JP2010175533A - Contact sensor and mobile robot - Google Patents

Contact sensor and mobile robot Download PDF

Info

Publication number
JP2010175533A
JP2010175533A JP2009039966A JP2009039966A JP2010175533A JP 2010175533 A JP2010175533 A JP 2010175533A JP 2009039966 A JP2009039966 A JP 2009039966A JP 2009039966 A JP2009039966 A JP 2009039966A JP 2010175533 A JP2010175533 A JP 2010175533A
Authority
JP
Japan
Prior art keywords
contact
elastic material
sensor
force
mobile robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009039966A
Other languages
Japanese (ja)
Inventor
Fumi Ogane
一二 大金
Takahiro Kobayashi
隆浩 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009039966A priority Critical patent/JP2010175533A/en
Publication of JP2010175533A publication Critical patent/JP2010175533A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a contact sensor that allows the force and direction of contact to be estimated by a relatively small number of contact sensors, and that reduces the risk that a contact part damages that surround objects to be reduced. <P>SOLUTION: In this contact sensor, shafts and rotation sensors are arranged at both ends of a slender elastic material, and the elastic material is bent into a circular form. When an object is brought into contact with the circular elastic material, the elastic material deforms according to the force and contact direction, and the shafts at both ends rotate in interlock with it. The force and direction applied to the circular elastic material are estimated, based on the variation in the rotational angle of the shafts at both ends. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、移動ロボットが自律走行、または半自律走行を行う際の障害物の有無の判断、また、進行方向を決定するための接触センサに関するものである。  The present invention relates to a contact sensor for determining whether or not there is an obstacle when a mobile robot performs autonomous traveling or semi-autonomous traveling and for determining a traveling direction.

また、本発明は、円形にたわませた柔らかい弾性材の変形により回転する回転センサを両端に設けることで、力とその向きを検出する接触センサに関するものである。  The present invention also relates to a contact sensor that detects a force and its direction by providing rotation sensors at both ends that rotate by deformation of a soft elastic material that is bent in a circular shape.

自律走行をする移動ロボットとして、昆虫の触角のような接触センサを複数搭載し、物体の有無を検知し、進行方向の決定を行う方法が知られている。または赤外線距離センサなどの非接触センサを複数配置して、自律走行をする方法もある。非接触センサを用いたものは、物体を損傷させる危険がないという利点があるため、多くの自律走行ロボットに使用される。また接触センサを用いた方法は、物体に直接触れることで確実に物体の有無の検知ができ、接触の力も得られるという利点がある。そのため、表面が複雑な形状の物体の検知を行う時になどに利用される。  As a mobile robot that runs autonomously, a method is known in which a plurality of contact sensors such as insect antennae are mounted, the presence or absence of an object is detected, and the traveling direction is determined. Alternatively, there is a method of autonomously running by arranging a plurality of non-contact sensors such as an infrared distance sensor. A sensor using a non-contact sensor has an advantage that there is no danger of damaging an object, and is therefore used for many autonomous robots. The method using the contact sensor has an advantage that the presence or absence of an object can be reliably detected by directly touching the object, and a contact force can be obtained. Therefore, it is used when detecting an object having a complicated surface shape.

また、このようなロボットにおいては、進行方向を決定するために少なくとも2つのセンサを左右に設ける必要がある。さらに全周囲についての物体の方向を検知するには、ロボットの周囲に多数のセンサを設けることで実現される。  Further, in such a robot, it is necessary to provide at least two sensors on the left and right sides in order to determine the traveling direction. Furthermore, detecting the direction of the object around the entire circumference is realized by providing a large number of sensors around the robot.

非接触センサを利用した際、物体の表面が複雑な形状である、センサに接近しすぎている、または物体の形状が細く、複雑である場合では正確な検知ができない可能性が高い。  When a non-contact sensor is used, there is a high possibility that accurate detection cannot be performed when the surface of the object has a complicated shape, is too close to the sensor, or the shape of the object is thin and complicated.

昆虫の触角のような接触センサを利用した際、接触させる物体が植物の茎や葉などの損傷しやすいものであった場合、接触センサが物体を損傷させる危険がある。  When a contact sensor such as an insect antenna is used, if the object to be contacted is easily damaged such as a plant stem or leaf, there is a risk that the contact sensor may damage the object.

また物体を全方位について検知するには、多数のセンサが必要となる。それに伴い構造が大型化し、ロボットの小型化において不利がある。  In order to detect an object in all directions, a large number of sensors are required. As a result, the structure becomes larger, which is disadvantageous in reducing the size of the robot.

本発明は、比較的少数の接触センサで、接触の力とその方向を推測することが可能で、さらに接触部が周囲の物体を損傷するなどの危険を軽減する接触センサを提供することを目的とする。  An object of the present invention is to provide a contact sensor that can estimate the force and direction of contact with a relatively small number of contact sensors, and further reduce the risk of the contact portion damaging surrounding objects. And

上記課題を解決するための本発明の接触センサは、細長い弾性材の両端に、軸と回転センサを配置し、円形にたわませた形とする。円形の弾性材に物体を接触させると、その力と接触方向に応じて弾性材が変形し、それに連動して両端の軸が回転する。両端の軸の回転角度の変化から円形の弾性材に加えられた力と向きを推測する。  The contact sensor of the present invention for solving the above-mentioned problems is formed by arranging a shaft and a rotation sensor at both ends of an elongated elastic material and bending it in a circular shape. When an object is brought into contact with the circular elastic material, the elastic material is deformed according to the force and the contact direction, and the shafts at both ends are rotated in conjunction with the deformation. The force and direction applied to the circular elastic material are estimated from the change in the rotation angle of the shafts at both ends.

本発明の接触センサは、2つの回転センサの回転角度の変化から力とその向きを得るため、従来のように多数のセンサを必要としない。また、接触部分は面であるため、周囲の物体の損傷を軽減する、または損傷を軽減させるための加工を施しやすい。  Since the contact sensor of the present invention obtains a force and its direction from changes in the rotation angle of the two rotation sensors, it does not require a large number of sensors as in the prior art. In addition, since the contact portion is a surface, it is easy to reduce damage to surrounding objects or to perform processing for reducing damage.

図1にセンサの台座を示す。軸、回転センサ、弾性材固定部が連動して回転する。ここでは回転センサとして可変抵抗器を使用した。弾性材の取り外しは、締めネジによって行う。  FIG. 1 shows the pedestal of the sensor. The shaft, rotation sensor, and elastic material fixing part rotate in conjunction with each other. Here, a variable resistor was used as the rotation sensor. The elastic material is removed with a tightening screw.

図2は本発明の接触センサの構成を示している。2つの軸の弾性材固定部に円形にたわませた弾性材を固定する。ここでは弾性材として長さ500mm、幅9mmのナイロン製のバンドを使用し、円形にたわませたときの直径は約165mmである。  FIG. 2 shows the configuration of the contact sensor of the present invention. The elastic material bent in a circle is fixed to the elastic material fixing portions of the two shafts. Here, a nylon band having a length of 500 mm and a width of 9 mm is used as the elastic material, and the diameter when bent in a circular shape is about 165 mm.

センサに力を加えて離した際には、弾性材が元の形状に戻る必要がある。そこで弾性材が一定の形状を保つように、軸にバネなどの弾性素材を取り付ける必要がある。ここではゴムバンドを使用し、図3にそのモデル図を示す。図1、図2、図4、図6、図8、図9では、簡略化のためこれを省略している。  When a force is applied to the sensor and released, the elastic material needs to return to its original shape. Therefore, it is necessary to attach an elastic material such as a spring to the shaft so that the elastic material maintains a certain shape. Here, a rubber band is used, and a model diagram thereof is shown in FIG. In FIG. 1, FIG. 2, FIG. 4, FIG. 6, FIG. 8, and FIG. 9, this is omitted for simplification.

請求項1によれば、本発明の接触センサは弾性材の変形を両端に設けた回転センサで判別することで、加えられた力と向きを推定する。ここでは図4に示すように、弾性材の中心に1N、2N、3Nの力を加えた。図4のように力を加えた際の、左右の軸の回転角度の変化をグラフ化したものを図5に示す。次に、図6に示すように、弾性体の中心から−40から+40mmの範囲で接触させる位置を変化させ、それぞれ3Nの力を垂直に加えた。図6のように力を加えた際の左右の軸の回転角度の変化をグラフ化したものを図7に示す。回転角度は右回転で+となっている。  According to the first aspect of the present invention, the contact sensor of the present invention estimates the applied force and direction by discriminating deformation of the elastic material with the rotation sensors provided at both ends. Here, as shown in FIG. 4, forces of 1N, 2N, and 3N were applied to the center of the elastic material. FIG. 5 is a graph showing changes in the rotation angle of the left and right axes when force is applied as shown in FIG. Next, as shown in FIG. 6, the contact position was changed in the range of −40 to +40 mm from the center of the elastic body, and a force of 3N was applied vertically. FIG. 7 is a graph showing changes in the rotation angle of the left and right axes when a force is applied as shown in FIG. The rotation angle is + for right rotation.

請求項2によれば、本発明の接触センサは移動ロボットの物体の進行方向の決定の手段として用いられる。図8に本発明のセンサを搭載したクローラ型移動ロボットの外観図を示す。ロボットは前後進、左右旋回が可能な移動ロボットである。本発明の接触センサは移動ロボット前方に左右に向けて配置されている。左右のセンサが物体の接触を検知しながら走行することで自律走行を行う。このとき、加えられる力の向きを得る必要はないことから、使用する回転センサは左右それぞれ1つである。  According to claim 2, the contact sensor of the present invention is used as means for determining the traveling direction of the object of the mobile robot. FIG. 8 shows an external view of a crawler type mobile robot equipped with the sensor of the present invention. The robot is a mobile robot that can move forward and backward and turn left and right. The contact sensor according to the present invention is disposed in front of the mobile robot so as to face left and right. Autonomous traveling is performed by traveling while the left and right sensors detect contact with an object. At this time, since it is not necessary to obtain the direction of the applied force, one rotation sensor is used on each of the left and right sides.

図2に示すセンサを図8に示すようにクローラ型移動ロボットに取り付け、圃場を模した試験場で走行させた。この試験場は、1.3m×0.9mの土の地面に、おおむね幅650mm、200mmの間隔でガラス棒を地面に差して立てており、ガラス棒を農作物,ガラス棒の間隔(650mm)を畝間に見立てている。図9に、試験場を走行させた時の走行の始点と終点のクローラ型移動ロボットの進行方向を示す。図10には移動ロボットの軌跡を示す。ここでは、走行の始点をA、終点をBとし、クローラ型移動ロボット前部を1、後部を2とし、点A1、点A2、点B1、点B2として表している。直進方向を0°とし、進行方向30°の状態である点(始点)A1−A2から走行を開始し、ガラス棒を検知し、移動ロボットが方向を変えた状態である点(終点)B1−B2の進行方向は−6.8°であった。なお,進行方向を表す角度は右回転が+となっている。このように移動ロボットの進行方向が直進方向から大きく外れた場合においても、左右のセンサにより進行方向の修正が可能であり,自律走行が可能である。  The sensor shown in FIG. 2 was attached to a crawler-type mobile robot as shown in FIG. 8, and was run on a test field simulating a farm field. This test site stands on the ground of 1.3m x 0.9m, with a glass rod placed on the ground at an interval of approximately 650mm in width and 200mm. The glass rod is a crop, and the space between the glass rods (650mm) is a gap. It is likened to. FIG. 9 shows the traveling direction of the crawler-type mobile robot at the starting point and the ending point when traveling on the test site. FIG. 10 shows the trajectory of the mobile robot. Here, the starting point of travel is A, the end point is B, the front part of the crawler-type mobile robot is 1, the rear part is 2, and points A1, A2, B1, and B2 are represented. The point (end point) B1- is the state where the straight direction is 0 ° and the travel starts from the point (start point) A1-A2 in the direction of travel 30 °, the glass rod is detected, and the mobile robot changes direction. The traveling direction of B2 was −6.8 °. The angle indicating the traveling direction is + for clockwise rotation. Even when the traveling direction of the mobile robot deviates greatly from the straight traveling direction, the traveling direction can be corrected by the left and right sensors, and autonomous traveling is possible.

センサの台座部分である。This is the pedestal part of the sensor. センサの構成図である。It is a block diagram of a sensor. センサ構成略図の補足である。It is a supplement to the sensor configuration schematic. センサに加えた力を説明するための図であるIt is a figure for demonstrating the force applied to the sensor. センサに加えた力と軸の回転角度の変化をグラフ化したものである。This is a graph of the force applied to the sensor and the change in the rotation angle of the shaft. センサに加えた力の位置を説明するための図であるIt is a figure for demonstrating the position of the force added to the sensor. センサに加えた力の位置と軸の回転角度の変化をグラフ化したものである。It is a graph of changes in the position of the force applied to the sensor and the rotation angle of the shaft. センサを搭載したクローラ型移動ロボットの全体図である。It is a general view of a crawler type mobile robot equipped with a sensor. 圃場を模した試験場の図とクローラ型移動ロボットを走行させた時の始点と終点の進行方向を示した図である。It is the figure of the test field which imitated the farm field, and the figure which showed the advancing direction of the starting point when the crawler type mobile robot is made to travel. クローラ型移動ロボットを走行させた時の軌跡を表す図である。It is a figure showing a locus when a crawler type mobile robot is made to run.

1 軸
2 回転センサ
3 弾性材固定部
4 締めネジ
5 弾性材
6 ゴムバンド
7 左軸
8 右軸
9 クローラ型移動ロボット
10 ガラス棒
11 A1
12 A2
13 B1
14 B2
DESCRIPTION OF SYMBOLS 1 axis | shaft 2 rotation sensor 3 elastic material fixing | fixed part 4 fastening screw 5 elastic material 6 rubber band 7 left axis 8 right axis 9 crawler type mobile robot 10 glass rod 11 A1
12 A2
13 B1
14 B2

Claims (2)

接触部に曲面の弾性材または円形、半円形にたわませた弾性材を使用し、弾性材の変形を両端に設けた回転センサで判別することで、加えられた力と向き、またはそのいずれかを推定する事ができ、接触させた物体の損傷や絡まりなどの危険を軽減した接触センサ。Using a curved elastic material or a circular or semi-circular elastic material for the contact part, and detecting the deformation of the elastic material with rotation sensors provided at both ends, applied force and direction, or either A contact sensor that can reduce the risk of damage and entanglement of the contacted object. 物体の検知、進行方向の決定の手段として、請求項1に記載の接触センサを備えた移動ロボット。A mobile robot comprising the contact sensor according to claim 1 as means for detecting an object and determining a traveling direction.
JP2009039966A 2009-01-29 2009-01-29 Contact sensor and mobile robot Pending JP2010175533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009039966A JP2010175533A (en) 2009-01-29 2009-01-29 Contact sensor and mobile robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009039966A JP2010175533A (en) 2009-01-29 2009-01-29 Contact sensor and mobile robot

Publications (1)

Publication Number Publication Date
JP2010175533A true JP2010175533A (en) 2010-08-12

Family

ID=42706633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009039966A Pending JP2010175533A (en) 2009-01-29 2009-01-29 Contact sensor and mobile robot

Country Status (1)

Country Link
JP (1) JP2010175533A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101816557B1 (en) 2015-11-06 2018-01-09 대한민국 Robot for farm work and method of controlling the same
JP2021121989A (en) * 2020-01-31 2021-08-26 建ロボテック株式会社 Contact type sensor unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101816557B1 (en) 2015-11-06 2018-01-09 대한민국 Robot for farm work and method of controlling the same
JP2021121989A (en) * 2020-01-31 2021-08-26 建ロボテック株式会社 Contact type sensor unit
JP7168234B2 (en) 2020-01-31 2022-11-09 建ロボテック株式会社 Contact sensor unit

Similar Documents

Publication Publication Date Title
KR102247445B1 (en) Hinged vehicle chassis
JP2014046404A5 (en)
EP2561784A3 (en) Robot cleaner and control method thereof
WO2016193686A4 (en) Characterising robot environments
EP2412222A3 (en) Robotic mower stuck detection system and robotic mower
JP2014046401A5 (en)
Kouno et al. Development of active-joint active-wheel high traversability snake-like robot ACM-R4. 2
WO2014160086A3 (en) Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers
WO2017163177A3 (en) Automatic calibration method for robot system
EP3074686A1 (en) System and method for calculating the orientation of a device
KR20070119964A (en) Moving apparatus and method for compensating position
EP1950115A3 (en) Systems, methods, and computer program products for lane change detection and handling of lane keeping torque
WO2015077584A3 (en) Steering techniques for surgical instruments
JP2012166314A5 (en) Position detecting apparatus and position detecting method
JP2014046403A5 (en)
JP2015147280A5 (en) Robot calibration method and article manufacturing method
JP2013244377A5 (en)
JP6148937B2 (en) Rice field recognition sensor and paddy weeding robot equipped with rice field recognition sensor
WO2007090388A3 (en) Device and method for following the movement of a tool of a handling unit
JP2010175533A (en) Contact sensor and mobile robot
WO2010108300A8 (en) Apparatus including a sensor arrangement and methods of operating the same
JP2016514583A5 (en)
KR101371941B1 (en) Measurement for angle of constant velocity joint of drive shaft
JP6671682B2 (en) Absolute angle detection system and absolute angle detection method
MX364299B (en) Sensor straightened end effector during removal through trocar.