とする位置調整装置と、その位置調整装置の作動を制御する制御手段とが備えられているので、一次側装置と二次側装置との間で情報を通信する通信装置を設けることなく、制御手段により、複数の測距部による計測情報に基づいて、二次側装置が一次側装置に対して適正位置となるように位置調整装置の作動を制御させることができる。そして、通信装置を設けないようにすれば、無接点充電装置の低廉化が可能となる。
又、例えば二次側装置が電気自動車に搭載される場合は、その電気自動車をディーラー等の点検実施箇所にて点検する際に、複数の測距部,位置調整装置及び制御手段等の点検を合わせて行うことができるので、無接点充電装置のメンテナンスの容易化が可能となる。
従って、一次側装置と二次側装置とを自動的に適正な相対位置関係に位置合わせ可能な無接点充電装置を低廉化することができ、しかも、無接点充電装置が電気自動車に搭載された蓄電装置の充電用として用いられる場合は、無接点充電装置のメンテナンスの容易化を図ることができる。
That is, the secondary device is provided with a position adjusting device that allows a plurality of distance measuring units to move along a plane orthogonal to the distance measuring direction, and a control unit that controls the operation of the position adjusting device. Therefore, without providing a communication device for communicating information between the primary side device and the secondary side device, the secondary side device is changed to the primary side device by the control means based on the measurement information by the plurality of distance measuring units. On the other hand, the operation of the position adjusting device can be controlled so as to be in an appropriate position. If the communication device is not provided, the contactless charging device can be reduced in price.
For example, when the secondary device is mounted on an electric vehicle, when the electric vehicle is inspected at an inspection site such as a dealer, a plurality of distance measuring units, position adjusting devices, control means, etc. are inspected. Since it can carry out together, the maintenance of a non-contact charging device can be facilitated.
Therefore, it is possible to reduce the cost of the contactless charging device that can automatically align the primary device and the secondary device in an appropriate relative positional relationship, and the contactless charging device is mounted on an electric vehicle. When used for charging the power storage device, maintenance of the contactless charging device can be facilitated.

無接点充電装置の第8特徴構成は、上記第5特徴構成に加えて、
前記被測距面が、凸面状に構成されている点にある。
In addition to the fifth characteristic configuration described above, the eighth characteristic configuration of the contactless charging apparatus is
The distance-measuring surface is formed in a convex shape.

即ち、被測距面が凸面状に構成されているので、被測距面が床面等に上向きに設けられる場合でも、被測距面に雨水等の水がたまるのを防止することができる。
そして、被測距面に水が溜まると測距部による距離の計測精度が低下する虞があるので、被測距面に溜まった水を除去する必要があるが、被測距面を凸面状に構成することにより、そのような被測距面に溜まった水を除去するメンテナンス作業を不要とすることが可能となる。
従って、被測距面が床面等に上向きに設けられる場合でも、メンテナンス作業を軽減しながら、測距部による距離計測精度を高精度に維持して、一次側装置と二次側装置との相対位置関係を精度良く検出することができるようになった。
That is, since the surface to be measured is formed in a convex shape, it is possible to prevent water such as rainwater from collecting on the surface to be measured even when the surface to be measured is provided upward on the floor surface or the like. .
If water accumulates on the surface to be measured, the distance measurement accuracy by the distance measuring unit may decrease, so it is necessary to remove the water collected on the surface to be measured. With this configuration, it is possible to eliminate the maintenance work for removing the water accumulated on the surface to be measured.
Therefore, even when the surface to be measured is provided upward on the floor or the like, the distance measurement accuracy by the distance measuring unit is maintained with high accuracy while reducing maintenance work, and the primary side device and the secondary side device are The relative positional relationship can be detected with high accuracy.

無接点充電装置の第9特徴構成は、上記第1〜第8特徴構成のいずれか1つに加えて、
前記複数の測距部が、前記円周上の等分又は略等分された位置に分散して設けられている点にある。
In addition to any one of the first to eighth characteristic configurations described above, the ninth characteristic configuration of the contactless charging apparatus includes:
The plurality of distance measuring units are provided in a distributed manner at equally or substantially equally divided positions on the circumference.

即ち、複数の測距部が測距部配置用軸心を中心とする円周上の等分又は略等分された位置に分散して設けられているので、複数の測距部の全て又は一部が測距部配置用軸心を中心とする円周上の一部に偏って設けられる場合に比べて、測距部配置用軸心と被測距面の軸心とがずれている場合に、複数の測距部それぞれにて計測される距離の差が大きくなる。
つまり、複数の測距部が測距部配置用軸心を中心とする円周上の等分又は略等分された位置に分散して設けられていると、測距部配置用軸心と被測距面の軸心とがずれている場合は、それらの軸心が同軸状である場合に対して、複数の測距部のうちの一部のものの計測値が大きくなるのに対して、複数の測距部のうちの残りのものの計測値が小さくなるので、複数の測距部それぞれにて計測される距離の差が大きくなる。
これに対して、複数の測距部の全て又は一部が測距部配置用軸心を中心とする円周上の一部に偏って設けられていると、測距部配置用軸心と被測距面の軸心とがずれている場合は、それらの軸心が同軸状である場合に対して、偏って設けられている複数の測距部それぞれの計測値が一様に大きくなる又は一様に小さくなる傾向になるので、複数の測距部それぞれにて計測される距離の差が小さくなるのである。
従って、測距部配置用軸心と被測距面の軸心とがずれている場合に、複数の測距部それぞれにて計測される距離の差が大きくなるので、一次側装置と二次側装置との相対位置関係の検出精度をより一層向上することができる。
In other words, since the plurality of distance measuring units are distributed at equal or substantially equal positions on the circumference around the axis for positioning the distance measuring unit, all of the plurality of distance measuring units or Compared to the case where a part of the center of the distance measurement unit is disposed on the circumference of the center of the axis, the axis of the distance measurement unit is displaced from the axis of the surface to be measured. In this case, the difference in distance measured by each of the plurality of distance measuring units increases.
In other words, when a plurality of distance measuring units are provided at equal or substantially equal positions on the circumference around the distance measuring unit arrangement axis, the distance measuring unit arrangement axis When the axis of the surface to be measured is misaligned, the measured values of some of the distance measuring units are larger than when the axes are coaxial. Since the measurement values of the remaining ones of the plurality of distance measuring units are reduced, the difference in distance measured by each of the plurality of distance measuring units is increased.
On the other hand, if all or some of the plurality of distance measuring units are provided so as to be biased to a part of the circumference centered on the distance measuring unit arrangement axis, When the axis of the surface to be measured is deviated, the measured values of each of the plurality of distance measuring units provided in a biased manner are uniformly larger than when the axes are coaxial. Or, since it tends to be uniformly small, the difference in distance measured by each of the plurality of distance measuring units is small.
Accordingly, when the distance measurement unit placement axis is shifted from the axis of the surface to be measured, the difference between the distances measured by each of the plurality of distance measurement units becomes large. The detection accuracy of the relative positional relationship with the side device can be further improved.

無接点充電装置の第10特徴構成は、上記第1〜第9特徴構成のいずれか1つに加えて、
前記二次側装置が移動体に搭載されるとともに、前記一次側装置に対する前記二次側装置の傾きを検出する傾き検出装置と、その傾き検出装置の検出情報に基づいて、前記二次側装置の傾きを補正する傾き補正手段が設けられている点にある。
In addition to any one of the first to ninth feature configurations described above, the tenth feature configuration of the contactless charging apparatus includes:
The secondary device is mounted on a moving body, detects an inclination of the secondary device relative to the primary device, and the secondary device based on detection information of the tilt detector In other words, an inclination correction means for correcting the inclination is provided.

即ち、二次側装置が搭載された移動体の姿勢が適正な姿勢から傾くことにより、二次側装置が一次側装置に対して傾いても、傾き補正手段により、傾き検出装置の検出情報に基づいて二次側装置の傾きが補正される。
つまり、移動体が傾くことによって、二次コイルの軸心が一次コイルの軸心と平行ではなくなっても、二次コイルの軸心が一次コイルの軸心と平行になるように、傾き補正手段により二次側装置の傾きが補正されるので、一次コイルと二次コイルとが同軸状又は略同軸状になるように一次側装置と二次側装置とを位置合わせすることができる。
従って、二次側装置が搭載された移動体の姿勢が傾いても、一次コイルと二次コイルとが同軸状又は略同軸状になるように一次側装置と二次側装置とを位置合わせすることができるので、蓄電装置を効率良く充電することができるようになった。
That is, even if the attitude of the mobile body on which the secondary side device is mounted is tilted from the proper attitude, even if the secondary side device is tilted with respect to the primary side device, the tilt correction means detects the detection information of the tilt detection device. Based on this, the inclination of the secondary device is corrected.
That is, even if the moving body is tilted, the tilt correction means is arranged so that the axis of the secondary coil is parallel to the axis of the primary coil even if the axis of the secondary coil is not parallel to the axis of the primary coil. Since the inclination of the secondary device is corrected by the above, the primary device and the secondary device can be aligned so that the primary coil and the secondary coil are coaxial or substantially coaxial.
Therefore, even if the attitude of the moving body on which the secondary device is mounted is tilted, the primary device and the secondary device are aligned so that the primary coil and the secondary coil are coaxial or substantially coaxial. Therefore, the power storage device can be efficiently charged.

無接点充電装置の第11特徴構成は、上記第1〜第10特徴構成のいずれか1つに加えて、
前記被測距面における最大径部の直径に対する軸心方向の長さの比率が、前記被測距面が球面の一部にて構成される場合よりも大きくなるように構成されている点にある。
In addition to any one of the first to tenth feature configurations, the eleventh feature configuration of the non-contact charging device includes:
The ratio of the length in the axial direction to the diameter of the maximum diameter portion on the surface to be measured is configured to be larger than that in the case where the surface to be measured is configured by a part of a spherical surface. is there.

即ち、被測距面における最大径部の直径に対する軸心方向の長さの比率が、被測距面が球面の一部にて構成される場合よりも大きいので、測距部配置用軸心と被測距面の軸心とがずれている場合に、そのずれ量の変化に対する測距部にて計測される距離の変化量が、被測距面が球面の一部にて構成される場合よりも大きくなる。
従って、一次側装置と二次側装置との相対位置関係の検出精度をより一層向上することができるようになった。
That is, the ratio of the length in the axial direction to the diameter of the maximum diameter portion on the surface to be measured is larger than that in the case where the surface to be measured is constituted by a part of a spherical surface. When the center of the surface to be measured is misaligned with the axis of the surface to be measured, the amount of change in the distance measured by the distance measuring unit with respect to the change in the amount of deviation is such that the surface to be measured is composed of a part of a spherical surface. Larger than the case.
Therefore, the detection accuracy of the relative positional relationship between the primary device and the secondary device can be further improved.

本発明の位置関係検出装置の測距装置は、充電用電源に接続される一次側装置と蓄電装置に接続される二次側装置との相対位置関係を検出するものであって、
その第1特徴構成は、
前記一次側装置及び前記二次側装置の一方に被測距装置が設けられる場合において前記一次側装置及び前記二次側装置の他方に設けられ、所定の被測距面を備える前記被測距装置と協働して前記相対位置関係を検出するように構成され、
所定の測距方向に前記被測距面までの距離を計測する3個以上の複数の測距部を、前記測距方向に直交する面内における同一円周上に分散配置して備える点にある。
The distance measuring device of the positional relationship detection device of the present invention detects a relative positional relationship between a primary device connected to a charging power source and a secondary device connected to a power storage device,
The first characteristic configuration is
When the distance measuring device is provided in one of the primary side device and the secondary side device, the distance measuring device is provided on the other of the primary side device and the secondary side device and includes a predetermined distance measuring surface. Configured to detect the relative positional relationship in cooperation with an apparatus;
A point in which three or more distance measuring units that measure the distance to the surface to be measured in a predetermined distance measuring direction are distributed and arranged on the same circumference in a plane orthogonal to the distance measuring direction. is there.

即ち、測距装置は、所定の測距方向に被測距面までの距離を計測する3個以上の複数の測距部を測距方向に直交する面内における同一円周上に分散配置して備えるので、前記測距方向に直交する面での横断形状が円形であって、その径が測距方向一方側へ向かって漸減又は漸増する被測距面を測距装置に対向するように備える被測距装置との協働により、先に無接点充電装置の第1特徴構成について説明したのと同様に、複数の測距部による計測距離の相対関係に基づいて、一次側装置と二次側装置との相対位置関係を精度良く検出することができる。
又、そのような一次側装置と二次側装置との相対位置関係の検出は、一次側装置及び二次側装置を移動させることなく、複数の測距部により被測距面までの距離を計測することにより行うことができるので、迅速に行うことができる。
従って、一次側装置と二次側装置との相対位置関係の検出を精度良くしかも迅速に行い得る位置関係検出装置の測距装置を提供することができるようになった。
と、
That is, the distance measuring device disperses three or more distance measuring units that measure the distance to the surface to be measured in a predetermined distance measuring direction on the same circumference in a plane orthogonal to the distance measuring direction. Therefore, a distance measuring surface whose cross-sectional shape on a surface orthogonal to the distance measuring direction is circular and whose diameter gradually decreases or increases toward one side in the distance measuring direction faces the distance measuring device. Similar to the description of the first characteristic configuration of the contactless charging device previously described in cooperation with the distance measuring device provided, based on the relative relationship of the measurement distances by the plurality of distance measuring units, The relative positional relationship with the secondary device can be detected with high accuracy.
In addition, such a relative positional relationship between the primary side device and the secondary side device can be detected by measuring the distance to the surface to be measured by a plurality of distance measuring units without moving the primary side device and the secondary side device. Since it can be performed by measuring, it can be performed quickly.
Accordingly, it is possible to provide a distance measuring device of a positional relationship detection device that can detect the relative positional relationship between the primary device and the secondary device with high accuracy and speed.
When,

本発明の位置関係検出装置の被測距装置は、充電用電源に接続される一次側装置と蓄電装置に接続される二次側装置との相対位置関係を検出するものであって、
その第1特徴構成は、
前記一次側装置及び前記二次側装置の一方に設けられ、前記一次側装置及び前記二次側装置の他方に設けられた所定の測距装置と協働して前記相対位置関係を検出するように構成され、
所定の測距方向に直交する面での横断形状が円形であって、その径が前記測距方向一方側へ向かって漸減又は漸増する被測距面を、前記測距装置に対向するように備える点にある。
The distance measuring device of the positional relationship detection device of the present invention detects a relative positional relationship between a primary device connected to a charging power source and a secondary device connected to a power storage device,
The first characteristic configuration is
The relative positional relationship is detected in cooperation with a predetermined distance measuring device provided in one of the primary side device and the secondary side device and provided in the other of the primary side device and the secondary side device. Composed of
A distance measuring surface whose transverse shape on a surface orthogonal to a predetermined distance measuring direction is circular and whose diameter gradually decreases or increases toward one side in the distance measuring direction is opposed to the distance measuring device. It is in the point to prepare.

即ち、被測距装置は、所定の測距方向に直交する面での横断形状が円形であって、その径が測距方向一方側へ向かって漸減又は漸増する被測距面を、測距装置に対向するように備えるので、前記測距方向に前記被測距面までの距離を計測する3個以上の複数の測距部を測距方向に直交する面内における同一円周上に分散配置して備える測距装置との協働により、先に無接点充電装置の第1特徴構成について説明したのと同様に、複数の測距部による計測距離の相対関係に基づいて、一次側装置と二次側装置との相対位置関係を精度良く検出することができる。
又、そのような一次側装置と二次側装置との相対位置関係の検出は、一次側装置及び二次側装置を移動させることなく、複数の測距部により被測距面までの距離を計測することにより行うことができるので、迅速に行うことができる。
従って、一次側装置と二次側装置との相対位置関係の検出を精度良くしかも迅速に行い得る位置関係検出装置の被測距装置を提供することができるようになった。
In other words, the distance measuring device has a distance measuring surface that has a circular cross-sectional shape on a surface orthogonal to a predetermined distance measuring direction and whose diameter gradually decreases or increases toward one side in the distance measuring direction. Since it is provided so as to face the apparatus, three or more ranging units that measure the distance to the ranging surface in the ranging direction are distributed on the same circumference in a plane orthogonal to the ranging direction. Based on the relative relationship between the distances measured by a plurality of distance measuring units, the primary side device is similar to the first characteristic configuration of the contactless charging device previously described in cooperation with the distance measuring device arranged and provided. The relative positional relationship between the secondary device and the secondary device can be detected with high accuracy.
In addition, such a relative positional relationship between the primary side device and the secondary side device can be detected by measuring the distance to the surface to be measured by a plurality of distance measuring units without moving the primary side device and the secondary side device. Since it can be performed by measuring, it can be performed quickly.
Therefore, it is possible to provide a distance measuring device of a positional relationship detection device that can detect the relative positional relationship between the primary device and the secondary device accurately and quickly.

第1実施形態に係る無接点充電装置の設置状態を示す概略側面図である。It is a schematic side view which shows the installation state of the non-contact charging device which concerns on 1st Embodiment. 第1実施形態に係る無接点充電装置の設置状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the installation state of the non-contact charging device which concerns on 1st Embodiment. 第1実施形態に係る無接点充電装置における二次側装置の底面図(a)及び一次側装置の平面図(b)である。It is the bottom view (a) of the secondary side apparatus in the non-contact charging device which concerns on 1st Embodiment, and the top view (b) of the primary side apparatus. 第1実施形態に係る無接点充電装置の制御構成を示すブロック図である。It is a block diagram which shows the control structure of the non-contact charging device which concerns on 1st Embodiment. 第1実施形態に係る無接点充電装置において一次側装置と二次側装置との相対位置関係を検出する構成を説明する図である。It is a figure explaining the structure which detects the relative positional relationship of a primary side apparatus and a secondary side apparatus in the non-contact charging device which concerns on 1st Embodiment. 第1実施形態に係る無接点充電装置において一次側装置と二次側装置との相対位置関係を検出する構成を説明する図である。It is a figure explaining the structure which detects the relative positional relationship of a primary side apparatus and a secondary side apparatus in the non-contact charging device which concerns on 1st Embodiment. 第1実施形態に係る無接点充電装置において一次側装置と二次側装置との相対位置関係を検出する構成を説明する図である。It is a figure explaining the structure which detects the relative positional relationship of a primary side apparatus and a secondary side apparatus in the non-contact charging device which concerns on 1st Embodiment. 第2実施形態に係る無接点充電装置の設置状態を示す概略側面図である。It is a schematic side view which shows the installation state of the non-contact charging device which concerns on 2nd Embodiment. 第2実施形態に係る無接点充電装置の設置状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the installation state of the non-contact charging device which concerns on 2nd Embodiment. 第2実施形態に係る無接点充電装置における二次側装置の底面図(a)及び一次側装置の平面図(b)である。It is the bottom view (a) of the secondary side apparatus in the non-contact charging device which concerns on 2nd Embodiment, and the top view (b) of the primary side apparatus. 第2実施形態に係る無接点充電装置の制御構成を示すブロック図である。It is a block diagram which shows the control structure of the non-contact charging device which concerns on 2nd Embodiment. 第2実施形態に係る無接点充電装置において一次側装置と二次側装置との相対位置関係を検出する構成を説明する図である。It is a figure explaining the structure which detects the relative positional relationship of a primary side apparatus and a secondary side apparatus in the non-contact charging device which concerns on 2nd Embodiment. 第2実施形態に係る無接点充電装置において一次側装置と二次側装置との相対位置関係を検出する構成を説明する図である。It is a figure explaining the structure which detects the relative positional relationship of a primary side apparatus and a secondary side apparatus in the non-contact charging device which concerns on 2nd Embodiment. 第2実施形態に係る無接点充電装置において一次側装置と二次側装置との相対位置関係を検出する構成を説明する図である。It is a figure explaining the structure which detects the relative positional relationship of a primary side apparatus and a secondary side apparatus in the non-contact charging device which concerns on 2nd Embodiment. 別実施形態に係る無接点充電装置の設置状態を示す概略平面図である。It is a schematic plan view which shows the installation state of the non-contact charging device which concerns on another embodiment. 別実施形態に係る無接点充電装置の設置状態を示す概略側面図である。It is a schematic side view which shows the installation state of the non-contact charging device which concerns on another embodiment. 別実施形態に係る被測距面を示す図である。It is a figure which shows the to-be-measured surface which concerns on another embodiment.

以下、図面に基づいて、本発明を電気自動車用の無接点充電装置に適用した場合の実施形態を説明する。
〔第1実施形態〕
以下、図面に基づいて、第1実施形態を説明する。
図1〜図3に示すように、無接点充電装置は、充電用電源1に接続される一次側装置E1、蓄電装置2に接続される二次側装置E2、及び、それら一次側装置E1と二次側装置E2との相対位置関係を検出する位置関係検出装置M等を備えて構成される。
二次側装置E2は、移動体の一例としての電気自動車Cに搭載され、一次側装置E1は、電気自動車Cのガレージの床面G等の地上側に設けられている。そして、位置関係検出装置Mの検出情報に基づいて、一次側装置E1と二次側装置E2とを互いに非接触状態で適正な相対位置関係に位置合わせして、地上側に設けられた充電用電源1により、電気自動車Cに搭載された蓄電装置2を充電するように構成されている。
ちなみに、蓄電装置2は、蓄電池、キャパシタ等により構成される。
Hereinafter, an embodiment in the case where the present invention is applied to a contactless charging apparatus for an electric vehicle will be described with reference to the drawings.
[First Embodiment]
Hereinafter, a first embodiment will be described based on the drawings.
As shown in FIGS. 1 to 3, the contactless charging device includes a primary device E1 connected to the charging power source 1, a secondary device E2 connected to the power storage device 2, and the primary device E1. A positional relationship detection device M that detects a relative positional relationship with the secondary device E2 is provided.
The secondary side device E2 is mounted on an electric vehicle C as an example of a moving body, and the primary side device E1 is provided on the ground side such as a floor G of a garage of the electric vehicle C. And based on the detection information of the positional relationship detection apparatus M, the primary side apparatus E1 and the secondary side apparatus E2 are aligned in an appropriate relative positional relationship in a non-contact state with each other, and for charging provided on the ground side The power source 1 is configured to charge the power storage device 2 mounted on the electric vehicle C.
Incidentally, the power storage device 2 includes a storage battery, a capacitor, and the like.

本発明では、位置関係検出装置Mが、一次側装置E1及び二次側装置E2の一方に設けられた被測距装置Mpと、一次側装置E1及び二次側装置E2の他方に設けられた測距装置Maとを有している。
被測距装置Mpが、所定の測距方向に直交する面での横断形状が円形であって、その径が測距方向一方側へ向かって漸減又は漸増する被測距面3を測距装置Maに対向するように備える。
測距装置Maが、測距方向に被測距面3までの距離を計測する3個以上の複数の測距部4を、測距方向に直交する面内における同一円周上に分散配置して備える。
In the present invention, the positional relationship detection device M is provided in the distance measuring device Mp provided in one of the primary device E1 and the secondary device E2, and in the other of the primary device E1 and the secondary device E2. And a distance measuring device Ma.
The distance measuring device Mp has a distance measuring surface 3 that has a circular transverse shape on a surface perpendicular to a predetermined distance measuring direction and whose diameter gradually decreases or increases toward one side in the distance measuring direction. Prepare to face Ma.
The distance measuring device Ma disperses three or more distance measuring units 4 that measure the distance to the distance measuring surface 3 in the distance measuring direction on the same circumference in a plane orthogonal to the distance measuring direction. Prepare.

この第1実施形態では、被測距装置Mpが二次側装置E2に設けられ、測距装置Maが一次側装置E1に設けられている。
被測距装置Mpが、径が測距方向先方側(測距装置側)へ向かって漸増する凹面状に構成されている。
In the first embodiment, the distance measuring device Mp is provided in the secondary device E2, and the distance measuring device Ma is provided in the primary device E1.
The distance measuring device Mp is configured in a concave shape whose diameter gradually increases toward the distance measuring direction side (ranging device side).

以下、第1実施形態に係る無接点充電装置の各部について説明する。
図2〜図4に示すように、一次側装置E1は、充電用電源1により励磁される一次コイル5と、複数の測距部4を測距方向に直交する面に沿って移動自在とする位置調整装置6と、一次側装置E1の作動を制御する一次側制御手段7等を備えて構成される。
ちなみに、図4に示すように、電源回路8により、充電用電源1が高周波電流に変換されて一次コイル5に供給されることにより、一次コイル5が励磁されることになる。
更に、一次側装置E1には、後述する二次側装置E2の二次側通信部17と通信する一次側通信部9が設けられている。
Hereinafter, each part of the non-contact charging device according to the first embodiment will be described.
As shown in FIGS. 2 to 4, the primary side device E <b> 1 makes the primary coil 5 excited by the charging power source 1 and the plurality of distance measuring units 4 movable along a plane orthogonal to the distance measuring direction. The position adjusting device 6 and the primary side control means 7 for controlling the operation of the primary side device E1 are provided.
Incidentally, as shown in FIG. 4, the power supply circuit 8 converts the charging power supply 1 into a high frequency current and supplies it to the primary coil 5, thereby exciting the primary coil 5.
Further, the primary side device E1 is provided with a primary side communication unit 9 that communicates with a secondary side communication unit 17 of a secondary side device E2 described later.

図2及び図3に示すように、一次コイル5は、例えばフェライト製の円柱形状の磁芯10に電線を巻回して構成されて、平面状の上面を有する樹脂製の保護体11内に、磁芯10の軸心、即ち、一次コイル5の軸心A1が保護体11の上面に直交する姿勢で収納されている。
複数の測距部4が、一次側装置E1に測距装置Maと一体的に設けられる一次コイル5の軸心A1と同軸の同一円周上に配置されている。
As shown in FIGS. 2 and 3, the primary coil 5 is formed by winding an electric wire around a cylindrical magnetic core 10 made of ferrite, for example, and in a resin protective body 11 having a planar upper surface, The axis of the magnetic core 10, that is, the axis A <b> 1 of the primary coil 5 is accommodated in a posture orthogonal to the upper surface of the protector 11.
The plurality of distance measuring units 4 are arranged on the same circumference coaxial with the axis A1 of the primary coil 5 provided integrally with the distance measuring device Ma in the primary side device E1.

測距部4は、被測距物までの距離をその被測距物に非接触で計測するように構成され、例えば、赤外線やレーザーを用いる光学式、超音波を用いる超音波式等の各種距離センサが用いられる。
光学式や超音波式の測距部4は周知であるので、詳細な説明及び図示を省略して簡単に説明すると、光学式の測距部4は、被測距物に向けて光パルスを投光する投光部と被測距物からの反射光パルスを受光する受光部とからなるセンサ部4sを備え、被測距物に光パルスを投光してからその反射光パルスを受光するまでの時間を計測して、この計測時間に基づいて被測距物までの距離を計測するように構成されている。
又、超音波式の測距部4は、被測距物に向けて超音波を発振する超音波発振部と被測距物から反射される超音波を受信する超音波受信部からなるセンサ部4sを備え、被測距物に超音波を発振してからその反射波を受信するまでの時間を計測して、この計測時間に基づいて被測距物までの距離を計測するように構成されている。
The distance measuring unit 4 is configured to measure the distance to the object to be measured without contact with the object to be measured. For example, various types such as an optical type using infrared rays or a laser, an ultrasonic type using ultrasonic waves, and the like. A distance sensor is used.
Since the optical or ultrasonic distance measuring unit 4 is well known, the detailed description and illustration will be omitted and briefly described. The optical distance measuring unit 4 emits a light pulse toward the object to be measured. A sensor unit 4s including a light projecting unit for projecting light and a light receiving unit for receiving a reflected light pulse from the object to be measured is provided, and the light pulse is projected onto the object to be measured and then the reflected light pulse is received. And measuring the distance to the object to be measured based on the measurement time.
The ultrasonic distance measuring unit 4 includes a sensor unit including an ultrasonic wave oscillating unit that oscillates ultrasonic waves toward the object to be measured and an ultrasonic wave receiving unit that receives ultrasonic waves reflected from the object to be measured. 4s, configured to measure the time from when an ultrasonic wave is oscillated to the object to be measured until the reflected wave is received, and to measure the distance to the object to be measured based on this measurement time ing.

複数の測距部4のセンサ部4sが、一次コイル5の保護体11の上面に、夫々の測距方向が一次コイル5の軸心A1と平行となる姿勢で一次コイル5の軸心A1と同軸の同一円周上の等分された位置に分散して設けられて、一次側ユニット12に構成されている。
ちなみに、この第1実施形態では、3個の測距部4が設けられ、それら3個の測距部4のセンサ部4sが、一次コイル5の軸心A1と同軸の同一円周上における中心角で120°ずつ隔てた位置に分散して設けられている。
尚、3個の測距部4を設置位置を区別して説明するときは、添え字a、b、cを付して、A点測距部4a、B点測距部4b、C点測距部4cと夫々記載し、又、3個のセンサ部4sを設置位置を区別して説明するときも、添え字a、b、cを付して、A点センサ部4sa、B点センサ部4sb、C点センサ部4scと夫々記載する。
The sensor units 4s of the plurality of distance measuring units 4 are arranged on the upper surface of the protective body 11 of the primary coil 5 with the axis A1 of the primary coil 5 in a posture in which each distance measuring direction is parallel to the axis A1 of the primary coil 5. The primary side unit 12 is configured to be distributed at equal positions on the same circumference of the same axis.
Incidentally, in the first embodiment, three distance measuring sections 4 are provided, and the sensor sections 4s of the three distance measuring sections 4 are arranged on the same circumference coaxial with the axis A1 of the primary coil 5. It is distributed and provided at positions separated by 120 ° in angle.
When the three distance measuring sections 4 are described by distinguishing the installation positions, the subscripts a, b, and c are added, and the A point distance measuring section 4a, the B point distance measuring section 4b, and the C point distance measuring apparatus. When the three sensor units 4s are described by distinguishing the installation positions, the subscripts a, b, and c are added to the A point sensor unit 4sa, the B point sensor unit 4sb, It is described as a C point sensor unit 4sc.

位置調整装置6も周知のものを用いるので、詳細な説明及び図示を省略して簡単に説明すると、この位置調整装置6は、所定の方向(以下、X方向と記載する)に往復移動自在に支持されたX方向被移動体と、そのX方向被移動体を往復移動操作するX方向電動モータ6x(図4参照)と、X方向被移動体上にX方向に直交する方向(以下、Y方向と記載する)に往復移動自在に支持されたY方向被移動体と、そのY方向被移動体を往復移動操作するY方向電動モータ6y(図4参照)とを備えて構成されている。   Since the position adjusting device 6 uses a well-known device, the detailed description and illustration will be omitted and briefly described. The position adjusting device 6 can reciprocate in a predetermined direction (hereinafter referred to as X direction). A supported X-direction moving body, an X-direction electric motor 6x (see FIG. 4) for reciprocating the X-direction moving body, and a direction orthogonal to the X direction on the X-direction moving body (hereinafter referred to as Y) Y-direction moving body supported reciprocally in a reciprocating manner and a Y-direction electric motor 6y (see FIG. 4) for reciprocating the Y-direction moving body.

そして、図1及び図2に示すように、ガレージの床面Gに、位置調整装置6がそのX方向及びY方向が水平方向を向く姿勢で設けられ、その位置調整装置6のY方向被移動体上に、一次側ユニット12が、一次コイル5の軸心A1が垂直方向を向く姿勢で設けられて、一次コイル5及び複数の測距部4が一体的に水平面に沿って移動操作自在なように構成されている。
図1に示すように、充電用電源1や一次側制御手段7は一次側ボックス13内に収納され、その一次側ボックス13がガレージの床面Gに設けられている。
As shown in FIGS. 1 and 2, the position adjusting device 6 is provided on the floor G of the garage in a posture in which the X direction and the Y direction are oriented in the horizontal direction, and the position adjusting device 6 is moved in the Y direction. The primary unit 12 is provided on the body so that the axis A1 of the primary coil 5 is oriented in the vertical direction, and the primary coil 5 and the plurality of distance measuring units 4 can be moved and operated integrally along the horizontal plane. It is configured as follows.
As shown in FIG. 1, the charging power source 1 and the primary side control means 7 are accommodated in a primary side box 13, and the primary side box 13 is provided on the floor G of the garage.

図2〜図4に示すように、二次側装置E2は、一次コイル5に電磁結合されて誘導起電力を発生させ且つその発生誘導起電力を蓄電装置2に充電する二次コイル14と、二次側装置E2の作動を制御する二次側制御手段15等を備えて構成される。
ちなみに、図4に示すように、二次コイル14により発生される誘導起電力は、充電回路16により直流電力に変換されて、その変換直流電力が蓄電装置2に充電されることになる。
更に、二次側装置E2には、前述した一次側装置E1の一次側通信部9と通信する二次側通信部17が設けられている。
As shown in FIGS. 2 to 4, the secondary device E2 is electromagnetically coupled to the primary coil 5 to generate an induced electromotive force, and the secondary coil 14 that charges the power storage device 2 with the generated induced electromotive force; The secondary side control means 15 etc. which control the action | operation of the secondary side apparatus E2 are provided and comprised.
Incidentally, as shown in FIG. 4, the induced electromotive force generated by the secondary coil 14 is converted into DC power by the charging circuit 16, and the converted DC power is charged in the power storage device 2.
Further, the secondary side device E2 is provided with a secondary side communication unit 17 that communicates with the primary side communication unit 9 of the primary side device E1 described above.

二次コイル14は、上述した一次コイル5と同様に、フェライト製の円柱形状の磁芯18に電線を巻回して構成されている。
その二次コイル14が、軸心方向の先方側に向かって径が漸増する凹面状の被測距面3を有するように成形された樹脂製の保護体19内に、磁芯の軸心、即ち、二次コイル14の軸心A2が保護体19の凹面状の被測距面3と同軸になるように収納されて、二次側ユニット20が構成されている。
つまり、被測距面3が、二次側装置E2に被測距装置Mpと一体的に設けられる二次コイル14の軸心A2と同軸に設けられることになる。
この第1実施形態では、凹面状の被測距面3が球面の一部にて構成されている。
Similar to the primary coil 5 described above, the secondary coil 14 is configured by winding an electric wire around a cylindrical magnetic core 18 made of ferrite.
In the protective body 19 made of resin so that the secondary coil 14 has a concave distance measuring surface 3 whose diameter gradually increases toward the front side in the axial direction, the axial center of the magnetic core, That is, the secondary side unit 20 is configured such that the axis A2 of the secondary coil 14 is accommodated so as to be coaxial with the concave distance measuring surface 3 of the protector 19.
That is, the distance measuring surface 3 is provided coaxially with the axis A2 of the secondary coil 14 provided integrally with the distance measuring device Mp in the secondary side device E2.
In the first embodiment, the concave distance measuring surface 3 is constituted by a part of a spherical surface.

そして、その二次側ユニット20が、電気自動車Cの車体が水平姿勢に保たれた状態で二次コイル14の軸心A2が垂直方向を向き且つ凹面状の被測距面3が下向きになる姿勢で、車体の底部に設けられている。二次側ユニット20が車体の底部に設けられるに当たっては、その二次側ユニット20が車体の底部から下方に突出しないように設けられて、電気自動車Cの最低地上高さが低くなるのが回避されている。
つまり、二次側装置E2に、一次コイル5に電磁結合されて誘導起電力を発生させ且つその発生誘導起電力を蓄電装置2に充電する二次コイル14が、その軸心A2を一次コイル5の軸心A1と平行にして設けられ、前記測距方向が、一次コイル5及び二次コイル14の軸心A1,A2と平行な方向に設定されていることになる。
In the secondary unit 20, the axis A <b> 2 of the secondary coil 14 faces the vertical direction and the concave distance measuring surface 3 faces downward in a state where the body of the electric vehicle C is maintained in a horizontal posture. In the posture, it is provided at the bottom of the car body. When the secondary side unit 20 is provided at the bottom of the vehicle body, the secondary side unit 20 is provided so as not to protrude downward from the bottom of the vehicle body, so that the minimum ground height of the electric vehicle C is avoided. Has been.
That is, the secondary coil 14 that causes the secondary side device E2 to be electromagnetically coupled to the primary coil 5 to generate an induced electromotive force and charge the generated induced electromotive force to the power storage device 2 has its axis A2 connected to the primary coil 5. The distance measuring direction is set in a direction parallel to the axes A1 and A2 of the primary coil 5 and the secondary coil 14.

図4に示すように、二次側制御手段15は、電気自動車Cの制御を司る主制御手段21を用いて構成されている。
電気自動車Cには、蓄電装置2の蓄電容量を検出する蓄電容量検出部22、水平面に対する車体の傾きを検出する車体傾きセンサ23、及び、水平面に対する車体の姿勢を調整するアクティブサスペンション24等が設けられている。
主制御手段21は、姿勢補正指令が指令されると、車体傾きセンサ23の検出情報に基づいて、車体の姿勢を水平にするようにアクティブサスペンション24の作動を制御するように構成されている。
つまり、一次側装置E1に対する二次側装置E2の傾きを検出する傾き検出装置が車体傾きセンサ23にて構成され、その傾き検出装置の検出情報に基づいて二次側装置E2の傾きを補正する傾き補正手段Rが、主制御手段21とアクティブサスペンション24とにより構成されている。
尚、上述した無接点充電装置に関連する構成以外の電気自動車Cの構成、及び、無接点充電装置に関連する制御動作以外の主制御手段21の制御動作については、説明を省略する。
As shown in FIG. 4, the secondary side control means 15 is configured using a main control means 21 that controls the electric vehicle C.
The electric vehicle C includes a storage capacity detection unit 22 that detects the storage capacity of the power storage device 2, a vehicle body tilt sensor 23 that detects the tilt of the vehicle body with respect to the horizontal plane, an active suspension 24 that adjusts the attitude of the vehicle body with respect to the horizontal plane, and the like. It has been.
The main control means 21 is configured to control the operation of the active suspension 24 so that the posture of the vehicle body is leveled based on the detection information of the vehicle body tilt sensor 23 when a posture correction command is issued.
That is, the inclination detecting device for detecting the inclination of the secondary side device E2 with respect to the primary side device E1 is configured by the vehicle body inclination sensor 23, and the inclination of the secondary side device E2 is corrected based on the detection information of the inclination detecting device. The inclination correcting means R is composed of a main control means 21 and an active suspension 24.
In addition, description is abbreviate | omitted about the control operation of the main control means 21 other than the structure of the electric vehicle C other than the structure relevant to the non-contact charging apparatus mentioned above, and the control action relevant to a non-contact charging apparatus.

次に、一次側制御手段7及び二次側制御手段15夫々の制御動作について説明する。
一次側制御手段7は、3個の測距部4のそれぞれにより計測される被測距面3までの距離が互いに同一又は略同一である場合に、一次側装置E1と二次側装置E2との相対位置関係が適正であると判定するように構成されて、この一次側制御手段7を用いて判定手段25が構成されている。
又、一次側制御手段7は、3個の測距部4による計測情報に基づいて、一次側装置E1と二次側装置E2との相対位置関係が適正でないと判定した場合は、一次側装置E1が二次側装置E2に対して適正位置となるように位置調整装置6の作動を制御するように構成されている。
Next, control operations of the primary side control means 7 and the secondary side control means 15 will be described.
When the distances to the distance measuring surface 3 measured by each of the three distance measuring units 4 are the same or substantially the same, the primary side control means 7 has the primary side device E1 and the secondary side device E2. The relative position relationship is determined to be appropriate, and the determination means 25 is configured using the primary side control means 7.
If the primary side control means 7 determines that the relative positional relationship between the primary side device E1 and the secondary side device E2 is not appropriate based on the measurement information by the three distance measuring units 4, the primary side device The operation of the position adjusting device 6 is controlled so that E1 is in an appropriate position with respect to the secondary side device E2.

一次側制御手段7の制御動作について、更に説明を加える。
尚、以下の説明では、A点測距部4aにて計測される距離、B点測距部4bにて計測される距離、C点測距部4cにて計測される距離を、それぞれ、A点距離Da、B点距離Db、C点距離Dcと記載する。
又、図5〜図7において、3個の測距部4のセンサ部4sが並べて配置される円周を破線にて示し、被測距面3において、3個の測距部4のセンサ部4sが並べて配置される円周が被測距面3と同軸状に位置した場合のその円周と同径の位置を一点鎖線にて示す。
又、図5〜図7において、3個の測距部4のセンサ部4sが並べて配置される円の中心、即ち、一次コイル5の軸心A1から水平方向にA点センサ部4saの位置に向く方向、B点センサ部4sbの位置に向く方向、C点センサ部4scに向く方向をそれぞれPa方向、Pb方向、Pc方向と記載する。
又、Pa方向に対して180度逆向きの方向、Pb方向に対して180度逆向きの方向、Pc方向に対して180度逆向きの方向をそれぞれPx方向、Py方向、Pz方向と記載する。
又、Pa方向とPy方向との中央を通る方向、Py方向とPc方向との中央を通る方向、Pc方向とPx方向の中央を通る方向をそれぞれPay方向、Pcy方向、Pcx方向と記載する。
又、Px方向とPb方向との中央を通る方向、Pb方向とPz方向との中央を通る方向、Pz方向とPa方向との中央を通る方向をそれぞれPbx方向、Pbz方向、Paz方向と記載する。
The control operation of the primary side control means 7 will be further described.
In the following description, the distance measured by the point A distance measuring unit 4a, the distance measured by the point B distance measuring unit 4b, and the distance measured by the point C distance measuring unit 4c are respectively represented by A It is described as a point distance Da, a B point distance Db, and a C point distance Dc.
5 to 7, the circumference where the sensor units 4 s of the three distance measuring units 4 are arranged side by side is indicated by a broken line, and the sensor units of the three distance measuring units 4 on the distance measuring surface 3. When the circumference in which 4s are arranged side by side is positioned coaxially with the surface to be measured 3, the position having the same diameter as the circumference is indicated by a one-dot chain line.
5 to 7, the center of the circle where the sensor units 4s of the three distance measuring units 4 are arranged side by side, that is, at the position of the point A sensor unit 4sa in the horizontal direction from the axis A1 of the primary coil 5. The direction toward the point, the direction toward the position of the point B sensor unit 4sb, and the direction toward the point C sensor unit 4sc are described as a Pa direction, a Pb direction, and a Pc direction, respectively.
In addition, the direction opposite to the Pa direction by 180 degrees, the direction opposite to the Pb direction by 180 degrees, and the direction opposite to the Pc direction by 180 degrees are described as the Px direction, the Py direction, and the Pz direction, respectively. .
A direction passing through the center between the Pa direction and the Py direction, a direction passing through the center between the Py direction and the Pc direction, and a direction passing through the center between the Pc direction and the Px direction are referred to as a Pay direction, a Pcy direction, and a Pcx direction, respectively.
Also, a direction passing through the center between the Px direction and the Pb direction, a direction passing through the center between the Pb direction and the Pz direction, and a direction passing through the center between the Pz direction and the Pa direction are described as a Pbx direction, a Pbz direction, and a Paz direction, respectively. .

一次側制御部7は、A点距離Da、B点距離Db、C点距離Dc(以下、3点の計測距離と記載する場合がある)の相互関係が下記(1)の関係(以下、適正相互関係と記載する場合がある)にあるときは、即ち、3個の測距部4それぞれにより計測されると被測距面3までの距離が互いに同一又は略同一である場合は、図5の(a)に示すように、一次コイル5の軸心A1と二次コイル14の軸心A2が同軸又は略同軸であって、一次側装置E1が二次側装置E2に対して適正位置に位置すると判定する。
|Da−Db|≦α、|Da−Dc|≦α、|Db−Dc|≦α………(1)
The primary side control unit 7 has a relationship of the following (1) (hereinafter referred to as appropriate) of the interrelationship of the A point distance Da, the B point distance Db, and the C point distance Dc (hereinafter sometimes referred to as three measurement distances). In other words, when the distances to the distance measuring surfaces 3 are the same or substantially the same when measured by each of the three distance measuring units 4, FIG. As shown in (a), the axis A1 of the primary coil 5 and the axis A2 of the secondary coil 14 are coaxial or substantially coaxial, and the primary device E1 is in an appropriate position with respect to the secondary device E2. It is determined that it is located.
| Da-Db | ≦ α, | Da-Dc | ≦ α, | Db-Dc | ≦ α (1)

但し、αは正の定数であり、一次コイル5に電磁結合されて二次コイル14から発生する誘導起電力が所定の値よりも高くて効率良く蓄電装置2に充電できるような値に設定される。   However, α is a positive constant, and is set to such a value that the induced electromotive force generated from the secondary coil 14 by being electromagnetically coupled to the primary coil 5 is higher than a predetermined value and can efficiently charge the power storage device 2. The

又、一次側制御部7は、3点の計測距離が適正相互関係にないときは、一次コイル5の軸心A1と二次コイル14の軸心A2とがずれていて、一次側装置E1が二次側装置E2に対して適正位置に位置していないと判定する。
そして、一次側制御部7は、一次側装置E1が二次側装置E2に対して適正位置に位置していないと判定したときは、3点の計測距離に基づいて、一次側装置E1が二次側装置E2に対してずれているずれ方向(即ち、一次コイル5の軸心A1が二次コイル14の軸心A2に対してずれている方向)を判定し、且つ、一次側装置E1を二次側装置E2に対して適正位置に位置させるための位置修正方向をずれ方向に対して180°逆向きの方向に設定して、3点の計測距離の相互関係が適正相互関係になるように一次側装置E1(具体的には一次側ユニット12)を位置修正方向に移動させるべく、位置調整装置6の作動(具体的には、X方向電動モータ6x及びY方向電動モータ6y夫々の作動)を制御するように構成されている。
ちなみに、一次側制御手段7は、予め設定された設定移動距離だけ一次側装置E1を位置修正方向に移動させるべく位置調整装置6の作動した後に、3点の計測距離の相互関係を判定することを繰り返して、3点の計測距離の相互関係が適正相互関係になるように一次側装置E1を移動させるように構成されている。
Further, when the measurement distances at the three points are not properly correlated, the primary-side control unit 7 has the axis A1 of the primary coil 5 deviated from the axis A2 of the secondary coil 14, and the primary-side device E1 is It determines with not being located in an appropriate position with respect to the secondary side apparatus E2.
And when the primary side control part 7 determines with the primary side apparatus E1 not being in an appropriate position with respect to the secondary side apparatus E2, the primary side apparatus E1 is 2nd based on the measurement distance of 3 points | pieces. A displacement direction that is displaced with respect to the secondary device E2 (that is, a direction in which the axis A1 of the primary coil 5 is displaced with respect to the axis A2 of the secondary coil 14) is determined, and the primary device E1 is determined. The position correction direction for positioning the secondary side device E2 at an appropriate position is set to a direction opposite to the shift direction by 180 ° so that the mutual relationship between the three measurement distances becomes an appropriate mutual relationship. In order to move the primary side device E1 (specifically, the primary side unit 12) in the position correction direction, the operation of the position adjusting device 6 (specifically, the operation of the X direction electric motor 6x and the Y direction electric motor 6y, respectively). ) Is configured to control.
Incidentally, the primary-side control means 7 determines the mutual relationship between the three measurement distances after the position adjustment device 6 is operated to move the primary-side device E1 in the position correction direction by a preset set movement distance. The primary side device E1 is configured to move so that the mutual relationship between the three measurement distances becomes an appropriate mutual relationship.

例えば、一次側制御部7は、3点の計測距離の相互関係が下記(2)の関係にあるときは、図5の(b)に示すように、一次側装置E1がPa方向にずれていると判定して、位置修正方向をPx方向に設定し、3点の計測距離の相互関係が適正相互関係になるように一次側装置E1をPx方向に移動させるべく位置調整装置6の作動を制御する。
Db−Da>α、Dc−Da>α、Db=Dc………(2)
For example, when the mutual relationship between the measurement distances of the three points is in the relationship (2) below, the primary side control unit 7 causes the primary side device E1 to shift in the Pa direction as shown in FIG. The position adjustment direction is set to the Px direction, and the position adjustment device 6 is operated to move the primary side device E1 in the Px direction so that the mutual relationship between the three measurement distances is an appropriate mutual relationship. Control.
Db-Da> α, Dc-Da> α, Db = Dc (2)

一次側制御部7は、3点の計測距離の相互関係が下記(3)の関係にあるときは、図5の(c)に示すように、一次側装置E1がPa方向とPy方向との間の方向(図ではPay方向を例示)にずれていると判定して、位置修正方向をPx方向とPb方向との間の方向(図ではPbx方向を例示)に設定し、3点の計測距離の相互関係が適正相互関係になるように一次側装置E1をPx方向とPb方向との間の方向に移動させるべく位置調整装置6の作動を制御する。
Db−Da>α、Db−Dc>α、Dc>Da………(3)
When the mutual relationship between the measurement distances at the three points is the following (3), the primary-side control unit 7 determines that the primary-side device E1 has a Pa direction and a Py direction as shown in (c) of FIG. The position correction direction is determined to be a direction between the Px direction and the Pb direction (Pbx direction is illustrated in the figure), and the three points are measured. The operation of the position adjusting device 6 is controlled so that the primary side device E1 is moved in the direction between the Px direction and the Pb direction so that the mutual relationship of the distance becomes an appropriate mutual relationship.
Db-Da> α, Db-Dc> α, Dc> Da (3)

一次側制御部7は、3点の計測距離の相互関係が下記(4)の関係にあるときは、図6の(d)に示すように、一次側装置E1がPy方向にずれていると判定して、位置修正方向をPb方向に設定し、3点の計測距離の相互関係が適正相互関係になるように一次側装置E1をPb方向に移動させるべく位置調整装置6の作動を制御する。
Db−Da>α、Db−Dc>α、Da=Dc………(4)
When the correlation between the three measurement distances has the following relationship (4), the primary-side control unit 7 indicates that the primary-side device E1 is displaced in the Py direction as shown in FIG. 6 (d). After the determination, the position correction direction is set to the Pb direction, and the operation of the position adjusting device 6 is controlled so that the primary side device E1 is moved in the Pb direction so that the mutual relationship between the three measurement distances becomes an appropriate mutual relationship. .
Db-Da> α, Db-Dc> α, Da = Dc (4)

一次側制御部7は、3点の計測距離の相互関係が下記(5)の関係にあるときは、図6の(e)に示すように、一次側装置E1がPy方向とPc方向との間の方向(図ではPcy方向を例示)にずれていると判定して、位置修正方向をPb方向とPz方向との間の方向(図ではPbz方向を例示)に設定し、3点の計測距離の相互関係が適正相互関係になるように一次側装置E1をPb方向とPz方向との間の方向に移動させるべく位置調整装置6の作動を制御する。
Db−Da>α、Db−Dc>α、Da>Dc………(5)
When the mutual relationship between the measurement distances of the three points is as shown in (5) below, the primary side control unit 7 causes the primary side device E1 to move between the Py direction and the Pc direction as shown in FIG. 6 (e). The position correction direction is set to a direction between the Pb direction and the Pz direction (Pbz direction is illustrated in the figure), and the measurement is performed at three points. The operation of the position adjusting device 6 is controlled so that the primary side device E1 is moved in the direction between the Pb direction and the Pz direction so that the mutual relationship of the distance becomes an appropriate mutual relationship.
Db-Da> α, Db-Dc> α, Da> Dc (5)

一次側制御部7は、3点の計測距離の相互関係が下記(6)の関係にあるときは、図6の(f)に示すように、一次側装置E1がPc方向にずれていると判定して、位置修正方向をPz方向に設定し、3点の計測距離の相互関係が適正相互関係になるように一次側装置E1をPz方向に移動させるべく位置調整装置6の作動を制御する。
Da−Dc>α、Db−Dc>α、Da=Db………(6)
When the correlation between the three measurement distances is as shown in (6) below, the primary-side control unit 7 indicates that the primary-side device E1 is displaced in the Pc direction as shown in (f) of FIG. After determining, the position correction direction is set to the Pz direction, and the operation of the position adjusting device 6 is controlled so as to move the primary side device E1 in the Pz direction so that the mutual relationship between the three measurement distances becomes an appropriate mutual relationship. .
Da-Dc> α, Db-Dc> α, Da = Db (6)

一次側制御部7は、3点の計測距離の相互関係が下記(7)の関係にあるときは、図7の(g)に示すように、一次側装置E1がPx方向にずれていると判定して、位置修正方向をPa方向に設定し、3点の計測距離の相互関係が適正相互関係になるように一次側装置E1をPa方向に移動させるべく位置調整装置6の作動を制御する。
Da−Db>α、Da−Dc>α、Db=Dc………(7)
When the correlation between the three measurement distances has the following relationship (7), the primary-side control unit 7 indicates that the primary-side device E1 is displaced in the Px direction as shown in FIG. After determining, the position correction direction is set to the Pa direction, and the operation of the position adjusting device 6 is controlled so as to move the primary side device E1 in the Pa direction so that the mutual relationship between the three measurement distances becomes an appropriate mutual relationship. .
Da-Db> α, Da-Dc> α, Db = Dc (7)

一次側制御部7は、3点の計測距離の相互関係が下記(8)の関係にあるときは、図7の(h)に示すように、一次側装置E1がPb方向にずれていると判定して、位置修正方向をPy方向に設定し、3点の計測距離の相互関係が適正相互関係になるように一次側装置E1をPy方向に移動させるべく位置調整装置6の作動を制御する。
Da−Db>α、Dc−Db>α、Da=Dc………(8)
When the correlation between the three measurement distances is as shown in (8) below, the primary control unit 7 indicates that the primary device E1 is displaced in the Pb direction as shown in (h) of FIG. After determining, the position correction direction is set to the Py direction, and the operation of the position adjusting device 6 is controlled to move the primary side device E1 in the Py direction so that the mutual relationship between the three measurement distances becomes an appropriate mutual relationship. .
Da-Db> α, Dc-Db> α, Da = Dc (8)

一次側制御部7は、3点の計測距離の相互関係が下記(9)の関係にあるときは、図7の(i)に示すように、一次側装置E1がPz方向にずれていると判定して、位置修正方向をPc方向に設定し、3点の計測距離の相互関係が適正相互関係になるように一次側装置E1をPc方向に移動させるべく位置調整装置6の作動を制御する。
Dc−Da>α、Dc−Db>α、Da=Db………(9)
When the correlation between the three measurement distances has the following relationship (9), the primary side control unit 7 indicates that the primary side device E1 is displaced in the Pz direction as shown in (i) of FIG. After the determination, the position correction direction is set to the Pc direction, and the operation of the position adjusting device 6 is controlled so as to move the primary side device E1 in the Pc direction so that the mutual relationship between the three measurement distances becomes an appropriate mutual relationship. .
Dc-Da> α, Dc-Db> α, Da = Db (9)

尚、一次側装置E1がPc方向とPx方向との間の方向、Px方向とPb方向との間の方向、Pb方向とPz方向との間の方向、及び、Pz方向とPa方向との間の方向の夫々にずれている場合の一次側制御手段7の制御動作については、上述の説明に基づいて理解できるので、説明及び図示を省略する。   The primary side device E1 is in the direction between the Pc direction and the Px direction, the direction between the Px direction and the Pb direction, the direction between the Pb direction and the Pz direction, and the direction between the Pz direction and the Pa direction. Since the control operation of the primary-side control means 7 in the case of deviation in each of the directions can be understood based on the above description, the description and illustration are omitted.

続いて、蓄電装置2を充電するための手順を説明する。
電気自動車Cをガレージにおける予め設定された目標駐車位置に駐車する。この目標駐車位置は、二次コイル14が一次コイル5の上方に位置するように定められている。
そして、使用者が一次ボックス13に設けられた充電開始スイッチ(図示省略)により充電開始を指令すると、一次側制御手段7は、上述のように一次側装置E1が二次側装置E2に対して適正位置に位置するか否かを判定して、適正位置に位置していない場合は、一次側装置E1を二次側装置E2に対して適正位置に位置させるべく位置調整装置6の作動を制御し、一次側装置E1が二次側装置E2に対して適正位置に位置すると判定すると、一次側通信部9により、充電開始信号を送信する。
Then, the procedure for charging the electrical storage apparatus 2 is demonstrated.
The electric vehicle C is parked at a preset target parking position in the garage. This target parking position is determined such that the secondary coil 14 is positioned above the primary coil 5.
When the user commands the start of charging with a charging start switch (not shown) provided in the primary box 13, the primary side control means 7 causes the primary side device E1 to the secondary side device E2 as described above. It is determined whether or not it is positioned at an appropriate position, and when it is not positioned at an appropriate position, the operation of the position adjusting device 6 is controlled so that the primary side device E1 is positioned at an appropriate position with respect to the secondary side device E2. When it is determined that the primary side device E1 is located at an appropriate position with respect to the secondary side device E2, the primary side communication unit 9 transmits a charging start signal.

二次側通信部17が充電開始信号を受信すると、二次側制御手段15は、蓄電容量検出部22の検出情報に基づいて蓄電装置2の充電要否を判定する。二次側制御手段15は、充電が必要であると判定した場合、車体傾きセンサ23の検出情報に基づいて傾き補正の要否を判定する。そして、二次側制御手段15は、傾き補正が必要であると判定した場合、姿勢補正指令を出力し、車体傾きセンサ23の検出情報に基づいて、車体の姿勢を水平にすべくアクティブサスペンション24の作動を制御し、並びに、二次側通信部17により充電許可信号を送信する。
一次側通信部9が充電許可信号を受信すると、一次側制御手段7は、一次コイル5の励磁を開始すべく電源回路8を制御する。
When the secondary communication unit 17 receives the charge start signal, the secondary control unit 15 determines whether or not the power storage device 2 needs to be charged based on the detection information of the storage capacity detection unit 22. When it is determined that charging is necessary, the secondary side control means 15 determines whether or not tilt correction is necessary based on the detection information of the vehicle body tilt sensor 23. If the secondary control means 15 determines that tilt correction is necessary, the secondary control means 15 outputs an attitude correction command and, based on the detection information of the vehicle body tilt sensor 23, the active suspension 24 to level the vehicle body. The secondary side communication unit 17 transmits a charge permission signal.
When the primary side communication unit 9 receives the charge permission signal, the primary side control means 7 controls the power supply circuit 8 to start exciting the primary coil 5.

二次側制御手段15は、二次側通信部17により充電許可信号を送信すると、二次コイル14により発生される誘導起電力を蓄電装置2に充電するように充電回路16を制御し、その後、蓄電容量検出部22の検出情報に基づいて、蓄電装置2の蓄電容量が所定の最大容量に達したと判定すると、二次側通信部17により充電停止信号を送信し、並びに、蓄電装置2の充電を停止するように充電回路16を制御する。
一次側制御手段7は、一次側通信部9が充電停止信号を受信すると、一次コイル5の励磁を停止すべく電源回路8を制御する。
When the secondary-side control unit 15 transmits the charge permission signal by the secondary-side communication unit 17, the secondary-side control unit 15 controls the charging circuit 16 to charge the power storage device 2 with the induced electromotive force generated by the secondary coil 14, and then When it is determined that the storage capacity of the power storage device 2 has reached a predetermined maximum capacity based on the detection information of the storage capacity detection unit 22, the secondary communication unit 17 transmits a charge stop signal, and the power storage device 2 The charging circuit 16 is controlled to stop charging.
The primary side control means 7 controls the power supply circuit 8 to stop the excitation of the primary coil 5 when the primary side communication part 9 receives a charge stop signal.

〔第2実施形態〕
以下、本発明の第2実施形態を説明するが、第1実施形態と同じ構成要素や同じ作用を有する構成要素については、重複説明を避けるために、同じ符号を付すことにより説明を省略し、主として、第1実施形態と異なる構成を説明する。
この第2実施形態は、図8〜図10に示すように、被測距装置Mpが一次側装置E1に設けられ、測距装置Maが二次側装置E2に設けられ、被測距装置Mpが、径が測距方向先方側(測距装置側)へ向かって漸減する凸面状に構成される場合の実施形態を説明するものである。
[Second Embodiment]
Hereinafter, the second embodiment of the present invention will be described, but the same components as those in the first embodiment and the components having the same action are omitted by giving the same reference numerals in order to avoid duplicate description, A configuration different from the first embodiment will be mainly described.
In the second embodiment, as shown in FIGS. 8 to 10, the distance measuring device Mp is provided in the primary device E1, the distance measuring device Ma is provided in the secondary device E2, and the distance measuring device Mp. However, an embodiment in which the diameter is configured to be a convex surface gradually decreasing toward the distance measuring direction side (ranging device side) will be described.

図9〜図11に示すように、一次側装置E1は、充電用電源1により励磁される一次コイル5と、後述する二次側装置E2の二次側通信部17と通信する一次側通信部9と、一次側装置E1の作動を制御する一次側制御手段7等を備えて構成される。
上記の第1実施形態と同様に、電源回路8により、充電用電源1が高周波電流に変換されて一次コイル5に供給されることにより、一次コイル5が励磁されることになる。
As shown in FIGS. 9-11, the primary side apparatus E1 is a primary side communication part which communicates with the primary coil 5 excited by the power supply 1 for charging, and the secondary side communication part 17 of the secondary side apparatus E2 mentioned later. 9 and primary side control means 7 for controlling the operation of the primary side device E1.
Similar to the first embodiment, the power supply circuit 8 converts the charging power supply 1 into a high-frequency current and supplies it to the primary coil 5, thereby exciting the primary coil 5.

図9及び図10に示すように、一次コイル5は、上記の第1実施形態と同様に、円柱形状の磁芯10に電線を巻回して構成されて、平面状の上面を有する樹脂製の保護体11内に、一次コイル5の軸心A1が保護体11の上面に直交する姿勢で収納されている。
そして、一次コイル5が収納された保護体11が、ガレージの床面Gに、一次コイル5の軸心A1が垂直方向を向く姿勢で設けられ、その保護体11を覆う状態で、軸心方向の先方側に向かって径が漸減する凸面状の被測距面3をその軸心が一次コイル5の軸心A1と同軸状になる形態で形成するように、被測距面形成用凸部26がコンクリートにて形成されている。
つまり、被測距面3が、一次側装置E1に被測距装置Mpと一体的に設けられる一次コイル5の軸心A1と同軸に設けられることになる。
この第2実施形態では、凸面状の被測距面3が球面の一部にて構成されている。
As shown in FIGS. 9 and 10, the primary coil 5 is made of a resin having a planar upper surface, which is configured by winding an electric wire around a cylindrical magnetic core 10 as in the first embodiment. In the protector 11, the axis A <b> 1 of the primary coil 5 is accommodated in a posture orthogonal to the upper surface of the protector 11.
The protector 11 in which the primary coil 5 is housed is provided on the floor G of the garage in a posture in which the axis A1 of the primary coil 5 faces in the vertical direction and covers the protector 11 in the axial direction. The convex surface for measuring the distance-measuring surface is formed so that the convex distance-measuring surface 3 whose diameter gradually decreases toward the front side of the coil is formed in such a manner that its axis is coaxial with the axis A1 of the primary coil 5. 26 is made of concrete.
That is, the distance measuring surface 3 is provided coaxially with the axis A1 of the primary coil 5 provided integrally with the distance measuring device Mp on the primary side device E1.
In the second embodiment, the convex distance measuring surface 3 is constituted by a part of a spherical surface.

図9〜図11に示すように、二次側装置E2は、一次コイル5に電磁結合されて誘導起電力を発生させ且つその発生誘導起電力を蓄電装置2に充電する二次コイル14と、複数の測距部4を測距方向に直交する面に沿って移動自在とする位置調整装置6と、前述した一次側装置の一次側通信部9と通信する二次側通信部17と、二次側装置E2の作動を制御する二次側制御手段15等を備えて構成される。
上記の第1実施形態と同様に、二次コイル14により発生される誘導起電力は、充電回路16により直流電力に変換されて、その変換直流電力が蓄電装置2に充電されることになる。
As shown in FIGS. 9 to 11, the secondary device E2 is electromagnetically coupled to the primary coil 5 to generate an induced electromotive force, and the secondary coil 14 that charges the power storage device 2 with the generated induced electromotive force; A position adjusting device 6 that allows the plurality of distance measuring units 4 to move along a plane orthogonal to the distance measuring direction, a secondary side communication unit 17 that communicates with the primary side communication unit 9 of the primary side device described above, The secondary side control means 15 etc. which control the action | operation of the secondary side apparatus E2 are provided and comprised.
Similarly to the first embodiment, the induced electromotive force generated by the secondary coil 14 is converted into DC power by the charging circuit 16, and the converted DC power is charged in the power storage device 2.

二次コイル14は、上述した一次コイル5と同様に、円柱形状の磁芯18に電線を巻回して構成されて、平面状の上面を有する樹脂製の保護体27内に、二次コイル14の軸心A2が保護体27の上面に直交する姿勢で収納されている。   Similar to the primary coil 5 described above, the secondary coil 14 is configured by winding an electric wire around a cylindrical magnetic core 18, and within the resin protective body 27 having a planar upper surface, the secondary coil 14. Is stored in a posture orthogonal to the upper surface of the protector 27.

図9及び図10に示すように、複数の測距部4が、二次側装置E2に測距装置Maと一体的に設けられる二次コイル14の軸心A2と同軸の同一円周上に配置されている。
測距部4は、上記の第1実施形態と同様に、光学式や超音波式等の各種距離センサが用いられる。
As shown in FIGS. 9 and 10, the plurality of distance measuring units 4 are arranged on the same circumference coaxial with the axis A2 of the secondary coil 14 provided integrally with the distance measuring device Ma in the secondary side device E2. Has been placed.
As in the first embodiment, the distance measuring unit 4 uses various distance sensors such as an optical type and an ultrasonic type.

具体的には、複数の測距部4のセンサ部4sが、二次コイル14の保護体27の上面に、夫々の測距方向が二次コイル14の軸心A2と平行となる姿勢で二次コイル14の軸心A2と同軸の同一円周上の等分された位置に分散して設けられて、二次側ユニット28に構成されている。
ちなみに、この第2実施形態でも、第1実施形態と同様に、3個の測距部4が設けられ、それら3個の測距部4のセンサ部4sが、二次コイル14の軸心A2と同軸の同一円周上における中心角で120°ずつ隔てた位置に分散して設けられている。
尚、3個の測距部4を設置位置を区別して説明するときは、添え字a、b、cを付して、A点測距部4a、B点測距部4b、C点測距部4cと夫々記載し、又、3個のセンサ部を設置位置を区別して説明するときも、添え字a、b、cを付して、A点センサ部4sa、B点センサ部4sb、C点センサ部4scと夫々記載する。
Specifically, the sensor units 4 s of the plurality of distance measuring units 4 are arranged on the upper surface of the protective body 27 of the secondary coil 14 so that each distance measuring direction is parallel to the axis A <b> 2 of the secondary coil 14. The secondary unit 28 is configured to be distributed at equal positions on the same circumference coaxial with the axis A <b> 2 of the secondary coil 14.
Incidentally, also in the second embodiment, as in the first embodiment, three distance measuring sections 4 are provided, and the sensor section 4s of the three distance measuring sections 4 is provided with the axis A2 of the secondary coil 14. Are distributed at positions separated by 120 ° in the central angle on the same circumference.
When the three distance measuring sections 4 are described by distinguishing the installation positions, the subscripts a, b, and c are added, and the A point distance measuring section 4a, the B point distance measuring section 4b, and the C point distance measuring apparatus. When the three sensor units are described with their installation positions being distinguished from each other, the subscripts a, b, and c are added to the A point sensor unit 4sa, the B point sensor unit 4sb, and C. It is described as a point sensor unit 4sc.

そして、位置調整装置6が、そのY方向被移動体が下向きになり且つ電気自動車Cの車体が水平姿勢に保たれた状態でX方向及びY方向が水平方向を向く姿勢で、車体の底部に設けられ、更に、位置調整装置6のY方向被移動体に、二次側ユニット28が、二次コイル14の軸心A2が垂直方向を向く姿勢で支持されて、二次コイル14及び複数の測距部4が一体的に水平面に沿って移動操作自在なように構成されている。二次側ユニット28が位置調整装置6に支持されるに当たっては、その二次側ユニット28が車体の底部から下方に突出しないように設けられて、電気自動車Cの最低地上高さが低くなるのが回避されている。   Then, the position adjusting device 6 is placed on the bottom of the vehicle body in a posture in which the X-direction and the Y-direction face the horizontal direction with the Y-direction moving body facing downward and the vehicle body of the electric vehicle C being kept in the horizontal posture. Further, the secondary unit 28 is supported on the Y-direction movable body of the position adjusting device 6 in a posture in which the axis A2 of the secondary coil 14 faces in the vertical direction, and the secondary coil 14 and the plurality of the plurality of secondary coils 14 are arranged. The distance measuring unit 4 is configured so as to be freely movable along a horizontal plane. When the secondary unit 28 is supported by the position adjusting device 6, the secondary unit 28 is provided so as not to protrude downward from the bottom of the vehicle body, and the minimum ground height of the electric vehicle C is reduced. Has been avoided.

つまり、二次側装置E2に、一次コイル5に電磁結合されて誘導起電力を発生させ且つその発生誘導起電力を蓄電装置2に充電する二次コイル14が、その軸心A2を一次コイル5の軸心A1と平行にして設けられ、前記測距方向が、一次コイル5及び二次コイル14の軸心A1,A2と平行な方向に設定されていることになる。   That is, the secondary coil 14 that causes the secondary side device E2 to be electromagnetically coupled to the primary coil 5 to generate an induced electromotive force and charge the generated induced electromotive force to the power storage device 2 has its axis A2 connected to the primary coil 5. The distance measuring direction is set in a direction parallel to the axes A1 and A2 of the primary coil 5 and the secondary coil 14.

図11に示すように、第1実施形態と同様に、二次側制御手段15は、電気自動車Cの制御を司る主制御手段21を用いて構成されている。
又、第1実施形態と同様に、電気自動車Cには、蓄電容量検出部22、車体傾きセンサ23及びアクティブサスペンション24等が設けられている。
第1実施形態と同様に、一次側装置E1に対する二次側装置E2の傾きを検出する傾き検出装置が車体傾きセンサにて構成され、その傾き検出装置の検出情報に基づいて二次側装置の傾きを補正する傾き補正手段Rが、主制御手段21とアクティブサスペンション24とにより構成されている。
As shown in FIG. 11, as in the first embodiment, the secondary side control means 15 is configured using a main control means 21 that controls the electric vehicle C.
Similarly to the first embodiment, the electric vehicle C is provided with a storage capacity detection unit 22, a vehicle body tilt sensor 23, an active suspension 24, and the like.
As in the first embodiment, the tilt detection device that detects the tilt of the secondary device E2 with respect to the primary device E1 is configured by a vehicle body tilt sensor, and based on the detection information of the tilt detection device, the secondary device The inclination correction means R for correcting the inclination is composed of the main control means 21 and the active suspension 24.

次に、一次側制御手段7及び二次側制御手段15夫々の制御動作について説明する。
二次側制御手段15は、3個の測距部4のそれぞれにより計測される被測距面3までの距離が互いに同一又は略同一である場合に、一次側装置E1と二次側装置E2との相対位置関係が適正であると判定するように構成されて、この二次側制御手段15を用いて判定手段25が構成されている。
又、二次側制御手段15は、3個の測距部4による計測情報に基づいて、一次側装置E1と二次側装置E2との相対位置関係が適正でないと判定した場合は、二次側装置E2が一次側装置E1に対して適正位置となるように位置調整装置6の作動を制御するように構成されている。
Next, control operations of the primary side control means 7 and the secondary side control means 15 will be described.
When the distances to the distance measuring surface 3 measured by each of the three distance measuring units 4 are the same or substantially the same, the secondary side control means 15 is the primary side device E1 and the secondary side device E2. Is determined to be appropriate, and the determination means 25 is configured using the secondary side control means 15.
On the other hand, if the secondary side control means 15 determines that the relative positional relationship between the primary side device E1 and the secondary side device E2 is not appropriate based on the measurement information from the three distance measuring units 4, the secondary side control means 15 The operation of the position adjusting device 6 is controlled so that the side device E2 is in an appropriate position with respect to the primary side device E1.

二次側制御手段15の制御動作について、図12〜図14を用いて更に説明を加える。
尚、以下の説明でも、上記の第1実施形態と同様の符号を用いる。
二次側制御部15は、A点距離Da、B点距離Db、C点距離Dc(以下、3点の計測距離と記載する場合がある)の相互関係が下記(11)の関係(以下、適正相互関係と記載する場合がある)にあるときは、即ち、3個の測距部4それぞれにより計測されると被測距面3までの距離が互いに同一又は略同一である場合は、図12の(a)に示すように、一次コイル5の軸心A1と二次コイル14の軸心A2が同軸又は略同軸であって、二次側装置E2が一次側装置E1に対して適正位置に位置すると判定する。
|Da−Db|≦α、|Da−Dc|≦α、|Db−Dc|≦α………(11)
但し、αは、上記の第1実施形態と同様に設定された正の定数である。
The control operation of the secondary side control means 15 will be further described with reference to FIGS.
In the following description, the same reference numerals as those in the first embodiment are used.
The secondary-side control unit 15 has a relationship of the following (11) (hereinafter referred to as “11 point distance Da”, “B point distance Db”, “C point distance Dc” (hereinafter sometimes referred to as “three measurement distances”). In other words, when the distance to the distance measuring surface 3 is the same or substantially the same when measured by each of the three distance measuring units 4, 12 (a), the axis A1 of the primary coil 5 and the axis A2 of the secondary coil 14 are coaxial or substantially coaxial, and the secondary device E2 is in an appropriate position with respect to the primary device E1. It is determined that it is located at.
| Da−Db | ≦ α, | Da−Dc | ≦ α, | Db−Dc | ≦ α (11)
However, α is a positive constant set in the same manner as in the first embodiment.

又、二次側制御部15は、3点の計測距離が適正相互関係にないときは、一次コイル5の軸心A1と二次コイル14の軸心A2とがずれていて、二次側装置E2が一次側装置E1に対して適正位置に位置していないと判定する。
そして、二次側制御部15は、二次側装置E2が一次側装置E1に対して適正位置に位置していないと判定したときは、3点の計測距離に基づいて、二次側装置E2が一次側装置E1に対してずれているずれ方向(即ち、二次コイル14の軸心A2が一次コイル5の軸心A1に対してずれている方向)を判定し、且つ、二次側装置E2を一次側装置E1に対して適正位置に位置させるための位置修正方向をずれ方向に対して180°逆向きの方向に設定して、3点の計測距離の相互関係が適正相互関係になるように二次側装置E2(具体的には二次側ユニット28)を位置修正方向に移動させるべく、位置調整装置6の作動を制御するように構成されている。
ちなみに、二次側制御手段15は、予め設定された設定移動距離だけ二次側装置E2を位置修正方向に移動させるべく位置調整装置6の作動した後、3点の計測距離の相互関係を判定することを繰り返して、3点の計測距離の相互関係が適正相互関係になるように二次側装置E2を移動させるように構成されている。
In addition, when the measurement distances at the three points are not in an appropriate mutual relationship, the secondary side control unit 15 causes the axis A1 of the primary coil 5 and the axis A2 of the secondary coil 14 to deviate, and the secondary side device It is determined that E2 is not located at an appropriate position with respect to the primary device E1.
And when the secondary side control part 15 determines with the secondary side apparatus E2 not being located in an appropriate position with respect to the primary side apparatus E1, based on the measurement distance of 3 points | pieces, the secondary side apparatus E2 Is determined with respect to the primary side device E1 (ie, the direction in which the axis A2 of the secondary coil 14 is offset with respect to the axis A1 of the primary coil 5), and the secondary side device The position correction direction for positioning E2 at an appropriate position with respect to the primary side device E1 is set to a direction opposite to the shift direction by 180 °, and the mutual relationship between the three measurement distances becomes an appropriate mutual relationship. Thus, the operation of the position adjusting device 6 is controlled so as to move the secondary device E2 (specifically, the secondary unit 28) in the position correction direction.
Incidentally, the secondary side control means 15 determines the mutual relationship between the three measurement distances after the position adjustment device 6 is operated to move the secondary side device E2 in the position correction direction by a preset set movement distance. This is repeated, and the secondary device E2 is moved so that the mutual relationship between the three measurement distances becomes an appropriate mutual relationship.

例えば、二次側制御部15は、3点の計測距離の相互関係が下記(12)の関係にあるときは、図12の(b)に示すように、二次側装置E2がPa方向にずれていると判定して、位置修正方向をPx方向に設定し、3点の計測距離の相互関係が適正相互関係になるように二次側装置E2をPx方向に移動させるべく位置調整装置6の作動を制御する。
Da−Db>α、Da−Dc>α、Db=Dc………(12)
For example, when the mutual relationship between the three measurement distances is the following (12), the secondary-side control unit 15 moves the secondary-side device E2 in the Pa direction as shown in FIG. The position adjustment device 6 determines that the position is shifted, sets the position correction direction to the Px direction, and moves the secondary side device E2 in the Px direction so that the mutual relationship between the three measurement distances becomes an appropriate mutual relationship. Control the operation of
Da-Db> α, Da-Dc> α, Db = Dc (12)

二次側制御部15は、3点の計測距離の相互関係が下記(13)の関係にあるときは、図12の(c)に示すように、二次側装置E2がPa方向とPy方向との間の方向(図ではPay方向を例示)にずれていると判定して、位置修正方向をPx方向とPb方向との間の方向(図ではPbx方向を例示)に設定し、3点の計測距離の相互関係が適正相互関係になるように二次側装置E2をPx方向とPb方向との間の方向に移動させるべく位置調整装置6の作動を制御する。
Da−Db>α、Dc−Db>α、Da>Dc………(13)
When the mutual relationship between the measurement distances of the three points is the following (13), the secondary side control unit 15 is configured such that the secondary side device E2 is in the Pa direction and the Py direction, as shown in FIG. And the position correction direction is set to a direction between the Px direction and the Pb direction (Pbx direction is illustrated in the figure) and 3 points are determined. The operation of the position adjusting device 6 is controlled so as to move the secondary device E2 in the direction between the Px direction and the Pb direction so that the mutual relationship of the measured distances becomes an appropriate mutual relationship.
Da-Db> α, Dc-Db> α, Da> Dc (13)

二次側制御部15は、3点の計測距離の相互関係が下記(14)の関係にあるときは、図13の(d)に示すように、二次側装置E2がPy方向にずれていると判定して、位置修正方向をPb方向に設定し、3点の計測距離の相互関係が適正相互関係になるように二次側装置E2をPb方向に移動させるべく位置調整装置6の作動を制御する。
Da−Db>α、Dc−Db>α、Da=Dc………(14)
When the mutual relationship between the measurement distances at the three points is the following (14), the secondary-side control unit 15 causes the secondary-side device E2 to shift in the Py direction as shown in FIG. The position adjustment direction is set to the Pb direction, and the position adjustment device 6 is operated to move the secondary side device E2 in the Pb direction so that the mutual relationship between the three measurement distances is an appropriate mutual relationship. To control.
Da-Db> α, Dc-Db> α, Da = Dc (14)

二次側制御部15は、3点の計測距離の相互関係が下記(15)の関係にあるときは、図13(e)に示すように、二次側装置E2がPy方向とPc方向との間の方向(図ではPcy方向を例示)にずれていると判定して、位置修正方向をPb方向とPz方向との間の方向(図ではPbz方向を例示)に設定し、3点の計測距離の相互関係が適正相互関係になるように二次側装置E2をPb方向とPz方向との間の方向に移動させるべく位置調整装置6の作動を制御する。
Da−Db>α、Dc−Db>α、Dc>Da………(15)
As shown in FIG. 13 (e), the secondary side control unit 15 determines that the secondary side device E2 is in the Py direction and the Pc direction when the mutual relationship between the three measurement distances is as shown in (15) below. And the position correction direction is set to a direction between the Pb direction and the Pz direction (Pbz direction is illustrated in the figure), and three points are determined. The operation of the position adjusting device 6 is controlled so as to move the secondary device E2 in a direction between the Pb direction and the Pz direction so that the mutual relationship of the measurement distances is an appropriate mutual relationship.
Da-Db> α, Dc-Db> α, Dc> Da (15)

二次側制御部15は、3点の計測距離の相互関係が下記(16)の関係にあるときは、図13の(f)に示すように、二次側装置E2がPc方向にずれていると判定して、位置修正方向をPz方向に設定し、3点の計測距離の相互関係が適正相互関係になるように二次側装置E2をPz方向に移動させるべく位置調整装置6の作動を制御する。
Dc−Da>α、Dc−Db>α、Da=Db………(16)
When the mutual relationship between the measurement distances at the three points is the following (16), the secondary side control unit 15 causes the secondary side device E2 to shift in the Pc direction as shown in FIG. The position adjustment direction is set to the Pz direction, and the position adjustment device 6 is operated so as to move the secondary side device E2 in the Pz direction so that the mutual relationship between the three measurement distances becomes an appropriate mutual relationship. To control.
Dc-Da> α, Dc-Db> α, Da = Db (16)

二次側制御部15は、3点の計測距離の相互関係が下記(17)の関係にあるときは、図14の(g)に示すように、二次側装置E2がPx方向にずれていると判定して、位置修正方向をPa方向に設定し、3点の計測距離の相互関係が適正相互関係になるように二次側装置E2をPa方向に移動させるべく位置調整装置6の作動を制御する。
Db−Da>α、Dc−Da>α、Db=Dc………(17)
When the mutual relationship between the measurement distances at the three points is the following (17), the secondary side control unit 15 causes the secondary side device E2 to shift in the Px direction as shown in FIG. The position adjustment direction is set to the Pa direction, and the position adjustment device 6 is operated to move the secondary side device E2 in the Pa direction so that the mutual relationship between the three measurement distances becomes an appropriate mutual relationship. To control.
Db-Da> α, Dc-Da> α, Db = Dc (17)

二次側制御部15は、3点の計測距離の相互関係が下記(18)の関係にあるときは、図14の(h)に示すように、二次側装置E2がPb方向にずれていると判定して、位置修正方向をPy方向に設定し、3点の計測距離の相互関係が適正相互関係になるように二次側装置E2をPy方向に移動させるべく位置調整装置6の作動を制御する。
Db−Da>α、Db−Dc>α、Da=Dc………(18)
When the mutual relationship between the measurement distances at the three points is the following (18), the secondary-side control unit 15 causes the secondary-side device E2 to shift in the Pb direction as shown in (h) of FIG. The position adjustment direction is set to the Py direction, and the position adjustment device 6 is operated to move the secondary side device E2 in the Py direction so that the mutual relationship between the three measurement distances is an appropriate mutual relationship. To control.
Db-Da> α, Db-Dc> α, Da = Dc (18)

二次側制御部15は、3点の計測距離の相互関係が下記(19)の関係にあるときは、図14の(i)に示すように、二次側装置E2がPz方向にずれていると判定して、位置修正方向をPc方向に設定し、3点の計測距離の相互関係が適正相互関係になるように二次側装置E2をPc方向に移動させるべく位置調整装置6の作動を制御する。
Da−Dc>α、Db−Dc>α、Da=Db………(19)
When the mutual relationship between the measurement distances at the three points is the following (19), the secondary-side control unit 15 causes the secondary-side device E2 to shift in the Pz direction as shown in (i) of FIG. The position adjustment direction is set to the Pc direction, and the position adjustment device 6 is operated to move the secondary side device E2 in the Pc direction so that the mutual relationship between the three measurement distances is an appropriate mutual relationship. To control.
Da-Dc> α, Db-Dc> α, Da = Db (19)

尚、二次側装置E2がPc方向とPx方向との間の方向、Px方向とPb方向との間の方向、Pb方向とPz方向との間の方向、及び、Pz方向とPa方向との間の方向の夫々にずれている場合の二次側制御手段15の制御動作については、上述の説明に基づいて理解できるので、説明及び図示を省略する。   Note that the secondary device E2 has a direction between the Pc direction and the Px direction, a direction between the Px direction and the Pb direction, a direction between the Pb direction and the Pz direction, and a direction between the Pz direction and the Pa direction. Since the control operation of the secondary-side control means 15 when there is a deviation in each of the directions can be understood based on the above description, the description and illustration are omitted.

続いて、蓄電装置2を充電するための手順を説明する。
電気自動車を第1実施形態と同様に設定された目標駐車位置に駐車する。
そして、使用者が一次ボックス13に設けられた充電開始スイッチ(図示省略)により充電開始を指令すると、一次側制御手段7は一次側通信部9により充電開始信号を送信する。
二次側通信部17が充電開始信号を受信すると、二次側制御手段15は、蓄電容量検出部22の検出情報に基づいて蓄電装置2の充電要否を判定する。二次側制御手段15は、充電が必要であると判定した場合、車体傾きセンサ23の検出情報に基づいて傾き補正の要否を判定する。そして、二次側制御手段15は、傾き補正が必要であると判定した場合、姿勢補正指令を出力し、車体傾きセンサ23の検出情報に基づいて、車体の姿勢を水平にすべくアクティブサスペンション24の作動を制御し、並びに、上述のように二次側装置E2が一次側装置E1に対して適正位置に位置するか否かを判定して、適正位置に位置していない場合は、二次側装置E2を一次側装置E1に対して適正位置に位置させるべく位置調整装置6の作動を制御し、二次側装置E2が一次側装置E1に対して適正位置に位置すると判定すると、二次側通信部17により充電許可信号を送信する。
Then, the procedure for charging the electrical storage apparatus 2 is demonstrated.
The electric vehicle is parked at the target parking position set in the same manner as in the first embodiment.
When the user instructs to start charging by a charging start switch (not shown) provided in the primary box 13, the primary side control means 7 transmits a charging start signal by the primary side communication unit 9.
When the secondary communication unit 17 receives the charge start signal, the secondary control unit 15 determines whether or not the power storage device 2 needs to be charged based on the detection information of the storage capacity detection unit 22. When it is determined that charging is necessary, the secondary side control means 15 determines whether or not tilt correction is necessary based on the detection information of the vehicle body tilt sensor 23. If the secondary control means 15 determines that tilt correction is necessary, the secondary control means 15 outputs an attitude correction command and, based on the detection information of the vehicle body tilt sensor 23, the active suspension 24 to level the vehicle body. And the secondary device E2 determines whether or not the secondary device E2 is positioned at an appropriate position with respect to the primary device E1 as described above. When the operation of the position adjustment device 6 is controlled so that the side device E2 is positioned at an appropriate position with respect to the primary device E1, and the secondary device E2 is determined to be positioned at an appropriate position with respect to the primary device E1, A charging permission signal is transmitted by the side communication unit 17.

一次側通信部9が充電許可信号を受信すると、一次側制御手段7は、一次コイル5の励磁を開始すべく電源回路8を制御する。
二次側制御手段15は、二次側通信部17により充電許可信号を送信すると、二次コイル14により発生される誘導起電力を蓄電装置2に充電するように充電回路16を制御し、その後、蓄電容量検出部22の検出情報に基づいて、蓄電装置2の蓄電容量が所定の最大容量に達したと判定すると、二次側通信部17により充電停止信号を送信し、並びに、蓄電装置2の充電を停止するように充電回路16を制御する。
一次側制御手段7は、一次側通信部9が充電停止信号を受信すると、一次コイル5の励磁を停止すべく電源回路8を制御する。
When the primary side communication unit 9 receives the charge permission signal, the primary side control means 7 controls the power supply circuit 8 to start exciting the primary coil 5.
When the secondary-side control unit 15 transmits the charge permission signal by the secondary-side communication unit 17, the secondary-side control unit 15 controls the charging circuit 16 to charge the power storage device 2 with the induced electromotive force generated by the secondary coil 14, and then When it is determined that the storage capacity of the power storage device 2 has reached a predetermined maximum capacity based on the detection information of the storage capacity detection unit 22, the secondary communication unit 17 transmits a charge stop signal, and the power storage device 2 The charging circuit 16 is controlled to stop charging.
The primary side control means 7 controls the power supply circuit 8 to stop the excitation of the primary coil 5 when the primary side communication part 9 receives a charge stop signal.

〔別実施形態〕
次に別実施形態を説明する。
(1) 被測距面3を、その軸心が一次側装置E1及び二次側装置E2の一方に被測距装置Mpと一体的に設けられる一次コイル5及び二次コイル14の一方の軸心と異軸状態で平行になるように設け、複数の測距部4を、一次側装置E1及び二次側装置E2の他方に測距装置Maと一体的に設けられる一次コイル5及び二次コイル14の他方の軸心と異軸状態で平行な軸心の同一円周上に配置しても良い。
この構成は、図15及び図16に示すように、床面上の帯状ガイド31に沿って自動走行するように構成された移動体Vの蓄電装置(図示省略)を充電する無接点充電装置に特に適している。
ちなみに、図15及び図16は、被測距装置Mpが二次側装置E2に設けられ、測距装置Maが一次側装置E1に設けられた場合について例示している。
この場合、移動体Vの走行方向と水平面上で直交する方向での一次側装置E1と二次側装置E2との相対位置関係は適正な位置に維持することができるので、複数の測距部4を移動体Vの走行方向と平行な方向に移動自在とする位置調整装置32と、複数の測距部4による計測情報に基づいて、一次側装置E1が二次側装置E2に対して適正位置となるように位置調整装置32の作動を制御する制御手段(図示省略)を設けることになる。
[Another embodiment]
Next, another embodiment will be described.
(1) The distance measurement surface 3 has one axis of the primary coil 5 and the secondary coil 14 whose axis is provided integrally with the distance measurement device Mp on one of the primary side device E1 and the secondary side device E2. A primary coil 5 and a secondary coil provided integrally with the distance measuring device Ma on the other side of the primary side device E1 and the secondary side device E2 are provided so as to be parallel to the center in a different axis state. You may arrange | position on the same periphery of the shaft center parallel to the other shaft center of the coil 14 in a different-axis state.
As shown in FIGS. 15 and 16, this configuration is a contactless charging device that charges a power storage device (not shown) of a moving body V configured to automatically travel along a strip-shaped guide 31 on the floor surface. Especially suitable.
Incidentally, FIG. 15 and FIG. 16 illustrate the case where the distance measuring device Mp is provided in the secondary side device E2 and the distance measuring device Ma is provided in the primary side device E1.
In this case, since the relative positional relationship between the primary side device E1 and the secondary side device E2 in the direction orthogonal to the traveling direction of the moving body V can be maintained at an appropriate position, a plurality of distance measuring units The primary side device E1 is appropriate for the secondary side device E2 on the basis of the position adjustment device 32 that can move 4 in the direction parallel to the traveling direction of the moving body V and the measurement information by the plurality of distance measuring units 4. Control means (not shown) for controlling the operation of the position adjusting device 32 is provided so as to be positioned.

説明を加えると、移動体Vの車体の底部における帯状ガイド31の側方に対応する箇所に、二次コイル14をその軸心A2が垂直方向を向く姿勢で設け、更に、被測距面3を、その軸心A3が、二次コイル14の軸心A2から移動体Vの走行方向と平行な方向に設定間隔をあけた点を垂直方向に通るように設ける。
位置調整装置32を帯状ガイド31の側方の床面G上に設け、その位置調整装置32上に、一次コイル5をその軸心A1が垂直方向を向く姿勢で二次コイル14の軸心A2の移動軌跡上に位置するように設け、更に、一次コイル5の軸心A1から移動体Vの走行方向と平行な方向に前記設定間隔をあけた点A4を中心とする同一円周上に、複数の測距部4を等間隔で並べて配置する。
In other words, the secondary coil 14 is provided at a position corresponding to the side of the belt-like guide 31 at the bottom of the vehicle body of the moving body V so that its axis A2 is oriented in the vertical direction. Is provided so that the axis A3 passes through a point spaced from the axis A2 of the secondary coil 14 in a direction parallel to the traveling direction of the moving body V in the vertical direction.
A position adjusting device 32 is provided on the floor G on the side of the belt-shaped guide 31, and the primary coil 5 is placed on the position adjusting device 32 with the axis A 1 of the secondary coil 14 being oriented in the vertical direction. On the same circumference around the point A4 spaced from the axis A1 of the primary coil 5 in the direction parallel to the traveling direction of the moving body V. A plurality of distance measuring units 4 are arranged at equal intervals.

(2) 被測距面3は、上記の第1及び第2の各実施形態において例示した如き球面の一部にて構成する場合に限定されるものではない。
例えば、図17の(a)に示すように、楕円をその長軸を回転軸心にして回転させた回転楕円体面の一部にて構成して、被測距面3における最大径部の直径に対する軸心方向の長さの比率が、被測距面3が球面の一部(二点鎖線にて図示)にて構成される場合よりも大きくなるように構成しても良い。
又、図17の(b)に示すように、楕円をその短軸を回転軸心にして回転させた回転楕円体面の一部にて構成して、被測距面3における最大径部の直径に対する軸心方向の長さの比率が、被測距面3が球面の一部(二点鎖線にて図示)にて構成される場合よりも小さくなるように構成しても良い。
又、図17の(c)に示すように、円錐体の表面にて構成しても良い。
尚、図17の(a)、(b)、(c)は、夫々、被測距面3を凹面状に構成する場合を例示しているが、夫々と同様の形状で凸面状に構成しても良い。
(2) The distance measuring surface 3 is not limited to the case where it is constituted by a part of a spherical surface as exemplified in the first and second embodiments.
For example, as shown in FIG. 17 (a), the ellipse is composed of a part of a spheroid surface that is rotated with its major axis as the axis of rotation, and the diameter of the maximum diameter portion on the distance measuring surface 3 The ratio of the length in the axial direction relative to may be configured to be larger than that in the case where the distance measuring surface 3 is configured by a part of a spherical surface (illustrated by a two-dot chain line).
Further, as shown in FIG. 17 (b), the ellipse is constituted by a part of a spheroid surface rotated with its short axis as the rotation axis, and the diameter of the maximum diameter portion in the distance measuring surface 3 is obtained. The ratio of the length in the axial direction relative to may be configured to be smaller than that in the case where the distance measuring surface 3 is configured by a part of a spherical surface (illustrated by a two-dot chain line).
Further, as shown in FIG. 17 (c), a conical surface may be used.
FIGS. 17A, 17B, and 17C illustrate the case where the surface to be measured 3 is configured in a concave shape, but each is configured in a convex shape with the same shape. May be.

(3) 上記の第1及び第2の各実施形態では、一次側装置E1と二次側装置E2との間で通信可能なようにするために、一次側通信部9と二次側通信部17とを設ける場合について例示したが、これら一次側通信部9と二次側通信部17を省略しても良い。
この場合、一次側装置E1に励磁の開始及び停止を指令する一次側充電開始スイッチを設け、二次側装置E2に充電を開始する二次側充電開始スイッチを設ける。
そして、第1実施形態では、一次側制御手段7及び二次側制御手段15を以下のように構成する。
即ち、一次側制御手段7を、一次側充電開始スイッチにより励磁の開始が指令されると、複数の測距部4の計測情報に基づいて、一次側装置E1が二次側装置E2に対して適正位置に位置するか否かを判定して、適正位置に位置していない場合は、一次側装置E1を二次側装置E2に対して適正位置に位置させるべく位置調整装置6の作動を制御し、且つ、一次側装置E1が二次側装置E2に対して適正位置に位置すると判定すると、一次コイル5の励磁を開始すべく電源回路8を制御し、並びに、一次側充電開始スイッチにより励磁の停止が指令されると、一次コイル5の励磁を停止すべく電源回路8を制御するように構成する。
又、二次側制御手段15を、二次側充電開始スイッチにより充電の開始が指令されると、蓄電容量検出部22の検出情報に基づいて蓄電装置2の充電要否を判定して、充電が必要であると判定すると、車体傾きセンサ23の検出情報に基づいて、車体の姿勢を水平にすべくアクティブサスペンション24の作動を制御し、且つ、二次コイル14により発生される誘導起電力を蓄電装置2に充電すべく充電回路16を制御し、その後、蓄電容量検出部22の検出情報に基づいて蓄電装置2の蓄電容量が所定の最大容量に達したと判定すると、蓄電装置2の充電を停止すべく充電回路16を制御するように構成する。
(3) In each of the first and second embodiments described above, the primary communication unit 9 and the secondary communication unit are configured to enable communication between the primary device E1 and the secondary device E2. However, the primary communication unit 9 and the secondary communication unit 17 may be omitted.
In this case, the primary side device E1 is provided with a primary side charge start switch for instructing the start and stop of excitation, and the secondary side device E2 is provided with a secondary side charge start switch.
In the first embodiment, the primary side control means 7 and the secondary side control means 15 are configured as follows.
That is, when the primary side control means 7 is instructed to start excitation by the primary side charge start switch, the primary side device E1 makes the secondary side device E2 to the secondary side device E2 based on the measurement information of the plurality of distance measuring units 4. It is determined whether or not it is positioned at an appropriate position, and when it is not positioned at an appropriate position, the operation of the position adjusting device 6 is controlled so that the primary side device E1 is positioned at an appropriate position with respect to the secondary side device E2. When it is determined that the primary side device E1 is positioned at an appropriate position with respect to the secondary side device E2, the power supply circuit 8 is controlled to start excitation of the primary coil 5, and excitation is performed by the primary side charge start switch. Is configured to control the power supply circuit 8 to stop the excitation of the primary coil 5.
Further, when the secondary side control means 15 is instructed to start charging by the secondary side charging start switch, it determines whether or not the power storage device 2 needs to be charged based on the detection information of the storage capacity detection unit 22 and performs charging. On the basis of the detection information of the vehicle body tilt sensor 23, the operation of the active suspension 24 is controlled to level the vehicle body, and the induced electromotive force generated by the secondary coil 14 is determined. When the charging circuit 16 is controlled to charge the power storage device 2 and then it is determined that the power storage capacity of the power storage device 2 has reached a predetermined maximum capacity based on the detection information of the power storage capacity detection unit 22, the power storage device 2 is charged. The charging circuit 16 is controlled to stop the operation.

又、第2実施形態では、一次側制御手段7及び二次側制御手段15を以下のように構成する。
即ち、一次側制御手段7を、一次側充電開始スイッチにより励磁の開始が指令されると、一次コイル5の励磁を開始すべく電源回路8を制御し、一次側充電開始スイッチにより励磁の停止が指令されると、一次コイル5の励磁を停止すべく電源回路8を制御するように構成する。
二次側制御手段15を、二次側充電開始スイッチにより充電の開始が指令されると、蓄電容量検出部22の検出情報に基づいて蓄電装置2の充電要否を判定して、充電が必要であると判定すると、車体傾きセンサ23の検出情報に基づいて、車体の姿勢を水平にすべくアクティブサスペンション24の作動を制御し、並びに、複数の測距部4の計測情報に基づいて、二次側装置E2が一次側装置E1に対して適正位置に位置するか否かを判定して、適正位置に位置していない場合は、二次側装置E2を一次側装置E1に対して適正位置に位置させるべく位置調整装置6の作動を制御し、二次側装置E2が一次側装置E1に対して適正位置に位置すると判定すると、二次コイル14により発生される誘導起電力を蓄電装置2に充電すべく充電回路16を制御し、その後、蓄電容量検出部22の検出情報に基づいて、蓄電装置2の蓄電容量が所定の最大容量に達したと判定すると、蓄電装置2の充電を停止すべく充電回路16を制御するように構成する。
Moreover, in 2nd Embodiment, the primary side control means 7 and the secondary side control means 15 are comprised as follows.
That is, when the primary side control means 7 is instructed to start excitation by the primary side charge start switch, the power supply circuit 8 is controlled to start excitation of the primary coil 5, and the primary side charge start switch stops the excitation. When instructed, the power supply circuit 8 is controlled to stop the excitation of the primary coil 5.
When the secondary side control means 15 is instructed to start charging by the secondary side charging start switch, it is necessary to charge by determining whether or not the power storage device 2 needs to be charged based on the detection information of the storage capacity detecting unit 22. Is determined based on the detection information of the vehicle body tilt sensor 23, the operation of the active suspension 24 is controlled so as to make the posture of the vehicle body horizontal, and based on the measurement information of the plurality of distance measuring units 4, It is determined whether or not the secondary device E2 is positioned at an appropriate position with respect to the primary device E1, and if the secondary device E2 is not positioned at the proper position, the secondary device E2 is positioned at an appropriate position with respect to the primary device E1. When the operation of the position adjusting device 6 is controlled so as to be positioned at the second position, and the secondary device E2 is determined to be positioned at an appropriate position with respect to the primary device E1, the induced electromotive force generated by the secondary coil 14 is stored in the power storage device 2. Charging times to charge 16 and then determines that the storage capacity of the power storage device 2 has reached a predetermined maximum capacity based on the detection information of the storage capacity detection unit 22, the charging circuit 16 is stopped to stop charging the power storage device 2. Configure to control.

(4) 上記の第1実施形態のように、被測距装置Mpが二次側装置E2に設けられ、測距装置Maが一次側装置E1に設けられる場合、二次側装置E2に、被測距面3を測距方向に直交する面に沿って移動自在とする位置調整装置と、複数の測距部4による計測情報に基づいて、二次側装置E2が一次側装置E1に対して適正位置となるように位置調整装置の作動を制御する制御手段を設けても良い。
この場合、一次側装置E1に設けられた複数の測距部4による計測情報を二次側装置E2の制御手段に通信する通信部を設ける必要がある。
(4) When the distance measuring device Mp is provided in the secondary device E2 and the distance measuring device Ma is provided in the primary device E1, as in the first embodiment, the secondary device E2 Based on the position adjustment device that allows the distance measuring surface 3 to move along a surface orthogonal to the distance measuring direction and the measurement information obtained by the plurality of distance measuring units 4, the secondary side device E2 determines the primary side device E1. You may provide the control means which controls the action | operation of a position adjustment apparatus so that it may become an appropriate position.
In this case, it is necessary to provide a communication unit that communicates measurement information from the plurality of distance measuring units 4 provided in the primary device E1 to the control unit of the secondary device E2.

又、上記の第2実施形態のように、被測距装置Mpが一次側装置E1に設けられ、測距装置Maが二次側装置E2に設けられる場合、一次側装置E1に、被測距面3を測距方向に直交する面に沿って移動自在とする位置調整装置と、複数の測距部4による計測情報に基づいて、一次側装置E1が二次側装置E2に対して適正位置となるように位置調整装置の作動を制御する制御手段を設けても良い。
この場合、二次側装置E2に設けられた複数の測距部4による計測情報を一次側装置E1の制御手段に通信する通信部を設ける必要がある。
Further, as in the second embodiment, when the distance measuring device Mp is provided in the primary side device E1, and the distance measuring device Ma is provided in the secondary side device E2, the primary side device E1 has a distance to be measured. Based on the position adjustment device that makes the surface 3 movable along the surface orthogonal to the distance measuring direction and the measurement information by the plurality of distance measuring units 4, the primary device E1 is in an appropriate position with respect to the secondary device E2. Control means for controlling the operation of the position adjusting device may be provided.
In this case, it is necessary to provide a communication unit that communicates measurement information from the plurality of distance measuring units 4 provided in the secondary device E2 to the control unit of the primary device E1.

(5) 上記の第1及び第2の各実施形態において、位置調整装置6、及び、複数の測距部4による計測情報に基づいて位置調整装置6の作動を制御する制御手段7,15を省略しても良い。
この場合、複数の測距部4による計測情報に基づいて、二次側装置E2が一次側装置E1に対して適正位置となるように電気自動車Cの駐車位置を調整する位置調整方向に関する情報、又は、一次側装置E1が二次側装置E2に対して適正位置となるように一次側装置E1の位置を調整する位置調整方向に関する情報を出力する出力手段を設けることになる。
ちなみに、前記出力手段として、位置調整方向を音声にて出力するスピーカや、位置調整方向を表示出力する表示装置を設けることができる。
そして、使用者が、二次側装置E2が一次側装置E1に対して適正位置となるように、電気自動車Cの駐車位置を調整したり、一次側装置E1が二次側装置E2に対して適正位置となるように、一次側装置E1の位置を調整することになる。
(5) In each of the first and second embodiments, the control means 7 and 15 for controlling the operation of the position adjustment device 6 based on the position adjustment device 6 and measurement information obtained by the plurality of distance measuring units 4. May be omitted.
In this case, based on the measurement information by the plurality of distance measuring units 4, information on the position adjustment direction for adjusting the parking position of the electric vehicle C so that the secondary side device E2 is in an appropriate position with respect to the primary side device E1, Alternatively, output means for outputting information on the position adjustment direction for adjusting the position of the primary side device E1 so that the primary side device E1 is in an appropriate position with respect to the secondary side device E2 is provided.
Incidentally, as the output means, a speaker that outputs the position adjustment direction by voice and a display device that displays and outputs the position adjustment direction can be provided.
And a user adjusts the parking position of the electric vehicle C so that the secondary side apparatus E2 may become an appropriate position with respect to the primary side apparatus E1, or the primary side apparatus E1 with respect to the secondary side apparatus E2. The position of the primary side apparatus E1 is adjusted so that it may become an appropriate position.

又、複数の測距部4のそれぞれにより計測される被測距面3までの距離が互いに同一又は略同一である場合に、一次側装置E1と二次側装置E2との相対位置関係が適正であると判定する判定手段25を設けて、その判定手段25による判定結果を示す情報を前記出力手段により出力するように構成すると、使用者は、出力手段による出力情報に基づいて、一次側装置E1と二次側装置E2とが適正に位置合わせされていることを的確に知ることができるので、使い勝手が向上する。   In addition, when the distances to the distance measuring surfaces 3 measured by each of the plurality of distance measuring units 4 are the same or substantially the same, the relative positional relationship between the primary side device E1 and the secondary side device E2 is appropriate. If the determination unit 25 is provided to determine that the determination unit 25 determines that the information indicating the determination result by the determination unit 25 is output by the output unit, the user can select the primary side device based on the output information from the output unit. Since it is possible to accurately know that E1 and the secondary side device E2 are properly aligned, usability is improved.

(6) 一次側装置E1に対する二次側装置E2の傾きを検出する傾き検出装置、及び、その傾き検出装置の検出情報に基づいて二次側装置E2の傾きを補正する傾き補正手段として、上記の第1及び第2の各実施形態において例示した構成に代えて、一次側装置E1に対する二次側装置E2そのものの傾きを検出する傾き検出装置、及び、その傾き検出装置の検出情報に基づいて二次側装置E2そのものの傾きを補正する傾き補正手段を設けても良い。
又、蓄電装置2を充電するための電気自動車Cの目標駐車位置は、通常は、車体が水平になるように駐車できるように設定することになるので、二次側装置E2の姿勢は水平状態に保たれることになり、傾き検出装置及び傾き補正手段を省略することが可能である。
(6) As an inclination detection device that detects the inclination of the secondary device E2 with respect to the primary device E1, and an inclination correction unit that corrects the inclination of the secondary device E2 based on detection information of the inclination detection device, Instead of the configuration illustrated in the first and second embodiments, the inclination detection device that detects the inclination of the secondary device E2 itself with respect to the primary device E1, and the detection information of the inclination detection device You may provide the inclination correction | amendment means which correct | amends the inclination of secondary side apparatus E2 itself.
Further, since the target parking position of the electric vehicle C for charging the power storage device 2 is normally set so that the vehicle body can be parked horizontally, the attitude of the secondary side device E2 is horizontal. Therefore, the inclination detecting device and the inclination correcting means can be omitted.

(7) 一次側装置E1及び二次側装置E2を設置するときの相対位置関係は、上記の第1及び第2の各実施形態の如き、一次コイル5及び二次コイル14夫々の軸心A1,A2が垂直方向を向く相対位置関係に限定されるものではない。
例えば、一次コイル5及び二次コイル14夫々の軸心A1,A2が水平方向を向く相対位置関係でも良い。
この場合、駐車場の床面に立設した構造物(壁部等)に、一次側装置E1を一次コイル5の軸心A1が水平方向を向くように設け、二次側装置E2を電気自動車Cの車体の側部(例えば前方バンパーや後方バンパー)に二次側装置E2を二次コイル14の軸心A2が水平方向を向くように設けることになる。
(7) The relative positional relationship when installing the primary side device E1 and the secondary side device E2 is the axis A1 of each of the primary coil 5 and the secondary coil 14 as in the first and second embodiments. , A2 is not limited to the relative positional relationship in which it faces the vertical direction.
For example, a relative positional relationship in which the axial centers A1 and A2 of the primary coil 5 and the secondary coil 14 face in the horizontal direction may be used.
In this case, a primary device E1 is provided on a structure (wall or the like) standing on the floor of the parking lot so that the axis A1 of the primary coil 5 faces in the horizontal direction, and the secondary device E2 is installed in the electric vehicle. The secondary side device E2 is provided on the side of the C vehicle body (for example, the front bumper or the rear bumper) so that the axis A2 of the secondary coil 14 faces the horizontal direction.

(8) 測距部4の設置数は、上記の第1及び第2の各実施形態において例示した3個に限定されるものではなく、4個以上でも良い。
又、3個以上の複数の測距部4の同一円周上での分散設置形態として、上記の第1及び第2の各実施形態では、等分又は略等分に分散された位置に分散設置する形態を例示したが、不等分に分散された位置に分散設置する形態でも良い。
但し、一次側装置E1と二次側装置E2との相対位置関係のずれの方向の検出、及び、一次側装置E1と二次側装置E2との相対位置関係を適正にするための一次側装置E1又は二次側装置E2の移動方向の設定を精度良くするためには、複数の測距部4を同一円周上の等分又は略等分に分散された位置に分散設置するのが好ましい。
(8) The number of distance measuring units 4 is not limited to the three illustrated in the first and second embodiments, but may be four or more.
Further, as a distributed installation form on the same circumference of three or more distance measuring units 4, in the first and second embodiments described above, the positions are distributed equally or approximately equally. Although the form to install was illustrated, the form to disperse | distribute and install in the position disperse | distributed equally is also possible.
However, the primary side device for detecting the direction of deviation of the relative positional relationship between the primary side device E1 and the secondary side device E2 and making the relative positional relationship between the primary side device E1 and the secondary side device E2 appropriate. In order to set the moving direction of E1 or the secondary side device E2 with high accuracy, it is preferable to disperse and install the plurality of distance measuring units 4 at equally distributed or substantially equally distributed positions on the same circumference. .

(9) 本発明は、第1及び第2の各実施形態において例示した電気自動車用の無接点充電装置以外に、種々の用途の無接点充電装置に適用することが可能である。
例えば、移動体に搭載された蓄電装置2を充電する無接点充電装置に適用する場合、その移動体としては、第1及び第2の各実施形態において例示した電気自動車に限定されるものではなく、例えば、無人走行車、移動ロボットでも良い。
尚、上記実施形態における電気自動車には、駆動力源として電動機のみを備える純電気自動車の他、駆動力源として電動機と内燃機関の双方を備え、外部電源により蓄電装置2を充電可能に構成されたプラグイン・ハイブリッド自動車も含まれる。
(9) The present invention can be applied to non-contact charging devices for various uses other than the non-contact charging device for electric vehicles exemplified in the first and second embodiments.
For example, when applied to a non-contact charging device that charges the power storage device 2 mounted on the mobile body, the mobile body is not limited to the electric vehicle exemplified in the first and second embodiments. For example, an unmanned traveling vehicle or a mobile robot may be used.
In addition, the electric vehicle in the above embodiment includes both a motor and an internal combustion engine as driving force sources in addition to a pure electric vehicle having only an electric motor as a driving force source, and is configured to be able to charge the power storage device 2 with an external power source. Plug-in hybrid vehicles are also included.

以上説明したように、一次側装置E1と二次側装置E2との相対位置関係の検出を精度良くしかも迅速に行い得る無接点充電装置、その無接点充電装置用の位置関係検出装置の測距装置及び被測距装置を提供することができる。   As described above, the contactless charging device that can accurately and quickly detect the relative positional relationship between the primary device E1 and the secondary device E2, and the distance measurement of the positional relationship detection device for the contactless charging device. An apparatus and a distance measuring device can be provided.

1 充電用電源
2 蓄電装置
3 被測距面
4 測距部
5 一次コイル
6 位置調整装置
7,15 制御手段
14 二次コイル
23 傾き検出装置
25 判定手段
A1 一次コイルの軸心
A2 二次コイルの軸心
C 移動体
E1 一次側装置
E2 二次側装置
M 位置関係検出装置
Ma 測距装置
Mp 被測距装置
R 傾き補正手段
DESCRIPTION OF SYMBOLS 1 Charging power supply 2 Power storage device 3 Distance measuring surface 4 Distance measuring unit 5 Primary coil 6 Position adjusting device 7, 15 Control means 14 Secondary coil 23 Inclination detecting device 25 Judging means A1 Axis of primary coil A2 Secondary coil Axis C Moving object E1 Primary side device E2 Secondary side device M Positional relationship detection device Ma Distance measuring device Mp Distance measuring device R Inclination correction means

Claims (13)

充電用電源に接続される一次側装置と蓄電装置に接続される二次側装置との相対位置関係を検出する位置関係検出装置を備えた無接点充電装置であって、
前記位置関係検出装置が、前記一次側装置及び前記二次側装置の一方に設けられた被測距装置と、前記一次側装置及び前記二次側装置の他方に設けられた測距装置とを有し、
前記被測距装置が、所定の測距方向に直交する面での横断形状が円形であって、その径が前記測距方向一方側へ向かって漸減又は漸増する被測距面を、前記測距装置に対向するように備え、
前記測距装置が、前記測距方向に前記被測距面までの距離を計測する3個以上の複数の測距部を、前記測距方向に直交する面内における同一円周上に分散配置して備える無接点充電装置。
A contactless charging device including a positional relationship detection device that detects a relative positional relationship between a primary device connected to a power source for charging and a secondary device connected to a power storage device,
The positional relationship detection device includes a ranging device provided in one of the primary device and the secondary device, and a ranging device provided in the other of the primary device and the secondary device. Have
The distance measuring device has a distance measuring surface in which a transverse shape on a surface orthogonal to a predetermined distance measuring direction is circular and the diameter thereof gradually decreases or gradually increases toward one side of the distance measuring direction. Prepare to face the distance device,
The distance measuring device has a plurality of three or more distance measuring units that measure the distance to the surface to be measured in the distance measuring direction in a distributed manner on the same circumference in a plane orthogonal to the distance measuring direction. A contactless charging device.
前記一次側装置に、前記充電用電源により励磁される一次コイルが設けられ、
前記二次側装置に、前記一次コイルに電磁結合されて誘導起電力を発生させ且つその発生誘導起電力を前記蓄電装置に充電する二次コイルが、その軸心を前記一次コイルの軸心と平行にして設けられ、
前記測距方向が、前記一次コイル及び前記二次コイルの軸心と平行な方向に設定されている請求項1に記載の無接点充電装置。
The primary device is provided with a primary coil that is excited by the power source for charging,
A secondary coil that is electromagnetically coupled to the primary coil to generate an induced electromotive force in the secondary device and charges the generated induced electromotive force to the power storage device has its axis as the axis of the primary coil. Provided in parallel,
The contactless charging apparatus according to claim 1, wherein the distance measuring direction is set in a direction parallel to the axis of the primary coil and the secondary coil.
前記被測距面が、前記一次側装置及び前記二次側装置の一方に前記被測距装置と一体的に設けられる前記一次コイル及び前記二次コイルの一方の軸心と同軸に設けられ、
前記複数の測距部が、前記一次側装置及び前記二次側装置の他方に前記測距装置と一体的に設けられる前記一次コイル及び前記二次コイルの他方の軸心と同軸の同一円周上に配置されている請求項2に記載の無接点充電装置。
The distance measuring surface is provided coaxially with one axis of the primary coil and the secondary coil provided integrally with the distance measuring device on one of the primary side device and the secondary side device,
The plurality of distance measuring sections are the same circumference coaxial with the other axial center of the primary coil and the secondary coil provided integrally with the distance measuring device on the other of the primary side device and the secondary side device. The contactless charging device according to claim 2, which is disposed on the top.
前記複数の測距部のそれぞれにより計測される前記被測距面までの距離が互いに同一又は略同一である場合に、前記一次側装置と前記二次側装置との相対位置関係が適正であると判定する判定手段を備える請求項1〜3のいずれか1項に記載の無接点充電装置。   The relative positional relationship between the primary side device and the secondary side device is appropriate when the distances to the distance measuring surfaces measured by each of the plurality of distance measuring units are the same or substantially the same. The contactless charging apparatus according to any one of claims 1 to 3, further comprising determination means for determining 前記被測距装置が前記二次側装置に設けられ、
前記測距装置が前記一次側装置に設けられ、
前記一次側装置が、前記複数の測距部を前記測距方向に直交する面に沿って移動自在とする位置調整装置と、前記複数の測距部による計測情報に基づいて、前記一次側装置が前記二次側装置に対して適正位置となるように前記位置調整装置の作動を制御する制御手段と、を備える請求項1〜4のいずれか1項に記載の無接点充電装置。
The distance measuring device is provided in the secondary side device,
The distance measuring device is provided in the primary side device;
Based on the position adjustment device that enables the primary side device to move the plurality of distance measuring units along a surface orthogonal to the distance measuring direction, and the measurement information by the plurality of distance measuring units, the primary side device. 5. The contactless charging apparatus according to claim 1, further comprising: a control unit that controls the operation of the position adjustment device so that the position adjustment device is in an appropriate position with respect to the secondary side device.
前記被測距面が、凹面状に構成されている請求項5に記載の無接点充電装置。   The contactless charging apparatus according to claim 5, wherein the surface to be measured is configured in a concave shape. 前記被測距装置が前記一次側装置に設けられ、
前記測距装置が前記二次側装置に設けられ、
前記二次側装置が、前記複数の測距部を前記測距方向に直交する面に沿って移動自在とする位置調整装置と、前記複数の測距部による計測情報に基づいて、前記二次側装置が前記一次側装置に対して適正位置となるように前記位置調整装置の作動を制御する制御手段と、を備える請求項1〜4のいずれか1項に記載の無接点充電装置。
The distance measuring device is provided in the primary side device;
The distance measuring device is provided in the secondary side device,
Based on the position adjustment device that enables the secondary side device to move the plurality of distance measuring units along a plane orthogonal to the distance measuring direction, and the secondary information based on the measurement information by the plurality of distance measuring units. 5. The contactless charging device according to claim 1, further comprising: a control unit configured to control the operation of the position adjustment device so that the side device is in an appropriate position with respect to the primary side device.
前記被測距面が、凸面状に構成されている請求項7に記載の無接点充電装置。   The contactless charging apparatus according to claim 7, wherein the distance measuring surface is formed in a convex shape. 前記複数の測距部が、前記円周上の等分又は略等分された位置に分散して設けられている請求項1〜8のいずれか1項に記載の無接点充電装置。   The contactless charging device according to any one of claims 1 to 8, wherein the plurality of distance measuring units are provided in a distributed manner at equal or substantially equal positions on the circumference. 前記二次側装置が移動体に搭載されるとともに、前記一次側装置に対する前記二次側装置の傾きを検出する傾き検出装置と、その傾き検出装置の検出情報に基づいて、前記二次側装置の傾きを補正する傾き補正手段が設けられている請求項1〜9のいずれか1項に記載の無接点充電装置。   The secondary device is mounted on a moving body, detects an inclination of the secondary device relative to the primary device, and the secondary device based on detection information of the tilt detector The contactless charging apparatus according to claim 1, further comprising an inclination correction unit that corrects the inclination of the battery. 前記被測距面における最大径部の直径に対する軸心方向の長さの比率が、前記被測距面が球面の一部にて構成される場合よりも大きくなるように構成されている請求項1〜10のいずれか1項に記載の無接点充電装置。   The ratio of the length in the axial direction to the diameter of the largest diameter portion on the distance measuring surface is configured to be larger than that in the case where the distance measuring surface is constituted by a part of a spherical surface. The contactless charging apparatus according to any one of 1 to 10. 充電用電源に接続される一次側装置と蓄電装置に接続される二次側装置との相対位置関係を検出する位置関係検出装置の測距装置であって、
前記一次側装置及び前記二次側装置の一方に被測距装置が設けられる場合において前記一次側装置及び前記二次側装置の他方に設けられ、所定の被測距面を備える前記被測距装置と協働して前記相対位置関係を検出するように構成され、
所定の測距方向に前記被測距面までの距離を計測する3個以上の複数の測距部を、前記測距方向に直交する面内における同一円周上に分散配置して備える位置関係検出装置の測距装置。
A distance measuring device of a positional relationship detection device that detects a relative positional relationship between a primary device connected to a power supply for charging and a secondary device connected to a power storage device,
When the distance measuring device is provided in one of the primary side device and the secondary side device, the distance measuring device is provided on the other of the primary side device and the secondary side device and includes a predetermined distance measuring surface. Configured to detect the relative positional relationship in cooperation with an apparatus;
Positional relationship including three or more distance measuring units that measure the distance to the surface to be measured in a predetermined distance measuring direction distributed on the same circumference in a plane orthogonal to the distance measuring direction Ranging device for detection device.
充電用電源に接続される一次側装置と蓄電装置に接続される二次側装置との相対位置関係を検出する位置関係検出装置の被測距装置であって、
前記一次側装置及び前記二次側装置の一方に設けられ、前記一次側装置及び前記二次側装置の他方に設けられた所定の測距装置と協働して前記相対位置関係を検出するように構成され、
所定の測距方向に直交する面での横断形状が円形であって、その径が前記測距方向一方側へ向かって漸減又は漸増する被測距面を、前記測距装置に対向するように備える位置関係検出装置の被測距装置。
A distance measuring device of a positional relationship detection device that detects a relative positional relationship between a primary device connected to a charging power source and a secondary device connected to a power storage device,
The relative positional relationship is detected in cooperation with a predetermined distance measuring device provided in one of the primary side device and the secondary side device and provided in the other of the primary side device and the secondary side device. Composed of
A distance measuring surface whose transverse shape on a surface orthogonal to a predetermined distance measuring direction is circular and whose diameter gradually decreases or increases toward one side in the distance measuring direction is opposed to the distance measuring device. A distance measuring device of a positional relationship detection device provided.
JP2009018283A 2009-01-29 2009-01-29 Noncontact charger, distance measuring unit of positional relation detector for noncontact charger, and distance measurement unit of positional relation detector Pending JP2010178499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018283A JP2010178499A (en) 2009-01-29 2009-01-29 Noncontact charger, distance measuring unit of positional relation detector for noncontact charger, and distance measurement unit of positional relation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018283A JP2010178499A (en) 2009-01-29 2009-01-29 Noncontact charger, distance measuring unit of positional relation detector for noncontact charger, and distance measurement unit of positional relation detector

Publications (1)

Publication Number Publication Date
JP2010178499A true JP2010178499A (en) 2010-08-12

Family

ID=42708894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018283A Pending JP2010178499A (en) 2009-01-29 2009-01-29 Noncontact charger, distance measuring unit of positional relation detector for noncontact charger, and distance measurement unit of positional relation detector

Country Status (1)

Country Link
JP (1) JP2010178499A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111155A1 (en) * 2011-02-18 2012-08-23 パイオニア株式会社 Position alignment device, power reception device, and power transmission device
WO2012121184A1 (en) * 2011-03-10 2012-09-13 日本電気株式会社 System for contactlessly supplying power to moving body
WO2012164973A1 (en) * 2011-05-27 2012-12-06 日産自動車株式会社 Non-contact power supply device
JP2013150430A (en) * 2012-01-18 2013-08-01 Denso Corp Contactless feed apparatus
WO2013136787A1 (en) * 2012-03-14 2013-09-19 パナソニック株式会社 Electricity supply device, electricity reception device, and electricity supply system
JP2013208048A (en) * 2012-03-28 2013-10-07 Panasonic Corp Electric power supply device
JP5315465B2 (en) * 2011-06-08 2013-10-16 パナソニック株式会社 Non-contact power feeding device
JP2014069646A (en) * 2012-09-28 2014-04-21 Denso Corp Parking support system, and unit with positioning pieces
CN104094498A (en) * 2012-03-14 2014-10-08 松下电器产业株式会社 Electricity supply device, electricity reception device, and electricity supply system
CN104170211A (en) * 2012-03-28 2014-11-26 松下电器产业株式会社 Power supply apparatus
CN104170210A (en) * 2012-03-28 2014-11-26 松下电器产业株式会社 Power supply apparatus
JP2015082876A (en) * 2013-10-22 2015-04-27 矢崎総業株式会社 Positional deviation detection device and non-contact power supply device
CN104583000A (en) * 2012-08-30 2015-04-29 宝马股份公司 Foreign body identification in the case of inductive charging
GB2524734A (en) * 2014-03-31 2015-10-07 Bombardier Transp Gmbh Receiving device, vehicle and method of manufacturing a receiving device
JP2015186426A (en) * 2014-03-26 2015-10-22 株式会社エクォス・リサーチ Power reception system
US9184633B2 (en) 2011-02-03 2015-11-10 Denso Corporation Non-contact power supply control device, non-contact power supply system, and non-contact power charge system
WO2016020099A1 (en) * 2014-08-04 2016-02-11 Robert Bosch Gmbh Method for the contactless charging or discharging of a battery-operated object
US9566871B2 (en) 2011-05-27 2017-02-14 Nissan Motor Co., Ltd. Non-contact power supply device, vehicle, and non-contact power supply system
JP2017124671A (en) * 2016-01-12 2017-07-20 トヨタ自動車株式会社 Installation method of non-contact type power transmission device
CN108891287A (en) * 2013-12-06 2018-11-27 庞巴迪无接触运行有限责任公司 Induction power for electric energy to be transmitted to vehicle transmits
CN109435718A (en) * 2018-12-19 2019-03-08 中车唐山机车车辆有限公司 Electric energy transmission system
JP2021506217A (en) * 2017-12-11 2021-02-18 ズークス インコーポレイテッド Underbody charging of vehicle battery
US11541765B2 (en) 2017-12-11 2023-01-03 Zoox, Inc. Underbody charging of vehicle batteries

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9184633B2 (en) 2011-02-03 2015-11-10 Denso Corporation Non-contact power supply control device, non-contact power supply system, and non-contact power charge system
JP5635134B2 (en) * 2011-02-18 2014-12-03 パイオニア株式会社 Positioning device, power receiving device and power transmitting device
WO2012111155A1 (en) * 2011-02-18 2012-08-23 パイオニア株式会社 Position alignment device, power reception device, and power transmission device
WO2012121184A1 (en) * 2011-03-10 2012-09-13 日本電気株式会社 System for contactlessly supplying power to moving body
US9566871B2 (en) 2011-05-27 2017-02-14 Nissan Motor Co., Ltd. Non-contact power supply device, vehicle, and non-contact power supply system
US9656559B2 (en) 2011-05-27 2017-05-23 Nissan Motor Co., Ltd. Non-contact power supply device
RU2598896C2 (en) * 2011-05-27 2016-10-10 Ниссан Мотор Ко., Лтд. Contactless power supply device
KR101574000B1 (en) * 2011-05-27 2015-12-02 닛산 지도우샤 가부시키가이샤 Non-contact power supply device
JP2012249403A (en) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd Non-contact power supply device
WO2012164973A1 (en) * 2011-05-27 2012-12-06 日産自動車株式会社 Non-contact power supply device
EP2717430A4 (en) * 2011-05-27 2015-09-02 Nissan Motor Non-contact power supply device
JP5315465B2 (en) * 2011-06-08 2013-10-16 パナソニック株式会社 Non-contact power feeding device
JP2013150430A (en) * 2012-01-18 2013-08-01 Denso Corp Contactless feed apparatus
JP2013192377A (en) * 2012-03-14 2013-09-26 Panasonic Corp Power supply device, power incoming device and power supply system
EP2827473A4 (en) * 2012-03-14 2015-09-30 Panasonic Ip Man Co Ltd Electricity supply device, electricity reception device, and electricity supply system
WO2013136787A1 (en) * 2012-03-14 2013-09-19 パナソニック株式会社 Electricity supply device, electricity reception device, and electricity supply system
JP2013191865A (en) * 2012-03-14 2013-09-26 Panasonic Corp Power supply device, power incoming device and power supply system
US10576842B2 (en) 2012-03-14 2020-03-03 Panasonic Intellectual Property Management Co., Ltd. Electricity supply apparatus and electricity reception apparatus
US9895988B2 (en) 2012-03-14 2018-02-20 Panasonic Intellectual Property Management Co., Ltd. Electricity supply device, electricity reception device, and electricity supply system
CN104094498A (en) * 2012-03-14 2014-10-08 松下电器产业株式会社 Electricity supply device, electricity reception device, and electricity supply system
US9905351B2 (en) 2012-03-28 2018-02-27 Panasonic Intellectual Property Management Co., Ltd. Power supply apparatus
US10170230B2 (en) 2012-03-28 2019-01-01 Panasonic Intellectual Property Management Co., Ltd. Power supply apparatus
EP2833513A4 (en) * 2012-03-28 2015-10-14 Panasonic Ip Man Co Ltd Power supply apparatus
US9979229B2 (en) 2012-03-28 2018-05-22 Panasonic Intellectual Property Management Co., Ltd. Power supply apparatus
CN104170211A (en) * 2012-03-28 2014-11-26 松下电器产业株式会社 Power supply apparatus
JP2013208048A (en) * 2012-03-28 2013-10-07 Panasonic Corp Electric power supply device
CN104170210A (en) * 2012-03-28 2014-11-26 松下电器产业株式会社 Power supply apparatus
EP2833510A4 (en) * 2012-03-28 2015-04-01 Panasonic Ip Man Co Ltd Power supply apparatus
EP2833510A1 (en) * 2012-03-28 2015-02-04 Panasonic Corporation Power supply apparatus
CN104583000A (en) * 2012-08-30 2015-04-29 宝马股份公司 Foreign body identification in the case of inductive charging
JP2014069646A (en) * 2012-09-28 2014-04-21 Denso Corp Parking support system, and unit with positioning pieces
JP2015082876A (en) * 2013-10-22 2015-04-27 矢崎総業株式会社 Positional deviation detection device and non-contact power supply device
CN108891287A (en) * 2013-12-06 2018-11-27 庞巴迪无接触运行有限责任公司 Induction power for electric energy to be transmitted to vehicle transmits
JP2015186426A (en) * 2014-03-26 2015-10-22 株式会社エクォス・リサーチ Power reception system
GB2524734A (en) * 2014-03-31 2015-10-07 Bombardier Transp Gmbh Receiving device, vehicle and method of manufacturing a receiving device
WO2016020099A1 (en) * 2014-08-04 2016-02-11 Robert Bosch Gmbh Method for the contactless charging or discharging of a battery-operated object
US10239413B2 (en) 2014-08-04 2019-03-26 Robert Bosch Gmbh Method for the contactless charging or discharging of a battery-operated object
JP2017124671A (en) * 2016-01-12 2017-07-20 トヨタ自動車株式会社 Installation method of non-contact type power transmission device
JP2021506217A (en) * 2017-12-11 2021-02-18 ズークス インコーポレイテッド Underbody charging of vehicle battery
US11541765B2 (en) 2017-12-11 2023-01-03 Zoox, Inc. Underbody charging of vehicle batteries
JP7308829B2 (en) 2017-12-11 2023-07-14 ズークス インコーポレイテッド Underbody charging of vehicle batteries
CN109435718A (en) * 2018-12-19 2019-03-08 中车唐山机车车辆有限公司 Electric energy transmission system

Similar Documents

Publication Publication Date Title
JP2010178499A (en) Noncontact charger, distance measuring unit of positional relation detector for noncontact charger, and distance measurement unit of positional relation detector
KR102406107B1 (en) Wireless charging system for electric vehicle with adjustable flux angle
US9620964B2 (en) Power transmission system and method, power transmitting apparatus and power receiving apparatus
JP5427105B2 (en) Resonant contactless power supply system
JP5716725B2 (en) Power transmission device and power transmission system
JP5509883B2 (en) Wireless charging device for vehicle
KR101232036B1 (en) Contactless Power Transfer Apparatus and Inductive Power Supply Apparatus
KR101689495B1 (en) Contactless electricity supply system
US9472973B2 (en) Non-contact charging apparatus and method for charging battery
KR101735986B1 (en) Contactless electricity supply system
JP5440621B2 (en) Non-contact power feeding device
JP5577128B2 (en) Contactless charging system
KR101985490B1 (en) Wireless charging device and wireless charging method using the same
JP2012034468A (en) Resonance type non-contact power feeding system for vehicle
CN106470870A (en) For making the apparatus and method of induction type charging system work
JP2012249403A (en) Non-contact power supply device
JPWO2012111155A1 (en) Positioning device, power receiving device and power transmitting device
JP2011244532A (en) Resonance type noncontact power supply system for vehicle
WO2011114942A1 (en) Mobile body power supply
CN112721705B (en) Mobile reverse alignment vehicle wireless charging system and public parking area thereof
US20190070968A1 (en) Vehicle charging system, parking lot system, and method for charging vehicle
JP2015104161A (en) Non-contact power transmission device and non-contact power transmission system
CN107817803A (en) The control system and its control method of a kind of secondary accurate positioning suitable for AGV
JP6024361B2 (en) Non-contact power feeding device
WO2012090341A1 (en) Power control device for contactless charging device