JP2010177062A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2010177062A
JP2010177062A JP2009018948A JP2009018948A JP2010177062A JP 2010177062 A JP2010177062 A JP 2010177062A JP 2009018948 A JP2009018948 A JP 2009018948A JP 2009018948 A JP2009018948 A JP 2009018948A JP 2010177062 A JP2010177062 A JP 2010177062A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
ion secondary
lithium ion
antioxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009018948A
Other languages
Japanese (ja)
Inventor
Akihide Tanaka
明秀 田中
Hidetoshi Honbo
英利 本棒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009018948A priority Critical patent/JP2010177062A/en
Publication of JP2010177062A publication Critical patent/JP2010177062A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery with improved safety of the battery without causing output fall due to DCR rise in comparison with conventional technology. <P>SOLUTION: In the lithium secondary battery having a cathode and an anode for reversibly occluding and releasing lithium ions, and an organic electrolyte solution with electrolyte containing the lithium ions dissolved, in which the cathode and the anode are arranged via a separator, an anode active material includes carbon, and the anode includes at least 0.5 to 1.5 wt.% phenolic antioxidant or 0.1 to 0.5 wt.% phosphorus antioxidant. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウム二次電池に関する。   The present invention relates to a lithium secondary battery.

1980〜1990年代ごろから、携帯電話やノートPCの発達に伴い、それらの電源用として二次電池は高性能化が要求されている。このような要望の中、高エネルギー密度を持つことからこれらの電池には鉛蓄電池やニッカド電池に変わり、リチウム二次電池が主に用いられている。   With the development of mobile phones and notebook PCs since around the 1990s and 1990s, secondary batteries have been required to have high performance for their power supplies. Under these demands, lithium batteries are mainly used for these batteries instead of lead-acid batteries and nickel-cadmium batteries because of their high energy density.

更に近年では、リチウム二次電池は、ニッケル水素電池や鉛蓄電池に比べ高い入出力特性を有することから、新しい使い方として、電気自動車やハイブリッド型電気自動車といった高出力用電源として注目されている。ハイブリッド自動車用リチウム二次電池においては、携帯電話やノートPC用の電池に比べ、直流抵抗(Direct Current Resistance:DCR)が小さく高出力である電池が特に望まれている。   Furthermore, in recent years, lithium secondary batteries have higher input / output characteristics than nickel-metal hydride batteries and lead-acid batteries, and thus have attracted attention as high-output power sources such as electric vehicles and hybrid electric vehicles. Among lithium secondary batteries for hybrid vehicles, a battery having a low direct current resistance (DCR) and a high output is particularly desired as compared with batteries for mobile phones and notebook PCs.

特開平10−154531号公報Japanese Patent Laid-Open No. 10-154531 特開平11−73964号公報JP 11-73964 A

しかしリチウム二次電池は、電解液が主に非水溶媒系を用いられること等から、過充電,加熱,短絡などの際に、発熱暴走状態となり電池が破裂発火にいたるおそれがあり、十分な安全性が確保されている訳ではない。   However, since lithium secondary batteries mainly use non-aqueous solvents, there is a risk of overheating, heating, short-circuiting, etc., resulting in a runaway runaway condition, leading to battery explosion and ignition. Safety is not guaranteed.

このような危険性を持つリチウム二次電池に対して、安全性向上のための方法として、特許文献1にラジカル捕捉剤として酸化防止剤を電池に添加する方法が開示されている。この特許中で、添加量としては重量比で0.1〜30%、更に好ましくは1〜20%となっており、これより多いと充放電特性が不十分となる場合があると記載されている。   As a method for improving the safety of lithium secondary batteries having such a risk, Patent Document 1 discloses a method of adding an antioxidant as a radical scavenger to the battery. In this patent, the added amount is 0.1 to 30% by weight, more preferably 1 to 20%, and it is described that the charge / discharge characteristics may be insufficient if it is more than this. Yes.

一方、特許文献2では、酸化防止剤を炭素負極に添加することにより、サイクル特性と2CAの電流特性の向上が開示されている。特許文献2で、添加量は酸化防止剤として0.1〜5重量%とされており、これ以上では副作用が起こると記載されている。   On the other hand, Patent Document 2 discloses improvement of cycle characteristics and 2CA current characteristics by adding an antioxidant to the carbon negative electrode. In Patent Document 2, the addition amount is set to 0.1 to 5% by weight as an antioxidant, and it is described that a side effect occurs at more than this.

しかし、上記の特許は主に携帯電話やノートPC用に特化しているため、電池の出力に関わるDCRについての記述は見られない。我々の検討の結果、酸化防止剤の添加量を上記範囲内で行った場合、DCRが顕著に増大する領域があり、10CAや20CAといった大電流の高負荷パルス耐久が要求される、高出力用電源としては適してないことがわかった。更に、添加する酸化防止剤の種類によって添加量に対するDCRの上昇傾向が異なることがわかった。しかし、特許文献1,2にはその点を考慮にいれておらず、そのために高出力電源用として酸化防止剤を用いるためには検討を行う必要があった。   However, since the above-mentioned patents are mainly specialized for mobile phones and notebook PCs, there is no description of DCR related to battery output. As a result of our study, when the amount of addition of the antioxidant is within the above range, there is a region where the DCR increases remarkably, and a high current pulse load with a large current such as 10 CA or 20 CA is required. It turned out that it was not suitable as a power supply. Furthermore, it was found that the increasing tendency of DCR with respect to the added amount differs depending on the kind of antioxidant to be added. However, Patent Documents 1 and 2 do not take that point into consideration, and for that reason, it has been necessary to study in order to use an antioxidant for a high-output power source.

本発明のリチウムイオン二次電池は、リチウムイオンを吸蔵放出する正極とリチウムイオンを吸蔵放出する負極とが非水電解液及びセパレータを介して形成されるリチウムイオン二次電池であって、負極が、集電体と負極合剤とを有し、負極合剤が、負極活物質と導電剤とバインダとを含有し、負極活物質は、炭素材料であって、負極合剤は、フェノール基を有する化合物を0.5重量%以上1.5重量%以下、又はリンを有する化合物を0.1重量%以上0.5重量%以下含有することを特徴とする。   The lithium ion secondary battery of the present invention is a lithium ion secondary battery in which a positive electrode that occludes and releases lithium ions and a negative electrode that occludes and releases lithium ions are formed through a non-aqueous electrolyte and a separator. The negative electrode mixture contains a negative electrode active material, a conductive agent, and a binder, the negative electrode active material is a carbon material, and the negative electrode mixture contains a phenol group. It is characterized by containing 0.5 wt% or more and 1.5 wt% or less of a compound having 0.1 wt% or less and 0.1 wt% or less of a compound containing phosphorus.

本発明は、DCR上昇による出力低下を引き起こすことなく、安全性を向上させたリチウム二次電池を提供することができる。   The present invention can provide a lithium secondary battery with improved safety without causing a decrease in output due to an increase in DCR.

本発明で用いたリチウムイオン電池の断面図。Sectional drawing of the lithium ion battery used by this invention. 酸化防止剤添加量と出力密度の関係図。The relationship diagram of antioxidant addition amount and power density.

以下、本発明の実施例に係る技術的特徴について説明する。   The technical features according to the embodiments of the present invention will be described below.

本発明のリチウムイオン二次電池は、リチウムイオンを吸蔵放出する正極とリチウムイオンを吸蔵放出する負極とが非水電解液及びセパレータを介して形成されるリチウムイオン二次電池であって、負極が、集電体と負極合剤とを有し、負極合剤が、負極活物質と導電剤とバインダとを含有し、負極活物質は、炭素材料であって、負極合剤は、フェノール基を有する化合物を0.5重量%以上1.5重量%以下、又はリンを有する化合物を0.1重量%以上0.5重量%以下含有することを特徴とする。   The lithium ion secondary battery of the present invention is a lithium ion secondary battery in which a positive electrode that occludes and releases lithium ions and a negative electrode that occludes and releases lithium ions are formed through a non-aqueous electrolyte and a separator. The negative electrode mixture contains a negative electrode active material, a conductive agent, and a binder, the negative electrode active material is a carbon material, and the negative electrode mixture contains a phenol group. It is characterized by containing 0.5 wt% or more and 1.5 wt% or less of a compound having 0.1 wt% or less and 0.1 wt% or less of a compound containing phosphorus.

また、炭素材料の比表面積が1m2/g以上6m2/g以下であって、炭素材料の平均粒子径が10μm以上20μm以下であることを特徴とする。 The specific surface area of the carbon material is 1 m 2 / g or more and 6 m 2 / g or less, and the average particle diameter of the carbon material is 10 μm or more and 20 μm or less.

また、非水電解液が、不飽和基を含有する環状カーボネートを含有することを特徴とする。さらに、フェノール基を有する化合物を含有する場合は、フェノール基を有する化合物が、3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールであることを特徴とし、リンを有する化合物を含有する場合は、リンを有する化合物が、テトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトであることを特徴とする。   Further, the non-aqueous electrolyte contains a cyclic carbonate containing an unsaturated group. Further, when a compound having a phenol group is contained, the compound having a phenol group is 3,3 ', 3 ", 5,5', 5" -hexa-tert-butyl-a, a ', a "- (Mesitylene-2,4,6-triyl) tri-p-cresol, which contains a compound having phosphorus, the compound having phosphorus is tetrakis (2,4-di-tert-butyl) Phenyl) [1,1-biphenyl] -4,4'-diylphosphonite.

また、本発明のリチウムイオン二次電池は、リチウムイオンを吸蔵放出する正極と、リチウムイオンを吸蔵放出する負極と、が非水電解液及びセパレータを介して形成されるリチウムイオン二次電池であって、負極が集電体と負極合剤とを有し、負極合剤が負極活物質,導電剤,バインダを含有し、負極活物質は炭素材料であって、負極合剤は、フェノール基を有する化合物を0.5重量%以上1.5重量%以下及びリンを有する化合物を0.1重量%以上0.5重量%以下含有することを特徴とする。   The lithium ion secondary battery of the present invention is a lithium ion secondary battery in which a positive electrode that occludes and releases lithium ions and a negative electrode that occludes and releases lithium ions are formed via a non-aqueous electrolyte and a separator. The negative electrode has a current collector and a negative electrode mixture, the negative electrode mixture contains a negative electrode active material, a conductive agent, and a binder, the negative electrode active material is a carbon material, and the negative electrode mixture contains a phenol group. It is characterized by containing a compound having 0.5 to 1.5% by weight and a compound having phosphorus of 0.1 to 0.5% by weight.

さらに、負極合剤中における前記リンを有する化合物の含有量Aと、フェノール基を有する化合物の含有量Bとの比が、0.1≦A/B≦0.2となることを特徴とする。   Furthermore, the ratio of the content A of the compound having phosphorus and the content B of the compound having a phenol group in the negative electrode mixture is 0.1 ≦ A / B ≦ 0.2. .

また、本発明はリチウムイオン二次電池は、リチウムイオンを吸蔵放出する正極とリチウムイオンを吸蔵放出する負極とが非水電解液及びセパレータを介して形成されるリチウムイオン二次電池であって、負極が集電体と負極合剤とを有し、負極合剤が負極活物質と導電剤とバインダとを含有し、負極活物質は炭素材料であって、負極合剤は酸化防止剤を含有することを特徴とする。また、酸化防止剤は、酸素原子を含有することを特徴とし、好ましくは水酸基を有することを特徴とする。   Moreover, the present invention is a lithium ion secondary battery in which a positive electrode that occludes and releases lithium ions and a negative electrode that occludes and releases lithium ions are formed via a non-aqueous electrolyte and a separator, The negative electrode has a current collector and a negative electrode mixture, the negative electrode mixture contains a negative electrode active material, a conductive agent, and a binder, the negative electrode active material is a carbon material, and the negative electrode mixture contains an antioxidant. It is characterized by doing. Further, the antioxidant is characterized by containing an oxygen atom, and preferably has a hydroxyl group.

以下、各構成要素ごとに本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described for each component.

まず、本発明で用いるフェノール基を有する化合物、即ち、フェノール系酸化防止剤としては、3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、2,6−ジ−t−ブチル−4−メチルフェノール、2,4−ジメチル−6−tert−ブチルフェノール、2,2′−チオビス−(4−メチル−6−tert−ブチルフェノール)等が挙げられる。   First, as a compound having a phenol group used in the present invention, that is, a phenolic antioxidant, 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(Mesitylene-2,4,6-triyl) tri-p-cresol, 2,6-di-t-butyl-4-methylphenol, 2,4-dimethyl-6-tert-butylphenol, 2,2 ′ -Thiobis- (4-methyl-6-tert-butylphenol) and the like.

また、リンを有する化合物、即ち、リン系酸化防止剤としては、テトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイト,トリス(ノニルフェニル)ホスファイト,ジステアリルペンタエリスリトールジホスファイト,トリステアリルホスファイト,ジ(2−エチルヘキシル)ホスフェート等が挙げられるが、発生したラジカルを失活させるラジカルを捕捉する効果、または発生したラジカルによって生じた過酸化物を分解する過酸化物効果のいずれかをもつものであれば、これだけに限られない。   Further, as a phosphorus-containing compound, that is, a phosphorus-based antioxidant, tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4′-diylphosphonite, tris ( Nonylphenyl) phosphite, distearyl pentaerythritol diphosphite, tristearyl phosphite, di (2-ethylhexyl) phosphate, etc., but depending on the effect of scavenging the radical that deactivates the generated radical or the generated radical The present invention is not limited to this as long as it has any of the peroxide effects that decompose the generated peroxide.

酸化防止剤の添加方法は特に限定されないが、負極塗料を作成する際の溶剤に添加する形で負極中に含有させるのが酸化防止剤を均一に分散させる観点からは好ましい。酸化防止剤を添加することにより、高温時や過充電時に電解液や正極などから発生するラジカルや過酸化物と負極中のリチウムの反応を抑制することができるため、リチウム二次電池の安全性を向上させることができる。   Although the addition method of antioxidant is not specifically limited, It is preferable from the viewpoint of uniformly disperse | distributing antioxidant to contain in the negative electrode in the form added to the solvent at the time of creating a negative electrode coating material. By adding an antioxidant, it is possible to suppress the reaction between the radicals and peroxides generated from the electrolyte and the positive electrode during high temperature and overcharge, and the lithium in the negative electrode. Can be improved.

その際の添加量としては、負極活物質,導電剤,バインダを含む負極合剤の総重量を100としたときの負極合剤に占める割合で、フェノール系酸化防止剤が0.5重量%以上1.5重量%以下が好ましい。   The amount added in this case is the ratio of the total amount of the negative electrode mixture including the negative electrode active material, the conductive agent and the binder to the negative electrode mixture when the total weight is 100, and the phenolic antioxidant is 0.5% by weight or more. It is preferably 1.5% by weight or less.

また、リン系酸化防止剤においては、0.1重量%以上0.5重量%以下が好ましい。フェノール系酸化防止剤の添加量が0.5重量%未満の場合や、リン系酸化防止剤の添加量が0.1重量%未満の場合は、安全性が担保されず、発火等が起こる。また、フェノール系酸化防止剤の添加量が1.5重量%より多い場合、またリン系酸化防止剤の添加量が0.5重量%より多い場合は、DCRが急激に上昇してしまい、電池に用いた場合の出力密度が下がるため好ましくない。   In the phosphorus-based antioxidant, the content is preferably 0.1% by weight or more and 0.5% by weight or less. When the addition amount of the phenolic antioxidant is less than 0.5% by weight or when the addition amount of the phosphorus antioxidant is less than 0.1% by weight, safety is not ensured and ignition or the like occurs. Further, when the addition amount of the phenolic antioxidant is more than 1.5% by weight or when the addition amount of the phosphorus antioxidant is more than 0.5% by weight, the DCR increases rapidly, and the battery This is not preferable because the power density when used in the above is lowered.

酸化防止剤の添加量がある値を閾値に急激にDCRが上昇する理由としては、以下の機構であると推測される。酸化防止剤を負極に添加すると、酸化防止剤が一定量分解するために、負極表面のSEI(solid electrolyte interface)が厚くなってしまう。しかし、ある一定のSEI厚みまでは炭素表面での充放電反応の律速過程は、電解液中で溶媒和しているLiイオンが脱溶媒和反応する過程であるため、SEI厚み増大によるDCR上昇はほとんど起こらない。しかしながら、ある一定以上のSEI厚みになってしまうと、律速過程がLiイオンのSEI中の移動由来となってしまい、その結果ある添加量を閾値にDCRが急激に増大してしまう。   The reason why the DCR suddenly increases with the addition amount of the antioxidant as a threshold value is assumed to be the following mechanism. When an antioxidant is added to the negative electrode, a certain amount of the antioxidant is decomposed, so that the SEI (solid electrolyte interface) on the negative electrode surface becomes thick. However, up to a certain SEI thickness, the rate-determining process of the charge / discharge reaction on the carbon surface is a process in which Li ions solvated in the electrolyte undergo a desolvation reaction. It hardly happens. However, when the SEI thickness exceeds a certain level, the rate-limiting process is derived from the movement of Li ions in the SEI, and as a result, the DCR increases rapidly with a certain addition amount as a threshold value.

また、フェノール系酸化防止剤とリン系酸化防止剤で最適な範囲が異なる理由については、リン系酸化防止剤はフェノール系酸化防止剤に比べ過酸化物の捕捉に優れることから、少量でも効果はある代わりに、耐熱性や耐水性で劣り、量に対してSEIが厚くなりやすいため、フェノール系酸化防止剤に比べより少ない添加量範囲が最適となる。   Also, the reason why the optimum range differs between phenolic antioxidants and phosphorus antioxidants is that phosphorous antioxidants are better at capturing peroxides than phenolic antioxidants, so even a small amount is effective. Instead, since the heat resistance and water resistance are inferior and the SEI tends to be thick with respect to the amount, a smaller addition amount range than the phenolic antioxidant is optimal.

またリン系酸化防止剤とフェノール系酸化防止剤を両方添加させることにより、単独よりも安全性向上の効果を高めることができる。この場合、その混合割合としてはリン系酸化防止剤の含有重量をA、フェノール系酸化防止剤の含有重量をBとした時に、0.1≦A/B≦0.2となる範囲が特に好ましい。フェノール系酸化防止剤はリン系酸化防止剤に比べ過酸化物捕捉が弱いが、リン系酸化防止剤を少量添加することによりその弱点を補ってやることができる。しかし、リン系酸化防止剤を過剰に添加してしまうと、フェノール系酸化防止剤の効果が弱くなるため、両方添加させた効果がでなくなってしまう。   Moreover, the effect of a safety improvement can be heightened rather than single by adding both phosphorus antioxidant and phenolic antioxidant. In this case, the mixing ratio is particularly preferably in the range of 0.1 ≦ A / B ≦ 0.2 when the phosphorus antioxidant content is A and the phenolic antioxidant content is B. . Phenol-based antioxidants have a weaker peroxide capture than phosphorus-based antioxidants, but the weak points can be compensated for by adding a small amount of phosphorus-based antioxidants. However, if the phosphorus antioxidant is added excessively, the effect of the phenolic antioxidant is weakened, so the effect of adding both is lost.

また、酸化防止剤は負極活物質表面に存在するため、負極活物質種の形状を調整することでも、効果を増大させることができる。具体的には、本発明での負極炭素材料はレーザ回折/散乱式粒度分布測定装置により求めた平均粒子径(50%D)が5μm以上20μm以下であるのが好ましい。平均粒径が20μmを超える場合、電極に凹凸ができやすくなるため、酸化防止剤が均等に配置されにくくなり、酸化防止剤の安全性向上の効果が低下するし、5μm未満の場合、比表面積が大きくなりすぎるため、酸化防止剤が均等に配置されにくくなり、酸化防止剤による安全性向上の効果が低下する。なお、粒度分布は界面活性剤を含んだ精製水に試料を分散させ、レーザ回折式粒度分布測定装置で測定することができ、平均粒径は負極炭素の累積体積量が50%となる粒径により算出される。   Moreover, since the antioxidant is present on the surface of the negative electrode active material, the effect can be increased by adjusting the shape of the negative electrode active material species. Specifically, the negative electrode carbon material in the present invention preferably has an average particle size (50% D) determined by a laser diffraction / scattering particle size distribution measuring apparatus of 5 μm or more and 20 μm or less. When the average particle diameter exceeds 20 μm, it becomes easy to form irregularities on the electrode, so that it becomes difficult to dispose the antioxidant evenly, and the effect of improving the safety of the antioxidant is reduced. Becomes too large, it becomes difficult to dispose the antioxidant uniformly, and the effect of improving the safety by the antioxidant is reduced. The particle size distribution can be measured with a laser diffraction particle size distribution analyzer by dispersing the sample in purified water containing a surfactant, and the average particle size is the particle size at which the cumulative volume of negative electrode carbon is 50%. Is calculated by

また、本発明の負極炭素材料は77K窒素吸着測定より得た吸着等温線をBET(Brunauer-Emmet-Teller)法を用いて求めた比表面積が、平均粒子径(50%D)が10μm以上20μm以下である場合は、1m2/g以上6m2/g以下であるか、あるいは平均粒子径(50%D)が5μm以上10μm未満の際に3m2/g以上10m2/g以下であるのが好ましい。平均粒子径(50%D)が10μm以上20μm以下で6m2/gを超えるかまたは、5μm以上10μm未満で10m2/gを超える場合には炭素表面に細かな凹凸があるため、酸化防止剤が均等に配置されにくくなり、酸化防止剤による安全性向上の効果が低下するし、平均粒子径(50%D)が10μm以上20μm以下で1m2/g未満であるか、あるいは平均粒子径(50%D)が5μm以上10μm未満で3m2/g未満である場合は炭素材料の縦横比が大きい扁平状炭素材料となることから、電極に凹凸ができやすく酸化防止剤が均等に配置されにくくなり、酸化防止剤による安全性向上の効果が低下する。 In addition, the negative electrode carbon material of the present invention has a specific surface area determined by using a BET (Brunauer-Emmet-Teller) method for an adsorption isotherm obtained from 77K nitrogen adsorption measurement, and an average particle size (50% D) is 10 μm or more and 20 μm. If it is less, or less than 1 m 2 / g or more 6 m 2 / g, or an average particle diameter (50% D) is 3m 2 / g or more 10 m 2 / g is the less the time of less than 10μm or 5μm Is preferred. When the average particle diameter (50% D) is 10 μm or more and 20 μm or less and exceeds 6 m 2 / g, or 5 μm or more and less than 10 μm and exceeds 10 m 2 / g, the carbon surface has fine irregularities, and thus the antioxidant. Is less likely to be evenly disposed, the effect of improving the safety by the antioxidant is reduced, and the average particle diameter (50% D) is 10 μm or more and 20 μm or less and less than 1 m 2 / g, or the average particle diameter ( When the 50% D) is 5 μm or more and less than 10 μm and less than 3 m 2 / g, the carbon material becomes a flat carbon material having a large aspect ratio, and therefore the electrodes are easily uneven and the antioxidant is not easily disposed evenly. Therefore, the effect of improving safety by the antioxidant is reduced.

本発明のリチウム二次電池用負極炭素材料の作成方法は、平均粒子径(50%D)と比表面積をもつ炭素材料であれば特に限定されないが、例えば天然黒鉛,石油コークスや石炭ピッチコークスなどから得られる易黒鉛化材料を2500℃以上の高温で熱処理したものや、熱可塑性樹脂,ナフタレン,アントラセン,フェナントロレン,コールタール,タールピッチ等をオートクレーブ等の機器で予め熱処理を行い粉砕した後、800℃以上の不活性雰囲気でカ焼したものがあげられる。いずれの材料もその後に粉砕して粒度を調整した後解砕・分級を行って粒度を更に調整することによって、炭素材料を作製することができる。   The method for producing a negative electrode carbon material for a lithium secondary battery of the present invention is not particularly limited as long as it is a carbon material having an average particle diameter (50% D) and a specific surface area. For example, natural graphite, petroleum coke, coal pitch coke, etc. After heat-treating the graphitizable material obtained from the above at a high temperature of 2500 ° C. or higher, or pulverizing thermoplastic resin, naphthalene, anthracene, phenanthrolene, coal tar, tar pitch, etc. by heat-treating them with an autoclave or other device in advance. And calcined in an inert atmosphere at 800 ° C. or higher. Any material can be pulverized to adjust the particle size, and then pulverized and classified to further adjust the particle size, thereby producing a carbon material.

負極電極の作成方法は、特に限定されないが例えば負極活物質と、酸化防止剤を溶解させ更に結着剤を溶解もしくは分散させた溶媒をボールミル,プラネタリーミキサー等の一般的な混錬分散方法を用いて、よく混練分散して、負極合剤スラリーを作成する。その後、塗布機を用いてこの負極合剤スラリーを銅等の金属箔上に、塗布後例えば120℃前後の適当な温度にて真空乾燥し、プレス機を用いて圧縮成型後所望の大きさに切断または打ち抜き、負極にすることができる。   The method for producing the negative electrode is not particularly limited. For example, a general kneading dispersion method such as a ball mill or a planetary mixer is used for a solvent in which a negative electrode active material and an antioxidant are dissolved and a binder is further dissolved or dispersed. Use and knead and disperse well to prepare a negative electrode mixture slurry. After that, the negative electrode mixture slurry is coated on a metal foil such as copper using a coating machine, and then vacuum dried at an appropriate temperature of, for example, about 120 ° C. After compression molding using a pressing machine, the desired size is obtained. It can be cut or punched into a negative electrode.

塗料を作成する際の溶剤としては、特に限定されないが、酸化防止剤を溶解させることができるのが好ましい。例えばN−メチル−2−ピロリドン(NMP),エチレングリコール,トルエン,キシレンなどがあげられる。   Although it does not specifically limit as a solvent at the time of creating a coating material, It is preferable that an antioxidant can be dissolved. Examples thereof include N-methyl-2-pyrrolidone (NMP), ethylene glycol, toluene, xylene and the like.

上記の結着剤としては上記有機系結着剤としては、特に限定されないが、例えば、スチレン−ブタジエン共重合体,メチル(メタ)アクリレート,エチル(メタ)アクリレート,ブチル(メタ)アクリレート,(メタ)アクリロニトリル,ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル,アクリル酸,メタクリル酸,イタコン酸,フマル酸,マレイン酸等のエチレン性不飽和カルボン酸,ポリ弗化ビニリデン,ポリエチレンオキサイド,ポリエピクロヒドリン,ポリフォスファゼン,ポリアクリロニトリル等のイオン導電性の大きな高分子化合物などが挙げられる。この有機系結着剤の含有量は、本発明のリチウムイオン二次電池用負極材と有機系結着剤の合計100重量%に対して1重量%以上15重量%以下含有することが好ましい。1重量%未満では、電極が剥離する場合があるし、15重量%より上の場合は、DCRが上昇することがある。   The above-mentioned organic binder is not particularly limited as the above-mentioned binder. For example, styrene-butadiene copolymer, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meta ) Ethylenically unsaturated carboxylic acid esters such as acrylonitrile, hydroxyethyl (meth) acrylate, ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, polyvinylidene fluoride, polyethylene oxide, Examples thereof include high molecular compounds having high ionic conductivity such as polyepichlorohydrin, polyphosphazene, and polyacrylonitrile. The content of the organic binder is preferably 1% by weight or more and 15% by weight or less with respect to 100% by weight in total of the negative electrode material for a lithium ion secondary battery of the present invention and the organic binder. If it is less than 1% by weight, the electrode may peel off, and if it is more than 15% by weight, the DCR may increase.

正極の作成には、正極活物質に適当な溶媒に溶解、もしくは分散させた結着剤を加えてボールミル,プラネタリーミキサー等一般的な混錬分散方法を用いてよく混練分散して、正極合剤スラリーを作成する。その後、塗布機を用いてこの正極合剤スラリーをアルミ等の金属箔上に、塗布後120℃にて真空乾燥した後、圧縮成型後所望の大きさに切断または打ち抜き、正極にすることができる。   In preparing the positive electrode, a binder dissolved or dispersed in an appropriate solvent is added to the positive electrode active material and kneaded and dispersed using a general kneading and dispersing method such as a ball mill or a planetary mixer. An agent slurry is prepared. Thereafter, this positive electrode mixture slurry can be vacuum-dried at 120 ° C. after being applied onto a metal foil such as aluminum using a coating machine, and then cut or punched into a desired size after compression molding to obtain a positive electrode. .

正極合剤又は負極合剤の作成においては、DCR低減のために必要な場合は導電助剤を加えることが好ましい。導電助剤としては、特に限定されないが例えば高導電性を有する粉末状黒鉛,鱗片状黒鉛、あるいはカーボンブラックなどの無定形炭素を用いることができ、これらを組み合わせてもよい。この導電助剤の含有量は、本発明の負極活物質と導電助剤の合計重量を100重量%とした場合に、0重量%以上15重量%以下含有することが好ましい。15重量%を超えた場合は、DCR低減効果は低下し、容量だけが著しく低下する。   In the preparation of the positive electrode mixture or the negative electrode mixture, it is preferable to add a conductive additive if necessary for reducing DCR. Although it does not specifically limit as a conductive support agent, For example, amorphous | non-crystalline carbon, such as powdered graphite with high electroconductivity, scale-like graphite, or carbon black, may be combined. The content of the conductive auxiliary is preferably 0 to 15% by weight when the total weight of the negative electrode active material and the conductive auxiliary of the present invention is 100% by weight. When it exceeds 15% by weight, the DCR reduction effect is reduced, and only the capacity is significantly reduced.

正極活物質としては、スピネル型立方晶,層状型六方晶,オリビン型斜方晶,三斜晶等の結晶構造を有するリチウムと遷移金属との複合化合物を用いる。高出力、かつ長寿命といった観点では、リチウムとニッケル,マンガン,コバルトを少なくとも含有する層状型六方晶が好まく、特にLiMnaNibCocd2が好ましい(但し、MはFe,V,Ti,Cu,Al,Sn,Zn,Mg,Bからなる群から選ばれる少なくとも一種であり、好ましくはAl,B,Mg)。また、0≦a≦0.6,0.3≦b≦0.7,0≦c≦0.4、0≦d≦0.1である。正極活物質は、平均粒径が10μm以下であることが好ましい。 As the positive electrode active material, a composite compound of lithium and a transition metal having a crystal structure such as spinel cubic, layered hexagonal, olivine orthorhombic or triclinic is used. From the viewpoint of high output and long life, a layered hexagonal crystal containing at least lithium, nickel, manganese, and cobalt is preferable, and LiMn a Ni b Co c M d O 2 is particularly preferable (where M is Fe, V , Ti, Cu, Al, Sn, Zn, Mg, B, and preferably at least one selected from the group consisting of Al, B, Mg). Further, 0 ≦ a ≦ 0.6, 0.3 ≦ b ≦ 0.7, 0 ≦ c ≦ 0.4, and 0 ≦ d ≦ 0.1. The positive electrode active material preferably has an average particle size of 10 μm or less.

電解液は溶媒として、直鎖状もしくは環状カーボネート類を主成分とすることが望ましく、これにエステル類,エチル類等を混合することもできる。カーボネート類として例えばエチレンカーボネート(EC),プロピレンカーボネート,ブチレンカーボネート,ジメチルカーボネート(DMC),ジエチルカーボネート(DEC),メチルエチルカーボネート,ジエチルカーボネート、などがあげられる。これらを単独あるいは混合した溶媒を用いる。   The electrolytic solution preferably has a linear or cyclic carbonate as a main component as a solvent, and can be mixed with esters, ethyls, and the like. Examples of carbonates include ethylene carbonate (EC), propylene carbonate, butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate, diethyl carbonate, and the like. These are used alone or in a mixed solvent.

電解液のリチウム塩は、電池の充放電により電解液中を移動するリチウムイオンを供給するもので、LiClO4,LiCF3SO3,LiPF6,LiBF4,LiAsF6などを単独もしくは2種類以上を用いることができる。電解質濃度は0.7M以上1.5M以下が望ましく上記範囲を外れるとDCRが上昇してしまう傾向がある。 The lithium salt of the electrolytic solution supplies lithium ions that move through the electrolytic solution by charging / discharging the battery. LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6, etc. are used alone or in combination. Can be used. The electrolyte concentration is desirably 0.7 M or more and 1.5 M or less, and DCR tends to increase when the electrolyte concentration is out of the above range.

電解液には不飽和基を含有する環状カーボネートを添加しても良い。添加すると、SEIが堅固になるため、酸化防止剤添加時の効果を高めることができる。不飽和基を含有する環状カーボネートとしては、例えばビニレンカーボネート、ビニルエチレンカーボネートをあげることができる。添加量としては、電解液全体の重量を100重量%とすると、0.1重量%以上5重量%以下が好ましい。上記範囲より少ないと効果が見えなくなり、上記より多すぎるとDCRが大きくなってしまう傾向がある。   You may add the cyclic carbonate containing an unsaturated group to electrolyte solution. When added, the SEI becomes firm, so that the effect when the antioxidant is added can be enhanced. Examples of the cyclic carbonate containing an unsaturated group include vinylene carbonate and vinyl ethylene carbonate. The addition amount is preferably 0.1% by weight or more and 5% by weight or less, assuming that the total weight of the electrolytic solution is 100% by weight. If the amount is less than the above range, the effect cannot be seen. If the amount is more than the above range, the DCR tends to increase.

上記セパレータとしては、正極と負極の短絡を防ぐことができるなら特に限定されないが、例えばポリエチレン,ポリプロピレン等のポリオレフィンを主成分とした不織布,クロス,微孔フィルム又はそれらを組み合わせたものを使用することができる。   The separator is not particularly limited as long as it can prevent a short circuit between the positive electrode and the negative electrode. For example, a nonwoven fabric mainly composed of polyolefin such as polyethylene or polypropylene, cloth, microporous film, or a combination thereof may be used. Can do.

本発明のリチウムイオン二次電池は、例えば、上記本発明のリチウムイオン二次電池用負極と正極とをセパレータを介して対向して配置し、電解液を注入することにより得ることができる。   The lithium ion secondary battery of the present invention can be obtained, for example, by arranging the negative electrode for a lithium ion secondary battery of the present invention and a positive electrode facing each other with a separator interposed therebetween and injecting an electrolytic solution.

本発明のリチウムイオン二次電池の構造は特に限定されないが、通常、正極,負極とそれらを隔てるためのセパレータを捲回式にして捲回式電極群にするか、または積層状にして積層型電極群として用いることができる。   The structure of the lithium ion secondary battery of the present invention is not particularly limited. Usually, a positive electrode, a negative electrode, and a separator for separating them are wound to form a wound electrode group, or a laminated type to form a laminated type. It can be used as an electrode group.

以上説明した本発明のリチウムイオン二次電池は、DCR上昇による出力低下を引き起こすことなく、安全性の向上したリチウム二次電池を提供することができる。   The lithium ion secondary battery of the present invention described above can provide a lithium secondary battery with improved safety without causing output reduction due to DCR increase.

以下、本発明の実施の形態について、実施例に則して詳細に説明する。実施例は一例であり、必ずしもこれらに限られるわけではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to examples. The embodiment is an example, and is not necessarily limited thereto.

まず、請求項1のフェノール酸化防止剤の検討結果から示す。
最初に正極および負極活物質から作成した。
First, it shows from the examination result of the phenol antioxidant of Claim 1.
First, it was prepared from a positive electrode and a negative electrode active material.

(実施例1)力
負極活物質の合成手順を示す。まずオートクレーブを用いて、石炭系コールタールを400℃で熱処理し生コークスを得た。この生コークスを粉砕した後、2800℃にて不活性雰囲気中でカ焼を行い炭素材料を得た。この炭素材料を分級機付きの衝撃破砕機を用いて粉砕し、300メッシュの篩にて粗粉を除去して炭素粒子とした。その際の平均粒径は15.6μmで比表面積は2.5m2/gであった。
(Example 1) Force A procedure for synthesizing a negative electrode active material will be described. First, using an autoclave, coal-based coal tar was heat-treated at 400 ° C. to obtain raw coke. After pulverizing this raw coke, it was calcined at 2800 ° C. in an inert atmosphere to obtain a carbon material. This carbon material was pulverized using an impact crusher equipped with a classifier, and coarse particles were removed with a 300 mesh sieve to obtain carbon particles. At that time, the average particle size was 15.6 μm and the specific surface area was 2.5 m 2 / g.

正極活物質の合成手順を示す。原料として酸化ニッケル,酸化マンガン,酸化コバルトを使用し、原子比でNi:Mn:Co比が1:1:1となるように秤量し、湿式粉砕機で粉砕混合した。次に、結着剤としてポリビニルアルコール(PVA)を加えた粉砕混合粉を噴霧乾燥機で造粒した。得られた造粒粉末を高純度アルミナ容器に入れ、PVAを蒸発させるため600℃で12時間の仮焼成を行い、空冷後解砕した。さらに、解砕粉にLi:遷移金属(Ni,Mn,Co)の原子比が1:1:1となるよう水酸化リチウム一水和物を添加し、充分混合した。この混合粉末を高純度アルミナ容器に入れて900℃で6時間の本焼成を行った。得られた正極活物質をボールミルで解砕分級した。この正極活物質の平均粒径は6μmであった。   A procedure for synthesizing the positive electrode active material will be described. Nickel oxide, manganese oxide, and cobalt oxide were used as raw materials, weighed so that the Ni: Mn: Co ratio was 1: 1: 1 by atomic ratio, and pulverized and mixed with a wet pulverizer. Next, the pulverized mixed powder to which polyvinyl alcohol (PVA) was added as a binder was granulated with a spray dryer. The obtained granulated powder was put in a high-purity alumina container, pre-baked at 600 ° C. for 12 hours to evaporate PVA, crushed after air cooling. Further, lithium hydroxide monohydrate was added to the pulverized powder so that the atomic ratio of Li: transition metal (Ni, Mn, Co) was 1: 1: 1 and mixed well. This mixed powder was put into a high-purity alumina container and subjected to main firing at 900 ° C. for 6 hours. The obtained positive electrode active material was pulverized and classified with a ball mill. The average particle diameter of this positive electrode active material was 6 μm.

実施例における材料の粒径(50%D)は(株)堀場製作所製レーザ回折/散乱式粒度分布測定装置LA−920を用いて調べた。光源としては、He−Neレーザ1mWを用い、炭素粒子の分散媒はイオン交換水に界面活性剤を2滴いれた物とした。予め5分以上超音波処理を行い、更に測定中も超音波処理を行って、凝集を防ぎつつ測定を行った。測定結果の累積50%粒径(50%D)を平均粒径とした。   The particle size (50% D) of the material in the examples was examined using a laser diffraction / scattering particle size distribution analyzer LA-920 manufactured by Horiba, Ltd. A He—Ne laser 1 mW was used as a light source, and a dispersion medium of carbon particles was obtained by adding two drops of a surfactant to ion exchange water. The ultrasonic treatment was performed for 5 minutes or more in advance, and the ultrasonic treatment was also performed during the measurement, and the measurement was performed while preventing aggregation. The cumulative 50% particle size (50% D) of the measurement results was taken as the average particle size.

炭素材料の比表面積は、炭素材料を120℃で3時間真空乾燥した後、日本ベル株式会社製BELSORP−miniを用い、77Kでの窒素吸着を用いて平衡時間300秒で測定した吸着等温線をBET法で解析し求めた。   The specific surface area of the carbon material is obtained by vacuum-drying the carbon material at 120 ° C. for 3 hours, and then using an adsorption isotherm measured using a BELSORP-mini manufactured by Nippon Bell Co., Ltd. using nitrogen adsorption at 77K and an equilibrium time of 300 seconds. Analyzed by the BET method.

次に、リチウム二次電池を作成した。
図1は、本発明のリチウム二次電池の断面図を示す図である。図1で、10は正極、11はセパレータ、12は負極、13は電池缶、14は正極タブ、15は負極タブ、16は内蓋、17は内圧開放弁、18はガスケット、19はPTC素子、20は電池蓋である。
Next, a lithium secondary battery was created.
FIG. 1 is a cross-sectional view of a lithium secondary battery according to the present invention. In FIG. 1, 10 is a positive electrode, 11 is a separator, 12 is a negative electrode, 13 is a battery can, 14 is a positive electrode tab, 15 is a negative electrode tab, 16 is an inner lid, 17 is an internal pressure release valve, 18 is a gasket, and 19 is a PTC element. , 20 is a battery lid.

まず、正極を作製した。正極活物質85.0重量%に導電材として粉末状黒鉛とアセチレンブラックをそれぞれ7.0重量%と2.0重量%加え、あらかじめ結着剤として6.0重量%のPVDFをNMPに溶解した溶液を加えて、さらにプラネタリーミキサーで混合し正極合剤スラリーとした。このスラリーを塗布機で厚さ20μmのアルミニウム箔の両面に均一かつ均等に塗布した。塗布後ロールプレス機により電極密度が2.55g/ccになるように圧縮成形し、正極とした。   First, a positive electrode was produced. 7.0% and 2.0% by weight of powdery graphite and acetylene black as conductive materials were added to 85.0% by weight of the positive electrode active material, respectively, and 6.0% by weight of PVDF was previously dissolved in NMP as a binder. The solution was added and further mixed with a planetary mixer to obtain a positive electrode mixture slurry. This slurry was uniformly and evenly applied to both surfaces of an aluminum foil having a thickness of 20 μm with an applicator. After the application, it was compression-molded so as to have an electrode density of 2.55 g / cc with a roll press machine to obtain a positive electrode.

次に、負極を作製した。負極活物質として、炭素材料を85.0重量%に導電材として、6.7重量%のアセチレンブラックと、あらかじめ結着剤として8.3重量%のPVDFとフェノール系酸化防止剤として、0.5重量%の3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールをNMPに溶解した溶液を加えて、さらにプラネタリーミキサーで混合し負極合剤スラリーとした。このスラリーを塗布機で厚さ10μmの圧延銅箔の両面に均一かつ均等に塗布した。塗布後ロールプレス機により電極密度が1.15g/ccになるように圧縮成形し、負極とした。   Next, a negative electrode was produced. As a negative electrode active material, carbon material is 85.0% by weight as a conductive material, 6.7% by weight of acetylene black, 8.3% by weight of PVDF as a binder and phenolic antioxidant as 0.0. 5% by weight of 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri-p-cresol Was added to a NMP and mixed with a planetary mixer to form a negative electrode mixture slurry, which was uniformly and evenly applied to both sides of a rolled copper foil having a thickness of 10 μm by a coating machine. The negative electrode was compression-molded so as to have an electrode density of 1.15 g / cc by a press machine to obtain a negative electrode.

Figure 2010177062
Figure 2010177062

その後、正極と負極を所望の大きさに裁断し、未塗布部にそれぞれ集電タブを超音波溶接した。集電タブはそれぞれ正極にはアルミニウムのリード片、負極にはニッケルのリード片を用いた。その後、厚み30μmのセパレータを多孔性のポリエチレンフィルムで正極と負極に挟みながら捲回した。この捲回体を電池缶に挿入し、負極タブを電池缶の缶底に抵抗溶接により接続し、正極タブには正極蓋を超音波溶接により接続した。体積比がEC,DMC,DECの体積比1:1:1の混合溶媒に1モル/リットルのLiPF6を溶解させた電解液を注液し、その後、正極蓋を電池缶にかしめて密封し、リチウムイオン電池を得た。 Thereafter, the positive electrode and the negative electrode were cut to a desired size, and current collecting tabs were ultrasonically welded to the uncoated portions. Each of the current collecting tabs used an aluminum lead piece for the positive electrode and a nickel lead piece for the negative electrode. Thereafter, a separator having a thickness of 30 μm was wound while being sandwiched between a positive electrode and a negative electrode by a porous polyethylene film. The wound body was inserted into the battery can, the negative electrode tab was connected to the bottom of the battery can by resistance welding, and the positive electrode lid was connected to the positive electrode tab by ultrasonic welding. An electrolyte solution in which 1 mol / liter of LiPF 6 is dissolved in a mixed solvent having a volume ratio of 1: 1, 1: 1 by volume ratio of EC, DMC, and DEC is injected, and then the positive electrode lid is caulked and sealed in a battery can. A lithium ion battery was obtained.

次に、DCRを測定し電池の出力密度を求めた。作製した電池を常温(25℃)前後で0.3C相当の電流で4.1Vまで充電し、その後4.1Vで電流が0.03Cになるまで定電圧充電を行った。30分休止後に0.3C相当の定電流で2.7Vまで定電流放電を行った。これを4サイクル行い初期化した。さらに0.3Cで3.6Vまで定電流充電行った後、電流4CA,8CA,12CA,16CAの電流値で10秒間放電した。この時の電圧値を求めて、これを2.5Vまで外挿したときの限界電流から出力密度を求めた。   Next, DCR was measured to determine the output density of the battery. The produced battery was charged to 4.1 V at a current equivalent to 0.3 C around room temperature (25 ° C.), and then charged at a constant voltage at 4.1 V until the current reached 0.03 C. After a 30-minute pause, constant current discharge was performed up to 2.7 V with a constant current corresponding to 0.3 C. This was repeated for 4 cycles for initialization. Furthermore, after carrying out constant current charge to 3.6V at 0.3C, it discharged for 10 second with the electric current value of 4CA, 8CA, 12CA, and 16CA. The voltage value at this time was obtained, and the output density was obtained from the limit current when this was extrapolated to 2.5V.

結果を表1に示す   The results are shown in Table 1.

次いで電池の過充電試験を行った。DCR試験を行った後の電池を30分休止した後、充電電流2CでSOC200%まで過充電を行いその挙動を調査した。この際、結果を弁作動のみ、弁作動+発煙,弁作動+発煙+発火に分類した。ここで弁作動のみとは安全弁が開いた状態,弁作動+発煙は安全弁が開いて同時に気体が噴出した状態,弁作動+発煙+発火は気体が電池から噴出し、発火した状態である。また、各表では弁作動のみを「弁作動」,弁作動+発煙を「発煙」,弁作動+発煙+発火を「発火」と記載した。結果を表1に示す。   The battery was then overcharged. After the DCR test was performed for 30 minutes, the battery was overcharged to a SOC of 200% at a charging current of 2 C, and the behavior was investigated. At this time, the results were classified into valve operation only, valve operation + smoke, and valve operation + smoke + ignition. Here, only the valve operation is a state in which the safety valve is open, valve operation + smoke is a state in which the safety valve is open and gas is simultaneously ejected, and valve operation + smoke + ignition is a state in which gas is ejected from the battery and ignited. In each table, only valve operation is described as “valve operation”, valve operation + smoke is “smoke”, and valve operation + smoke + ignition is described as “ignition”. The results are shown in Table 1.

(実施例2)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの負極合剤への添加量を1.0重量%に変更した以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 2)
3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri-p-cresol negative electrode mixture A sample was prepared under the same conditions as in Example 1 except that the amount added was changed to 1.0% by weight, and an evaluation test was performed.

(実施例3)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの負極合剤への添加量を1.5重量%に変更した以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 3)
3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri-p-cresol negative electrode mixture A sample was prepared under the same conditions as in Example 1 except that the amount added was changed to 1.5% by weight, and an evaluation test was performed.

(比較例1)
負極合剤への酸化防止剤の添加を行わなかったこと以外は実施例1と同様に行った。
(Comparative Example 1)
The same procedure as in Example 1 was performed except that the antioxidant was not added to the negative electrode mixture.

(比較例2)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの負極合剤への添加量を0.2重量%に変更した以外は実施例1と同様の条件により作製し、評価試験を行った。
(Comparative Example 2)
3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri-p-cresol negative electrode mixture A sample was prepared under the same conditions as in Example 1 except that the amount added was changed to 0.2% by weight, and an evaluation test was performed.

(比較例3)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの負極合剤への添加量を2.0重量%に変更した以外は実施例1と同様の条件により作製し、評価試験を行った。
(Comparative Example 3)
3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri-p-cresol negative electrode mixture A sample was prepared under the same conditions as in Example 1 except that the amount added was changed to 2.0% by weight, and an evaluation test was performed.

(比較例4)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの負極合剤への添加量を3.0重量%に変更した以外は実施例1と同様の条件により作製し、評価試験を行った。
(Comparative Example 4)
3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri-p-cresol negative electrode mixture A sample was prepared under the same conditions as in Example 1 except that the amount added was changed to 3.0% by weight, and an evaluation test was performed.

Figure 2010177062
Figure 2010177062

表1の実施例1〜3と比較例1〜2との比較により、実施例1〜3のリチウムイオン二次電池の方が、DCR上昇による出力低下を引き起こすことなく、過充電試験の際に発煙や発火も見られなかったことから安全性が向上していることは明らかである。また、実施例1〜3と比較例3,4を比較すると、添加量を2.0重量%以上に増大させることにより、DCRが急激に上昇したために出力密度が低下することがわかる。   According to the comparison between Examples 1 to 3 and Comparative Examples 1 and 2 in Table 1, the lithium ion secondary batteries of Examples 1 to 3 did not cause a decrease in output due to DCR increase, and during the overcharge test. It is clear that safety has been improved because neither smoke nor ignition was seen. Further, comparing Examples 1 to 3 with Comparative Examples 3 and 4, it can be seen that by increasing the addition amount to 2.0% by weight or more, the DCR suddenly increased and the output density decreased.

次に、リン系酸化防止剤の検討結果を示す。
(実施例4)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの代わりにテトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトを負極合剤に0.1重量%添加した以外は実施例1と同様の条件により作製し、評価試験を行った。
Next, the examination result of phosphorus antioxidant is shown.
Example 4
Tetrakis instead of 3,3 ', 3 ", 5,5', 5" -hexa-tert-butyl-a, a ', a "-(mesitylene-2,4,6-triyl) tri-p-cresol The same conditions as in Example 1 except that 0.1% by weight of (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylphosphonite was added to the negative electrode mixture. Were prepared and evaluated.

Figure 2010177062
Figure 2010177062

(実施例5)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの代わりにテトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトを負極合剤に0.3重量%添加した以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 5)
Tetrakis instead of 3,3 ', 3 ", 5,5', 5" -hexa-tert-butyl-a, a ', a "-(mesitylene-2,4,6-triyl) tri-p-cresol The same conditions as in Example 1 except that 0.3% by weight of (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylphosphonite was added to the negative electrode mixture. Were prepared and evaluated.

(実施例6)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの代わりにテトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトを負極合剤に0.5重量%添加した以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 6)
Tetrakis instead of 3,3 ', 3 ", 5,5', 5" -hexa-tert-butyl-a, a ', a "-(mesitylene-2,4,6-triyl) tri-p-cresol The same conditions as in Example 1 except that 0.5% by weight of (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylphosphonite was added to the negative electrode mixture. Were prepared and evaluated.

(比較例5)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの代わりにテトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトを負極合剤に0.05重量%添加した以外は実施例1と同様の条件により作製し、評価試験を行った。
(Comparative Example 5)
Tetrakis instead of 3,3 ', 3 ", 5,5', 5" -hexa-tert-butyl-a, a ', a "-(mesitylene-2,4,6-triyl) tri-p-cresol The same conditions as in Example 1, except that 0.05% by weight of (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylphosphonite was added to the negative electrode mixture. Were prepared and evaluated.

(比較例6)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの代わりにテトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトを負極合剤に1重量%添加した以外は実施例1と同様の条件により作製し、評価試験を行った。
(Comparative Example 6)
Tetrakis instead of 3,3 ', 3 ", 5,5', 5" -hexa-tert-butyl-a, a ', a "-(mesitylene-2,4,6-triyl) tri-p-cresol Prepared under the same conditions as in Example 1 except that 1% by weight of (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4′-diylphosphonite was added to the negative electrode mixture. Then, an evaluation test was conducted.

(比較例7)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの代わりにテトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトを負極合剤に2.0重量%添加した以外は実施例1と同様の条件により作製し、評価試験を行った。
(Comparative Example 7)
Tetrakis instead of 3,3 ', 3 ", 5,5', 5" -hexa-tert-butyl-a, a ', a "-(mesitylene-2,4,6-triyl) tri-p-cresol The same conditions as in Example 1 except that 2.0% by weight of (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylphosphonite was added to the negative electrode mixture. Were prepared and evaluated.

Figure 2010177062
Figure 2010177062

表2の実施例4〜6と比較例1,5とを比較することにより、実施例4〜6に係るリチウムイオン二次電池では、DCR上昇による出力低下を引き起こすことなく、過充電試験の際に発煙や発火も見られなかったことから、安全性が向上していること明らかである。 また、実施例4〜6と比較例6,7を比較すると、添加量を1.0重量%以上に増大させることにより、DCRが急激に上昇し出力密度が低下したことがわかる。   By comparing Examples 4 to 6 and Comparative Examples 1 and 5 in Table 2, the lithium ion secondary batteries according to Examples 4 to 6 were subjected to an overcharge test without causing a decrease in output due to an increase in DCR. Since no smoke or ignition was observed, it is clear that safety has been improved. In addition, when Examples 4 to 6 and Comparative Examples 6 and 7 are compared, it can be seen that the DCR is rapidly increased and the output density is decreased by increasing the addition amount to 1.0% by weight or more.

図2にフェノール系酸化防止剤添加量とリン系酸化防止剤添加量と出力密度の関係を表す。フェノール系で1.5重量%を超えた領域,リン系で0.5重量%を超えた領域で出力密度が顕著に下がることがわかる。   FIG. 2 shows the relationship between the phenol antioxidant addition amount, the phosphorus antioxidant addition amount, and the output density. It can be seen that the output density is remarkably lowered in the region exceeding 1.5% by weight in the case of phenol and in the region exceeding 0.5% by weight in the case of phosphorus.

次に、リン系酸化防止剤とフェノール系酸化防止剤を共に含む場合について説明する。   Next, the case where both a phosphorus antioxidant and a phenolic antioxidant are included will be described.

(実施例7)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール0.5重量%に加えてテトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトを負極合剤に0.1重量%添加したこと、及び、過充電試験の際に電流値を2C以外に5Cでも測定したこと以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 7)
3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri-p-cresol 0.5 wt. 0.1 wt% tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4′-diylphosphonite added to the negative electrode mixture, and An evaluation test was carried out under the same conditions as in Example 1 except that the current value was measured at 5C in addition to 2C during the overcharge test.

(実施例8)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの負極への添加量を1.0重量%にしてテトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトを負極合剤に0.1重量%添加したこと、及び過充電試験の際に電流値を2C以外に5Cでも測定したこと以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 8)
3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri-p-cresol to the negative electrode Addition amount is 1.0% by weight and tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4′-diylphosphonite is 0.1% by weight in the negative electrode mixture. An evaluation test was performed under the same conditions as in Example 1 except that the current value was measured at 5C in addition to 2C during the overcharge test.

(実施例9)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの負極への添加量を1.5重量%にしてテトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトを負極合剤に0.3重量%添加したこと、及び過充電試験の際に電流値を2C以外に5Cでも測定したこと以外は実施例1と同様の条件により作製し、評価試験を行った。
Example 9
3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri-p-cresol to the negative electrode The addition amount is 1.5% by weight, and tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylphosphonite is 0.3% by weight in the negative electrode mixture. An evaluation test was performed under the same conditions as in Example 1 except that the current value was measured at 5C in addition to 2C during the overcharge test.

(実施例10)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール0.5重量%に加えてテトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトを負極に0.3重量%添加したこと、及び過充電試験の際に電流値を2C以外に5Cでも測定したこと以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 10)
3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri-p-cresol 0.5 wt. And 0.3% by weight of tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylphosphonite added to the negative electrode and overcharge test In this case, a current value was also measured at 5C in addition to 2C.

(実施例11)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの負極への添加量を1.0重量%にしてテトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトを負極合剤に0.5重量%添加したこと、及び過充電試験の際に電流値を2C以外に5Cでも測定したこと以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 11)
3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri-p-cresol to the negative electrode The addition amount is 1.0% by weight, and 0.5% by weight of tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4′-diylphosphonite as a negative electrode mixture. An evaluation test was performed under the same conditions as in Example 1 except that the current value was measured at 5C in addition to 2C during the overcharge test.

(実施例12)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの負極への添加量を1.5重量%にしてテトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトを負極合剤に0.5重量%添加したこと、及び過充電試験の際に電流値を2C以外に5Cでも測定したこと以外は実施例1と同様の条件により作製し、評価試験を行った。
Example 12
3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri-p-cresol to the negative electrode The addition amount is 1.5% by weight, and 0.5% by weight of tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylphosphonite as a negative electrode mixture. An evaluation test was performed under the same conditions as in Example 1 except that the current value was measured at 5C in addition to 2C during the overcharge test.

(実施例13)
3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールの負極への添加量を1.5重量%にしてテトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトを負極合剤に0.1重量%添加したこと、及び過充電試験の際に電流値を2C以外に5Cでも測定したこと以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 13)
3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri-p-cresol to the negative electrode The addition amount is 1.5% by weight, and tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylphosphonite is 0.1% by weight in the negative electrode mixture. An evaluation test was performed under the same conditions as in Example 1 except that the current value was measured at 5C in addition to 2C during the overcharge test.

Figure 2010177062
Figure 2010177062

表3の実施例7〜9及び10〜13より、リン系酸化防止剤の添加量Aとフェノール系酸化防止剤の添加量Bの割合A/Bが、0.1以上0.2以下の場合では、5Cでも発煙がなく安全性が更に向上していることは明らかである。   From Examples 7 to 9 and 10 to 13 in Table 3, when the ratio A / B of the addition amount A of the phosphorus-based antioxidant and the addition amount B of the phenol-based antioxidant is 0.1 or more and 0.2 or less Then, it is clear that there is no smoke even at 5C and the safety is further improved.

次に、負極活物質の平均粒径と比表面積の検討結果を示す。   Next, the examination result of the average particle diameter and specific surface area of a negative electrode active material is shown.

(実施例14)
炭素材料の平均粒径を10.2μmとし、比表面積を5.5m2/gにしたこと以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 14)
A carbon material was produced under the same conditions as in Example 1 except that the average particle size of the carbon material was 10.2 μm and the specific surface area was 5.5 m 2 / g, and an evaluation test was performed.

(実施例15)
破砕方法を衝撃破砕機からジェットミルに変更し、負極活物質の平均粒径を5.5μm、比表面積を9.2m2/gに変更したこと以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 15)
The crushing method was changed from an impact crusher to a jet mill, and the negative electrode active material was prepared under the same conditions as in Example 1 except that the average particle size was changed to 5.5 μm and the specific surface area was changed to 9.2 m 2 / g. An evaluation test was conducted.

(実施例16)
破砕方法を衝撃破砕機からジェットミルに変更し、負極活物質の平均粒径を8.7μm、比表面積を4.2m2/gに変更したこと以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 16)
The crushing method was changed from an impact crusher to a jet mill, and the negative electrode active material was produced under the same conditions as in Example 1 except that the average particle size of the negative electrode active material was changed to 8.7 μm and the specific surface area was changed to 4.2 m 2 / g. An evaluation test was conducted.

(実施例17)
負極活物質の平均粒径を11.3μm、比表面積を8.5m2/gに変更したこと以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 17)
A negative electrode active material was produced under the same conditions as in Example 1 except that the average particle size was changed to 11.3 μm and the specific surface area was changed to 8.5 m 2 / g, and an evaluation test was performed.

(実施例18)
破砕方法を衝撃破砕機からジェットミルに変更し、負極活物質の平均粒径を5.3μm、比表面積を13.2m2/gに変更したこと以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 18)
The crushing method was changed from an impact crusher to a jet mill, and the negative electrode active material was produced under the same conditions as in Example 1 except that the average particle size was changed to 5.3 μm and the specific surface area was changed to 13.2 m 2 / g. An evaluation test was conducted.

Figure 2010177062
Figure 2010177062

実施例1,14〜16と実施例17,18より、比表面積が1m2/g以上6m2/g以下であって、炭素材料の平均粒子径が10μm以上20μm以下である場合は、それ以外の場合に比べて発煙がなく、更に安全性が向上していることは明らかであった。 From Examples 1, 14 to 16 and Examples 17 and 18, when the specific surface area is 1 m 2 / g or more and 6 m 2 / g or less and the average particle size of the carbon material is 10 μm or more and 20 μm or less, otherwise It was clear that there was no smoke and safety was further improved compared to the case of.

次に、ビニレンカーボネートを添加した場合の検討結果を示す。   Next, the examination result at the time of adding vinylene carbonate is shown.

(実施例19)
電解液に、ビニレンカーボネートを2.0重量%添加したこと、及び過充電試験の際に電流値を2C以外に5Cでも測定したこと以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 19)
An evaluation test was conducted under the same conditions as in Example 1 except that 2.0% by weight of vinylene carbonate was added to the electrolyte, and that the current value was measured at 5C in addition to 2C during the overcharge test. went.

Figure 2010177062
Figure 2010177062

(実施例20)
過充電試験の際に電流値を2C以外に5Cでも測定したこと以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 20)
An evaluation test was carried out under the same conditions as in Example 1 except that the current value was measured at 5C in addition to 2C during the overcharge test.

Figure 2010177062
Figure 2010177062

実施例19及び20から、電解液にビニレンカーボネートを加えることにより5Cでも発煙がなく、更に安全性が向上することがわかる。   From Examples 19 and 20, it can be seen that by adding vinylene carbonate to the electrolyte, there is no smoke even at 5C, and the safety is further improved.

次に、3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールとテトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトの検討結果を示す。   Next, 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri-p-cresol and The examination result of tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylphosphonite is shown.

(実施例21)
フェノール系酸化防止剤種を2,6−ジ−t−ブチル−4−メチルフェノールに変更した以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 21)
An evaluation test was carried out under the same conditions as in Example 1 except that the phenolic antioxidant was changed to 2,6-di-t-butyl-4-methylphenol.

Figure 2010177062
Figure 2010177062

(実施例22)
リン系酸化防止剤をトリス(ノニルフェニル)ホスファイトに変更した以外は実施例1と同様の条件により作製し、評価試験を行った。
(Example 22)
An evaluation test was carried out under the same conditions as in Example 1 except that the phosphorus antioxidant was changed to tris (nonylphenyl) phosphite.

Figure 2010177062
Figure 2010177062

Figure 2010177062
Figure 2010177062

実施例1及び21から、3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールは、2,6−ジ−t−ブチル−4−メチルフェノールより発煙がなく、更に安全性が向上していることがわかった。   From Examples 1 and 21, 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri- It has been found that p-cresol is less smoking than 2,6-di-t-butyl-4-methylphenol, and the safety is further improved.

実施例4及び22から、テトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトは、トリス(ノニルフェニル)ホスファイトより発煙がなく、更に安全性が向上していることがわかった。   From Examples 4 and 22, tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4′-diylphosphonite has less fuming than tris (nonylphenyl) phosphite. It was found that the safety was further improved.

10 正極
11 セパレータ
12 負極
13 電池缶
14 正極タブ
15 負極タブ
16 内蓋
17 内圧開放弁
18 ガスケット
19 PTC素子
20 電池蓋
DESCRIPTION OF SYMBOLS 10 Positive electrode 11 Separator 12 Negative electrode 13 Battery can 14 Positive electrode tab 15 Negative electrode tab 16 Inner cover 17 Internal pressure release valve 18 Gasket 19 PTC element 20 Battery cover

Claims (13)

リチウムイオンを吸蔵放出する正極と、リチウムイオンを吸蔵放出する負極と、が非水電解液及びセパレータを介して形成されるリチウムイオン二次電池であって、
前記負極が、集電体と負極合剤とを有し、
前記負極合剤が、負極活物質と、導電剤と、バインダと、を含有し、
前記負極活物質は、炭素材料であって、
前記負極合剤は、フェノール基を有する化合物を0.5重量%以上1.5重量%以下、又はリンを有する化合物を0.1重量%以上0.5重量%以下含有することを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery in which a positive electrode that occludes and releases lithium ions and a negative electrode that occludes and releases lithium ions are formed through a non-aqueous electrolyte and a separator,
The negative electrode has a current collector and a negative electrode mixture,
The negative electrode mixture contains a negative electrode active material, a conductive agent, and a binder,
The negative electrode active material is a carbon material,
The negative electrode mixture contains a phenol group-containing compound in an amount of 0.5 wt% to 1.5 wt%, or a phosphorus compound in an amount of 0.1 wt% to 0.5 wt%. Lithium ion secondary battery.
前記炭素材料の比表面積が、1m2/g以上6m2/g以下であって、前記炭素材料の平均粒子径が10μm以上20μm以下であることを特徴とする請求項1に記載のリチウムイオン二次電池。 2. The lithium ion secondary material according to claim 1, wherein the carbon material has a specific surface area of 1 m 2 / g or more and 6 m 2 / g or less, and the carbon material has an average particle diameter of 10 μm or more and 20 μm or less. Next battery. 前記非水電解液が、不飽和基を含有する環状カーボネートを含有することを特徴とする請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the nonaqueous electrolytic solution contains a cyclic carbonate containing an unsaturated group. 前記フェノール基を有する化合物が、3,3′,3″,5,5′,5″−ヘキサ−tert−ブチル−a,a′,a″−(メシチレン−2,4,6−トリイル)トリ−p−クレゾールであることを特徴とする請求項1に記載のリチウムイオン二次電池。   The compound having a phenol group is 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri The lithium ion secondary battery according to claim 1, wherein the lithium ion secondary battery is −p-cresol. 前記リンを有する化合物が、テトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4′−ジイルホスフォナイトであることを特徴とする請求項1に記載のリチウムイオン二次電池。   2. The compound according to claim 1, wherein the phosphorus-containing compound is tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4′-diylphosphonite. Lithium ion secondary battery. リチウムイオンを吸蔵放出する正極と、リチウムイオンを吸蔵放出する負極と、が非水電解液及びセパレータを介して形成されるリチウムイオン二次電池であって、
前記負極が、集電体と負極合剤とを有し、
前記負極合剤が、負極活物質と、導電剤と、バインダと、を含有し、
前記負極活物質は、炭素材料であって、
前記負極合剤は、フェノール基を有する化合物を0.5重量%以上1.5重量%以下、及びリンを有する化合物を0.1重量%以上0.5重量%以下含有することを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery in which a positive electrode that occludes and releases lithium ions and a negative electrode that occludes and releases lithium ions are formed through a non-aqueous electrolyte and a separator,
The negative electrode has a current collector and a negative electrode mixture,
The negative electrode mixture contains a negative electrode active material, a conductive agent, and a binder,
The negative electrode active material is a carbon material,
The negative electrode mixture contains a phenol group-containing compound in an amount of 0.5 wt% to 1.5 wt% and a phosphorus compound in an amount of 0.1 wt% to 0.5 wt%. Lithium ion secondary battery.
リンを有する化合物の含有量Aと、前記フェノール基を有する化合物の含有量前記Bとの比が、0.1≦A/B≦0.2となることを特徴とする請求項6に記載のリチウムイオン二次電池。   The ratio of the content A of the compound having phosphorus and the content B of the compound having phenol group is 0.1 ≦ A / B ≦ 0.2. Lithium ion secondary battery. 前記炭素材料の比表面積が、1m2/g以上6m2/g以下であって、前記炭素材料の平均粒子径が10μm以上20μm以下であることを特徴とする請求項6に記載のリチウムイオン二次電池。 The specific surface area of the carbon material is 1 m 2 / g or more and 6 m 2 / g or less, and the average particle diameter of the carbon material is 10 μm or more and 20 μm or less. Next battery. 前記非水電解液が、不飽和基を含有する環状カーボネートを含有することを特徴とする請求項6に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 6, wherein the nonaqueous electrolytic solution contains a cyclic carbonate containing an unsaturated group. 前記環状カーボネートが、ビニレンカーボネートであることを特徴とする請求項6に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 6, wherein the cyclic carbonate is vinylene carbonate. リチウムイオンを吸蔵放出する正極と、リチウムイオンを吸蔵放出する負極と、が非水電解液及びセパレータを介して形成されるリチウムイオン二次電池であって、
前記負極が、集電体と負極合剤とを有し、
前記負極合剤が、負極活物質と、導電剤と、バインダと、を含有し、
前記負極活物質は、炭素材料であって、
前記負極合剤は、酸化防止剤を含有することを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery in which a positive electrode that occludes and releases lithium ions and a negative electrode that occludes and releases lithium ions are formed through a non-aqueous electrolyte and a separator,
The negative electrode has a current collector and a negative electrode mixture,
The negative electrode mixture contains a negative electrode active material, a conductive agent, and a binder,
The negative electrode active material is a carbon material,
The lithium ion secondary battery, wherein the negative electrode mixture contains an antioxidant.
前記酸化防止剤は、酸素原子を含有することを特徴とする請求項11に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 11, wherein the antioxidant contains an oxygen atom. 前記酸化防止剤は、水酸基を有することを特徴とする請求項11に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 11, wherein the antioxidant has a hydroxyl group.
JP2009018948A 2009-01-30 2009-01-30 Lithium secondary battery Pending JP2010177062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018948A JP2010177062A (en) 2009-01-30 2009-01-30 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018948A JP2010177062A (en) 2009-01-30 2009-01-30 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2010177062A true JP2010177062A (en) 2010-08-12

Family

ID=42707791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018948A Pending JP2010177062A (en) 2009-01-30 2009-01-30 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2010177062A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018129A1 (en) 2010-08-06 2012-02-09 Canon Kabushiki Kaisha X-ray phase contrast imaging using a grating with unequal slit widths
JP2015026432A (en) * 2013-07-24 2015-02-05 日本ゼオン株式会社 Composite particle with reduced particle size for electrochemical element electrode and method for producing composite particle with reduced particle size for electrochemical element electrode
US9887721B2 (en) 2011-03-02 2018-02-06 Nokomis, Inc. Integrated circuit with electromagnetic energy anomaly detection and processing
JP2019114346A (en) * 2017-12-21 2019-07-11 トヨタ自動車株式会社 Lithium ion secondary battery
US10475754B2 (en) 2011-03-02 2019-11-12 Nokomis, Inc. System and method for physically detecting counterfeit electronics

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154531A (en) * 1996-11-25 1998-06-09 Toray Ind Inc Secondary battery
JPH1173964A (en) * 1997-08-29 1999-03-16 Ricoh Co Ltd Nonaqueous electrolyte secondary battery
JP2001196065A (en) * 2000-01-12 2001-07-19 Sony Corp Secondary battery
JP2002237304A (en) * 2001-02-13 2002-08-23 Hitachi Powdered Metals Co Ltd Graphite particles for negative electrode and negative electrode coating film of non-aqueous secondary battery
JP2003168429A (en) * 2001-11-29 2003-06-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2005050762A1 (en) * 2003-11-21 2005-06-02 Kureha Corporation Electrode binder composition for nonaqueous electrolyte battery and use thereof
JP2005248151A (en) * 2004-02-06 2005-09-15 Mitsubishi Chemicals Corp Aliphatic polyester polyether copolymer and manufacturing method therefor
JP2005317493A (en) * 2004-03-31 2005-11-10 Hitachi Maxell Ltd Nonaqueous secondary battery and electronic equipment using this
JP2006335359A (en) * 2005-05-31 2006-12-14 Nippon Zeon Co Ltd Oxygen absorptive multi-layer tube

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154531A (en) * 1996-11-25 1998-06-09 Toray Ind Inc Secondary battery
JPH1173964A (en) * 1997-08-29 1999-03-16 Ricoh Co Ltd Nonaqueous electrolyte secondary battery
JP2001196065A (en) * 2000-01-12 2001-07-19 Sony Corp Secondary battery
JP2002237304A (en) * 2001-02-13 2002-08-23 Hitachi Powdered Metals Co Ltd Graphite particles for negative electrode and negative electrode coating film of non-aqueous secondary battery
JP2003168429A (en) * 2001-11-29 2003-06-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2005050762A1 (en) * 2003-11-21 2005-06-02 Kureha Corporation Electrode binder composition for nonaqueous electrolyte battery and use thereof
JP2005248151A (en) * 2004-02-06 2005-09-15 Mitsubishi Chemicals Corp Aliphatic polyester polyether copolymer and manufacturing method therefor
JP2005317493A (en) * 2004-03-31 2005-11-10 Hitachi Maxell Ltd Nonaqueous secondary battery and electronic equipment using this
JP2006335359A (en) * 2005-05-31 2006-12-14 Nippon Zeon Co Ltd Oxygen absorptive multi-layer tube

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018129A1 (en) 2010-08-06 2012-02-09 Canon Kabushiki Kaisha X-ray phase contrast imaging using a grating with unequal slit widths
US9887721B2 (en) 2011-03-02 2018-02-06 Nokomis, Inc. Integrated circuit with electromagnetic energy anomaly detection and processing
US10475754B2 (en) 2011-03-02 2019-11-12 Nokomis, Inc. System and method for physically detecting counterfeit electronics
US11450625B2 (en) 2011-03-02 2022-09-20 Nokomis, Inc. System and method for physically detecting counterfeit electronics
JP2015026432A (en) * 2013-07-24 2015-02-05 日本ゼオン株式会社 Composite particle with reduced particle size for electrochemical element electrode and method for producing composite particle with reduced particle size for electrochemical element electrode
JP2019114346A (en) * 2017-12-21 2019-07-11 トヨタ自動車株式会社 Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP5627250B2 (en) Lithium ion battery
EP2634847B1 (en) Multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and method for manufacturing multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery
JP4670908B2 (en) Negative electrode material for lithium secondary battery and lithium secondary battery
JP2007184145A (en) Lithium secondary battery
WO2014128903A1 (en) Lithium ion secondary battery
KR101124893B1 (en) Anode active material improved safety and secondary battery employed with the same
JP7375222B2 (en) Positive electrode active materials, lithium ion secondary batteries, battery modules, battery packs and electrical devices
JPWO2016047031A1 (en) Nonaqueous electrolyte secondary battery
JP2008112594A (en) Lithium secondary battery
JP2018045904A (en) Lithium ion secondary battery and method of manufacturing the same
JP2010177062A (en) Lithium secondary battery
JP5469979B2 (en) Lithium ion secondary battery
US10749167B2 (en) Lithium ion secondary battery and method of manufacturing the same
KR20160059121A (en) Silicon based anode material for lithium secondary battery with controlled nano size particles, lithium secondary battery having the same, and method for preparing the same
JP2011253688A (en) Negative electrode active material particle, negative electrode plate, lithium ion secondary battery, vehicle, battery mounting device, and method of manufacturing negative electrode active material particle
JP6902206B2 (en) Lithium ion secondary battery
US20240213441A1 (en) Negative electrode and secondary battery including the negative electrode
JP2003187798A (en) Lithium secondary battery
WO2012124256A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode using same, and method for producing positive electrode active material
JP6326366B2 (en) Lithium phosphorus composite oxide carbon composite, method for producing the same, electrochemical device, and lithium ion secondary battery
KR20210094080A (en) Anode material for lithium ion secondary battery, manufacturing method of negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2013109931A (en) Electrode for nonaqueous electrolytic secondary battery use, and nonaqueous electrolytic secondary battery
JP2006032296A (en) Negative electrode and nonaqueous electrolyte secondary battery
KR20110138606A (en) Negative electrode with improved wetting property to electrolyte and secondary battery comprising the same
JP6185403B2 (en) Secondary battery and separator for the battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326