JP2010176903A - Nonaqueous electrolytic solution for lithium secondary battery - Google Patents

Nonaqueous electrolytic solution for lithium secondary battery Download PDF

Info

Publication number
JP2010176903A
JP2010176903A JP2009015824A JP2009015824A JP2010176903A JP 2010176903 A JP2010176903 A JP 2010176903A JP 2009015824 A JP2009015824 A JP 2009015824A JP 2009015824 A JP2009015824 A JP 2009015824A JP 2010176903 A JP2010176903 A JP 2010176903A
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
electrolytic solution
nonaqueous electrolytic
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009015824A
Other languages
Japanese (ja)
Inventor
Toru Miyajima
徹 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2009015824A priority Critical patent/JP2010176903A/en
Publication of JP2010176903A publication Critical patent/JP2010176903A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution for a lithium secondary battery, which retains high ion conductivity even when containing a low dielectric constant solvent at high blending ratio, and shows less drop in ion conductivity under low temperature. <P>SOLUTION: The nonaqueous electrolytic solution (D) for the lithium secondary battery contains essential components of (A) a calixpyrrole class, (B) a lithium salt, and (C) a nonaqueous solvent. A mol ratio (A)/(B) is 0.1 to 1.0, and the content of lithium salt (B) is 0.1 to 3.0 mol/L. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウム二次電池用非水電解液に関する。さらに詳しくは、低温でのイオン伝導度が高く、電池容量の低下が小さいリチウム二次電池用電解液に関する。   The present invention relates to a non-aqueous electrolyte for a lithium secondary battery. More specifically, the present invention relates to an electrolytic solution for a lithium secondary battery that has high ionic conductivity at low temperatures and a small decrease in battery capacity.

近年、携帯電話やノート型パソコンなどの携帯用電子機器の電源として、高いエネルギー密度を持つリチウム二次電池の開発が盛んに行われている。また、リチウム二次電池は動作電圧が高く、高出力を得やすいため、電気自動車及びハイブリッド自動車の電源としても重要性が増している。
リチウム二次電池は、その適用分野の拡大に伴い、幅広い温度領域で確実に動作することが求められている。特に寒冷地での使用に備え、低温での電池性能の改善が急務となっている。
In recent years, lithium secondary batteries having high energy density have been actively developed as power sources for portable electronic devices such as mobile phones and notebook computers. In addition, lithium secondary batteries have a high operating voltage and easily obtain high output, so that they are also becoming more important as power sources for electric vehicles and hybrid vehicles.
Lithium secondary batteries are required to operate reliably in a wide temperature range as their application fields expand. In particular, there is an urgent need to improve battery performance at low temperatures in preparation for use in cold regions.

リチウム二次電池には、非水溶媒とリチウム塩からなる非水電解液が使用されている。この非水溶媒は、環状炭酸エステル等の高誘電率溶媒と鎖状炭酸エステル等の低粘度溶媒を混合したものが代表的である。
これらの溶媒のうち、広く一般に使用されているエチレンカーボネート(EC)やジメチルカーボネート(DMC)は、それぞれの融点が37℃と3℃と比較的高いため、これらの溶媒を含む電解液は、低温下で粘度上昇や凝固が起こりやすい。このため、このような非水溶媒を低温で用いた場合、電解液のイオン伝導度及び電池容量が急激に低下するという問題がある。
A non-aqueous electrolyte composed of a non-aqueous solvent and a lithium salt is used for the lithium secondary battery. This non-aqueous solvent is typically a mixture of a high dielectric constant solvent such as a cyclic carbonate and a low viscosity solvent such as a chain carbonate.
Among these solvents, ethylene carbonate (EC) and dimethyl carbonate (DMC), which are widely used, have relatively high melting points of 37 ° C. and 3 ° C., respectively. Under viscosity is likely to increase and coagulate For this reason, when such a nonaqueous solvent is used at low temperature, there exists a problem that the ionic conductivity and battery capacity of electrolyte solution fall rapidly.

この改善策として、低粘度かつ低融点の溶媒であるエチルメチルカーボネート(EMC)(特許文献1参照)や酢酸エステル(特許文献2参照)を上記の環状カーボネートや鎖状カーボネートと併用して電解液として用いることが提案されている。   As an improvement measure, ethyl methyl carbonate (EMC) (see Patent Document 1) or acetic acid ester (see Patent Document 2), which is a low-viscosity and low-melting solvent, is used in combination with the above cyclic carbonate or chain carbonate. It has been proposed to be used as

しかしながら、電解液中のEMCなどの低誘電率溶媒の配合比率が高い場合には、リチウム塩の溶解性と解離度が低下するため、広い温度領域において十分なイオン伝導度が得られないという問題を有する。また、電解液に酢酸エステルを配合した場合、耐還元性が悪化するため、サイクル時に電池容量が大幅に低下するという問題点を有する。   However, when the mixing ratio of a low dielectric constant solvent such as EMC in the electrolytic solution is high, the solubility and dissociation degree of the lithium salt are lowered, so that sufficient ionic conductivity cannot be obtained in a wide temperature range. Have Further, when an acetate ester is blended in the electrolytic solution, the reduction resistance deteriorates, so that there is a problem that the battery capacity is greatly reduced during the cycle.

特開平10−294016号公報Japanese Patent Laid-Open No. 10-294016 特開平9−245838号公報Japanese Patent Laid-Open No. 9-245838

そこで、低誘電率溶媒の配合比率が高い場合でも高いイオン伝導度を有し、低温下でのイオン伝導度の低下が小さいリチウム二次電池用非水電解液を提供することを目的とする。   Accordingly, it is an object to provide a non-aqueous electrolyte for a lithium secondary battery that has high ionic conductivity even when the blending ratio of the low dielectric constant solvent is high and has a small decrease in ionic conductivity at low temperatures.

本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。
すなわち、本発明は、カリックスピロール類(A)とリチウム塩(B)、および非水溶媒(C)を必須成分とし、(A)/(B)のモル比が0.1〜1.0であることを特徴とするリチウム二次電池用電解液である。
The inventors of the present invention have reached the present invention as a result of studies to achieve the above object.
That is, the present invention comprises the calic spirols (A), the lithium salt (B), and the nonaqueous solvent (C) as essential components, and the molar ratio (A) / (B) is 0.1 to 1.0. There is an electrolyte for a lithium secondary battery.

本発明のリチウム二次電池用電解液は、低温下でのイオン伝導性を大幅に向上させ、また電池の容量低下を大幅に改善できる。   The electrolytic solution for a lithium secondary battery of the present invention can greatly improve the ion conductivity at low temperatures and can greatly improve the capacity reduction of the battery.

以下、本発明をさらに詳しく説明する。
本発明のリチウム二次電池用電解液は、カリックスピロール類(A)、リチウム塩(B)および非水溶媒(C)を必須成分とする。カリックスピロール類の配合により、低誘電率溶媒の配合比率が高い場合においてもリチウム塩の解離度を大幅に高める効果が得られ、幅広い温度領域で高いイオン伝導度を有する電解液を構成できる。すなわち、従来になく低温下でのイオン伝導度が優れた電解液を提供することができる。
Hereinafter, the present invention will be described in more detail.
The electrolyte solution for a lithium secondary battery of the present invention contains calic spirols (A), a lithium salt (B) and a nonaqueous solvent (C) as essential components. By blending the calic spirols, even when the blending ratio of the low dielectric constant solvent is high, an effect of greatly increasing the dissociation degree of the lithium salt can be obtained, and an electrolytic solution having high ionic conductivity in a wide temperature range can be configured. That is, it is possible to provide an electrolytic solution that is superior in ionic conductivity at low temperatures.

本発明におけるカリックスピロール類(A)は、ピロールが三級炭素原子で繋がった環状オリゴマーであり、例えば、下記一般式(1)で示される化合物が挙げられる。   The calic spirols (A) in the present invention are cyclic oligomers in which pyrrole is connected by a tertiary carbon atom, and examples thereof include compounds represented by the following general formula (1).

Figure 2010176903
Figure 2010176903

式(1)中、R〜Rは、それぞれ独立に、脂肪族炭化水素基または芳香族炭化水素基である。
脂肪族炭化水素基としては、飽和炭化水素基、不飽和炭化水素基のどちらでもよいが、化合物の安定性の観点から、飽和炭化水素基であることが好ましい。
飽和炭化水素基としては、溶解性の観点から炭素数が1〜4であることが好ましく、合成の容易さの観点からメチル基がさらに好ましい。
芳香族炭化水素基としては、フェニル基などが挙げられる。
In formula (1), R 1 to R 4 are each independently an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
The aliphatic hydrocarbon group may be either a saturated hydrocarbon group or an unsaturated hydrocarbon group, but is preferably a saturated hydrocarbon group from the viewpoint of the stability of the compound.
The saturated hydrocarbon group preferably has 1 to 4 carbon atoms from the viewpoint of solubility, and more preferably a methyl group from the viewpoint of ease of synthesis.
Examples of the aromatic hydrocarbon group include a phenyl group.

2個の置換基が繋がってスピロ環を形成していてもよい。例えば、RとRが繋がって1,1−シクロヘキサン環を形成する場合がある。 Two substituents may be connected to form a spiro ring. For example, R 1 and R 2 may be connected to form a 1,1-cyclohexane ring.

電解液への溶解性およびリチウム塩の解離度を考慮すると、nは1〜5であることが必要である。好ましいのは1〜3である。   In consideration of the solubility in the electrolytic solution and the degree of dissociation of the lithium salt, n needs to be 1 to 5. 1 to 3 are preferable.

カリックスピロール類(A)の具体例としては、下記一般式(2)で表されるメソ−オクタメチル−カリックス[4]ピロール(C4P)、下記一般式(3)で表される1,1,3,3,5,5−メソ−ヘキサメチル−2,2,4,4,6,6−メソ−ヘキサフェニル−カリックス[6]ピロール(C6P)が挙げられる。   Specific examples of the calic spirols (A) include meso-octamethyl-calix [4] pyrrole (C4P) represented by the following general formula (2), 1,1,3 represented by the following general formula (3) 3,5,5-meso-hexamethyl-2,2,4,4,6,6-meso-hexaphenyl-calix [6] pyrrole (C6P).

Figure 2010176903
Figure 2010176903

Figure 2010176903
Figure 2010176903

本発明の本発明のリチウム二次電池用電解液は、電解液中にカリックスピロール類を配合することにより、リチウム塩の解離度が向上し、幅広い温度領域で高いイオン伝導度を有するものである。
カリックスピロール類のリチウム塩(B)に対するモル比(A)/(B)が好ましくは0.1〜1.0であり、さらに好ましくは0.2〜1.0である。0.1未満では十分なリチウム塩の解離度を達成できないため十分なイオン伝導度が得られない場合がある。
また、1.0を超えると粘度上昇により十分なイオン伝導度が得られない場合がある。
The lithium secondary battery electrolytic solution of the present invention has a high ionic conductivity in a wide temperature range by improving the dissociation degree of the lithium salt by blending calic spirols in the electrolytic solution. .
The molar ratio (A) / (B) of the calic spirols to the lithium salt (B) is preferably 0.1 to 1.0, and more preferably 0.2 to 1.0. If it is less than 0.1, a sufficient degree of dissociation of the lithium salt cannot be achieved, so that sufficient ionic conductivity may not be obtained.
On the other hand, if it exceeds 1.0, sufficient ionic conductivity may not be obtained due to an increase in viscosity.

リチウム塩(B)としては、通常のリチウム二次電池用電解液に用いられているものを使用することができる。
具体的には、LiPF、LiBF、LiClO、LiCl、LiI等の無機リチウム塩、LiCFSO、LiN(CFSOなどの有機リチウム塩が挙げられる。これらのうち、非水溶媒への溶解性及びイオン伝導度の観点から、LiPF、LiBFが好ましい。
As lithium salt (B), what is used for the electrolyte solution for normal lithium secondary batteries can be used.
Specific examples include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiCl, and LiI, and organic lithium salts such as LiCF 3 SO 3 and LiN (CF 3 SO 2 ) 2 . Among these, LiPF 6 and LiBF 4 are preferable from the viewpoints of solubility in a non-aqueous solvent and ion conductivity.

これらのリチウム塩(B)の電解液中の濃度は、通常、0.1〜3mol/Lであるが、イオン伝導度を考慮すると、0.2〜2mol/Lであることが好ましい。   The concentration of these lithium salts (B) in the electrolyte is usually 0.1 to 3 mol / L, but is preferably 0.2 to 2 mol / L in view of ionic conductivity.

本発明の非水溶媒(C)としては、通常のリチウム二次電池用電解液に用いられているものを使用することができる。
具体的には、環状または鎖状炭酸エステル、環状または鎖状エーテル、鎖状カルボン酸エステル、ラクトン、ニトリル等の非水溶媒が挙げられ、これらは、単独または混合して用いることができる。
環状炭酸エステルとしては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)等が挙げられる。
鎖状炭酸エステルとしては、例えばジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)及びエチルメチルカーボネート(EMC)等が挙げられる。
環状もしくは鎖状エーテルとしては、例えばテトラヒドロフラン、1,2−ジメトキシエタン等が挙げられる。
鎖状カルボン酸エステルとしては、例えば酢酸メチル、酢酸エチル、及びプロピオン酸メチル等が挙げられる。
ラクトンとしては、たとえばγ−ブチロラクトンが挙げられ、ニトリルとしては例えばアセトニトリルが挙げられる。
これらの非水溶媒のうち、電気化学的安定性を考慮すると、環状または鎖状炭酸エステルが好ましい。これらの炭酸エステルのうち、低粘度かつ低融点溶媒であるDECおよびEMC等が特に好適である。
As the non-aqueous solvent (C) of the present invention, those used in ordinary electrolyte solutions for lithium secondary batteries can be used.
Specific examples include non-aqueous solvents such as cyclic or chain carbonates, cyclic or chain ethers, chain carboxylates, lactones, and nitriles, and these can be used alone or in combination.
Examples of the cyclic carbonate include ethylene carbonate (EC) and propylene carbonate (PC).
Examples of the chain carbonate include dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC).
Examples of the cyclic or chain ether include tetrahydrofuran, 1,2-dimethoxyethane and the like.
Examples of the chain carboxylic acid ester include methyl acetate, ethyl acetate, and methyl propionate.
Examples of the lactone include γ-butyrolactone, and examples of the nitrile include acetonitrile.
Of these non-aqueous solvents, cyclic or chain carbonates are preferred in view of electrochemical stability. Of these carbonic acid esters, DEC and EMC, which are low viscosity and low melting point solvents, are particularly suitable.

本発明のリチウム二次電池用電解液は、上記のカリックスピロール類(A)、リチウム塩(B)、及び非水溶媒(C)を含有してなる。   The electrolytic solution for a lithium secondary battery of the present invention contains the above-described calic spirols (A), a lithium salt (B), and a nonaqueous solvent (C).

本発明のリチウム二次電池用電解液の調製方法については特に限定はなく、非水溶媒にカリックスピロール類とリチウム塩を溶解させて調製することができる。   The method for preparing the electrolyte solution for a lithium secondary battery of the present invention is not particularly limited, and can be prepared by dissolving calic spirols and a lithium salt in a non-aqueous solvent.

以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。   Hereinafter, although an example and a comparative example explain the present invention further, the present invention is not limited to these. Hereinafter, unless otherwise specified, “%” represents “% by weight” and “parts” represents “parts by weight”.

製造例1:メソ−オクタメチル−カリックス[4]ピロール(C4P)の合成
ピロール33.5部とアセトン29部をメタノール100部に溶かした後、メタンスルホン酸1.5部を加えて室温で1時間反応させた。反応終了後、析出物を濾別し、濾液が無色になるまでメタノールで洗浄した。得られた固体物をヘキサン中に再沈殿することにより、37部(収率70%)のメソ−オクタメチル−カリックス[4]ピロール[前記一般式(2)で表した(C4P)]を得た。
Production Example 1: Synthesis of meso-octamethyl-calix [4] pyrrole (C4P) 33.5 parts of pyrrole and 29 parts of acetone were dissolved in 100 parts of methanol, 1.5 parts of methanesulfonic acid was added, and the mixture was stirred for 1 hour at room temperature. Reacted. After completion of the reaction, the precipitate was separated by filtration and washed with methanol until the filtrate became colorless. The obtained solid was reprecipitated in hexane to obtain 37 parts (yield 70%) of meso-octamethyl-calix [4] pyrrole [(C4P) represented by the general formula (2)]. .

製造例2:1,1,3,3,5,5−メソ−ヘキサメチル−2,2,4,4,6,6−メソ−ヘキサフェニル−カリックス[6]ピロール(C6P)の合成
(1)ジフェニルジ−(2−ピロリル)メタンの合成:
ベンゾフェノン18.2部とピロール13.4部をエタノール300部に溶かした後、三フッ化ホウ素−ジエチルエーテル錯体10部を加えて室温で5日間反応させた。反応終了後、析出物を濾別し、濾液が無色になるまでメタノールで洗浄した。得られた固体物をヘキサン中に再沈殿することにより、11.9部(収率40%)のジフェニルジ−(2−ピロリル)メタンを得た。
Production Example 2: Synthesis of 1,1,3,3,5,5-meso-hexamethyl-2,2,4,4,6,6-meso-hexaphenyl-calix [6] pyrrole (C6P) (1) Synthesis of diphenyldi- (2-pyrrolyl) methane:
After dissolving 18.2 parts of benzophenone and 13.4 parts of pyrrole in 300 parts of ethanol, 10 parts of boron trifluoride-diethyl ether complex was added and reacted at room temperature for 5 days. After completion of the reaction, the precipitate was separated by filtration and washed with methanol until the filtrate became colorless. The obtained solid was reprecipitated in hexane to obtain 11.9 parts (yield 40%) of diphenyldi- (2-pyrrolyl) methane.

(2)C6Pの合成:
上記のジフェニルジ−(2−ピロリル)メタン11.9部と三フッ化ホウ素−ジエチルエーテル錯体11.9部を、アセトン200部とエタノール200部の混合溶液に溶かした後、トリフルオロ酢酸10部を加えて室温で5日間反応させた。
反応終了後、析出物を濾別し、濾液が無色になるまでメタノールで洗浄した。得られた固体物をヘキサン中に再沈殿することにより、4.1部(収率30%)の1,1,3,3,5,5−メソ−ヘキサメチル−2,2,4,4,6,6−メソ−ヘキサフェニル−カリックス[6]ピロール[前記一般式(3)で表した(C6P)]を得た。
(2) Synthesis of C6P:
After dissolving 11.9 parts of the above diphenyldi- (2-pyrrolyl) methane and 11.9 parts of boron trifluoride-diethyl ether complex in a mixed solution of 200 parts of acetone and 200 parts of ethanol, 10 parts of trifluoroacetic acid. And allowed to react at room temperature for 5 days.
After completion of the reaction, the precipitate was separated by filtration and washed with methanol until the filtrate became colorless. The obtained solid was reprecipitated in hexane to give 4.1 parts (yield 30%) of 1,1,3,3,5,5-meso-hexamethyl-2,2,4,4,4. 6,6-Meso-hexaphenyl-calix [6] pyrrole [(C6P) represented by the general formula (3)] was obtained.

実施例1
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを、EC:DEC=0.3:0.7(体積比)となるように混合した非水溶媒に、LiPFを1mol/L、製造例1で得た(C4P)を0.5mol/Lになるように溶解して非水電解液を調整した。
Example 1
In a non-aqueous solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed so that EC: DEC = 0.3: 0.7 (volume ratio), LiPF 6 is 1 mol / L, Production Example 1 (C4P) obtained in (1) was dissolved to 0.5 mol / L to prepare a non-aqueous electrolyte.

実施例2
実施例1において、LiPFの代わりに、LiBFで1mol/Lとした以外は、実施例1と同様な操作を行い、非水電解液を調整した。
Example 2
In Example 1, instead of LiPF 6, the same operation as in Example 1 was performed except that LiBF 4 was changed to 1 mol / L to prepare a nonaqueous electrolytic solution.

実施例3
実施例1において、LiPFの代わりに、LiClで1mol/Lとした以外は、実施例1と同様な操作を行い、非水電解液を調整した。
Example 3
In Example 1, instead of LiPF 6, the same operation as in Example 1 was performed except that LiCl was changed to 1 mol / L to prepare a nonaqueous electrolytic solution.

実施例4
実施例1において、(C4P)を(C6P)とした以外は、実施例1と同様な操作を行い、非水電解液を調整した。
Example 4
In Example 1, except that (C4P) was changed to (C6P), the same operation as in Example 1 was performed to prepare a nonaqueous electrolytic solution.

実施例5
実施例2において、(C4P)を(C6P)とした以外は、実施例2と同様な操作を行い、非水電解液を調整した。
Example 5
In Example 2, the same operation as in Example 2 was performed except that (C4P) was changed to (C6P) to prepare a nonaqueous electrolytic solution.

比較例1
実施例1において、(C4P)を配合しないこと以外は、実施例1と同様な操作を行い、非水電解液を調整した。
Comparative Example 1
In Example 1, except that (C4P) was not blended, the same operation as in Example 1 was performed to prepare a nonaqueous electrolytic solution.

比較例2
実施例2において、(C4P)を配合しないこと以外は、実施例2と同様な操作を行い、非水電解液を調整した。
Comparative Example 2
In Example 2, the same operation as in Example 2 was performed except that (C4P) was not blended to prepare a nonaqueous electrolytic solution.

比較例3
実施例1において、(C4P)の濃度を0.05mol/Lとした以外は、実施例1と同様な操作を行い、非水電解液を調整した。
Comparative Example 3
In Example 1, the same operation as in Example 1 was performed except that the concentration of (C4P) was changed to 0.05 mol / L to prepare a nonaqueous electrolytic solution.

実施例1〜5で作成した本発明の非水電解液、および比較例1〜3で作成した比較のための非水電解液について、25℃、0℃、−20℃におけるイオン伝導度を測定した。イオン伝導度測定は、交流インピーダンス法により行った。結果を表1に示す。   The ion conductivity at 25 ° C., 0 ° C. and −20 ° C. was measured for the non-aqueous electrolyte of the present invention prepared in Examples 1 to 5 and the non-aqueous electrolyte for comparison prepared in Comparative Examples 1 to 3. did. The ionic conductivity was measured by the AC impedance method. The results are shown in Table 1.

Figure 2010176903
Figure 2010176903

表1に示す通り、実施例1〜5で作成した非水電解液はいずれも優れたイオン伝導度を有し、特に低温下でのイオン伝導度が比較例1〜3で作成した非水電解液よりも大幅に改善されていることがわかる。   As shown in Table 1, each of the nonaqueous electrolyte solutions prepared in Examples 1 to 5 has excellent ionic conductivity, and the ionic conductivity at low temperature was particularly prepared in Comparative Examples 1 to 3. It can be seen that there is a significant improvement over the liquid.

本発明によれば、幅広い温度領域で高いイオン伝導度を示し、特に従来になく低温下でのイオン伝導度が優れたリチウム二次電池用非水電解液を提供することができる。また、本発明の非水電解液を用いることにより、低温での電池性能が大幅に改善されたリチウム二次電池を提供することができる。   According to the present invention, it is possible to provide a non-aqueous electrolyte for a lithium secondary battery that exhibits high ionic conductivity in a wide temperature range, and that is particularly excellent in ionic conductivity at low temperatures. Moreover, by using the non-aqueous electrolyte of the present invention, it is possible to provide a lithium secondary battery in which battery performance at a low temperature is greatly improved.

Claims (4)

カリックスピロール類(A)とリチウム塩(B)、および非水溶媒(C)を必須成分とし、(A)/(B)のモル比が0.1〜1.0であることを特徴とするリチウム二次電池用電解液(D)。 Carrick spirols (A), lithium salt (B), and non-aqueous solvent (C) are essential components, and the molar ratio of (A) / (B) is 0.1 to 1.0. Electrolytic solution (D) for lithium secondary battery. 該カリックスピロール類(A)が下記一般式(1)で表される請求項1記載のリチウム二次電池用電解液(D)。
Figure 2010176903
[式中、R〜Rは、それぞれ独立に、脂肪族炭化水素基または芳香族炭化水素基であって、2個の置換基が繋がって環を形成していてもよい。nは1〜5の整数を表す。]
The electrolyte solution (D) for a lithium secondary battery according to claim 1, wherein the calic spirols (A) are represented by the following general formula (1).
Figure 2010176903
[Wherein, R 1 to R 4 are each independently an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and two substituents may be linked to form a ring. n represents an integer of 1 to 5. ]
該リチウム塩(B)の含有量が0.1〜3.0mol/Lである請求項1または2記載のリチウム二次電池用電解液(D)。   The electrolyte solution (D) for a lithium secondary battery according to claim 1 or 2, wherein the content of the lithium salt (B) is 0.1 to 3.0 mol / L. 請求項1〜3いずれか記載の電解液(D)を含むことを特徴とするリチウム二次電池。
The lithium secondary battery characterized by including the electrolyte solution (D) in any one of Claims 1-3.
JP2009015824A 2009-01-27 2009-01-27 Nonaqueous electrolytic solution for lithium secondary battery Pending JP2010176903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009015824A JP2010176903A (en) 2009-01-27 2009-01-27 Nonaqueous electrolytic solution for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009015824A JP2010176903A (en) 2009-01-27 2009-01-27 Nonaqueous electrolytic solution for lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2010176903A true JP2010176903A (en) 2010-08-12

Family

ID=42707655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009015824A Pending JP2010176903A (en) 2009-01-27 2009-01-27 Nonaqueous electrolytic solution for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2010176903A (en)

Similar Documents

Publication Publication Date Title
CN105428719B (en) Wide temperature lithium-ion battery electrolytes of high voltage and preparation method and application
JP7005587B2 (en) Non-aqueous electrolyte composition
EP3332441B1 (en) Nonaqueous electrolyte compositions comprising lithium oxalato phosphates
CN104051786B (en) A kind of electrolyte and preparation method thereof and a kind of high-voltage lithium ion batteries
KR102488908B1 (en) Electrolytes containing 6-membered ring cyclic sulfates
JP6738815B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP6876040B2 (en) Non-aqueous electrolyte composition containing fluorinated solvent and 2-furanone
JPWO2012053644A1 (en) Cyclic sulfate ester compound, non-aqueous electrolyte containing the same, and lithium secondary battery
CN105390742A (en) High-voltage lithium-ion battery electrolyte as well as preparation method and application thereof
CN102870268A (en) Nonaqueous electrolyte solution containing cyclic sulfone compound, and lithium secondary battery
KR101944009B1 (en) Electrolyte composition for secondary battery and method for producing the same
JP6600631B2 (en) Non-aqueous electrolyte containing monofluorophosphate ester salt and non-aqueous electrolyte battery using the same
JP6954461B2 (en) Electrolytes, electrochemical devices, lithium-ion secondary batteries and modules
TW499774B (en) New electrolytes and a lithium ion secondary battery
CN105006593A (en) Lithium ion secondary battery and electrolyte thereof
JP5893517B2 (en) Non-aqueous electrolyte
CN108352572B (en) Additive for nonaqueous electrolyte solution, and electricity storage device
CN103996873A (en) BTR918-graphite-cathode-matched non-aqueous electrolyte for lithium ion batteries
JP2010238385A (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
KR102131891B1 (en) Novel lithium salt compounds, method for preparing same and electrolyte for secondary battery comprising same
JP2010176903A (en) Nonaqueous electrolytic solution for lithium secondary battery
KR101735160B1 (en) Additives for lithium secondary battery, non-aqueous electrolyte and lithium secondary battery comprising the same
JP2013145731A (en) Lithium secondary battery
CN116264321A (en) Nonaqueous lithium battery electrolyte and lithium battery
JP2013171758A (en) Nonaqueous electrolyte secondary battery