JP2010176893A - Method of manufacturing conductive component for wiring device - Google Patents

Method of manufacturing conductive component for wiring device Download PDF

Info

Publication number
JP2010176893A
JP2010176893A JP2009015629A JP2009015629A JP2010176893A JP 2010176893 A JP2010176893 A JP 2010176893A JP 2009015629 A JP2009015629 A JP 2009015629A JP 2009015629 A JP2009015629 A JP 2009015629A JP 2010176893 A JP2010176893 A JP 2010176893A
Authority
JP
Japan
Prior art keywords
wire
forging
conductive component
bending
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009015629A
Other languages
Japanese (ja)
Other versions
JP5271097B2 (en
Inventor
Hayato Ioka
隼人 井岡
Tatsuji Kawaguchi
達治 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009015629A priority Critical patent/JP5271097B2/en
Publication of JP2010176893A publication Critical patent/JP2010176893A/en
Application granted granted Critical
Publication of JP5271097B2 publication Critical patent/JP5271097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a component for a wiring device, in which pure copper is work hardened by forging to thereby secure rigidity equivalent to rigidity obtained by using copper alloy. <P>SOLUTION: In the method of manufacturing the component for the wiring device in which a flat pure copper material 10 is bent into a conductive component 11 having a solid shape, predetermined parts of the material 10 that need to be rigid as the conductive component 11 are forged to be work hardened. The material 10 is a wire 12, and predetermined parts of the wire 12 are pressed flat by forging and work hardened. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、配線器具用導電部品の製造方法に関する。   The present invention relates to a method for manufacturing a conductive component for a wiring device.

従来、配線器具としては、例えば図10〜図11に示すスイッチボックス1のように、ボックス1内に端子板2を配置して、錠ばね3のばね力で配線(銅線)4を端子板2に保持している。また、接点端子5と接点端子6とを対向配置し、各接点部5a,6aの間に、接点部7a,7bを有する開閉端子7を配置して、コイルばね8のばね力で開閉端子7の接点部7aを接点部6aに保持している。   Conventionally, as a wiring instrument, for example, a switch box 1 shown in FIGS. 10 to 11 is arranged with a terminal plate 2 in the box 1, and the wiring (copper wire) 4 is connected to the terminal plate by the spring force of the lock spring 3. 2 is held. Further, the contact terminal 5 and the contact terminal 6 are arranged to face each other, and the open / close terminal 7 having the contact parts 7a and 7b is arranged between the contact parts 5a and 6a. The contact portion 7a is held by the contact portion 6a.

前記接点端子5のような導電部品(接点端子6や端子板2も同様)は、一般に平面(平板)形状(二次元)の銅合金製の素材を、立体形状(三次元)の導電部品にプレス等で曲げ加工することで製造されている。例えば、順送金型と呼ばれる金型内で、素材を平面形状(導電部品の展開形状)に打ち抜く工程と、折り曲げる工程とを同時並行で行って製造している。   A conductive component such as the contact terminal 5 (same for the contact terminal 6 and the terminal plate 2) is generally made of a copper alloy material having a flat (flat) shape (two-dimensional) and a three-dimensional (three-dimensional) conductive component. Manufactured by bending with a press or the like. For example, in a metal mold called a progressive metal mold, a process of punching a material into a planar shape (a developed shape of a conductive part) and a process of bending are performed in parallel.

ここで、導電部品は、他の部品や配線との接続部において、ばね力によって接触力を保持する構造であるため、そのばね力を受ける部分では相応の剛性が必要である。そのため、素材として純銅を使用する場合には、必要な剛性が得られないので、剛性を高めるために、銅に錫等の添加材を加えた銅合金を使用している。ここで、純銅とは、剛性を高めるための添加材を加えていないものを意味する。   Here, since the conductive component has a structure in which a contact force is held by a spring force at a connection portion with another component or wiring, a portion that receives the spring force needs to have appropriate rigidity. For this reason, when pure copper is used as a material, the required rigidity cannot be obtained. Therefore, in order to increase the rigidity, a copper alloy in which an additive such as tin is added to copper is used. Here, pure copper means the thing which has not added the additive for improving rigidity.

なお、ばね性をコントロールするために材料を圧延する技術として、ばねの撓み量をできるだけ大きくとるために、ばね部形成部分を圧延して薄板化するものがある(特許文献1参照)。しかし、もともとの部材よりも撓みを大きくする、すなわち剛性を下げることができるものの、剛性を高めるものではない。   In addition, as a technique for rolling a material in order to control the spring property, there is a technique in which a spring portion forming portion is rolled and thinned so as to make the spring deflection as large as possible (see Patent Document 1). However, although the deflection can be made larger than that of the original member, that is, the rigidity can be lowered, the rigidity is not increased.

また、部品を線材化する技術として、ばね性および導電性を有する線材を屈曲してリレーソケットやコンセント等の接続器具の刃受ばねを構成し、刃受ばねの接触部を平板状に潰し加工する刃受ばね構造がある(特許文献2参照)。しかし、電気的接触部の接触面積を拡げるために平板状に潰し加工をしているだけであり、ばね性を発生する箇所は線材のまま残されるため、ばね性の剛性を高めるためには、材料を剛性の高いものにするか、より太い線材を使用する必要がある。   In addition, as a technology for turning parts into wire rods, spring wire and conductive wire rods are bent to form blade receiving springs for connecting devices such as relay sockets and outlets, and the contact portions of the blade receiving springs are crushed into a flat plate shape There is a blade receiving spring structure (see Patent Document 2). However, in order to expand the contact area of the electrical contact portion, it is only crushed into a flat plate shape, and the place where the spring property is generated remains as a wire, so in order to increase the rigidity of the spring property, It is necessary to make the material highly rigid or use a thicker wire.

特開2001−43953号公報JP 2001-43953 A 特開昭57−163969号公報JP 57-163969 A

しかしながら、銅合金は純銅よりも価格が高く、製造コストが高くなるという問題があった。   However, the copper alloy has a problem that the price is higher than that of pure copper and the manufacturing cost is increased.

本発明は、前記問題を解消するためになされたもので、純銅を鍛造で加工硬化させて硬度を高めることにより、銅合金を使った場合と同等の剛性を確保できるようにした配線器具用導電部品の製造方法を提供することを目的とするものである。   The present invention has been made to solve the above-mentioned problems. By increasing the hardness by forging and hardening pure copper by forging, it is possible to ensure the same rigidity as when copper alloy is used. It aims at providing the manufacturing method of components.

前記課題を解決するために、本発明は、平面形状の純銅製の素材を、立体形状の導電部品に曲げ加工する配線器具用導電部品の製造方法において、前記導電部品として剛性を必要とする、前記素材の所定箇所を鍛造で加工硬化させることを特徴とする配線器具用導電部品の製造方法を提供するものである。   In order to solve the above-mentioned problem, the present invention requires a rigidity as the conductive component in a method for manufacturing a conductive component for a wiring device in which a pure copper material having a planar shape is bent into a three-dimensional conductive component. The present invention provides a method for manufacturing a conductive component for a wiring device, wherein a predetermined portion of the material is work hardened by forging.

請求項2のように、請求項1において、前記素材は線材であり、この線材の所定箇所を鍛造で板状に押し潰しながら加工硬化させることができる。   As in claim 2, in claim 1, the material is a wire, and the predetermined portion of the wire can be work-cured while being crushed into a plate shape by forging.

請求項3のように、請求項2において、前記線材は、前記導電部品の展開形状に合わせて予め平面形状で曲げ加工し、その後、線材の所定箇所を鍛造で板状に押し潰し加工することができる。   As in claim 3, in claim 2, the wire is bent in advance in a planar shape in accordance with the developed shape of the conductive component, and then a predetermined portion of the wire is crushed into a plate shape by forging. Can do.

請求項4のように、請求項3において、前記線材を連続的に平面形状で曲げ加工する時に、曲げ型を線材の長手方向に複数個に分割し、線材の一端を固定治具で固定した後、線材の一端側から他端側に向かって、複数の曲げ型で順次に曲げ加工と鍛造を同時に行うことができる。   As in claim 4, when the wire is continuously bent into a planar shape in claim 3, the bending die is divided into a plurality of pieces in the longitudinal direction of the wire, and one end of the wire is fixed with a fixing jig. After that, bending and forging can be performed simultaneously with a plurality of bending dies from one end side to the other end side of the wire.

請求項5のように、請求項2において、前記線材を凹状鍛造型と凸状鍛造型とで鍛造する時に、凹状鍛造型の中心位置から幅方向の一方に片寄った位置に線材をセットすることができる。   As in claim 5, when the wire is forged with a concave forging die and a convex forging die, the wire is set at a position offset from the center position of the concave forging die to one side in the width direction. Can do.

請求項6のように、請求項2において、前記線材は、鍛造後の曲げ方向に応じて、線材を鍛造する方向を変えることができる。   As in claim 6, in claim 2, the wire can change the direction in which the wire is forged according to the bending direction after forging.

請求項7のように、請求項1において、前記素材に、局部的に細い箇所を形成する時に、鍛造前の素材の該当箇所を予め細く潰しておくことができる。   As in claim 7, in claim 1, when a locally thin portion is formed in the material, the corresponding portion of the material before forging can be crushed in advance.

請求項8のように、請求項1において、前記素材の該当箇所に、鍛造と同時にローレット形状の圧印を行うことができる。   As in claim 8, in claim 1, a knurled impression can be performed simultaneously with forging at a corresponding portion of the material.

本発明によれば、導電部品として剛性を必要とする、純銅製の素材の所定箇所を鍛造で加工硬化させて、剛性を高めるようにしたものである。すなわち、従来では、剛性を上げるために銅に錫等を添加した高価な銅合金製の素材を用いていたが、本発明では、鍛造による加工硬化で、銅合金製の素材と同等に剛性が上がるので、安価な純銅製の素材を用いることができる。   According to the present invention, a predetermined portion of a pure copper material that requires rigidity as a conductive component is processed and hardened by forging to increase the rigidity. That is, in the past, an expensive copper alloy material in which tin or the like was added to copper was used in order to increase the rigidity. However, in the present invention, the work hardening by forging has a rigidity equivalent to that of the copper alloy material. Since it goes up, an inexpensive pure copper material can be used.

請求項2によれば、素材が線材であれば、押し潰しても電気の流れ方向に対して断面積が一定で、電気抵抗が一定となるため、局所的な電気的発熱がなくなり、配線器具用導電部品として最適となる。また、材料ロスがほとんど無く、歩留まりが非常に良くなる。さらに、打ち抜きバリが発生しないので、耐圧特性に優れる。   According to the second aspect, if the material is a wire, even if it is crushed, the cross-sectional area is constant with respect to the flow direction of electricity, and the electric resistance is constant, so there is no local electric heat generation, and the wiring device It is optimal as a conductive part for industrial use. In addition, there is almost no material loss and the yield is very good. Further, since no punching burrs are generated, the pressure resistance is excellent.

請求項3によれば、導電部品の展開形状に合わせて線材を予め平面形状で曲げ加工することで、複雑な立体形状の導電部品であっても、容易に製造できるようになる。   According to the third aspect, by bending the wire in a planar shape in advance according to the developed shape of the conductive component, even a conductive component having a complicated three-dimensional shape can be easily manufactured.

請求項4によれば、線材を連続的に平面形状で曲げ加工する時に、複雑な曲げ形状を1個の曲げ型で同時に曲げると、線材に大きな引っ張り応力が掛かって線材が分断されることがある。これに対して、線材の固定した一端側から他端側(自由端)に向かって、複数の曲げ型で順次に曲げ加工と鍛造を同時に行うと、他端側から随時に線材が曲げ型側に引き込まれるため、引っ張り応力が掛かりにくくなって、線材が分断されることがなくなる。また、曲げ加工と鍛造を同時に行うために、製造効率が向上する。   According to claim 4, when a wire is continuously bent into a planar shape, if a complicated bending shape is bent at the same time with one bending die, the wire is subject to a large tensile stress and is thus divided. is there. On the other hand, if the bending and forging are performed sequentially with a plurality of bending dies from one end side where the wire is fixed to the other end side (free end), the wire is occasionally bent from the other end side. Therefore, the tensile stress is not easily applied, and the wire is not divided. Further, since bending and forging are performed simultaneously, the production efficiency is improved.

請求項5によれば、導電部品の幅方向の片側で寸法精度や形状精度が必要な場合においては、片寄らせた側が凹状鍛造型の内面に当接することで、高精度に加工できる。また、他側は凹状鍛造型の内面に当接しないので、他側端面のアールが大きくなって、耐圧特性が向上するようになる。   According to the fifth aspect, when dimensional accuracy or shape accuracy is required on one side in the width direction of the conductive component, the offset side can be processed with high accuracy by contacting the inner surface of the concave forging die. Moreover, since the other side does not contact the inner surface of the concave forging die, the radius of the other side end surface is increased, and the pressure resistance characteristics are improved.

請求項6によれば、鍛造後の曲げ方向に応じて、線材を鍛造する方向を変えることで、曲げ方向を多彩に組み合わせることができ、より複雑な導電部品の形状も実現することができる。   According to the sixth aspect, by changing the direction in which the wire is forged according to the bending direction after forging, the bending directions can be combined in various ways, and more complicated shapes of conductive parts can be realized.

請求項7によれば、導電部品に局所的に細い箇所を形成する必要がある場合、素材を鍛造する際に、その箇所で材料余りが生じ、鍛造型の隙間に入り込んでバリとなる。これに対して、鍛造前の素材の該当箇所を予め細く潰しておくことで、材料余りが生じなくなるので、バリが発生しなくなる。   According to the seventh aspect, when it is necessary to locally form a thin portion in the conductive component, when the material is forged, a surplus of material is generated at that portion and enters the gap of the forging die to become a burr. On the other hand, since the material surplus does not arise by crushing the applicable part of the raw material before forging beforehand, a burr | flash does not generate | occur | produce.

請求項8によれば、鍛造とローレット形状の圧印の2種類の加工を1工程で行うことができる。   According to claim 8, two types of processing, forging and knurled coining, can be performed in one step.

本発明の第1実施形態であり、(a)は、平面形状の素材の平面図、(b)は、素材を立体形状に曲げ加工した導電部品の斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is 1st Embodiment of this invention, (a) is a top view of a planar-shaped raw material, (b) is a perspective view of the electrically-conductive component which bent the raw material into the solid shape. 本発明の第2実施形態であり、(a)は、平面形状の線材の平面図、(b)は、線材を鍛造で板状に押し潰しながら加工硬化させた後の平面図、(c)は、線材を立体形状に曲げ加工した導電部品の斜視図である。It is 2nd Embodiment of this invention, (a) is a top view of a planar wire, (b) is a top view after carrying out work hardening, crushing a wire to plate shape by forging, (c) These are the perspective views of the electrically-conductive component which bent the wire to the three-dimensional shape. (a)(b)は、線材の1次曲げ加工要領を略画的に示す側面図、(c)〜(f)は、線材の要部断面図、(g)(h)は、バリ有りとバリ無しの状態を示す線材の要部断面図である。(A) and (b) are side views schematically showing the primary bending process of a wire, (c) to (f) are cross-sectional views of the main part of the wire, and (g) and (h) are burrs. It is principal part sectional drawing of a wire which shows a state without a burr | flash. 本発明の第3実施形態であり、(a)〜(e)は、線材を連続的に平面形状で曲げ加工する金型の作動順序を示す側面図である。It is 3rd Embodiment of this invention, (a)-(e) is a side view which shows the operation | movement order of the metal mold | die which carries out the bending process of the wire continuously by planar shape. (a)(b)は、線材を連続的に1次曲げと鍛造をした後に分断する状態を説明するための線材の側面図、(c)〜(e)は、線材の曲げ形状を1組の上下曲げ型だけで同時に加工する状態を説明するための線材の側面図である。(A) (b) is a side view of a wire for explaining a state in which the wire is continuously subjected to primary bending and forging and then divided, and (c) to (e) are a set of bending shapes of the wire. It is a side view of the wire for demonstrating the state processed simultaneously only by the up-and-down bending type | mold. 本発明の第4実施形態であり、(a)(b)は、線材にバリが生じない金型の作動順序を示す正面図、(c)(d)は、線材にバリが生じる金型の作動順序を示す正面図、(e)は、線材にバリが生じない金型の正面図、(f)は、バリが生じた導電部品の斜視図である。It is 4th Embodiment of this invention, (a) (b) is a front view which shows the operation | movement order of the metal mold | die which a burr | flash does not produce in a wire, (c) (d) is a metal mold | die with a burr | flash produced in a wire The front view which shows an operation | movement order, (e) is a front view of the metal mold | die which a burr | flash does not produce in a wire, (f) is a perspective view of the electrically-conductive component in which the burr | flash produced. 本発明の第5実施形態であり、(a)〜(d)は、鍛造後の曲げ方向に応じて線材を鍛造する方向を変えることを説明するための斜視図である。It is 5th Embodiment of this invention, (a)-(d) is a perspective view for demonstrating changing the direction which forges a wire according to the bending direction after forging. 本発明の第6実施形態であり、(a)〜(c)は、素材の一部を細く潰す金型の作動順序を示す正面図、(d)は、素材をそのまま鍛造する状態を示す正面図、(e)は、素材の一部を細く潰して鍛造する状態を示す正面図である。It is 6th Embodiment of this invention, (a)-(c) is a front view which shows the operation | movement order of the metal mold | die which crushes a part of raw material thinly, (d) is a front which shows the state which forges a raw material as it is. FIG. 4E is a front view showing a state in which a part of the material is finely crushed and forged. 本発明の第7実施形態であり、(a)は、導電部品の斜視図、(b)は、ローレット形状の圧印の拡大図、(c)は、(b)のI−I線断面図である。It is a 7th embodiment of the present invention, (a) is a perspective view of a conductive component, (b) is an enlarged view of a knurled coin, and (c) is a cross-sectional view taken along line II of (b). is there. (a)は、導電部品を使用するスイッチボックスの透視的斜視図、(b)は、接点端子と開閉端子の要部斜視図である。(A) is a perspective view of a switch box using a conductive component, and (b) is a perspective view of main parts of a contact terminal and an opening / closing terminal. 接点端子と開閉端子の要部側面図である。It is a principal part side view of a contact terminal and an opening-and-closing terminal.

以下、本発明を実施するための最良の形態について、図面を参照しながら詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は、第1実施形態であり、(a)は、平面(二次元)形状の純銅製の素材10の平面図、(b)は、(a)の素材10を立体(三次元)形状に曲げ加工した導電部品11の斜視図である。導電部品11は、一例として前記のような接点端子5である。なお、図1(a)(b)の導電部品11は、前記接点端子5とは外形状がやや異なるが、機能は同じである。   1A and 1B show a first embodiment, in which FIG. 1A is a plan view of a planar (two-dimensional) pure copper material 10, and FIG. 1B is a three-dimensional (three-dimensional) shape of the material 10 of FIG. It is a perspective view of the electrically-conductive component 11 bent into 2 parts. The conductive component 11 is the contact terminal 5 as described above as an example. 1A and 1B has a slightly different outer shape from the contact terminal 5, but has the same function.

まず、図1(a)のように、平板状の純銅製板から平面形状の素材10をプレス等で打ち抜く。   First, as shown in FIG. 1A, a planar material 10 is punched out from a flat pure copper plate with a press or the like.

ついで、導電部品11として剛性を必要とする、素材10の所定箇所(例えばn−nの範囲)を鍛造で加工硬化させる。この所定箇所は、素材10の全体でもよく、剛性を必要とする部分だけでもよい。なお、素材10をプレス等で打ち抜く前に、素材10の所定箇所を鍛造で加工硬化させ、ついで、素材10をプレス等で打ち抜くこともできる。   Next, a predetermined portion (for example, a range of nn) of the material 10 that requires rigidity as the conductive component 11 is work-hardened by forging. The predetermined portion may be the entire material 10 or only a portion requiring rigidity. In addition, before punching out the raw material 10 with a press or the like, a predetermined portion of the raw material 10 can be work-hardened by forging, and then the raw material 10 can be punched out with a press or the like.

その後、素材10を、図1(b)のように、プレス等で立体形状の導電部品11に曲げ加工する。具体的には、素材10を図1(a)の一点鎖線a´,b´,c´,d´,e´の部分で曲げ加工することで、導電部品11が図1(b)の一点鎖線a,b,c,d,eの部分で曲げ加工されるようになる。   Thereafter, the material 10 is bent into a three-dimensional conductive component 11 with a press or the like as shown in FIG. Specifically, by bending the material 10 along the dashed lines a ′, b ′, c ′, d ′, and e ′ shown in FIG. Bending is performed at the portions of chain lines a, b, c, d, and e.

第1実施形態であれば、導電部品11として剛性を必要とする、素材10の所定箇所を鍛造で加工硬化させて、剛性を高めるようにしたものである。この加工硬化により、硬度がHv60程度からHv110程度まで向上する。   If it is 1st Embodiment, the predetermined location of the raw material 10 which requires rigidity as the electrically-conductive component 11 is work-hardened by forging, and it raises rigidity. This work hardening improves the hardness from about Hv60 to about Hv110.

したがって、従来では、剛性を上げるために銅に錫等を添加した高価な銅合金製の素材を用いていたが、第1実施形態では、鍛造による加工硬化で、銅合金製の素材と同等に剛性が上がるので、安価な純銅製の素材10を用いることができる。   Therefore, in the past, an expensive copper alloy material in which tin or the like was added to copper was used in order to increase rigidity. However, in the first embodiment, it is equivalent to a copper alloy material by work hardening by forging. Since the rigidity increases, an inexpensive pure copper material 10 can be used.

図2は、第2実施形態であり、(a)は、平面形状の線材(素材)12の平面図、(b)は、線材12の所定箇所を鍛造で板状に押し潰しながら加工硬化させた後の平面図、(c)は、(b)の線材12を立体形状に曲げ加工した導電部品11の斜視図である。   2A and 2B show a second embodiment, in which FIG. 2A is a plan view of a planar wire rod (material) 12, and FIG. 2B is a work hardened while forging a predetermined portion of the wire rod 12 into a plate shape by forging. (C) is a perspective view of the conductive component 11 obtained by bending the wire 12 of (b) into a three-dimensional shape.

まず、図2(a)のように、線材12は、図1(a)のプレス等で打ち抜いた素材10と同様に、導電部品11の展開形状に合わせて予め平面形状で曲げ加工する(1次曲げ)。この1次曲げ加工は、図3(a)(b)に略画的に示すように、上下曲げ型20,21によって曲げることができる。その他、ワイヤーフォーミング加工機で曲げることもできる。なお、線材12の断面形状は、丸状でも角状でもよい。   First, as shown in FIG. 2 (a), the wire 12 is bent in a planar shape in advance in accordance with the developed shape of the conductive component 11 in the same manner as the material 10 punched by the press of FIG. 1 (a) (1). Next bend). This primary bending process can be bent by the upper and lower bending dies 20, 21 as shown schematically in FIGS. 3 (a) and 3 (b). In addition, it can be bent with a wire forming machine. In addition, the cross-sectional shape of the wire 12 may be round or square.

ついで、図2(b)のように、導電部品11として剛性を必要とする、線材12の所定箇所(例えばn−nの範囲)を鍛造で板状に押し潰しながら加工硬化させる。   Next, as shown in FIG. 2B, a predetermined portion (for example, a range of nn) of the wire 12 that requires rigidity as the conductive component 11 is work-cured while being crushed into a plate shape by forging.

その後、線材12を、図2(c)のように、立体形状の導電部品11に曲げ加工する(2次曲げ)。具体的には、線材12を図2(b)の一点鎖線a´,b´,c´,d´,e´の部分で曲げ加工することで、導電部品11が図2(c)の一点鎖線a,b,c,d,eの部分で曲げ加工されるようになる。   Thereafter, the wire 12 is bent into a three-dimensional conductive component 11 as shown in FIG. 2C (secondary bending). Specifically, by bending the wire 12 at the portions of the alternate long and short dash lines a ′, b ′, c ′, d ′, and e ′ of FIG. 2B, the conductive component 11 is one point of FIG. Bending is performed at the portions of chain lines a, b, c, d, and e.

第2実施形態であれば、素材が線材12であれば、押し潰しても電気の流れ方向に対して断面積が一定で、電気抵抗が一定となる。例えば、図2(b)のA部の断面を図3(f)に示し、同B部の断面を図3(e)に示し、同C部の断面を図3(d)に示し、同D部の断面を図3(c)に示している。そのため、局所的な電気的発熱がなくなり、配線器具用導電部品として最適となる。   If it is 2nd Embodiment, if a raw material is the wire 12, even if it crushes, a cross-sectional area will be constant with respect to the flow direction of electricity, and an electrical resistance will become constant. For example, FIG. 3 (f) shows a cross section of part A in FIG. 2 (b), FIG. 3 (e) shows a cross section of part B, and FIG. 3 (d) shows a cross section of part C. A cross section of the portion D is shown in FIG. This eliminates local electrical heat generation and is optimal as a conductive component for a wiring device.

また、金属板を打ち抜く場合と異なり、1次曲げの段階で必要な箇所にだけ線材12が通るようにすることで、材料ロスがほとんど無く、歩留まりが非常に良くなる。   Further, unlike the case of punching out a metal plate, by making the wire 12 pass only at a necessary portion in the primary bending stage, there is almost no material loss and the yield is very good.

さらに、金属板を打ち抜いた場合には、図3(g)の素材10のように、必ずバリpが発生し、それが放電の起点となるために耐圧不良の原因となることがある。これに対して、線材12を鍛造することで、図3(h)のように、打ち抜きバリが発生しないので、耐圧特性に優れる。   Further, when the metal plate is punched, a burr p is always generated as in the material 10 in FIG. 3G, and this may become a starting point of discharge, which may cause a breakdown voltage failure. On the other hand, by forging the wire 12, punching burrs are not generated as shown in FIG.

さらにまた、線材12は、導電部品11の展開形状に合わせて予め平面形状で曲げ加工し、その後、線材12の所定箇所を鍛造で板状に押し潰し加工することで、複雑な立体形状の導電部品であっても、容易に製造できるようになる。すなわち、線材12を1次曲げすることなく、そのまま鍛造しただけでは、2次曲げの方向が限定され、ごく単純な形状しか作ることはできない。これに対して、導電部品11の展開形状を二次元で予め作っておく方法を採用することにより、複雑な立体形状でも作ることが可能になる。   Furthermore, the wire 12 is bent in advance in a planar shape in accordance with the developed shape of the conductive component 11, and then a predetermined portion of the wire 12 is forged into a plate shape by forging, thereby conducting a conductive material having a complicated three-dimensional shape. Even parts can be easily manufactured. That is, if the wire 12 is forged as it is without primary bending, the direction of secondary bending is limited and only a very simple shape can be produced. On the other hand, by adopting a method in which the developed shape of the conductive component 11 is previously created in two dimensions, a complicated three-dimensional shape can be produced.

図4は、第3実施形態であり、(a)〜(e)は、線材12を連続的に平面形状で曲げ加工する金型の作動順序を示す側面図である。   FIG. 4 is a third embodiment, and (a) to (e) are side views showing an operation sequence of a mold for bending the wire 12 continuously in a planar shape.

第2実施形態の線材12は、所定長さ毎に分断した後に平面形状で曲げ加工すれば、製造効率が悪くなる。そこで、図5(a)のように、矢印qの方向に送りながら連続的に、つまり繋がったまま平面形状で曲げ加工しながら鍛造し(1次曲げと鍛造)、その後に図5(b)のように分断して、2次曲げすることが好ましい。   If the wire 12 of the second embodiment is bent into a planar shape after being divided into predetermined lengths, the manufacturing efficiency is deteriorated. Therefore, as shown in FIG. 5 (a), forging (primary bending and forging) is performed continuously while being fed in the direction of the arrow q, that is, while being connected and bent in a planar shape, and thereafter FIG. 5 (b). It is preferable to divide like this and to perform secondary bending.

ここで、図5(c)のように、線材12の複雑な曲げ形状を1組の上下曲げ型20,21だけで同時に加工しようとすると、図5(d)のように、線材12の軸方向に引っ張り応力rが発生し、図5(e)のように、線材12が切断sすることがある。この場合、ワイヤーフォーミング加工機を使用すれば問題はないが、曲げ加工後に必ず分断する必要があり、分断された状態で鍛造工程に送るので、製造効率が悪くなる。   Here, as shown in FIG. 5 (c), if it is attempted to simultaneously process a complicated bending shape of the wire 12 with only one set of upper and lower bending dies 20, 21, the shaft of the wire 12 as shown in FIG. 5 (d). A tensile stress r is generated in the direction, and the wire 12 may be cut as shown in FIG. In this case, there is no problem if a wire forming machine is used. However, it is necessary to divide after the bending process, and since it is sent to the forging process in the divided state, the production efficiency is deteriorated.

そこで、図4(a)に示すように、1次曲げの工程では、線材12の一端(送り側の先端)を固定する固定治具22と、線材12の長手方向に複数個(本例では3個)に分割した上下曲げ型23a〜23c,24a〜24cを設ける。   Therefore, as shown in FIG. 4A, in the primary bending process, a fixing jig 22 for fixing one end (tip on the feeding side) of the wire 12 and a plurality of (in this example) the wire 12 in the longitudinal direction. The upper and lower bending dies 23a to 23c and 24a to 24c are provided.

そして、図4(a)のように、線材12の一端を固定治具22で固定する。これにより線材12の曲げ加工中に、曲げ加工済みの線材12が型内に引き込まれることを防止するとともに、未加工の線材12が引き込まれるようになる。   Then, one end of the wire 12 is fixed with a fixing jig 22 as shown in FIG. This prevents the bent wire 12 from being drawn into the mold during bending of the wire 12, and the unprocessed wire 12 is drawn.

その後、線材12の一端側から他端側に向かって、図4(b)〜(d)のように、複数の曲げ型23a〜23c,24a〜24cで順次に1次曲げ加工と鍛造を同時に行う。   Thereafter, from the one end side of the wire 12 toward the other end side, as shown in FIGS. 4B to 4D, the first bending process and the forging process are simultaneously performed in a plurality of bending dies 23a to 23c and 24a to 24c. Do.

これが終わると、図4(e)のように、固定治具22と曲げ型23a〜23c,24a〜24cを開放し、矢印qの方向に線材12を1ピッチ分送り、図4(a)に戻って次の1次曲げと鍛造とを繰り返す。   When this is finished, as shown in FIG. 4 (e), the fixing jig 22 and the bending dies 23a-23c, 24a-24c are opened, and the wire 12 is fed by one pitch in the direction of the arrow q, and FIG. Return and repeat the next primary bending and forging.

第3実施形態であれば、線材12の固定した一端側から他端側(自由端)に向かって、複数の曲げ型23a〜23c,24a〜24cで順次に曲げ加工と鍛造を同時に行うものである。したがって、他端側から随時に線材12が曲げ型23a〜23c,24a〜24c側に引き込まれるため、引っ張り応力が掛かりにくくなって、線材12が分断されることがなくなる。また、曲げ加工と鍛造を同時に行うために、製造効率が向上する。   In the case of the third embodiment, the bending and forging are sequentially performed by a plurality of bending dies 23a to 23c and 24a to 24c from one end side to which the wire 12 is fixed to the other end side (free end). is there. Therefore, since the wire 12 is drawn from the other end side to the bending dies 23a to 23c and 24a to 24c at any time, the tensile stress is hardly applied and the wire 12 is not divided. Further, since bending and forging are performed simultaneously, the production efficiency is improved.

図6は、第4実施形態であり、(a)(b)は、線材12を鍛造する金型の作動順序を示す正面図である。   FIG. 6 is a fourth embodiment, and (a) and (b) are front views showing an operation sequence of a mold for forging the wire 12.

図6(c)のように、凹状鍛造型25aと凸状鍛造型25bとで第2実施形態の線材12を鍛造する時に、凹状鍛造型25aの中心位置Cに線材12をセットすると、図6(d)のように、鍛造型25a,25bの間の隙間に線材12が流動してバリtが生じる場合がある。   When forging the wire 12 of the second embodiment with the concave forging die 25a and the convex forging die 25b as shown in FIG. 6C, when the wire 12 is set at the center position C of the concave forging die 25a, FIG. As shown in (d), the wire 12 may flow in the gap between the forging dies 25a and 25b and a burr t may occur.

この場合、図6(e)のように、鍛造型25a,25bの断面積を線材12に対して十分に大きくとれば、バリtは発生しないが、その代わりに、鍛造型25a,25bの側面での形状転写が不十分になり、線材12の形状精度が低くなる。   In this case, as shown in FIG. 6E, if the cross-sectional area of the forging dies 25a and 25b is sufficiently large with respect to the wire 12, no burr t is generated, but instead, the side surfaces of the forging dies 25a and 25b. Therefore, the shape transfer of the wire 12 becomes insufficient, and the shape accuracy of the wire 12 is lowered.

ここで、図6(f)のように、導電部品11〔図10(a)の接点端子5を参照〕の形状においては、線材12の断面の片側では耐圧性能を高めるために、バリtを出すことが好ましくなく、しかしながら、片側では形状精度を求められる場合がある。例えば接点端子5と開閉端子7との距離が最も接近するエッジ部分にバリtが存在すると、そのバリtを起点として放電uする不良が発生する。   Here, as shown in FIG. 6 (f), in the shape of the conductive component 11 (see the contact terminal 5 in FIG. 10 (a)), in order to increase the pressure resistance performance on one side of the cross section of the wire rod 12, However, it is not preferable to take out, however, shape accuracy may be required on one side. For example, if there is a burr t at the edge portion where the distance between the contact terminal 5 and the open / close terminal 7 is closest, a defect that causes a discharge u starting from the burr t occurs.

また、鍛造後の2次曲げ加工において、位置決めを精度よく行うためには、線材12の断面のうち、少なくとも片側で形状を精度よく出しておく必要がある。   Moreover, in order to perform positioning accurately in the secondary bending process after forging, it is necessary to accurately bring out the shape on at least one side of the cross section of the wire 12.

そこで、図6(a)のように、凹状鍛造型25aと凸状鍛造型25bとで線材12を鍛造する時に、凹状鍛造型25aの中心位置Cから幅方向の一方に片寄った位置C´に線材12をセットして、図6(b)のように、その状態で鍛造を実施する。   Therefore, as shown in FIG. 6 (a), when the wire 12 is forged with the concave forging die 25a and the convex forging die 25b, the center C of the concave forging die 25a is shifted to a position C ′ offset to one side in the width direction. The wire rod 12 is set and forging is performed in that state as shown in FIG.

そうすると、線材12を近づけた側の凹状鍛造型25aの内面では、線材12が強く押し付けられて、バリtが発生するものの、精度よく形状が転写される。逆に、線材12を遠ざけた側の凹状鍛造型25aの内面では、他側端面(エッジ)に十分なアールRを残した形状に鍛造される。   Then, on the inner surface of the concave forging die 25a on the side closer to the wire 12, the wire 12 is strongly pressed and a burr t is generated, but the shape is accurately transferred. Conversely, the inner surface of the concave forging die 25a on the side away from the wire 12 is forged into a shape that leaves a sufficient radius R on the other end face (edge).

第4実施形態であれば、導電部品11の幅方向の片側で寸法精度や形状精度が必要な場合においては、片寄らせた側が凹状鍛造型25aの内面に当接することで、高精度に加工できる。また、他側は凹状鍛造型25aの内面に当接しないので、他側端面のアールRが大きくなって、耐圧特性が向上するようになる。   In the case of the fourth embodiment, when dimensional accuracy or shape accuracy is required on one side in the width direction of the conductive component 11, high accuracy can be achieved by contacting the offset side with the inner surface of the concave forging die 25a. . Further, since the other side does not contact the inner surface of the concave forging die 25a, the radius R of the other side end surface is increased, and the pressure resistance characteristics are improved.

図7は、第5実施形態である。図7(d)のように、導電部品11の形状が複雑である場合、図1(a)の素材10のように、プレス等で打ち抜くだけではできないことがある。   FIG. 7 shows a fifth embodiment. When the shape of the conductive component 11 is complicated as shown in FIG. 7D, it may not be possible to simply punch it out with a press or the like as in the material 10 of FIG.

そこで、図7(a)のような線材12では、図7(b)のように、縦方向曲げvと横方向曲げwとを予め行う。そして、図7(c)のように、鍛造後の曲げ方向に応じて、線材12を鍛造する方向を変える。具体的には、線材12の縦方向曲げvの部分12aと線材12の縦方向曲げvの中間部分12bとは、縦方向に潰す鍛造xをし、線材12の横方向曲げwの部分12cは、横方向に潰す鍛造yをする。   Therefore, in the wire 12 as shown in FIG. 7A, the longitudinal bending v and the lateral bending w are performed in advance as shown in FIG. 7B. And the direction which forges the wire 12 is changed according to the bending direction after forging like FIG.7 (c). Specifically, the portion 12a of the longitudinal bending v of the wire 12 and the intermediate portion 12b of the longitudinal bending v of the wire 12 are forged x to be crushed in the longitudinal direction, and the portion 12c of the transverse bending w of the wire 12 is , Forging y to crush in the lateral direction.

その後、2次曲げする時は、線材12の横方向曲げwの部分12cは、図7(d)の部分11cのように横曲げする(矢印g参照)。また、線材12の縦方向曲げvの中間部分12bは、図7(d)の部分11bのように、縦曲げする(矢印h参照)。なお、線材12の縦方向曲げvの部分12aは、図7(d)の部分11aのようになる。   Thereafter, when the secondary bending is performed, the portion 12c of the wire 12 in the lateral direction w is laterally bent like the portion 11c in FIG. 7D (see arrow g). Further, the intermediate portion 12b of the longitudinal bending v of the wire 12 is vertically bent as shown by the portion 11b in FIG. 7D (see arrow h). In addition, the part 12a of the vertical bending v of the wire 12 becomes like the part 11a of FIG.7 (d).

第5実施形態であれば、鍛造後の曲げ方向に応じて、線材12を鍛造する方向を変えることで、曲げ方向を多彩に組み合わせることができ、より複雑な導電部品11の形状も実現することができる。   If it is 5th Embodiment, according to the bending direction after forging, by changing the direction which forges the wire 12, a bending direction can be combined variously and the shape of more complicated conductive parts 11 is also realized. Can do.

図8は、第6実施形態であり、(a)〜(c)は、素材(線材12も同様。)10の一部を細く潰す金型の作動順序を示す正面図である。   FIG. 8 shows a sixth embodiment, and FIGS. 8A to 8C are front views showing an operation sequence of a mold for thinly crushing a part of the material (the same applies to the wire 12).

図1(b)または図2(c)に示した導電部品11において、局所的に細い箇所(断面積が小さい箇所)iを形成する必要がある場合、図8(d)のように、素材10をそのまま鍛造型26にセットして鍛造を行うと、断面積が小さい箇所iでは、材料余りが生じ、鍛造型26の隙間に素材10が流動してバリが生じる場合がある。   In the conductive component 11 shown in FIG. 1 (b) or FIG. 2 (c), when it is necessary to form a locally thin portion (a portion having a small cross-sectional area) i, as shown in FIG. When forging is performed by setting 10 to the forging die 26 as it is, a material surplus is generated at a location i where the cross-sectional area is small, and the material 10 may flow in the gaps of the forging die 26 to generate burrs.

そこで、図8(e)のように、断面積が小さい箇所iでは、鍛造前の段階で素材10の断面積を減らすようにする。   Therefore, as shown in FIG. 8 (e), at the location i where the cross-sectional area is small, the cross-sectional area of the material 10 is reduced before the forging.

その手段として、図8(a)(b)のように、素材10を金型27a,27bで叩くことで、素材10を図8(b)の矢印の方向に流動させて、図8(c)のように、素材10の該当箇所を予め細く潰すようにする。なお、切削や抜きによって断面積が小さい箇所iを形成することもできる。   As the means, as shown in FIGS. 8 (a) and 8 (b), by hitting the material 10 with the molds 27a and 27b, the material 10 is caused to flow in the direction of the arrow in FIG. ), The corresponding portion of the material 10 is crushed in advance. In addition, the location i with a small cross-sectional area can also be formed by cutting or punching.

第6実施形態であれば、導電部品11に局所的に細い箇所iを形成する必要がある場合、鍛造前の素材10(12)の該当箇所iを予め細く潰しておくことで、材料余りが生じなくなるので、バリが発生しなくなる。   In the sixth embodiment, when it is necessary to locally form a thin portion i in the conductive component 11, the material surplus is obtained by previously crushing the corresponding portion i of the material 10 (12) before forging. Since it does not occur, burrs do not occur.

図9は、第7実施形態であり、(a)は導電部品11の斜視図、(b)はローレット形状kの圧印の拡大図、(c)は(b)のI−I線断面図である。   9A and 9B show a seventh embodiment, in which FIG. 9A is a perspective view of the conductive component 11, FIG. 9B is an enlarged view of a knurled impression, and FIG. 9C is a cross-sectional view taken along line II in FIG. is there.

ローレット形状kとは、導電部品11と配線(銅線)の接触面における滑り止めのための形状で、例えば段付き模様となっている。このローレット形状kは、例えば導電部品11の立ち下がり部11aに形成する。   The knurled shape k is a shape for preventing slipping on the contact surface between the conductive component 11 and the wiring (copper wire), and has a stepped pattern, for example. For example, the knurled shape k is formed in the falling portion 11 a of the conductive component 11.

そして、鍛造型(図6の25a,25bを参照)に予めローレット形状を付けておくことにより、通常は鍛造→ローレット形状kの圧印、の2工程に分かれる工程を、鍛造とローレット形状kの圧印の2種類の加工を1工程で行うことができる。   The forging die (see 25a and 25b in FIG. 6) is knurled in advance, so that the forging and knurling k impression steps are usually divided into two steps: forging and knurling k impression. These two types of processing can be performed in one step.

10 素材
11 導電部品
12 線材
22 固定治具
23a〜23c 曲げ型
24a〜24c 曲げ型
25a 凹状鍛造型
25b 凸状鍛造型
k ローレット形状
DESCRIPTION OF SYMBOLS 10 Material 11 Conductive component 12 Wire rod 22 Fixing jig 23a-23c Bending die 24a-24c Bending die 25a Concave forging die 25b Convex forging die k Knurled shape

Claims (8)

平面形状の純銅製の素材を、立体形状の導電部品に曲げ加工する配線器具用導電部品の製造方法において、
前記導電部品として剛性を必要とする、前記素材の所定箇所を鍛造で加工硬化させることを特徴とする配線器具用導電部品の製造方法。
In the method for manufacturing a conductive component for wiring equipment, bending a flat copper material into a three-dimensional conductive component
A method for manufacturing a conductive component for a wiring device, wherein a predetermined portion of the material that requires rigidity as the conductive component is processed and hardened by forging.
前記素材は線材であり、この線材の所定箇所を鍛造で板状に押し潰しながら加工硬化させることを特徴とする請求項1に記載の配線器具用導電部品の製造方法。   The method for manufacturing a conductive component for a wiring device according to claim 1, wherein the material is a wire, and the predetermined portion of the wire is work-cured while being crushed into a plate shape by forging. 前記線材は、前記導電部品の展開形状に合わせて予め平面形状で曲げ加工し、その後、線材の所定箇所を鍛造で板状に押し潰し加工することを特徴とする請求項2に記載の配線器具用導電部品の製造方法。   The wiring apparatus according to claim 2, wherein the wire is bent in advance in a planar shape in accordance with a developed shape of the conductive component, and then a predetermined portion of the wire is crushed into a plate shape by forging. Manufacturing method for conductive parts. 前記線材を連続的に平面形状で曲げ加工する時に、曲げ型を線材の長手方向に複数個に分割し、線材の一端を固定治具で固定した後、線材の一端側から他端側に向かって、複数の曲げ型で順次に曲げ加工と鍛造を同時に行うことを特徴とする請求項3に記載の配線器具用導電部品の製造方法。   When the wire is continuously bent into a planar shape, the bending die is divided into a plurality of pieces in the longitudinal direction of the wire, one end of the wire is fixed with a fixing jig, and then the wire is moved from one end to the other end. 4. The method of manufacturing a conductive component for a wiring device according to claim 3, wherein bending and forging are sequentially performed with a plurality of bending dies at the same time. 前記線材を凹状鍛造型と凸状鍛造型とで鍛造する時に、凹状鍛造型の中心位置から幅方向の一方に片寄った位置に線材をセットすることを特徴とする請求項2に記載の配線器具用導電部品の製造方法。   3. The wiring device according to claim 2, wherein when the wire is forged with a concave forging die and a convex forging die, the wire is set at a position offset from the center position of the concave forging die to one side in the width direction. Manufacturing method for conductive parts. 前記線材は、鍛造後の曲げ方向に応じて、線材を鍛造する方向を変えることを特徴とする請求項2に記載の配線器具用導電部品の製造方法。   The method for manufacturing a conductive component for a wiring device according to claim 2, wherein the wire changes a direction in which the wire is forged according to a bending direction after forging. 前記素材に、局部的に細い箇所を形成する時に、鍛造前の素材の該当箇所を予め細く潰しておくことを特徴とする請求項1に記載の配線器具用導電部品の製造方法。   The method for manufacturing a conductive component for a wiring device according to claim 1, wherein when forming a locally thin portion on the material, the corresponding portion of the material before forging is crushed in advance. 前記素材の該当箇所に、鍛造と同時にローレット形状の圧印を行うことを特徴とする請求項1に記載の配線器具用導電部品の製造方法。   The method for manufacturing a conductive component for a wiring device according to claim 1, wherein a knurled impression is performed simultaneously with forging on a corresponding portion of the material.
JP2009015629A 2009-01-27 2009-01-27 Manufacturing method of conductive parts for wiring apparatus Expired - Fee Related JP5271097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009015629A JP5271097B2 (en) 2009-01-27 2009-01-27 Manufacturing method of conductive parts for wiring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009015629A JP5271097B2 (en) 2009-01-27 2009-01-27 Manufacturing method of conductive parts for wiring apparatus

Publications (2)

Publication Number Publication Date
JP2010176893A true JP2010176893A (en) 2010-08-12
JP5271097B2 JP5271097B2 (en) 2013-08-21

Family

ID=42707645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009015629A Expired - Fee Related JP5271097B2 (en) 2009-01-27 2009-01-27 Manufacturing method of conductive parts for wiring apparatus

Country Status (1)

Country Link
JP (1) JP5271097B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171779A (en) * 2012-02-22 2013-09-02 Osaki Electric Co Ltd Terminal hardware
DE102012203571C5 (en) * 2012-03-07 2016-07-28 Lisa Dräxlmaier GmbH A method for plastically forming a plurality of electrically conductive layers of a flat conductor to a multi-dimensional contour and devices for this method
JP2016180765A (en) * 2016-07-12 2016-10-13 Koa株式会社 Shunt resistance type current detection device
KR20210009614A (en) * 2019-07-17 2021-01-27 주광전기 주식회사 Method for manufacturing conducting plate using round stick of copper-based and conducting plate
CN113410000A (en) * 2021-06-04 2021-09-17 广东福德电子有限公司 Copper bar manufacturing method and copper bar structure
EP4199273A1 (en) * 2021-12-17 2023-06-21 Fischer & Kaufmann GmbH & Co. KG Method for producing a flat conductor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018217785A1 (en) * 2018-10-17 2020-04-23 Volkswagen Aktiengesellschaft Method for producing a two- or three-dimensionally shaped flat conductor made of metal
DE102021201194A1 (en) 2021-02-09 2022-08-11 Volkswagen Aktiengesellschaft Process and press tool for producing a two-dimensional or three-dimensional busbar with different cross-sections
DE102022212519A1 (en) 2022-11-23 2024-05-23 Volkswagen Aktiengesellschaft Method for producing an electrical contact element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045330U (en) * 1973-08-24 1975-05-07
JPS57163969A (en) * 1981-03-31 1982-10-08 Matsushita Electric Works Ltd Leaf spring structure for connector
JPH01244605A (en) * 1988-03-25 1989-09-29 Asahi Seiki Kogyo Kk Method of working lead terminal
JPH0523421U (en) * 1991-09-10 1993-03-26 アンリツ株式会社 Conductor for wire connection device
JP2001043953A (en) * 1993-05-26 2001-02-16 Yazaki Corp Manufacture of terminal for connector
JP2003102118A (en) * 2001-09-25 2003-04-04 Sumitomo Wiring Syst Ltd Junction block

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045330U (en) * 1973-08-24 1975-05-07
JPS57163969A (en) * 1981-03-31 1982-10-08 Matsushita Electric Works Ltd Leaf spring structure for connector
JPH01244605A (en) * 1988-03-25 1989-09-29 Asahi Seiki Kogyo Kk Method of working lead terminal
JPH0523421U (en) * 1991-09-10 1993-03-26 アンリツ株式会社 Conductor for wire connection device
JP2001043953A (en) * 1993-05-26 2001-02-16 Yazaki Corp Manufacture of terminal for connector
JP2003102118A (en) * 2001-09-25 2003-04-04 Sumitomo Wiring Syst Ltd Junction block

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171779A (en) * 2012-02-22 2013-09-02 Osaki Electric Co Ltd Terminal hardware
DE102012203571C5 (en) * 2012-03-07 2016-07-28 Lisa Dräxlmaier GmbH A method for plastically forming a plurality of electrically conductive layers of a flat conductor to a multi-dimensional contour and devices for this method
JP2016180765A (en) * 2016-07-12 2016-10-13 Koa株式会社 Shunt resistance type current detection device
KR20210009614A (en) * 2019-07-17 2021-01-27 주광전기 주식회사 Method for manufacturing conducting plate using round stick of copper-based and conducting plate
KR102313434B1 (en) * 2019-07-17 2021-10-15 주광전기 주식회사 Method for manufacturing conducting plate using round stick of copper-based
CN113410000A (en) * 2021-06-04 2021-09-17 广东福德电子有限公司 Copper bar manufacturing method and copper bar structure
EP4199273A1 (en) * 2021-12-17 2023-06-21 Fischer & Kaufmann GmbH & Co. KG Method for producing a flat conductor

Also Published As

Publication number Publication date
JP5271097B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5271097B2 (en) Manufacturing method of conductive parts for wiring apparatus
CN111054851B (en) Method for producing two-dimensionally or three-dimensionally shaped flat conductors from metal
JP5639299B1 (en) Crimping terminal manufacturing method and terminal fitting
JP6389595B2 (en) Electrical contact
US10411429B2 (en) Production method for conductive member, conductive member, and mold
US20190115707A1 (en) Bent Electric Contact Element With Chamfered Edges and Method For Its Manufacture
KR20120042890A (en) Chain terminal
CN108352635B (en) Plug contact and method for producing a plug contact
JP2008269944A (en) Jointing method and jointing unit
JP2009006357A (en) Punching/press-working method and punch press die
JP2014166645A (en) Method for manufacturing metallic structure material
JP2012071321A (en) Method and device for manufacturing bus bar
JP5638775B2 (en) Busbar structure, connection fixing structure between busbar and power terminal, and electrical junction box
JP2016168602A (en) Conductor forming method, and conductor member manufacturing method
JP2014238933A (en) Bus bar
CN102341973B (en) Device for attaching line to connecting element
JP2011258340A (en) Connection apparatus and connection method
CN113661020A (en) Method for producing a cooling plate
DE102015221923A1 (en) Electrical machine with printed circuit board arrangement for winding interconnection and associated manufacturing method
JP2019160480A (en) Press-fit terminal and manufacturing method of the press-fit terminal
JP4144590B2 (en) Busbar circuit structure
CN112170643B (en) A mould for producing interface terminal
CN118060473A (en) Method for producing an electrical contact element
US20220111431A1 (en) Device With Multiple Coined Areas Having Multiple Mechanical Properties
JP4397420B2 (en) Method for manufacturing ignition coil iron core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees