JP2010175496A - Power supply apparatus equipped with device for determining deterioration of battery pack - Google Patents

Power supply apparatus equipped with device for determining deterioration of battery pack Download PDF

Info

Publication number
JP2010175496A
JP2010175496A JP2009021152A JP2009021152A JP2010175496A JP 2010175496 A JP2010175496 A JP 2010175496A JP 2009021152 A JP2009021152 A JP 2009021152A JP 2009021152 A JP2009021152 A JP 2009021152A JP 2010175496 A JP2010175496 A JP 2010175496A
Authority
JP
Japan
Prior art keywords
power supply
battery pack
time
current
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009021152A
Other languages
Japanese (ja)
Inventor
Toshiaki Yabumoto
俊昭 藪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2009021152A priority Critical patent/JP2010175496A/en
Publication of JP2010175496A publication Critical patent/JP2010175496A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem, wherein when an emergency power supply is composed of a battery pack that uses a plurality of cells, the battery pack begins to be deteriorated with the lapse of time after the start of operation, mainly because of the change of internal resistance, but if the degree of change is small it is difficult to accurately determine the time for replacement; and to provide a power supply apparatus equipped with a device for determining deterioration which can accurately determine the time for replacement of the battery pack after the start of operation. <P>SOLUTION: The power supply apparatus that is constituted of a battery pack 6 charged from a system power supply 1 through an AC/DC converter 3 and a load 9, to which electric power is supplied from the battery pack 6 through a DC/AC converter 7 when the system power supply 1 fails and that is charged via the AC/DC converter 3, after the power recovery includes a device for determining the deterioration of the battery pack 6, which indicates the drooping characteristic of charging current from the time, when recharging is performed at a constant current and is then switched to constant-voltage charging. Furthermore, the device 15 has an ammeter 5 for measuring the charging current, indicating the drooping characteristic and a timer 11 for measuring the time indicating the drooping characteristic, and determines the deterioration of the battery pack, when the current value, after a lapse of a predetermined time period from the start of current drooping, exceeds a predetermined value by outputs of the ammeter and the timer 11. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は非常用電源設備に使用される鉛蓄電池のような蓄電池を複数個接続した組電池の使用開始後長時間経過したときの劣化を判定する装置、更には、劣化状態を判定された組電池の各セルに対し、二次判定として劣化したセルを判定する装置を備えた電源装置に関する。   The present invention relates to an apparatus for determining deterioration when a long time has elapsed after the start of use of an assembled battery in which a plurality of storage batteries such as lead storage batteries used for emergency power supply equipment are connected, and further, a set whose deterioration state has been determined. The present invention relates to a power supply device including a device that determines a deteriorated cell as a secondary determination for each cell of a battery.

通常は系統電源から電力を供給されている負荷について、系統電源に発生した停電時も電力供給を続けることができるように、非常用電源設備として組電池を使用し構成している。組電池は通常、制御弁式鉛蓄電池から成るセルを複数個直並列に接続している。そのため設備の運用開始後、長時間経過すると特性の劣化したセルが生じてくる。この種電源設備は通常時に、系統電源から充電し続けて電圧を維持しているため、充電電流が少量で、また組電池の総電圧も変化しないため、劣化を生じたセルを容易に見出して、また不良セルを交換することが困難であった。
このような欠点を改善する技術の1例が特許文献1として引用する特開2003-59544号公報に開示されている。特許文献1には単一の二次電池の充放電時の電流対時間の関係を図2の曲線で示している。また、正常な電池に対し一定電流で充電を開始し、電池電圧が所定の電圧に達したときの時間をt0で示している。その後定電圧充電に移行するため、充電電流は急に低下する。そして時間経過と共に変化する充電電流は「正常」と示す曲線で変化している。尚、Q0の符号は定電圧充電移行時の蓄電量を示している。使用期間が長期になった蓄電池は内部抵抗が増加する。そのため図2に示すように、t0’/Dの時間において定電流充電に移行すると、この場合の電流変化し正常電池の場合より緩やかで、図2のIMと表示した点において、上記正常電池の場合の電流変化曲線と交差する。その後も時間経過と共に緩やかに電流が減少して行くようにした二次電池の内部情報検知手段について記載されている。
また、前記従来技術の欠点を改善するため、他の技術が特許文献2として引用する特開2002-343444号公報に記載されている。特許文献2には、図2に示すように組電池に接続した鉛蓄電池4が満充電されているとき、1日1回20Hzの交流電流を印加し、演算装置7において内部抵抗値を演算すること、その内部抵抗値は組電池4の側面に固定されているサーミスタを使用し測定された温度により温度補正し、且つ過去半年分のデータについて平均値を求めて、記憶装置のRAM8に時系列的に記憶すること、次に直前半年分の内部抵抗平均値と比較して変化率を求めること、変化率が110%を超えたとき表示装置10に寿命と表示する鉛蓄電池の状態監視システムについて記載されている。
Normally, an assembled battery is used as an emergency power supply facility so that the load supplied with power from the system power supply can continue to be supplied even in the event of a power failure occurring in the system power supply. An assembled battery usually has a plurality of cells each composed of a control valve type lead storage battery connected in series and parallel. For this reason, after the start of the operation of the facility, a cell having deteriorated characteristics is generated after a long time. Since this type of power supply equipment normally keeps charging from the system power supply and maintains the voltage, the charging current is small and the total voltage of the assembled battery does not change, so it is easy to find a cell that has deteriorated. In addition, it was difficult to replace defective cells.
An example of a technique for improving such a defect is disclosed in Japanese Patent Laid-Open No. 2003-59544 cited as Patent Document 1. In Patent Document 1, the relationship between current and time during charging / discharging of a single secondary battery is shown by the curve in FIG. Also, the time when the normal battery starts to be charged with a constant current and the battery voltage reaches a predetermined voltage is indicated by t 0 . After that, the charging current is suddenly decreased because of shifting to constant voltage charging. The charging current that changes with the passage of time changes along a curve indicating “normal”. Note that the sign of Q 0 indicates the amount of electricity stored at the time of transition to constant voltage charging. The internal resistance of a storage battery that has been used for a long time increases. Therefore, as shown in FIG. 2, when shifting to constant current charging at the time of t 0 ′ / D, the current change in this case changes more slowly than in the case of a normal battery, and in the point indicated by I M in FIG. Crosses the current change curve in the case of a battery. After that, there is described an internal information detecting means for a secondary battery in which the current gradually decreases with time.
Another technique described in Japanese Patent Laid-Open No. 2002-343444 is cited as Patent Document 2 in order to improve the drawbacks of the prior art. In Patent Document 2, when the lead storage battery 4 connected to the assembled battery is fully charged as shown in FIG. 2, an alternating current of 20 Hz is applied once a day, and the internal resistance value is calculated in the calculation device 7. The internal resistance value is temperature-corrected by the measured temperature using a thermistor fixed to the side surface of the assembled battery 4, and the average value is obtained for the data for the past half year, and the time series is stored in the RAM 8 of the storage device. The state monitoring system of lead storage battery that displays the rate of change in comparison with the internal resistance average value for the previous half year, and displays the life on the display device 10 when the rate of change exceeds 110% Are listed.

特開2003-59544号公報JP 2003-59544 JP 特開2002-343444号公報JP 2002-343444 A

しかしながら、特許文献1に開示された上記の発明は、二次電池の内部情報検知に関するものである。セルを組電池に形成した場合、各セルの劣化度合には差異が発生していて、組電池としての劣化度合は薄められる傾向がある。そのため組電池に構成した場合の劣化判定は困難になる。
また特許文献2に記載された事項は、組電池の内部抵抗値を長期に亘り、同一方法で測定し処理したデータについて平均値を求め、それを過去において同様に求めておいた平均値データと継続的に比較して判断するという面倒なデータ処理が必要となる。
本発明は組電池の劣化判定を容易に行うことができる装置を備えた電源装置を提供することを目的とする。
However, the above invention disclosed in Patent Document 1 relates to internal information detection of a secondary battery. When cells are formed in an assembled battery, there is a difference in the degree of deterioration of each cell, and the degree of deterioration as an assembled battery tends to be diminished. Therefore, it becomes difficult to determine deterioration when the battery pack is configured.
In addition, the matter described in Patent Document 2 is an average value of data obtained by measuring and processing the internal resistance value of the assembled battery over a long period of time using the same method, and the average value data obtained in the past in the same manner. A cumbersome data process is required for making continuous comparisons.
An object of this invention is to provide the power supply device provided with the apparatus which can perform deterioration determination of an assembled battery easily.

本発明は、請求項1に記載の通り、系統電源から交直変換器を介して充電される組電池と、系統電源の停電時に組電池から直交変換器を介して給電される負荷とで構成し、停電復旧後は該交直変換器を介して充電される電源装置において、再度の充電を定電流で実施しその後に定電圧充電に切換えを行った時から、充電電流の垂下特性を示す組電池の劣化を判定する装置を備え、且つ、該装置は該垂下特性を示す充電電流を測定する電流計と、該垂下特性を示す時間を計測するタイマーを有し、該電流計の出力と該タイマーの出力により電流垂下開始から所定時間経過後の電流値が所定値を超えた時に、組電池の劣化を判定する装置であることを特徴とする組電池の電源装置に存する。
また、本発明は、請求項2に記載のように、劣化状態発生を判定された組電池に対して、組電池を構成するセルの内部抵抗を測定する装置と、該装置により測定した内部抵抗値と初期内部抵抗値とを比較する装置とにより二次判定として劣化したセルを判定することを特徴とする請求項1に記載の電源装置に存する。
The present invention, as described in claim 1, comprises an assembled battery that is charged from the system power supply via the AC / DC converter, and a load that is fed from the assembled battery via the orthogonal converter during a power failure of the system power supply. In the power supply device that is charged via the AC / DC converter after the power failure is restored, the assembled battery that shows the drooping characteristics of the charging current from when the recharging is performed at a constant current and then switched to the constant voltage charging And a device for measuring the charging current indicating the drooping characteristic, and a timer for measuring the time indicating the drooping characteristic, the output of the ammeter and the timer The battery pack power supply apparatus is characterized in that when the current value after a lapse of a predetermined time from the start of drooping of current exceeds a predetermined value, the battery pack is deteriorated.
Further, the present invention provides, as described in claim 2, a device for measuring the internal resistance of a cell constituting the assembled battery, and the internal resistance measured by the device with respect to the assembled battery for which occurrence of the deterioration state is determined. 2. The power supply device according to claim 1, wherein the deteriorated cell is determined as a secondary determination by a device that compares the value with an initial internal resistance value.

請求項1に係る発明によれば、組電池の充電を定電圧充電に切り換えたときの垂下特性を利用し、垂下中の充電電流の大小により劣化発生を判定できる。そのときタイマー、電流計、判定装置のように簡易な装置を使用するのみで良い。
請求項2に係る発明によれば、劣化していると判定された組電池を構成するセルに対し、内部抵抗測定装置で測定し、初期の内部抵抗値と比較することにより容易且つ迅速に劣化セルを判定できる。
According to the first aspect of the present invention, it is possible to determine the occurrence of deterioration based on the magnitude of the charging current during the drooping using the drooping characteristics when the charging of the assembled battery is switched to the constant voltage charging. At that time, it is only necessary to use a simple device such as a timer, an ammeter, or a determination device.
According to the invention according to claim 2, for the cells constituting the assembled battery determined to be deteriorated, it is easily and quickly deteriorated by measuring with an internal resistance measuring device and comparing with the initial internal resistance value. A cell can be determined.

本発明の実施形態例である電池の劣化判定装置を備えた電源装置の構成を示す図。The figure which shows the structure of the power supply device provided with the deterioration determination apparatus of the battery which is the embodiment of this invention. 組電池の充電電流の垂下特性を示す説明図。Explanatory drawing which shows the drooping characteristic of the charging current of an assembled battery. 図1に示す電源装置の組電池における垂下後の電流とセルにおける内部抵抗値のばらつきの変化を示す図。FIG. 2 is a diagram showing a variation in variation in current after drooping in the assembled battery of the power supply device shown in FIG.

本発明の実施形態例を添付図面に基づいて説明する。
図1は系統電源1と負荷との間に介在した組電池6について充放電をしながら、劣化判定する電源装置を示している。2はスイッチを示し、通常は閉じていて、系統電源1からの電力を、組電池6と負荷9の方へ供給している。系統電源1は停電のとき或いは組電池6への充電停止を意図して行うときに、スイッチ2を開く。3は交直変換器を示し、系統電源1からの交流出力を直流に変換する。4は切換スイッチを示し、組電池6を充電するときは交直変換器3側へ閉じる。組電池6を放電するときは図示と反対側へ切り換える。5は電流計、7は直交変換器を示す。8は切換スイッチを示す。系統電源1から負荷9へ電力を供給するときは、図示の方向へスイッチ8を閉じ、組電池6からの放電電力を負荷9へ供給するときは図示の方向と逆の方向へ閉じる。10は電圧計、11はタイマー、12はメモリ、13は組電池の劣化判定装置を示す。
尚、14はセルの内部抵抗測定装置、15はセルの劣化判定装置を示す。
Embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows a power supply device for determining deterioration while charging / discharging an assembled battery 6 interposed between a system power supply 1 and a load. Reference numeral 2 denotes a switch, which is normally closed and supplies power from the system power supply 1 to the assembled battery 6 and the load 9. The system power supply 1 opens the switch 2 when a power failure occurs or when the charging to the assembled battery 6 is intended to be stopped. Reference numeral 3 denotes an AC / DC converter, which converts AC output from the system power supply 1 into DC. 4 indicates a changeover switch, which is closed to the AC / DC converter 3 side when the battery pack 6 is charged. When discharging the assembled battery 6, it is switched to the opposite side of the figure. 5 represents an ammeter, and 7 represents an orthogonal converter. 8 indicates a changeover switch. When power is supplied from the system power supply 1 to the load 9, the switch 8 is closed in the direction shown in the figure, and when the discharge power from the assembled battery 6 is supplied to the load 9, it is closed in the direction opposite to the direction shown in the figure. 10 is a voltmeter, 11 is a timer, 12 is a memory, and 13 is a deterioration determination device for an assembled battery.
Reference numeral 14 denotes a cell internal resistance measuring device, and 15 denotes a cell deterioration determining device.

図1に示す劣化判定装置の動作について説明する。
当初において、組電池6は充電した後の、また、通常運用時は自己放電により電圧降下を起こすことを防ぐため、フロート電流(0.001CA以下)(ここで、Cは電池容量、Aはアンペアを示す)で充電されている。そして停電などのため、組電池6が放電をした後、再充電をする時から本発明の動作が開始される。再充電は所定の定電流値で充電を始める。所定の時間後に組電池6の両端の電圧が所定値に達したことを電圧計10により検出した時、電圧計10はタイマー11を起動する。そのとき、組電池6の充電は定電流充電から定格電圧充電に変更される。この後、タイマー11の起動の時まで略一定値であった組電池6に対する充電電流は急激に低下する。これを以下「垂下特性」という。
The operation of the degradation determination device shown in FIG. 1 will be described.
Initially, after charging the battery pack 6 and during normal operation, in order to prevent voltage drop due to self-discharge, float current (0.001 CA or less) (where C is battery capacity and A is amperage) Charged). Then, the operation of the present invention is started from the time of recharging after the assembled battery 6 is discharged due to a power failure or the like. Recharging starts charging at a predetermined constant current value. When the voltmeter 10 detects that the voltage across the assembled battery 6 has reached a predetermined value after a predetermined time, the voltmeter 10 starts a timer 11. At that time, charging of the assembled battery 6 is changed from constant current charging to rated voltage charging. Thereafter, the charging current for the assembled battery 6 that has been a substantially constant value until the timer 11 is started decreases rapidly. This is hereinafter referred to as “droop characteristics”.

図2はこのときの充電電流の垂下特性を示す図である。図2において、縦軸は充電電流I、横軸は充電経過時間Tを示す。実線は使用開始直後の新品の組電池の場合の充電電流Iの変化を、一点差線は使用開始後長時間を経過した組電池の場合の変化を示している。
定電流充電から定電圧充電に切り替わる所定電圧に到達した時のタイマー起動の時間を、新品の組電池の場合はN1、使用開始後の組電池の場合はN2と示している。タイマー起動N1、N2の後、タイマー11により時間を計測し、比較的短時間毎に充電電流Iを測定すると、使用開始後の新品の組電池では、N1以降は垂下特性が当初は極めて急であることが判る。相当時間経過し、所謂二次曲線の曲がり方が変化し、勾配が略直線状に切り替わる地点の電流をI1とし、この充電電流をI1とする。一方、使用開始後長時間を経過した組電池では、N2以降は垂下特性が当初は比較的緩やかである。今、N1から電流I1を測定した時までの時間をT1として、N2より時間T1と等しい時間T2を経過した充電電流をI2としてメモリ12に入力する。その時の充電電流I2はI1より大きい。組電池6において、内部抵抗の増大したセルが多くなると、垂下特性発生後の充電電流の減少度合いが小さくなるからである。このとき、電流垂下開始から所定時間経過後の充電電流I2の値を一定期間毎に計測し、この値を判定装置13において予め寿命判定値として設定した所定値と比較してより大きな値となっていると、その組電池6は劣化していると判定する。
また、電流値の変化量が小さいときはより判定し易いように、初期値からの変化率(増加率)を判断指標として用いることも可能である。
FIG. 2 is a diagram showing a drooping characteristic of the charging current at this time. In FIG. 2, the vertical axis represents the charging current I, and the horizontal axis represents the elapsed charging time T. The solid line shows the change in the charging current I in the case of a new assembled battery immediately after the start of use, and the one-point difference line shows the change in the case of an assembled battery that has passed for a long time after the start of use.
The timer activation time when a predetermined voltage at which the constant current charging is switched to the constant voltage charging is reached is indicated as N 1 for a new assembled battery and N 2 for an assembled battery after the start of use. After the timer starts N 1, N 2, to measure the time by the timer 11, when measuring the charging current I for each relatively short time, in the assembled battery of new after the start of use, N 1 after initially drooping characteristics is It turns out to be extremely steep. The current at a point where a so-called quadratic curve changes after a considerable time has elapsed and the gradient switches to a substantially straight line is defined as I 1, and this charging current is defined as I 1 . On the other hand, in an assembled battery that has been used for a long time after the start of use, the drooping characteristics are initially relatively moderate after N 2 . Now, the time from N 1 to when measuring the current I 1 as T 1, the charging current has passed from the time T 1 equal time T 2 N 2 inputs to the memory 12 as I 2. The charging current I 2 at that time is larger than I 1 . This is because, in the battery pack 6, when the number of cells having an increased internal resistance increases, the degree of decrease in the charging current after the drooping characteristics are generated becomes small. At this time, the value of the charging current I 2 after a lapse of a predetermined time from the start of the current drooping is measured every predetermined period, and this value is compared with a predetermined value set in advance as a life determination value in the determination device 13 to be a larger value. If it is, it is determined that the assembled battery 6 has deteriorated.
Further, the change rate (increase rate) from the initial value can be used as a determination index so that it can be easily determined when the change amount of the current value is small.

次に請求項2に係る発明においては、前記劣化していると判定された組電池6について、どのセルが劣化しているかについて判定する。そのため、劣化していると判定された組電池6について、個々のセルの内部抵抗を内部抵抗測定装置14で計測する。その結果を劣化判定装置15において、当初の内部抵抗データと比較して、劣化しているか否か判断する。この判定により劣化したものについて、交換などの処理を行う。当初の劣化判定により直ちに組電池を全体的に交換した場合と比較して、損失が小さくなる。   Next, in the invention according to claim 2, it is determined which cell is deteriorated in the assembled battery 6 determined to be deteriorated. Therefore, with respect to the assembled battery 6 determined to be deteriorated, the internal resistance of each cell is measured by the internal resistance measuring device 14. The degradation determination device 15 compares the result with the initial internal resistance data to determine whether the degradation has occurred. For those deteriorated by this determination, processing such as replacement is performed. Compared with the case where the assembled battery is entirely replaced immediately after the initial deterioration determination, the loss is reduced.

実施例1
停電となった時、負荷に蓄電池より電力を供給する電源設備において、蓄電池部を2V-200Ahの制御弁式鉛蓄電池54セル(期待寿命7年)を直列接続した組電池として構成した。この設備の蓄電池部は常時セル当たり2.23Vとなるように120.4Vで定電圧充電を行っている。系統側の停電などで蓄電池が放電された場合、組電池電圧は低下し、停電復旧後に所定の120.4Vに達するまで、充電装置における交直変換器の定格電流値(20A)で充電を行う。所定電圧に達した後は定電圧制御となるため、その後は電流が徐々に低下する。略72時間の経過後に、安定化する。
このような電源設備において、充電電流計側装置とタイマーとにより上記放電後の充電時の電流変化を測定した。年に1回計画停電を実施し、その停電後の蓄電池充電電流の変化と、各セルの内部抵抗を測定し、初期値との比較を実施した。
これらの測定結果を下記表1に示す。尚、充電電流の測定時期は垂下特性を示す時間として、電流垂下開始から10時間目及び20時間目とした。
Example 1
In a power supply facility that supplies power from a storage battery to a load when a power failure occurs, the storage battery section is configured as an assembled battery consisting of 54 control valve type lead storage batteries (expected life 7 years) connected in series. The storage battery part of this facility is constantly charged at a constant voltage of 120.4V so that it becomes 2.23V per cell. When the storage battery is discharged due to a power failure or the like on the system side, the assembled battery voltage decreases, and charging is performed at the rated current value (20 A) of the AC / DC converter in the charging device until it reaches a predetermined 120.4 V after the power failure is restored. Since constant voltage control is performed after reaching the predetermined voltage, the current gradually decreases thereafter. Stabilizes after approximately 72 hours.
In such a power supply facility, the change in current during charging after the discharge was measured using a charging ammeter side device and a timer. A planned power outage was carried out once a year, and the change in storage battery charging current after the power outage and the internal resistance of each cell were measured and compared with the initial values.
The measurement results are shown in Table 1 below. The charging current was measured at the 10th and 20th hours from the start of the current droop as the time showing the drooping characteristics.

Figure 2010175496
Figure 2010175496

表1に示すように、設置後の運用年数が長くなるほど、セル間の内部抵抗のバラツキが拡大していることが確認できる。特に、期待寿命の7年を過ぎた頃より、このセルの内部抵抗の要交換レベルである1.5倍を超えるものが認められる。これはセルの劣化が進行し、劣化度合いの違いも拡大したことであり、組電池全体として性能低下となっていることを示している。   As shown in Table 1, it can be confirmed that the variation in internal resistance between cells increases as the operation years after installation become longer. In particular, since the expected life of 7 years has passed, it has been observed that the internal resistance of this cell exceeds 1.5 times, which is the level that requires replacement. This means that the deterioration of the cell has progressed and the difference in the degree of deterioration has increased, indicating that the performance of the assembled battery as a whole has been reduced.

図3は、運用開始後の年数の経過に伴う所定時間経過後の電流値・内部抵抗値の変化を示すもので、表1の数値をグラフ化したものである。
同図から明らかな通り、組電池の充電電流の垂下開始後10時間目と、20時間目の値に増加傾向が認められ、セルの内部抵抗値のばらつきと相関関係が生じていることが判る。特に垂下特性を示す10時間目の電流は変化が大きいため、この時間を目標として一定期間毎に電流値変化を調べることが劣化の判定に対して好適である。
尚更に、本発明の電源装置の運用の1例を総括的に詳述すれば、組電池を放電させて負荷へ電力を供給後、系統電源を復活させて負荷へ電力を供給すると共に、交直変換機により組電池を充電する。この充電に当たっては、最初に定格電流である20Aの定電流で充電し、電圧が120.4Vになった時に、この電圧で定電圧充電に切り換えると共に、電圧計がこの値を測定して信号をタイマーへ送信し、タイマーが起動する。タイマーによる計測が10時間に達すると電流計の測定値を組電池の劣化判定装置に送り、その値が3.6A又はこれを超える値の場合は組電池の劣化判定装置が警報を発し、組電池が劣化状態にあることを知らしめる。または、組電池の劣化判定装置が信号を発し、内部抵抗測定装置を起動させ、組電池を構成する各セルの内部抵抗を測定し、その値をセルの劣化判定装置へ送信する。セルの劣化判定装置内では、送られてきた内部抵抗の値が予め測定している新品状態のセルの内部抵抗と比較し、1.5倍を超えているものがある場合は、警報を発すると共に、そのセルを表示するようにした。
尚、図示では、セルを直列接続した1群の組電池の場合を示したが、この1群の組電池を複数並列接続して組電池を構成する場合もある。この場合において、直並列接続された組電池全体の劣化を判定するようにしても良いが、直列接続された1群毎の組電池に夫々劣化を判定する装置を設けて、夫々の組電池の劣化を判定し、劣化と判断された1群の組電池に対してのみセルの劣化判定をするようにすれば、工数を削減できる効果がある。
FIG. 3 shows changes in current values and internal resistance values after a predetermined time with the passage of years after the start of operation, and is a graph of the numerical values in Table 1.
As is clear from the figure, there is an increasing trend in the values at the 10th and 20th hours after the drooping of the charging current of the assembled battery, and it can be seen that there is a correlation with the variation in the internal resistance value of the cell. . In particular, since the current at the 10th hour showing the drooping characteristics varies greatly, it is preferable for the determination of deterioration to examine the current value change at regular intervals with this time as a target.
Still further, an example of the operation of the power supply device of the present invention will be described in detail. After discharging the assembled battery and supplying power to the load, the system power supply is restored to supply power to the load, and The battery pack is charged by the converter. In this charging, the battery is first charged with a constant current of 20A, which is the rated current, and when the voltage reaches 120.4V, it switches to constant voltage charging with this voltage, and the voltmeter measures this value and signals the timer. And the timer starts. When the measurement by the timer reaches 10 hours, the measured value of the ammeter is sent to the battery pack deterioration judgment device. If the value is 3.6A or more, the battery pack deterioration judgment device issues an alarm, and the battery pack Lets know that is in a degraded state. Alternatively, the battery pack deterioration determination device emits a signal, activates the internal resistance measurement device, measures the internal resistance of each cell constituting the battery pack, and transmits the value to the cell deterioration determination device. In the cell deterioration determination device, the value of the sent internal resistance is compared with the internal resistance of the new cell that is measured in advance, and if there is something that exceeds 1.5 times, an alarm is issued, The cell was displayed.
In the figure, the case of a group of assembled batteries in which cells are connected in series is shown. However, a plurality of groups of assembled batteries may be connected in parallel to form an assembled battery. In this case, it may be possible to determine the deterioration of the entire assembled battery connected in series and parallel, but a device for determining deterioration is provided for each group of assembled batteries connected in series. If the deterioration is determined and cell deterioration is determined only for a group of assembled batteries that are determined to be deteriorated, the number of steps can be reduced.

1 系統電源
2 スイッチ
3 交直変換器
4 切換スイッチ
5 電流計
6 組電池
7 直交変換器
8 切換スイッチ
9 負荷
10 電圧計
11 タイマー
12 メモリ
13 組電池の劣化判定装置
14 内部抵抗測定装置
15 セルの劣化判定装置
Single power supply
2 switch
3 AC / DC converter
4 selector switch
5 Ammeter
6 batteries
7 Orthogonal transformer
8 selector switch
9 Load
10 Voltmeter
11 Timer
12 memory
13 Battery deterioration assessment device
14 Internal resistance measuring device
15 Cell degradation assessment device

Claims (2)

系統電源から交直変換器を介して充電される組電池と、系統電源の停電時に組電池から直交変換器を介して給電される負荷とで構成し、停電復旧後は該交直変換器を介して充電される電源装置において、再度の充電を定電流で実施しその後に定電圧充電に切換えを行った時から、充電電流の垂下特性を示す組電池の劣化を判定する装置を備え、且つ、該装置は該垂下特性を示す充電電流を測定する電流計と、該垂下特性を示す時間を計測するタイマーを有し、該電流計の出力と該タイマーの出力により電流垂下開始から所定時間経過後の電流値が所定値を超えた時に、組電池の劣化を判定する装置であることを特徴とする組電池の電源装置。   Consists of an assembled battery that is charged from the system power supply via the AC / DC converter, and a load that is fed from the assembled battery via the orthogonal converter at the time of a power failure of the system power supply. A power supply device to be charged is provided with a device for determining deterioration of an assembled battery showing drooping characteristics of charging current from the time when recharging is performed at a constant current and then switching to constant voltage charging, and The apparatus has an ammeter for measuring the charging current indicating the drooping characteristic, and a timer for measuring the time indicating the drooping characteristic, and the output of the ammeter and the output of the timer are used after a predetermined time has elapsed from the start of the current drooping. A battery pack power supply apparatus, characterized in that when the current value exceeds a predetermined value, the battery pack deterioration is determined. 劣化状態発生を判定された組電池に対して、組電池を構成するセルの内部抵抗を測定する装置と、該装置により測定した内部抵抗値と初期内部抵抗値とを比較する装置とにより二次判定として劣化したセルを判定することを特徴とする請求項1に記載の電源装置。   For an assembled battery that has been determined to have a deteriorated state, a device that measures the internal resistance of the cells that make up the assembled battery and a device that compares the internal resistance value measured by the device with the initial internal resistance value 2. The power supply device according to claim 1, wherein a deteriorated cell is determined as the determination.
JP2009021152A 2009-02-02 2009-02-02 Power supply apparatus equipped with device for determining deterioration of battery pack Pending JP2010175496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021152A JP2010175496A (en) 2009-02-02 2009-02-02 Power supply apparatus equipped with device for determining deterioration of battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021152A JP2010175496A (en) 2009-02-02 2009-02-02 Power supply apparatus equipped with device for determining deterioration of battery pack

Publications (1)

Publication Number Publication Date
JP2010175496A true JP2010175496A (en) 2010-08-12

Family

ID=42706601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021152A Pending JP2010175496A (en) 2009-02-02 2009-02-02 Power supply apparatus equipped with device for determining deterioration of battery pack

Country Status (1)

Country Link
JP (1) JP2010175496A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045507A (en) * 2011-08-22 2013-03-04 Hitachi Ltd Secondary battery control system
CN103094637A (en) * 2011-11-02 2013-05-08 株式会社丰田自动织机 Apparatus and method for battery equalization
US20140320072A1 (en) * 2013-04-29 2014-10-30 HONG FU JIN PERCISION INDUSTRY (ShenZhen) CO., LTD Time adjusting charge circuit
CN105398457A (en) * 2015-10-30 2016-03-16 南车戚墅堰机车有限公司 Auxiliary redundancy control system for internal combustion locomotive
JP2020089078A (en) * 2018-11-26 2020-06-04 古河電池株式会社 Control valve type lead-acid storage battery control method and control device
CN118275915A (en) * 2024-06-03 2024-07-02 青岛艾诺仪器有限公司 Battery screening method and device based on constant voltage self-discharge test

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045507A (en) * 2011-08-22 2013-03-04 Hitachi Ltd Secondary battery control system
CN103094637A (en) * 2011-11-02 2013-05-08 株式会社丰田自动织机 Apparatus and method for battery equalization
JP2013099159A (en) * 2011-11-02 2013-05-20 Toyota Industries Corp Battery equalization device and method
CN103094637B (en) * 2011-11-02 2015-07-15 株式会社丰田自动织机 Apparatus and method for battery equalization
US20140320072A1 (en) * 2013-04-29 2014-10-30 HONG FU JIN PERCISION INDUSTRY (ShenZhen) CO., LTD Time adjusting charge circuit
CN105398457A (en) * 2015-10-30 2016-03-16 南车戚墅堰机车有限公司 Auxiliary redundancy control system for internal combustion locomotive
JP2020089078A (en) * 2018-11-26 2020-06-04 古河電池株式会社 Control valve type lead-acid storage battery control method and control device
CN118275915A (en) * 2024-06-03 2024-07-02 青岛艾诺仪器有限公司 Battery screening method and device based on constant voltage self-discharge test

Similar Documents

Publication Publication Date Title
JP6526326B2 (en) Device and method for detecting failure of battery cell by unknown discharge current
JP5460943B2 (en) Degradation judgment device, degradation judgment method, computer program
JP5499200B2 (en) Degradation determination apparatus, deterioration determination method, and program
US10044199B2 (en) Electric storage system that detects voltage values of a plurality of electric storage elements
JP5089619B2 (en) Secondary battery deterioration diagnosis device
JP4818808B2 (en) Battery pack state measuring device, battery pack deterioration judgment method and battery pack deterioration judgment program
JP5773609B2 (en) Battery pack management apparatus, battery pack management method, and battery pack system
JP2007309839A (en) Battery pack condition measuring device, degradation of battery pack discrimination method and program for the same
US9112371B2 (en) Refresh charging method for an assembled battery constituted from a plurality of lead-acid storage batteries and charging apparatus
JP2007311255A (en) Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program
JP2010175496A (en) Power supply apparatus equipped with device for determining deterioration of battery pack
EP2798693B1 (en) Method and system for controlling energy storage device
JP5743634B2 (en) Deterioration measuring device, secondary battery pack, deterioration measuring method, and program
JP2008151526A (en) Apparatus for determining degradation of secondary cell and backup power supply
WO2009107236A1 (en) Charging device and quality judging device of pack cell
JP2011112453A (en) Storage battery cell short-circuit detection method and detection apparatus
KR102014719B1 (en) Battery life management device
KR20140053585A (en) Apparatus and method for estimating state of health of battery
CN109921103B (en) Maintenance method and system for storage battery pack and maintenance method and system for storage battery
CN117214757A (en) Lithium ion battery and battery pack health degree prediction method
JP5553622B2 (en) Secondary battery system and management method thereof
JP2007163145A (en) Discharge time calculation device and discharge time calculation method
JP4754509B2 (en) Storage battery state measuring device, storage battery deterioration determination method, storage battery deterioration determination program
JP2009207332A (en) Charger apparatus for pack battery, and quality decision apparatus for pack battery
JP4987504B2 (en) Storage battery state measuring device, storage battery deterioration determination method, storage battery deterioration determination program