JP2010175344A - Arrangement structure of temperature sensor, temperature calibration device, and temperature calibration method - Google Patents

Arrangement structure of temperature sensor, temperature calibration device, and temperature calibration method Download PDF

Info

Publication number
JP2010175344A
JP2010175344A JP2009017218A JP2009017218A JP2010175344A JP 2010175344 A JP2010175344 A JP 2010175344A JP 2009017218 A JP2009017218 A JP 2009017218A JP 2009017218 A JP2009017218 A JP 2009017218A JP 2010175344 A JP2010175344 A JP 2010175344A
Authority
JP
Japan
Prior art keywords
temperature
temperature sensor
correction
main body
allowable range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009017218A
Other languages
Japanese (ja)
Inventor
Tatsuaki Onishi
辰明 大西
Hideki Torigoe
秀樹 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Spindle Manufacturing Co Ltd
Original Assignee
Nihon Spindle Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Spindle Manufacturing Co Ltd filed Critical Nihon Spindle Manufacturing Co Ltd
Priority to JP2009017218A priority Critical patent/JP2010175344A/en
Publication of JP2010175344A publication Critical patent/JP2010175344A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an arrangement structure of temperature sensors, a temperature calibration device and a temperature calibration method, capable of correcting highly accurately by a simpler constitution, and reducing manufacturing cost and operation cost, when correcting a measured temperature by a temperature sensor, with a reference temperature of a reference temperature sensor. <P>SOLUTION: In this arrangement structure of temperature sensors including a support for supporting temperature sensors 3, a cylindrical body cylinder part 1 formed so that the air A can be circulated through the inside is included as the support, a plurality of temperature sensors 3 formed respectively in the bar shape are arranged radially in the inserted state into the body cylinder part 1 from the radial direction outside of the body cylinder part 1 toward the axial core X direction, and a fan 5 is also included, for circulating the air A from one end 1a of the body cylinder part 1 toward the other end 1b thereof, and supplying the air A to the temperature sensors 3 arranged radially. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、温度センサを支持する支持体を備えた温度センサの配置構造、及びこの温度センサの配置構造を備え、温度センサの計測温度を基準温度センサにより計測された基準温度にて補正する温度補正手段を備えた温度校正装置、並びにこの温度校正装置を用いた温度校正方法に関する。   The present invention includes an arrangement structure of a temperature sensor provided with a support for supporting the temperature sensor, and a temperature that includes the arrangement structure of the temperature sensor, and corrects the measured temperature of the temperature sensor with the reference temperature measured by the reference temperature sensor. The present invention relates to a temperature calibration apparatus provided with a correction means, and a temperature calibration method using the temperature calibration apparatus.

従来、このような温度センサの温度校正装置においては、複数の温度センサの計測温度と基準温度センサの基準温度との温度差を計測して、この温度差が小さくなるように補正値を算出し、この補正値を用いて計測温度を補正(校正)する際に、以下のような温度センサの配置構造が採用されていた。   Conventionally, in such a temperature sensor temperature calibration device, the temperature difference between the measured temperature of a plurality of temperature sensors and the reference temperature of the reference temperature sensor is measured, and a correction value is calculated so that this temperature difference is reduced. When correcting (calibrating) the measured temperature using this correction value, the following temperature sensor arrangement structure has been adopted.

例えば、棒状に形成された複数の温度センサを平行に密集接近させた状態で束にして配置し、その温度センサの束から少し離間した状態で平行に基準温度センサを配置する温度センサの配置構造が例示できる。
しかしながら、この温度センサの配置構造においては、複数の温度センサを密集接近した状態で束にして配置するため、温度センサの自己加熱によりその温度センサの周囲の空気が加熱される。よって、その温度センサの周囲に位置する温度センサは、温度センサの自己加熱により加熱された空気の温度を計測することになる。その結果、雰囲気中に存在する同一温度の空気を計測しようとしているにもかかわらず、各温度センサで異なる温度の空気を計測することになるという問題がある(いわゆる相互干渉)。
For example, a temperature sensor arrangement structure in which a plurality of temperature sensors formed in a rod shape are arranged in a bundle in a state where they are closely packed in parallel, and a reference temperature sensor is arranged in parallel in a state slightly separated from the bundle of temperature sensors Can be illustrated.
However, in this temperature sensor arrangement structure, a plurality of temperature sensors are arranged in a bundle in a closely packed state, so that the air around the temperature sensor is heated by the self-heating of the temperature sensor. Therefore, the temperature sensor located around the temperature sensor measures the temperature of the air heated by the self-heating of the temperature sensor. As a result, there is a problem that air at different temperatures is measured by each temperature sensor (so-called mutual interference) even though the air at the same temperature existing in the atmosphere is being measured.

この問題を解決するため、自己加熱による影響を受けないように、例えば、棒状に形成された複数の温度センサを平行で相互に距離を離して配置し、その平行に配置された温度センサの一端側に平行に基準温度センサを配置する温度センサの配置構造が例示できるが、複数の温度センサに対して同一温度の空気を通流させることが難しくなる。この場合、各温度センサが離れた状態で配置されるため配置空間が広くなり、一端側に配置された基準温度センサで計測した基準温度と、他端側から配置された複数の温度センサの各計測温度とで、それぞれの計測温度差(温度ムラ)が発生し、正確な補正ができにくいという問題がある。   In order to solve this problem, in order not to be affected by self-heating, for example, a plurality of temperature sensors formed in a bar shape are arranged in parallel and spaced apart from each other, and one end of the temperature sensor arranged in parallel is arranged. Although the temperature sensor arrangement structure in which the reference temperature sensor is arranged in parallel to the side can be illustrated, it is difficult to allow air of the same temperature to flow through a plurality of temperature sensors. In this case, since the temperature sensors are arranged in a separated state, the arrangement space is widened, and each of the reference temperature measured by the reference temperature sensor arranged on one end side and the plurality of temperature sensors arranged on the other end side is provided. There is a problem in that the measured temperature difference (temperature unevenness) occurs between the measured temperatures and accurate correction is difficult.

一方、上記温度センサの配置構造及び温度校正装置として、複数の温度センサ及び校正用温度センサ(本願の基準温度センサに相当)を収納可能な恒温ブロック(本願の支持体に相当)と、恒温ブロックを均一に昇温された状態に加熱するヒータと、を備えた温度センサの配置構造及び温度校正装置がある(例えば、特許文献1を参照)。   On the other hand, as the temperature sensor arrangement structure and the temperature calibration device, a thermostat block (corresponding to the reference temperature sensor of the present application) that can accommodate a plurality of temperature sensors and calibration temperature sensors (corresponding to the reference temperature sensor of the present application), and a thermostat block There is a temperature sensor arrangement structure and a temperature calibration device provided with a heater that heats the battery to a uniformly heated state (see, for example, Patent Document 1).

この特許文献1に記載の温度センサの配置構造及び温度校正装置では、恒温ブロックを円筒状に形成し、複数の温度センサのセンシング部を恒温ブロックの軸芯と平行な方向に収納可能な収納孔を、この恒温ブロックの一方の端面に周方向で複数個設け、校正用温度センサのセンシング部を恒温ブロックの軸芯と平行な方向に収容可能な収納孔をこの端面の中心付近に一つ設ける構成とされている。   In the temperature sensor arrangement structure and temperature calibration device described in Patent Document 1, a thermostat block is formed in a cylindrical shape, and a storage hole that can store sensing portions of a plurality of temperature sensors in a direction parallel to the axis of the thermostat block. Are provided in one end face of the constant temperature block in the circumferential direction, and one accommodation hole is provided near the center of the end face for accommodating the sensing part of the calibration temperature sensor in a direction parallel to the axis of the constant temperature block. It is configured.

そして、特許文献1に記載の温度センサの配置構造及び温度校正装置では、複数の温度センサ及び校正用温度センサのそれぞれを各収納孔(密閉空間)に配置した状態で、ヒータに通電して恒温ブロックの各収納孔を均一な温度に維持し、複数の温度センサの計測温度及び校正用温度センサの基準温度を計測して、これら計測温度と基準温度とをそれぞれ比較する。これら計測温度が基準温度に対して大きな温度差がある場合にはその温度センサが不良であるとして交換し、温度差がほとんどない場合にはその温度センサをそのまま用いるという温度センサの補正(校正)を行うことにより、複数の温度センサと校正用温度センサとの温度差をできるだけ無くすことができ、これら温度差が少ない複数の温度センサを各検温点に配置することで、各検温点の温度を正確に監視できるとされる。   In the temperature sensor arrangement structure and the temperature calibration device described in Patent Document 1, the temperature sensor and the temperature sensor for calibration are placed in each storage hole (sealed space) and the heater is energized to keep the temperature constant. Each storage hole of the block is maintained at a uniform temperature, the measurement temperature of the plurality of temperature sensors and the reference temperature of the calibration temperature sensor are measured, and the measurement temperature and the reference temperature are respectively compared. If the measured temperature has a large temperature difference with respect to the reference temperature, the temperature sensor is replaced as defective, and if there is almost no temperature difference, the temperature sensor is used as it is (calibration). By doing this, the temperature difference between the multiple temperature sensors and the calibration temperature sensor can be eliminated as much as possible, and by placing multiple temperature sensors with small temperature differences at each temperature detection point, the temperature at each temperature detection point can be adjusted. It can be accurately monitored.

特開2000−304627号公報JP 2000-304627 A

しかし、上記特許文献1に記載の温度センサの配置構造及び温度校正装置では、複数の温度センサ及び校正用温度センサをそれぞれ収納する複数の収納孔を備えた恒温ブロック、そしてこれを加熱するヒータを設ける必要があるが、複数の収納孔を均一な温度に維持可能な恒温ブロックの構成、及びこの恒温ブロックを均一な温度に加熱可能なヒータの構成は比較的複雑なものとなり、装置構成が比較的大きく、製作コストも大きくなりやすいという問題がある。この問題は、特に、温度センサの計測温度と校正用温度センサの基準センサとの温度差ができるだけ小さくなるように高精度に補正を行う場合に、より顕著に現れる。
また、ヒータにより恒温ブロックを加熱する構成であるので、加熱のためのエネルギーが比較的多く必要となり、より運転コストを軽減できることが好ましい。
However, in the temperature sensor arrangement structure and the temperature calibration device described in Patent Document 1, a thermostatic block having a plurality of storage holes for storing a plurality of temperature sensors and calibration temperature sensors, respectively, and a heater for heating the temperature block are provided. Although it is necessary to provide, the configuration of the constant temperature block that can maintain a plurality of storage holes at a uniform temperature and the configuration of a heater that can heat this constant temperature block to a uniform temperature are relatively complicated, and the device configuration is compared. There is a problem that the manufacturing cost is likely to be large. This problem appears more prominent particularly when correction is performed with high accuracy so that the temperature difference between the measured temperature of the temperature sensor and the reference sensor of the calibration temperature sensor is as small as possible.
Moreover, since it is the structure which heats a constant temperature block with a heater, it is preferable that comparatively much energy for heating is required and operation cost can be reduced more.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、温度センサの計測温度を基準温度センサの基準温度にて補正する際に、より簡便な構成で高精度に補正することができるとともに、製作コスト及び運転コストをも低減できる温度センサの配置構造、温度校正装置、温度校正方法を提供する点にある。   The present invention has been made in view of the above problems, and its purpose is to correct the measured temperature of the temperature sensor with the reference temperature of the reference temperature sensor with high accuracy with a simpler configuration. It is in providing a temperature sensor arrangement structure, a temperature calibration device, and a temperature calibration method that can reduce manufacturing costs and operation costs.

上記目的を達成するための本発明に係る温度センサの配置構造は、温度センサを支持する支持体を備えた温度センサの配置構造であって、その特徴構成は、前記支持体として内部に空気を通流可能に形成された円筒状の本体円筒部を備え、棒状に形成された複数の前記温度センサが、前記本体円筒部の径方向外側から軸芯方向に向かって前記本体円筒部内に挿入された状態で放射状に配置されるとともに、
前記本体円筒部の一端から他端に向けて空気を通流させ、前記放射状に配置された前記温度センサに前記空気を供給するファンを備えた点にある。
In order to achieve the above object, a temperature sensor arrangement structure according to the present invention is a temperature sensor arrangement structure including a support body that supports the temperature sensor, and the characteristic configuration is that air is provided inside the support body. A plurality of temperature sensors formed in a rod shape having a cylindrical main body cylindrical portion formed to allow flow therethrough are inserted into the main body cylindrical portion from the radially outer side of the main body cylindrical portion toward the axial center direction. Are arranged in a radial pattern,
The air cylinder is provided with a fan that allows air to flow from one end to the other end of the main body cylindrical portion and supplies the air to the radially arranged temperature sensors.

上記特徴構成によれば、内部に空気を通流可能に形成された円筒状の本体円筒部に、棒状に形成された複数の温度センサが、本体円筒部の径方向外側から軸芯方向に向かって本体円筒部内に挿入された状態で放射状に配置され、本体円筒部の一端から他端に向けて空気を通流させるファンを設けるだけの構成であるため、非常に簡便な構成で製作コストを低減した温度センサの配置構造とすることができる。
また、このような簡便な構成でありながら、本体円筒部の内部を通流する空気を、ファンにより当該本体円筒部内に放射状に配置された複数の温度センサにほぼ直交する状態で均一に供給することができるため、複数の温度センサの自己加熱を良好に防止して、複数の温度センサの各計測温度を雰囲気中の空気の温度を正確に反映した温度とすることができる。これにより、複数の温度センサの正確な計測温度を用いて、当該計測温度を基準温度センサの基準温度にて補正することができ、補正後の温度センサが測定対象箇所に配置された際に雰囲気中の温度から上記自己加熱による温度上昇分だけ上昇した計測温度を示してしまうこと等を防止して、高精度な計測温度の補正を行うことが可能となる。
さらに、ヒータ等の消費電力の大きな機器を用いることなく、比較的低消費電力のファンを駆動する構成であるので、温度センサの計測温度を基準温度センサの基準温度にて補正する際の運転コストを低減することが可能となる。
According to the above-described characteristic configuration, the plurality of temperature sensors formed in a rod shape on the cylindrical main body cylindrical portion formed so as to allow air to flow therein are directed from the radially outer side of the main body cylindrical portion toward the axial direction. It is arranged in a radial manner in a state where it is inserted into the main body cylindrical portion, and only has a fan that allows air to flow from one end of the main body cylindrical portion to the other end. The arrangement structure of the temperature sensor can be reduced.
In addition, while having such a simple configuration, the air flowing through the inside of the main body cylindrical portion is uniformly supplied by a fan to a plurality of temperature sensors arranged radially in the main body cylindrical portion in a substantially orthogonal state. Therefore, self-heating of the plurality of temperature sensors can be satisfactorily prevented, and each measured temperature of the plurality of temperature sensors can be set to a temperature accurately reflecting the temperature of air in the atmosphere. As a result, it is possible to correct the measured temperature with the reference temperature of the reference temperature sensor using the accurate measured temperatures of the plurality of temperature sensors, and the atmosphere when the corrected temperature sensor is placed at the measurement target location. It is possible to prevent the measured temperature from increasing from the internal temperature by the amount of the temperature increase due to the self-heating, and to correct the measured temperature with high accuracy.
Furthermore, since it is configured to drive a fan with relatively low power consumption without using a device with high power consumption such as a heater, the operating cost for correcting the temperature measured by the temperature sensor with the reference temperature of the reference temperature sensor Can be reduced.

本発明に係る温度センサの配置構造の更なる特徴構成は、棒状に形成された基準温度センサが、前記本体円筒部の軸芯と平行で前記軸芯上に配置されている点にある。   A further characteristic configuration of the arrangement structure of the temperature sensor according to the present invention is that a reference temperature sensor formed in a rod shape is arranged on the shaft core in parallel with the shaft core of the main body cylindrical portion.

上記特徴構成によれば、棒状に形成された基準温度センサが本体円筒部の軸芯と平行でこの軸芯上に配置されているので、ファンによる本体円筒部内の空気の通流を妨げることがないとともに、本体円筒部内に放射状に配置された複数の温度センサと基準温度センサとの距離を均一に保つことができる。これにより、本体円筒部内における基準温度センサの基準温度と複数の温度センサの計測温度とを雰囲気中の空気の温度と同一にすることができ、基準温度と計測温度との温度ムラの発生を防止して、計測温度を基準温度にて補正する際に高精度な補正を行うことが可能となる。   According to the above characteristic configuration, the reference temperature sensor formed in a rod shape is arranged on the shaft core in parallel with the shaft core of the main body cylindrical portion, so that the air flow in the main body cylindrical portion by the fan is prevented. In addition, the distance between the plurality of temperature sensors arranged radially in the main body cylindrical portion and the reference temperature sensor can be kept uniform. As a result, the reference temperature of the reference temperature sensor and the measured temperature of the plurality of temperature sensors in the main body cylindrical portion can be made the same as the temperature of the air in the atmosphere, and the occurrence of temperature unevenness between the reference temperature and the measured temperature is prevented. Thus, it is possible to perform highly accurate correction when correcting the measured temperature with the reference temperature.

本発明に係る温度センサの配置構造の更なる特徴構成は、前記ファンが前記本体円筒部の他端側に設けられ、前記ファンによる前記空気の流れ方向の上流側に前記基準温度センサ及び前記温度センサが配置されている点にある。   According to a further feature of the arrangement structure of the temperature sensor according to the present invention, the fan is provided on the other end side of the main body cylindrical portion, and the reference temperature sensor and the temperature are arranged upstream of the air flow direction by the fan. The sensor is located.

上記特徴構成によれば、ファンが本体円筒部の他端側に設けられ、ファンによる空気の流れ方向の上流側に基準温度センサ及び温度センサが配置されているので、本体円筒部の内部を一端側から他端側に通流する空気が、基準温度センサ及び温度センサに供給された後、ファンを通過することとなる。これにより、ファンの発熱による影響を受けて、本体円筒部内を通流する空気が温度ムラのある空気となる等の不具合の発生を防止することができる。   According to the above characteristic configuration, the fan is provided on the other end side of the main body cylindrical portion, and the reference temperature sensor and the temperature sensor are arranged on the upstream side in the air flow direction by the fan. After the air flowing from the side to the other end side is supplied to the reference temperature sensor and the temperature sensor, the air passes through the fan. Thereby, it is possible to prevent the occurrence of problems such as that the air flowing through the main body cylindrical portion becomes air with temperature unevenness under the influence of the heat generated by the fan.

本発明に係る温度センサの配置構造の更なる特徴構成は、前記本体円筒部の下部に当該本体円筒部を支持する本体台座部を備え、前記ファンにより前記本体円筒部の他端側から排出された空気が、前記本体台座部の上部から導入されて内部を通流し、当該本体台座部の側部から排出されるように構成されている点にある。   A further characteristic configuration of the arrangement structure of the temperature sensor according to the present invention includes a main body pedestal portion that supports the main body cylindrical portion at a lower portion of the main body cylindrical portion, and is discharged from the other end side of the main body cylindrical portion by the fan. The air is introduced from the upper part of the main body pedestal part, flows through the inside, and is discharged from the side part of the main body pedestal part.

上記特徴構成によれば、ファンにより本体円筒部の他端側から排出された空気が、本体台座部の上部から導入されて内部を通流し、本体台座部の側部から排出されるので、本体円筒部内を通流する空気の流れを阻害することがなく、本体円筒部の他端側から本体台座部の上部及び側部を介して外部に排出することができる。
また、空気の流れを阻害することがないことに加え、本体台座部を温調対象空間等の床部に載置するだけでよく、非常に持ち運び等取り扱いが容易な構成とすることができる。
According to the above characteristic configuration, the air discharged from the other end side of the main body cylindrical portion by the fan is introduced from the upper portion of the main body pedestal portion, flows inside, and is discharged from the side portion of the main body pedestal portion. Without obstructing the flow of air flowing through the inside of the cylindrical portion, the air can be discharged to the outside from the other end side of the main body cylindrical portion via the upper portion and the side portion of the main body base portion.
Further, in addition to not hindering the air flow, it is only necessary to place the main body pedestal part on the floor part of the temperature control target space or the like, and it is possible to make the structure very easy to carry and handle.

上記目的を達成するための本発明に係る温度校正装置は、温調対象空間内の温度を計測する温度センサの計測温度を、基準温度センサにより計測された基準温度にて補正する温度補正手段を備えた温度校正装置であって、その特徴構成は、上記いずれか一つの特徴構成の温度センサの配置構造を備え、前記温度センサの配置構造に前記温度センサ及び前記基準温度センサを配置した状態で、
前記温度補正手段が、前記ファンを駆動させて前記温度センサの計測温度及び前記基準温度センサの基準温度を計測し、前記温度センサの計測温度を前記基準温度センサの基準温度にて補正するように構成されている点にある。
In order to achieve the above object, a temperature calibration apparatus according to the present invention comprises temperature correction means for correcting the measurement temperature of a temperature sensor that measures the temperature in the temperature adjustment target space with the reference temperature measured by the reference temperature sensor. The temperature calibration device includes a temperature sensor arrangement structure according to any one of the above-described characteristic configurations, and the temperature sensor and the reference temperature sensor are arranged in the temperature sensor arrangement structure. ,
The temperature correction means drives the fan to measure the measured temperature of the temperature sensor and the reference temperature of the reference temperature sensor, and corrects the measured temperature of the temperature sensor with the reference temperature of the reference temperature sensor. It is in the point which is comprised.

上記特徴構成によれば、上記温度センサの配置構造に温度センサ及び基準温度センサを配置した状態で、温度補正手段がファンを駆動させて温度センサの計測温度及び基準温度センサの基準温度を計測し、温度センサの計測温度を基準温度センサの基準温度にて補正するので、温度センサの計測温度を基準温度センサの基準温度にて補正する際に、より簡便な構成で高精度に補正することができ、製作コスト及び運転コストをも低減できる温度校正装置を構成することができる。   According to the above characteristic configuration, in the state where the temperature sensor and the reference temperature sensor are arranged in the arrangement structure of the temperature sensor, the temperature correction unit drives the fan to measure the measurement temperature of the temperature sensor and the reference temperature of the reference temperature sensor. Since the measured temperature of the temperature sensor is corrected with the reference temperature of the reference temperature sensor, when the measured temperature of the temperature sensor is corrected with the reference temperature of the reference temperature sensor, it can be corrected with a simpler configuration and with higher accuracy. In addition, a temperature calibration device that can reduce the manufacturing cost and the operating cost can be configured.

上記目的を達成するための本発明に係る温度校正方法は、上記特徴構成の温度校正装置を用いて、前記温度センサの計測温度を前記基準温度にて補正する温度校正方法であって、
サンプリング時間内に前記温度センサ及び前記基準温度センサにて温度計測処理を行い、その温度計測処理における前記温度センサの計測温度を補正値にて補正した補正温度と前記温度計測処理における前記基準温度センサの基準温度との温度差を求め、その求めた温度差が許容範囲内であるか否かを判別する判別処理を行い、前記温度差が前記許容範囲外であれば前記温度差が前記許容範囲内となるまで前記温度計測処理及び前記判別処理を繰り返し実行する構成で、
前記許容範囲を第1許容範囲に設定し、前記補正値について、1回目の前記判別処理では補正値をゼロとし、2回目以降の前記判別処理では前回の判別処理における温度差を前回の判別処理における補正値に加算して更新した更新後の補正値を用いる第1補正工程を実行し、
前記温度差が前記第1許容範囲内になると、前記許容範囲を前記第1許容範囲よりも狭い範囲に設定された第2許容範囲に設定し、前記補正値について、1回目の前記判別処理では前記第1補正工程において前記温度差が前記第1許容範囲内となったときの補正値を用い、2回目以降の前記判別処理では前回の判別処理における温度差を前回の判別処理における補正値に加算して更新した更新後の補正値を用いる第2補正工程を実行して、
前記第2補正工程において前記温度差が前記第2許容範囲内であると判別したときの補正値を、前記計測温度を前記基準温度にて補正するときの校正用補正値として求め、前記計測温度に前記校正用補正値を加算して前記計測温度を補正する点にある。
The temperature calibration method according to the present invention for achieving the above object is a temperature calibration method for correcting the measured temperature of the temperature sensor with the reference temperature using the temperature calibration device having the above-described characteristic configuration,
A temperature measurement process is performed by the temperature sensor and the reference temperature sensor within a sampling time, and a correction temperature obtained by correcting the measurement temperature of the temperature sensor in the temperature measurement process with a correction value and the reference temperature sensor in the temperature measurement process A temperature difference from the reference temperature is determined, and a determination process is performed to determine whether the determined temperature difference is within an allowable range. If the temperature difference is outside the allowable range, the temperature difference is within the allowable range. In the configuration to repeatedly execute the temperature measurement process and the determination process until it is within,
The allowable range is set to a first allowable range, and the correction value for the correction value is set to zero in the first determination process, and the temperature difference in the previous determination process is determined to be the previous determination process in the second and subsequent determination processes. Performing the first correction step using the updated correction value updated by adding to the correction value in
When the temperature difference falls within the first allowable range, the allowable range is set to a second allowable range that is set narrower than the first allowable range, and the correction value is determined in the first determination process. Using the correction value when the temperature difference falls within the first allowable range in the first correction step, the temperature difference in the previous determination process is changed to the correction value in the previous determination process in the second and subsequent determination processes. Executing the second correction step using the updated correction value added and updated;
A correction value obtained when the temperature difference is determined to be within the second allowable range in the second correction step is obtained as a correction value for calibration when the measured temperature is corrected with the reference temperature, and the measured temperature The correction value for calibration is added to the point to correct the measured temperature.

上記特徴構成によれば、第1補正工程では、まず、1回目の温度計測処理及び判別処理を行うが、このときの補正値をゼロとし、補正温度と基準温度との温度差が第1許容範囲内であるか否かを判別する。温度差が第1許容範囲内であれば、基準温度に対して計測温度が第1許容範囲内にあると判別できるので、補正値をゼロのままとする。温度差が第1許容範囲外であれば、基準温度に対して計測温度が第1許容範囲内にないと判別できるので、そのときの温度差を加算して補正値を更新し、2回目の温度計測処理及び判別処理を行う。これにより、2回目以降の判別処理では、計測温度を更新後の補正値により補正温度に補正しているので、基準温度に対して補正温度が第1許容範囲内にあるか否かを判別することができる。このようにして、第1補正工程では、基準温度に対して計測温度が第1許容範囲内になるように補正値を求めることができる。
第2補正工程では、第1補正工程と同様に、温度計測処理及び判別処理を行うが、1回目の判別処理では、第1補正工程において温度差が第1許容範囲内になったときの補正値を用いる。これにより、基準温度に対して計測温度が第1許容範囲内となる補正値を前提として、基準温度に対して計測温度が第1許容範囲よりも狭い範囲の第2許容範囲内になるように補正値を求めることができる。
そして、第2補正工程において温度差が第2許容範囲内であると判別したときの補正値を、計測温度を基準温度にて補正するときの校正用補正値として求めるので、より高精度に補正された校正用補正値により、計測温度を基準温度に高精度に補正することができる。
According to the above characteristic configuration, in the first correction step, first, the first temperature measurement process and the determination process are performed. The correction value at this time is set to zero, and the temperature difference between the correction temperature and the reference temperature is the first allowable value. It is determined whether it is within the range. If the temperature difference is within the first allowable range, it can be determined that the measured temperature is within the first allowable range with respect to the reference temperature, so that the correction value remains zero. If the temperature difference is outside the first allowable range, it can be determined that the measured temperature is not within the first allowable range with respect to the reference temperature, so the correction value is updated by adding the temperature difference at that time, and the second time A temperature measurement process and a discrimination process are performed. As a result, in the second and subsequent determination processes, the measured temperature is corrected to the corrected temperature using the updated correction value, so it is determined whether or not the corrected temperature is within the first allowable range with respect to the reference temperature. be able to. In this manner, in the first correction step, the correction value can be obtained so that the measured temperature is within the first allowable range with respect to the reference temperature.
In the second correction process, the temperature measurement process and the determination process are performed as in the first correction process. In the first determination process, correction is performed when the temperature difference is within the first allowable range in the first correction process. Use the value. As a result, on the premise of a correction value that makes the measured temperature within the first allowable range with respect to the reference temperature, the measured temperature is within the second allowable range that is narrower than the first allowable range with respect to the reference temperature. A correction value can be obtained.
Then, the correction value when the temperature difference is determined to be within the second allowable range in the second correction step is obtained as a correction value for calibration when the measured temperature is corrected at the reference temperature. The measured temperature can be corrected to the reference temperature with high accuracy by the calibration correction value.

本発明に係る温度センサの配置構造を備えた温度校正装置の概略構成を示す斜視図The perspective view which shows schematic structure of the temperature calibration apparatus provided with the arrangement structure of the temperature sensor which concerns on this invention 温度校正装置の概略縦断面図Schematic longitudinal section of temperature calibration device 図2における矢示III方向の概略横断面図Schematic cross-sectional view in the direction of arrow III in FIG. 図2における矢示IV方向の概略横断面図Schematic cross-sectional view in the direction of arrow IV in FIG. 温度校正方法における、基準温度センサの基準温度が安定しているか否かを判定する判定処理、及び第1補正工程を示すフロー図The flowchart which shows the determination process which determines whether the reference temperature of the reference temperature sensor is stable in the temperature calibration method, and a 1st correction process. 温度校正方法における第2補正工程を示すフロー図Flow chart showing second correction step in temperature calibration method (a)は、本願に係る温度校正装置を用いて、温度センサの計測温度の補正を行った場合の補正温度と経過時間との関係を示すグラフ図、(b)は、温度センサを束にして配置する従来の温度校正装置を用いて、温度センサの計測温度の補正を行った場合の補正温度と経過時間との関係を示すグラフ図(A) is a graph showing the relationship between the corrected temperature and the elapsed time when correcting the measured temperature of the temperature sensor using the temperature calibration device according to the present application, and (b) is a bundle of temperature sensors. Graph showing the relationship between the corrected temperature and the elapsed time when the measured temperature of the temperature sensor is corrected using a conventional temperature calibration device

以下に、本発明に係る温度センサの配置構造を備えた温度校正装置の実施形態について、図面に基づいて説明する。
図1は、本発明に係る温度センサの配置構造を備えた温度校正装置50(以下、温度校正装置50と略称する)の概略構成を示す斜視図、図2は、温度校正装置50の概略縦断面図、図3は、図2における矢示III方向の概略横断面図、図4は、図2における矢示IV方向の概略横断面図である。
Hereinafter, an embodiment of a temperature calibration apparatus having a temperature sensor arrangement structure according to the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a schematic configuration of a temperature calibration device 50 (hereinafter, abbreviated as a temperature calibration device 50) having a temperature sensor arrangement structure according to the present invention, and FIG. 3 is a schematic cross-sectional view in the direction of arrow III in FIG. 2, and FIG. 4 is a schematic cross-sectional view in the direction of arrow IV in FIG.

まず、温度校正装置50の構成について説明する。
なお、温度校正装置50は、複数の温度センサ3を温調対象空間(図示せず)の各温度測定箇所に配置して、各温度測定箇所における温度を計測する前に、これら複数の温度センサ3が温度を正確に示しているか否かを、基準となる基準温度センサ4の基準温度との対比により判定し、正確に示している場合にはその温度センサ3をそのまま使用し、正確に示していない場合にはその温度センサ3の計測温度を補正(校正)してから使用して、各温度測定箇所における温度を正確に測定することができるようにする装置である。
First, the configuration of the temperature calibration device 50 will be described.
The temperature calibration device 50 arranges a plurality of temperature sensors 3 at each temperature measurement location in a temperature adjustment target space (not shown), and measures the temperature at each temperature measurement location before measuring the temperature at each temperature measurement location. Whether or not 3 indicates the temperature accurately is determined by comparison with the reference temperature of the reference temperature sensor 4 serving as a reference. If the temperature is accurately indicated, the temperature sensor 3 is used as it is and is accurately indicated. If not, it is used after correcting (calibrating) the measured temperature of the temperature sensor 3 so that the temperature at each temperature measurement location can be measured accurately.

ここで、図1、図2に示すように、複数の温度センサ3及び基準温度センサ4は、温度を電気信号に変換できる公知の温度センサであり、例えば、測温抵抗体、熱電対、半導体温度計などを用いることができる。そして、これら複数の温度センサ3及び基準温度センサ4は、棒状に形成され、一端が温度検知部3a,4aとされ他端が拡径された挿入規制部3b,4bとされている。なお、挿入規制部3b,4b側はそれぞれ、計測した温度情報等を後述する制御手段C内の温度補正手段10に入出力可能に接続されている。   Here, as shown in FIGS. 1 and 2, the plurality of temperature sensors 3 and the reference temperature sensor 4 are known temperature sensors that can convert the temperature into an electrical signal. For example, the resistance temperature sensor, the thermocouple, and the semiconductor A thermometer or the like can be used. The plurality of temperature sensors 3 and the reference temperature sensor 4 are formed in a rod shape, one end being temperature detecting portions 3a and 4a and the other end being insertion restricting portions 3b and 4b having an enlarged diameter. Note that the insertion restricting portions 3b and 4b are respectively connected to the temperature correction means 10 in the control means C, which will be described later, so as to be able to input and output the measured temperature information.

図1及び図2に示すように、温度校正装置50は、内部に空気Aを通流可能に形成された円筒状の本体円筒部1(温度センサ3を支持する支持体の一例)と、本体円筒部1の下部に当該本体円筒部1を支持する本体台座部2と、本体円筒部1の一端1aから他端1bに向けて空気Aを通流させるファン5と、温度校正装置50の運転等を制御する制御手段Cとを備える。   As shown in FIGS. 1 and 2, the temperature calibration device 50 includes a cylindrical main body cylindrical portion 1 (an example of a support that supports the temperature sensor 3) that is formed so that air A can flow therethrough, and a main body. The main body pedestal portion 2 that supports the main body cylindrical portion 1 below the cylindrical portion 1, the fan 5 that allows air A to flow from one end 1a of the main body cylindrical portion 1 toward the other end 1b, and the operation of the temperature calibration device 50 And control means C for controlling the above.

本体円筒部1は、内部に空気Aを通流可能な状態で、複数の長方形状の平板の長手方向の辺を密着して接触固定することにより(例えば、図1では、12枚の平板を用いることにより)、円筒状に形成されている。なお、この円筒状に形成するための平板の数は適宜変更することができ、また、平板を用いることなく円弧状の円弧板を用いることもできる。更に、平板及び円弧板を用いることなく、形成時から断面円形状の円筒状に形成したものを用いることもできる。   The main body cylindrical portion 1 is in a state in which air A can flow therethrough, by closely contacting and fixing the sides in the longitudinal direction of a plurality of rectangular flat plates (for example, in FIG. It is formed in a cylindrical shape. In addition, the number of the flat plates for forming in this cylindrical shape can be changed suitably, and an arc-shaped circular arc plate can also be used without using a flat plate. Further, a cylindrical shape having a circular cross section from the time of formation can be used without using a flat plate and an arc plate.

本体円筒部1の一端1a側には、基準温度センサ4を配置可能な基準温度センサ配置部7としての、基準温度センサ挿入部7aを備えた基準温度センサ配置ステー7bが本体円筒部1の径方向に固定配置されている。基準温度センサ挿入部7aは、基準温度センサ4の挿入規制部4bを受入可能な円筒状の挿入孔として形成され、その底部に基準温度センサ4の温度検知部4aを受入可能な挿入孔よりも小径の貫通孔を備えるように構成されている。したがって、この基準温度センサ挿入部7aに基準温度センサ4を温度検知部4a側から挿入することで、挿入規制部4bの下端部を基準温度センサ挿入部7aの上端部に当接させ、温度検知部4aを基準温度センサ挿入部7aの下端部から複数の温度センサ3側に突出させた状態で、基準温度センサ4を本体円筒部1の軸芯Xと平行で当該軸芯X上に配置することができるように構成されている。   On one end 1a side of the main body cylindrical portion 1, a reference temperature sensor arrangement stay 7b having a reference temperature sensor insertion portion 7a as a reference temperature sensor arrangement portion 7 on which the reference temperature sensor 4 can be arranged is a diameter of the main body cylindrical portion 1. It is fixedly arranged in the direction. The reference temperature sensor insertion portion 7a is formed as a cylindrical insertion hole that can receive the insertion restriction portion 4b of the reference temperature sensor 4, and has a bottom portion than the insertion hole that can receive the temperature detection portion 4a of the reference temperature sensor 4. It is comprised so that a small diameter through-hole may be provided. Therefore, by inserting the reference temperature sensor 4 into the reference temperature sensor insertion portion 7a from the temperature detection portion 4a side, the lower end portion of the insertion restriction portion 4b is brought into contact with the upper end portion of the reference temperature sensor insertion portion 7a, thereby detecting the temperature. The reference temperature sensor 4 is arranged on the axis X in parallel with the axis X of the main body cylindrical portion 1 in a state where the portion 4a is projected from the lower end of the reference temperature sensor insertion portion 7a toward the plurality of temperature sensors 3. It is configured to be able to.

本体円筒部1の他端1b側にはファン5が設けられ、このファン5により外部空間から本体円筒部1内に空気Aを吸引し、本体円筒部1の一端1a側から他端1b側にこの空気Aを通流させるとともに、後述する本体台座部2の上部2a及び側部2b(空気排出孔8)を介して外部空間に空気Aを排出可能に構成されている。なお、このファン5は公知の軸流ファンやシロッコファン等を用いることができ、本実施形態では、図2及び図4に示すように、軸流ファンが用いられている。   A fan 5 is provided on the other end 1 b side of the main body cylindrical portion 1, and air A is sucked into the main body cylindrical portion 1 from the external space by the fan 5, and from the one end 1 a side to the other end 1 b side of the main body cylindrical portion 1. The air A is allowed to flow, and the air A can be discharged to the external space via the upper part 2a and the side part 2b (air discharge hole 8) of the main body pedestal 2 described later. The fan 5 can be a known axial fan, sirocco fan, or the like. In this embodiment, an axial fan is used as shown in FIGS.

そして、本体円筒部1の一端1aと他端1bとの間には、温度センサ3を放射状に配置可能な円筒状の温度センサ挿入部6(温度センサ配置部の一例)が、本体円筒部1を径方向に貫通し当該本体円筒部1内に突出する形態で、周方向に複数設けられている。この温度センサ挿入部6は、図1では、例えば、周方向に均等の角度(例えば、30度)を置いて12箇所設けられている。温度センサ挿入部6は、温度センサ3の挿入規制部3bを受入可能な円筒状の挿入孔として形成され、その一端部に温度センサ3の温度検知部3aを受入可能な挿入孔よりも小径の貫通孔を備えるように構成されている。したがって、この温度センサ挿入部6に温度センサ3を温度検知部3a側から挿入することで、挿入規制部3bを温度センサ挿入部6の一端部に当接させ、温度検知部3aを温度センサ挿入部6の一端部から本体円筒部1の軸芯X側(基準温度センサ4の温度検知部4a側)に突出させた状態で、複数の温度センサ3を本体円筒部1の軸芯Xと略直交する状態で放射状に配置することができるように構成されている。   Between the one end 1 a and the other end 1 b of the main body cylindrical portion 1, a cylindrical temperature sensor insertion portion 6 (an example of a temperature sensor arrangement portion) capable of radially arranging the temperature sensors 3 is provided. Are provided in the circumferential direction in a form that penetrates in the radial direction and protrudes into the main body cylindrical portion 1. In FIG. 1, for example, the temperature sensor insertion portion 6 is provided at twelve locations with an equal angle (for example, 30 degrees) in the circumferential direction. The temperature sensor insertion portion 6 is formed as a cylindrical insertion hole capable of receiving the insertion restriction portion 3b of the temperature sensor 3, and has a smaller diameter than an insertion hole capable of receiving the temperature detection portion 3a of the temperature sensor 3 at one end thereof. It is comprised so that a through-hole may be provided. Therefore, by inserting the temperature sensor 3 into the temperature sensor insertion part 6 from the temperature detection part 3a side, the insertion restriction part 3b is brought into contact with one end of the temperature sensor insertion part 6, and the temperature detection part 3a is inserted into the temperature sensor. The plurality of temperature sensors 3 are substantially the same as the axis X of the main body cylindrical portion 1 in a state of protruding from one end of the portion 6 toward the axis X side of the main body cylindrical portion 1 (the temperature detecting portion 4a side of the reference temperature sensor 4). It is comprised so that it can arrange | position radially in the state orthogonally crossed.

したがって、本体円筒部1内において、複数の温度センサ3の隣接する温度検知部3a同士を、互いに均等な位置に配置することができるとともに、これら複数の温度検知部3aと基準温度センサ4の温度検知部4aとの距離も均一に保つことができるため、温度センサ3同士の相互加熱による影響や温度ムラによる影響を排除することができるように、複数の温度センサ3及び基準温度センサ4を配置することが可能となっている。   Therefore, in the main body cylindrical portion 1, the adjacent temperature detection units 3 a of the plurality of temperature sensors 3 can be arranged at equal positions, and the temperatures of the plurality of temperature detection units 3 a and the reference temperature sensor 4 can be arranged. Since the distance from the detection unit 4a can be kept uniform, a plurality of temperature sensors 3 and a reference temperature sensor 4 are arranged so as to eliminate the influence of mutual heating between the temperature sensors 3 and the influence of temperature unevenness. It is possible to do.

本体台座部2は、概略箱状に形成され、その上部2aに本体円筒部1を配置して支持することが可能に構成されている。本体台座部2の上部2a(本体円筒部1の他端1b側に相当)には、本体円筒部1の他端1bと連通する開口部が形成され、この開口部にファン5が当該本体台座部2内に突出する状態で固定配置されている。本体台座部2の側部2bには、外部空間と連通する複数の空気排出孔8が形成されている。この空気排出孔8は、図1及び図2では、例えば、本体台座部2の4つの側部2b全てに形成されている。   The main body pedestal portion 2 is formed in a substantially box shape, and is configured such that the main body cylindrical portion 1 can be disposed and supported on an upper portion 2a thereof. An opening communicating with the other end 1b of the main body cylindrical portion 1 is formed in the upper portion 2a of the main body pedestal portion 2 (corresponding to the other end 1b side of the main body cylindrical portion 1), and the fan 5 is connected to the main body pedestal in this opening. It is fixedly arranged so as to protrude into the portion 2. A plurality of air discharge holes 8 communicating with the external space are formed in the side portion 2 b of the main body pedestal portion 2. In FIG. 1 and FIG. 2, the air discharge hole 8 is formed in, for example, all four side portions 2 b of the main body pedestal portion 2.

制御手段Cは、中央演算処理装置(CPU)、メモリ、記憶部等からなり、当該CPUにより所定のプログラムを実行して情報を処理することができる公知の情報処理手段で構成される。図2に示すように、制御手段Cは、温度補正手段10としての温度計測判別処理部10aと、校正用補正値演算部10bと、記憶部11とを備えて構成されている。   The control unit C includes a central processing unit (CPU), a memory, a storage unit, and the like, and is configured by known information processing unit that can process information by executing a predetermined program by the CPU. As shown in FIG. 2, the control unit C includes a temperature measurement determination processing unit 10 a serving as the temperature correction unit 10, a calibration correction value calculation unit 10 b, and a storage unit 11.

温度計測判別処理部10aは、サンプリング時間内に温度センサ3及び基準温度センサ4にて温度計測処理を行い、その温度計測処理における温度センサ3の計測温度を補正値にて補正した補正温度と温度計測処理における基準温度センサ4の基準温度との温度差を求め、その求めた温度差が許容範囲内であるか否かを判別する判別処理を行い、温度差が許容範囲外であれば温度差が許容範囲内となるまで温度計測処理及び判別処理を繰り返し行うように構成されている。この温度計測処理及び判別処理の詳細については、後述するが、温度計測判別処理部10aは、許容範囲を第1許容範囲に設定し、補正値について、1回目の判別処理では補正値をゼロとし、2回目以降の判別処理では前回の判別処理における温度差を前回の判別処理における補正値に加算して更新した更新後の補正値を用いる第1補正工程を行い、温度差が第1許容範囲内になると、許容範囲を第1許容範囲よりも狭い範囲に設定された第2許容範囲に設定し、補正値について、1回目の判別処理では第1補正工程において温度差が第1許容範囲内となったときの補正値を用い、2回目以降の判別処理では前回の判別処理における温度差を前回の判別処理における補正値に加算して更新した更新後の補正値を用いる第2補正工程を行う構成とされている。   The temperature measurement determination processing unit 10a performs temperature measurement processing by the temperature sensor 3 and the reference temperature sensor 4 within the sampling time, and corrects the measured temperature of the temperature sensor 3 in the temperature measurement processing by the correction value and the temperature. A temperature difference from the reference temperature of the reference temperature sensor 4 in the measurement process is obtained, and a discrimination process is performed to determine whether or not the obtained temperature difference is within the allowable range. If the temperature difference is outside the allowable range, the temperature difference is determined. Is configured to repeatedly perform the temperature measurement process and the discrimination process until the value falls within the allowable range. Although details of the temperature measurement process and the determination process will be described later, the temperature measurement determination processing unit 10a sets the allowable range to the first allowable range and sets the correction value to zero in the first determination process for the correction value. In the second and subsequent determination processes, a first correction process is performed using the updated correction value that is updated by adding the temperature difference in the previous determination process to the correction value in the previous determination process, and the temperature difference is within the first allowable range. When the value is within, the allowable range is set to a second allowable range that is set to be narrower than the first allowable range, and the correction value has a temperature difference within the first allowable range in the first correction process in the first determination process. The second correction step using the updated correction value updated by adding the temperature difference in the previous determination process to the correction value in the previous determination process in the second and subsequent determination processes. Configuration to do It is.

校正用補正値演算部10bは、温度計測判別処理部10aが第2補正工程において温度差が第2許容範囲内であると判別したときの補正値を、計測温度を基準温度にて補正するときの校正用補正値として求める構成とされている。なお、同様に、校正用補正値演算部10bは、段階的な補正工程である第3補正工程以降において第3許容範囲内等であると判別したときの補正値を、校正用補正値として求めることも可能に構成されている。   The calibration correction value calculation unit 10b corrects the correction value when the temperature measurement determination processing unit 10a determines that the temperature difference is within the second allowable range in the second correction step with the reference temperature. The correction value is obtained as a calibration correction value. Similarly, the calibration correction value calculation unit 10b obtains, as a calibration correction value, a correction value when it is determined that it is within the third allowable range after the third correction process, which is a stepwise correction process. It is also possible to be configured.

記憶部11は、温度計測判別処理部10aにて計測された温度センサ3の計測温度、基準温度センサ4の基準温度、第1補正工程や第2補正工程で用いられる補正値等を記憶することができるように構成されている。   The storage unit 11 stores the measured temperature of the temperature sensor 3 measured by the temperature measurement determination processing unit 10a, the reference temperature of the reference temperature sensor 4, correction values used in the first correction process and the second correction process, and the like. It is configured to be able to.

表示部12は、公知のLEDやLCD等の表示機構により構成され、温度計測判別処理部10aにて計測された温度センサ3の計測温度、基準温度センサ4の基準温度、第1補正工程や第2補正工程で用いられる補正値等を表示することが可能に構成されている。   The display unit 12 is configured by a known display mechanism such as an LED or LCD, and the measured temperature of the temperature sensor 3 measured by the temperature measurement determination processing unit 10a, the reference temperature of the reference temperature sensor 4, the first correction step, the first correction step, and the like. It is configured to be able to display correction values used in the two correction steps.

入力部13は、公知のキーボード等のインターフェースにより構成され、第1補正工程に用いられる第1回目の判別処理における補正値等を制御手段Cの温度補正手段10に入力可能に構成されている。   The input unit 13 is configured by a known interface such as a keyboard, and is configured to be able to input a correction value or the like in the first discrimination process used in the first correction process to the temperature correction unit 10 of the control unit C.

以上が、本発明に係る温度校正装置50の構成であるが、この温度校正装置50を用いて複数の温度センサ3の計測温度を補正(校正)する温度校正方法について、図5及び図6を用いて以下に説明する。
図5は、温度校正方法における、基準温度センサの基準温度が安定しているか否かを判定する判定処理、及び第1補正工程を示すフロー図であり、図6は、温度校正方法における第2補正工程を示すフロー図である。
The above is the configuration of the temperature calibration device 50 according to the present invention. FIG. 5 and FIG. 6 are used for the temperature calibration method for correcting (calibrating) the measured temperatures of the plurality of temperature sensors 3 using the temperature calibration device 50. This will be described below.
FIG. 5 is a flowchart showing a determination process for determining whether or not the reference temperature of the reference temperature sensor is stable and a first correction step in the temperature calibration method, and FIG. 6 is a second flowchart in the temperature calibration method. It is a flowchart which shows a correction | amendment process.

図5に示すように、温度校正装置50の運転が開始されると、温度補正手段10(制御手段C)は、所定の回転速度でファン5を回転駆動させて、本体円筒部1の一端1a側から他端1b側に一定風速で一定流量の空気Aを通流させ、本体台座部2の上部2a及びファン5を介して本体台座部2の側部2bから外部空間に当該空気Aを排出させる。そして、入力部13から第1補正工程において1回目の判別処理に用いられる補正値BAを、0とする指令が入力されると(ステップ♯1)、温度センサ3の計測温度PVに補正値BAを加算して補正した補正温度と基準温度センサ4の基準温度SPとの温度差BAが許容範囲内となるように、温度センサ3の計測温度PVを補正する補正値BAを求める自動補正がスタートする(ステップ♯2)。   As shown in FIG. 5, when the operation of the temperature calibration device 50 is started, the temperature correction means 10 (control means C) drives the fan 5 to rotate at a predetermined rotational speed, thereby causing one end 1a of the main body cylindrical portion 1 to rotate. From the side to the other end 1b, air A having a constant flow rate and a constant flow rate is passed, and the air A is discharged from the side 2b of the main body pedestal 2 to the external space via the upper part 2a of the main body pedestal 2 and the fan 5. Let When a command for setting the correction value BA used for the first discrimination process in the first correction process to 0 is input from the input unit 13 (step # 1), the correction value BA is added to the measured temperature PV of the temperature sensor 3. The automatic correction for obtaining the correction value BA for correcting the measured temperature PV of the temperature sensor 3 is started so that the temperature difference BA between the correction temperature corrected by adding the reference temperature SP and the reference temperature SP of the reference temperature sensor 4 is within the allowable range. (Step # 2).

そして、温度補正手段10の温度計測判定処理部10aは、基準温度センサ4により計測された基準温度SPが安定しているか否かを判定する判定処理を行う(ステップ♯3〜ステップ♯6)。この判定処理は第1補正工程及び第2補正工程が実行される前に行われ、基準温度SPの信頼性を向上させることができる。
具体的には、この判定処理においては、X秒毎(例えば、0.02秒毎)のサンプリング周期で基準温度SPをNz回のサンプリング回数取得し、この基準温度SPの平均値SPaを算出するとともに(ステップ♯3)、X秒毎にこの取得した基準温度SPの最大値SPmax及び最小値SPminを取得する(ステップ♯4)。そして、最大値SPmax及び最小値SPminが、基準温度SPの平均値SPa±Tz以内か否かを判定し(ステップ♯5)、平均値SPa±Tz以内でなければ(ステップ♯5:No)、表示部12にアラームを表示して(ステップ♯6)ステップ♯3に戻り、平均値SPaの算出、最大値SPmax及び最小値SPminの取得、上記判定を繰り返す(ステップ♯3〜ステップ♯6)。一方、平均値SPa±Tz以内であれば(ステップ♯5:Yes)、基準温度SPが安定していると判別して、第1補正工程を実行する。よって、基準温度センサ4の基準温度SPが安定した状態としたうえで、第1補正工程及び第2補正工程において、この安定した基準温度SPと温度センサ3の計測温度PVを補正値BAにて補正した補正温度との温度差BAxを、より高精度に求めることができる。
Then, the temperature measurement determination processing unit 10a of the temperature correction unit 10 performs a determination process for determining whether or not the reference temperature SP measured by the reference temperature sensor 4 is stable (step # 3 to step # 6). This determination process is performed before the first correction process and the second correction process are performed, and the reliability of the reference temperature SP can be improved.
Specifically, in this determination process, the reference temperature SP is acquired Nz times at a sampling period of every X seconds (for example, every 0.02 seconds), and an average value SPa of the reference temperature SP is calculated. At the same time (step # 3), the maximum value SPmax and the minimum value SPmin of the acquired reference temperature SP are acquired every X seconds (step # 4). Then, it is determined whether or not the maximum value SPmax and the minimum value SPmin are within the average value SPa ± Tz of the reference temperature SP (step # 5), and if not within the average value SPa ± Tz (step # 5: No), An alarm is displayed on the display unit 12 (step # 6), the process returns to step # 3, and the calculation of the average value SPa, the acquisition of the maximum value SPmax and the minimum value SPmin, and the above determination are repeated (step # 3 to step # 6). On the other hand, if it is within the average value SPa ± Tz (step # 5: Yes), it is determined that the reference temperature SP is stable, and the first correction process is executed. Therefore, after the reference temperature SP of the reference temperature sensor 4 is in a stable state, in the first correction process and the second correction process, the stable reference temperature SP and the measured temperature PV of the temperature sensor 3 are set to the correction value BA. The temperature difference BAx from the corrected correction temperature can be obtained with higher accuracy.

次に、温度計測判定処理部10aは、第1補正工程を実行する(ステップ♯7〜ステップ♯18)。第1補正工程では、基準温度SPの平均値SPaを初期化し、計測温度PVの最大値PVmax、最小値PVmin、平均値PVaがある場合にはこれら値も初期化する(ステップ♯7)。そして、サンプリング時間内において温度センサ3及び基準温度センサ4にて温度計測処理を行う(ステップ♯8〜ステップ♯10)。ここで、サンプリング時間は、サンプリング周期(X秒毎)とサンプリング回数(Na)との積である。
温度計測処理では、X秒毎(例えば、0.02秒毎)のサンプリング周期で温度センサ3の計測温度PVをNa回(例えば、100回)のサンプリング回数取得し、取得した計測温度PVに補正値BAを加算して補正温度の平均値PVaを算出するとともに(ステップ♯8)、X秒毎のサンプリング周期で温度センサ3の計測温度PVをNa回(例えば、100回)のサンプリング回数取得し、取得した計測温度PVに補正値BAを加算して最大値PVmax及び最小値PVminを取得する(ステップ♯9)。ここで、計測温度PVに加算される補正値BAは、ステップ♯1において入力部13から入力された値である0とされている。さらに、X秒毎(例えば、0.02秒毎)のサンプリング周期で基準温度センサ4の基準温度SPをNa回(例えば、100回)のサンプリング回数取得し、取得した基準温度SPの平均値SPaを算出する(ステップ♯10)。
そして、最大値PVmax及び最小値PVminが、平均値PVa±Tx以内か否かを判定し(ステップ♯11)、平均値PVa±Tx以内でなければ(ステップ♯11:No)、平均値PVa±Tx以内でないことが5回カウントされていないときはステップ♯7に戻り(ステップ♯12:No)、5回カウントされているときには(ステップ♯12:Yes)表示部12にアラームを表示する(ステップ♯13)。これにより、平均値PVaの信頼性を向上することができ、平均値PVaの信頼性が低い場合には、アラームを表示してオペレータ等に報知することができる。
ステップ♯11において最大値PVmax及び最小値PVminが平均値PVa±Tx以内である場合には(ステップ♯11:Yes)、1回目の判別処理として基準温度SPの平均値SPaと計測温度PV(補正温度)の平均値PVaとの温度差BAxを算出し(ステップ♯14)、そして、温度差BAxが第1許容範囲±Ta以内か否かを判別する(ステップ♯15)。温度差BAxが第1許容範囲±Ta以内でない場合には(ステップ♯15:No)、補正値BA(1回目の判別処理では、BA=0)に温度差BAxを加算して、当該補正値BAを更新後の補正値BAに更新し(ステップ♯16)、ステップ♯7に戻る。そして、この更新後の補正値BAにより、2回目以降の判別処理では、温度差BAxが第1許容範囲±Ta以内に入るまで繰り返し補正値BAの更新が行われる(ステップ♯7〜ステップ♯16)。これにより、第1補正工程では、基準温度SPに対して計測温度PVが第1許容範囲±Ta内になるように更新後の補正値BAを求めることができる。なお、ステップ♯16における補正値BAの更新と同時に、温度差BAxが第1許容範囲±Ta以外であることが3回カウントされていないときは(ステップ♯17:No)ステップ♯16に戻り、3回カウントされているときには(ステップ♯17:Yes)表示部12にアラームを表示する(ステップ♯18)。これにより、温度差BAxの値が第1許容範囲±Taの範囲に収まらない場合には、アラームを表示して報知することができ、基準温度SPの平均値SPa、計測温度PVやこれに補正値BAを加算した補正温度、当該補正値BA(本例ではBA=0)等が、適正でない可能性があると推定することが可能となる。
一方、温度差BAxが第1許容範囲±Ta以内である場合には(ステップ♯15:Yes)、第2補正工程に移行する。
Next, the temperature measurement determination processing unit 10a executes the first correction process (step # 7 to step # 18). In the first correction step, the average value SPa of the reference temperature SP is initialized, and if there are the maximum value PVmax, minimum value PVmin, and average value PVa of the measured temperature PV, these values are also initialized (step # 7). Then, temperature measurement processing is performed by the temperature sensor 3 and the reference temperature sensor 4 within the sampling time (step # 8 to step # 10). Here, the sampling time is the product of the sampling period (every X seconds) and the number of sampling times (Na).
In the temperature measurement process, the measured temperature PV of the temperature sensor 3 is acquired Na times (for example, 100 times) at a sampling period of every X seconds (for example, every 0.02 seconds), and is corrected to the acquired measured temperature PV. The average value PVa of the correction temperature is calculated by adding the value BA (step # 8), and the measured temperature PV of the temperature sensor 3 is acquired Na times (for example, 100 times) at a sampling period of X seconds. Then, the correction value BA is added to the acquired measured temperature PV to acquire the maximum value PVmax and the minimum value PVmin (step # 9). Here, the correction value BA added to the measured temperature PV is 0, which is the value input from the input unit 13 in step # 1. Furthermore, the reference temperature SP of the reference temperature sensor 4 is acquired Na times (for example, 100 times) at a sampling period of every X seconds (for example, every 0.02 seconds), and the average value SPa of the acquired reference temperatures SP is acquired. Is calculated (step # 10).
Then, it is determined whether or not the maximum value PVmax and the minimum value PVmin are within the average value PVa ± Tx (step # 11), and if not within the average value PVa ± Tx (step # 11: No), the average value PVa ± When it is not counted five times within Tx, the process returns to step # 7 (step # 12: No), and when counted five times (step # 12: Yes), an alarm is displayed on the display unit 12 (step # 12). # 13). Thereby, the reliability of the average value PVa can be improved, and when the reliability of the average value PVa is low, an alarm can be displayed to notify the operator or the like.
When the maximum value PVmax and the minimum value PVmin are within the average value PVa ± Tx in step # 11 (step # 11: Yes), the average value SPa of the reference temperature SP and the measured temperature PV (correction) are performed as the first discrimination process. The temperature difference BAx from the average temperature PVa is calculated (step # 14), and it is determined whether or not the temperature difference BAx is within the first allowable range ± Ta (step # 15). If the temperature difference BAx is not within the first allowable range ± Ta (step # 15: No), the temperature difference BAx is added to the correction value BA (BA = 0 in the first discrimination process), and the correction value BA is updated to the updated correction value BA (step # 16), and the process returns to step # 7. Then, with this updated correction value BA, in the second and subsequent determination processing, the correction value BA is repeatedly updated until the temperature difference BAx falls within the first allowable range ± Ta (steps # 7 to # 16). ). Thereby, in the first correction step, the updated correction value BA can be obtained so that the measured temperature PV is within the first allowable range ± Ta with respect to the reference temperature SP. If the temperature difference BAx is not counted three times other than the first allowable range ± Ta simultaneously with the update of the correction value BA in step # 16 (step # 17: No), the process returns to step # 16. When it is counted three times (step # 17: Yes), an alarm is displayed on the display unit 12 (step # 18). As a result, when the value of the temperature difference BAx does not fall within the range of the first allowable range ± Ta, an alarm can be displayed and notified, and the average value SPa of the reference temperature SP, the measured temperature PV, and correction to this can be made. It is possible to estimate that the correction temperature obtained by adding the value BA, the correction value BA (BA = 0 in this example), and the like may not be appropriate.
On the other hand, when the temperature difference BAx is within the first allowable range ± Ta (step # 15: Yes), the process proceeds to the second correction step.

次に、図6に示すように、温度計測判定処理部10aは、第2補正工程を実行する(ステップ♯21〜ステップ♯33)。この第2補正工程では、第1補正工程と同様の補正を行うが、温度計測処理における計測温度PV及び基準温度SPのサンプリング周期(X秒毎)はそのままでサンプリング回数をNa回(例えば、100回)からNb回(例えば、250回)に増加させる形態で、第1補正工程におけるサンプリング時間よりも第2補正工程におけるサンプリング時間を長くするように構成されている点で異なる。また、第2補正工程において、サンプリング時間内に取得した計測温度PVを補正する際の補正値BAを、第1補正工程において温度差BAxが第1許容範囲±Taに入った際の補正値BAを用いている点でも、第1補正工程とは異なる。さらに、第1補正工程で用いられる第1許容範囲±Taよりも狭い範囲の第2許容範囲±Tbを、第2補正工程において用いる点においても異なる。これにより、第2補正工程においては、基準温度SPに対して計測温度PVが第1許容範囲±Ta内となる補正値BAを前提として、基準温度SPに対して計測温度PVが第1許容範囲±Taよりも狭い範囲の第2許容範囲±Tbになるように高精度に補正値BAを求めることができる。以下、第2補正工程について説明する。   Next, as shown in FIG. 6, the temperature measurement determination processing unit 10a executes the second correction process (step # 21 to step # 33). In this second correction step, the same correction as in the first correction step is performed, but the sampling frequency of the measurement temperature PV and the reference temperature SP in the temperature measurement process (every X seconds) is kept as it is, and the number of samplings is Na times (for example, 100 times). In that the sampling time in the second correction step is longer than the sampling time in the first correction step. Further, in the second correction step, the correction value BA when correcting the measured temperature PV acquired within the sampling time is the correction value BA when the temperature difference BAx falls within the first allowable range ± Ta in the first correction step. The point which uses is also different from the first correction step. Furthermore, the second tolerance range ± Tb, which is narrower than the first tolerance range ± Ta used in the first correction step, is different in that it is used in the second correction step. Accordingly, in the second correction step, the measured temperature PV is set to the first allowable range with respect to the reference temperature SP on the assumption that the measured temperature PV is within the first allowable range ± Ta with respect to the reference temperature SP. The correction value BA can be obtained with high accuracy so that the second allowable range ± Tb is narrower than ± Ta. Hereinafter, the second correction process will be described.

第2補正工程では、基準温度SPの平均値SPa、計測温度PVの最大値PVmax、最小値PVmin、平均値PVaを初期化する(ステップ♯21)。そして、サンプリング時間内において温度センサ3及び基準温度センサ4にて温度計測処理を行う(ステップ♯22〜ステップ♯24)。ここで、サンプリング時間は、サンプリング周期(X秒毎)とサンプリング回数(Nb)との積である。
温度計測処理では、X秒毎(例えば、0.02秒毎)のサンプリング周期で温度センサ3の計測温度PVをNb回(例えば、250回)のサンプリング回数取得し、取得した計測温度PVに補正値BA(第1補正工程で温度差BAxが第1許容範囲±Ta内となった際の補正値BA)を加算して平均値PVaを算出するとともに(ステップ♯22)、X秒毎のサンプリング周期で温度センサ3の計測温度PVをNb回のサンプリング回数取得し、取得した計測温度PVに補正値BA(第1補正工程で温度差BAxが第1許容範囲±Ta内となった際の補正値BA)を加算して最大値PVmax及び最小値PVminを取得する(ステップ♯23)。さらに、X秒毎(例えば、0.02秒毎)のサンプリング周期で基準温度センサ4の基準温度SPをNb回(例えば、250回)のサンプリング回数取得し、取得した基準温度SPの平均値SPaを算出する(ステップ♯24)。
そして、最大値PVmax及び最小値PVminが、平均値PVa±Tx以内か否かを判定し(ステップ♯25)、平均値PVa±Tx以内でなければ(ステップ♯25:No)、平均値PVa±Tx以内でないことが5回カウントされていないときはステップ♯21に戻り(ステップ♯26:No)、5回カウントされているときには(ステップ♯26:Yes)表示部12にアラームを表示する(ステップ♯27)。これにより、平均値PVaの信頼性を向上することができ、平均値PVaの信頼性が低い場合には、アラームを表示してオペレータ等に報知することができる。
ステップ♯25において最大値PVmax及び最小値PVminが平均値PVa±Tx以内である場合には(ステップ♯25:Yes)、1回目の判別処理として基準温度SPの平均値SPaと計測温度PV(補正温度)の平均値PVaとの温度差BAxを算出し(ステップ♯28)、そして、温度差BAxが第2許容範囲±Tb以内か否かを判別する(ステップ♯29)。なお、第2許容範囲±Tbは第1許容範囲±Taよりも狭い範囲に設定されている。温度差BAxが第2許容範囲±Tb以内でない場合には(ステップ♯29:No)、補正値BA(1回目の判別処理では、補正値BAは第1補正工程において温度差BAxが第1許容範囲±Ta内に入った場合における補正値BA)に温度差BAxを加算して、当該補正値BAを更新後の補正値BAに更新し(ステップ♯30)、ステップ♯21に戻る。この更新後の補正値BAにより、2回目以降の判別処理では、温度差BAxが第2許容範囲±Tb以内に入るまで繰り返し補正値BAの更新が行われる(ステップ♯21〜ステップ♯30)。これにより、第2補正工程では、基準温度SPに対して計測温度PVが第2許容範囲±Tb内になるように更新後の補正値BAをより高精度に求めることができる。なお、補正値BAの更新と同時に、温度差BAxが第2許容範囲±Tb以外であることが3回カウントされていないときは(ステップ♯31:No)ステップ♯30に戻り、3回カウントされているときには(ステップ♯31:Yes)表示部12にアラームを表示する(ステップ♯32)。これにより、温度差BAxの値が第2許容範囲±Tbの範囲に収まらない場合には、アラームを表示して報知することができ、基準温度SPの平均値SPa、計測温度PVやこれに補正値BAを加算した補正温度、当該補正値BA等が、適正でない可能性があると推定することが可能となる。
一方、温度差BAxが第2許容範囲±Tb以内である場合には(ステップ♯29:Yes)、基準温度SPの平均値SPa、計測温度PVの最大値PVmax、最小値PVmin、平均値PVaを初期化し(ステップ♯33)、ファン5を停止して、自動補正を終了する。
In the second correction step, the average value SPa of the reference temperature SP, the maximum value PVmax of the measured temperature PV, the minimum value PVmin, and the average value PVa are initialized (step # 21). Then, temperature measurement processing is performed by the temperature sensor 3 and the reference temperature sensor 4 within the sampling time (step # 22 to step # 24). Here, the sampling time is the product of the sampling period (every X seconds) and the number of sampling times (Nb).
In the temperature measurement process, the measured temperature PV of the temperature sensor 3 is acquired Nb times (for example, 250 times) at a sampling period of every X seconds (for example, every 0.02 seconds), and is corrected to the acquired measured temperature PV. The value BA (correction value BA when the temperature difference BAx is within the first allowable range ± Ta in the first correction step) is added to calculate the average value PVa (step # 22), and sampling every X seconds The measurement temperature PV of the temperature sensor 3 is acquired Nb times in a cycle, and the acquired measurement temperature PV is corrected to the correction value BA (correction when the temperature difference BAx is within the first allowable range ± Ta in the first correction step). Value BA) is added to obtain maximum value PVmax and minimum value PVmin (step # 23). Further, the reference temperature SP of the reference temperature sensor 4 is acquired Nb times (for example, 250 times) at a sampling period of every X seconds (for example, every 0.02 seconds), and the average value SPa of the acquired reference temperatures SP is acquired. Is calculated (step # 24).
Then, it is determined whether or not the maximum value PVmax and the minimum value PVmin are within the average value PVa ± Tx (step # 25). If not within the average value PVa ± Tx (step # 25: No), the average value PVa ± When it is not counted five times within Tx, the process returns to step # 21 (step # 26: No), and when counted five times (step # 26: Yes), an alarm is displayed on the display unit 12 (step # 26). # 27). Thereby, the reliability of the average value PVa can be improved, and when the reliability of the average value PVa is low, an alarm can be displayed to notify the operator or the like.
When the maximum value PVmax and the minimum value PVmin are within the average value PVa ± Tx in step # 25 (step # 25: Yes), the average value SPa of the reference temperature SP and the measured temperature PV (correction) are performed as the first discrimination process. The temperature difference BAx from the average temperature PVa is calculated (step # 28), and it is determined whether or not the temperature difference BAx is within the second allowable range ± Tb (step # 29). The second allowable range ± Tb is set to a range narrower than the first allowable range ± Ta. If the temperature difference BAx is not within the second allowable range ± Tb (step # 29: No), the correction value BA (in the first determination process, the correction value BA is the first allowable value in the first correction step). The temperature difference BAx is added to the correction value BA in the case of being within the range ± Ta, the correction value BA is updated to the updated correction value BA (step # 30), and the process returns to step # 21. With this updated correction value BA, in the second and subsequent determination processes, the correction value BA is repeatedly updated until the temperature difference BAx falls within the second allowable range ± Tb (steps # 21 to # 30). Thus, in the second correction step, the updated correction value BA can be obtained with higher accuracy so that the measured temperature PV is within the second allowable range ± Tb with respect to the reference temperature SP. At the same time as the correction value BA is updated, if it is not counted that the temperature difference BAx is outside the second allowable range ± Tb three times (step # 31: No), the process returns to step # 30 and counted three times. If so (step # 31: Yes), an alarm is displayed on the display unit 12 (step # 32). Thereby, when the value of the temperature difference BAx does not fall within the range of the second allowable range ± Tb, an alarm can be displayed and notified, and the average value SPa of the reference temperature SP, the measured temperature PV and the correction to this can be made. It is possible to estimate that the correction temperature obtained by adding the value BA, the correction value BA, and the like may not be appropriate.
On the other hand, when the temperature difference BAx is within the second allowable range ± Tb (step # 29: Yes), the average value SPa of the reference temperature SP, the maximum value PVmax of the measured temperature PV, the minimum value PVmin, and the average value PVa are calculated. Initialization (step # 33), the fan 5 is stopped, and the automatic correction is terminated.

そして、校正用補正値演算部10bは、温度計測判別処理部10aが温度差BAxが第2許容範囲±Tb以内であると判別したときの補正値BAを、計測温度PVを基準温度SPにて補正するときの校正用補正値として求める。このようにして得られた校正用補正値を、温度センサ3の計測温度PVに加算して補正することにより、温度センサ3の計測温度PVを基準温度センサ4の基準温度SPに対して第2許容範囲±Tb内とすることができ、高精度の補正を実現することができる。例えば、第1許容範囲±Taを±0.050℃、第2許容温度±Tbを±0.025℃、或いは第1許容範囲±Taを±0.025℃、第2許容温度±Tbを±0.010℃とすることにより、第1補正工程から第2補正工程に進むにつれて、より高精度に補正を行うことができる。   Then, the calibration correction value calculation unit 10b calculates the correction value BA when the temperature measurement determination processing unit 10a determines that the temperature difference BAx is within the second allowable range ± Tb, and the measurement temperature PV as the reference temperature SP. Obtained as a calibration correction value for correction. The calibration correction value obtained in this way is added to the measured temperature PV of the temperature sensor 3 for correction, thereby correcting the measured temperature PV of the temperature sensor 3 with respect to the reference temperature SP of the reference temperature sensor 4. It can be within the allowable range ± Tb, and high-precision correction can be realized. For example, the first allowable range ± Ta is ± 0.050 ° C., the second allowable temperature ± Tb is ± 0.025 ° C., or the first allowable range ± Ta is ± 0.025 ° C., and the second allowable temperature ± Tb is ±±. By setting the temperature to 0.010 ° C., the correction can be performed with higher accuracy as the process proceeds from the first correction process to the second correction process.

[実施例]
ここで、本願の温度校正装置50を用いて複数の温度センサ3の計測温度PVの補正を行った。その結果を、計測温度PVの最大値を有する温度センサ3と最小値を有する温度センサ3とについて代表して、図7(a)に示す。なお、図7(a)は、本願に係る温度校正装置50を用いて、温度センサの計測温度の補正を行った場合の補正温度と経過時間との関係を示すグラフ図である。
この図7(a)から判明するように、複数の温度センサ3の計測温度PVは、最小値が22.95℃程度であり、最大値が23.05℃程度であるので、その最大幅は0.1℃程度となっている。
[Example]
Here, the measured temperature PV of the plurality of temperature sensors 3 was corrected using the temperature calibration device 50 of the present application. The result is shown in FIG. 7A as a representative of the temperature sensor 3 having the maximum value of the measured temperature PV and the temperature sensor 3 having the minimum value. FIG. 7A is a graph showing the relationship between the corrected temperature and the elapsed time when the temperature sensor measurement temperature is corrected using the temperature calibration device 50 according to the present application.
As can be seen from FIG. 7A, the measured temperature PV of the plurality of temperature sensors 3 has a minimum value of about 22.95 ° C. and a maximum value of about 23.05 ° C. It is about 0.1 ° C.

[比較例]
一方、背景技術の欄で説明した、棒状に形成された温度センサの複数を平行に密集接近させた状態で束にして配置し、その温度センサの束から少し離間した状態で平行に基準温度センサを配置する温度センサの配置構造を採用した温度校正装置を用いて複数の温度センサの計測温度PVの補正を行った。その結果を、計測温度PVの最大値を有する温度センサと最小値を有する温度センサ3とについて代表して、図7(b)に示す。なお、図7(b)は、温度センサを束にして配置する従来の温度校正装置を用いて、温度センサの計測温度の補正を行った場合の補正温度と経過時間との関係を示すグラフ図である。
この図7(b)から判明するように、複数の温度センサの計測温度PVは、最小値が、22.90℃程度であり、最大値が23.08℃程度であるので、その最大幅は0.18℃程度となっている。
[Comparative example]
On the other hand, a plurality of rod-shaped temperature sensors described in the Background Art section are arranged in a bundle in a state where they are closely packed in parallel, and the reference temperature sensors are arranged in parallel in a state slightly separated from the bundle of temperature sensors. The measured temperature PV of a plurality of temperature sensors was corrected using a temperature calibration device employing a temperature sensor arrangement structure. The result is shown in FIG. 7B as a representative of the temperature sensor having the maximum value of the measured temperature PV and the temperature sensor 3 having the minimum value. FIG. 7B is a graph showing the relationship between the corrected temperature and the elapsed time when the measured temperature of the temperature sensor is corrected using a conventional temperature calibration device in which the temperature sensors are arranged in a bundle. It is.
As can be seen from FIG. 7B, the measured temperature PV of the plurality of temperature sensors has a minimum value of about 22.90 ° C. and a maximum value of about 23.08 ° C. It is about 0.18 ° C.

よって、本願の温度校正装置50を用いた最大幅(0.1℃程度)は、従来の温度校正装置を用いた最大幅(0.18℃程度)に対して、0.08℃程度(45%程度)改善している。両者は分布測定の対象空間と装置構成が異なるため、上記最大幅の改善のすべてが温度校正装置が異なることによるものと考えることは困難であるが、温度校正装置が異なることが、仮に改善の50%に寄与していると推定しても、本願に係る温度校正装置50を用いると従来の温度校正装置を用いた場合と比較して、23%程度の改善を期待することができる。   Therefore, the maximum width (about 0.1 ° C.) using the temperature calibration device 50 of the present application is about 0.08 ° C. (45) compared to the maximum width (about 0.18 ° C.) using the conventional temperature calibration device. %) Is improving. Since the two differ in the target space for distribution measurement and the device configuration, it is difficult to consider that all of the above improvement in the maximum width is due to the difference in the temperature calibration device. Even if it is estimated that it contributes to 50%, if the temperature calibration device 50 according to the present application is used, an improvement of about 23% can be expected as compared with the case where the conventional temperature calibration device is used.

<別実施形態>
(1)上記実施形態では、温度校正装置50を用いて温度センサ3の計測温度PVを基準温度SPにて補正するにあたり、上記温度計測処理及び判別処理を繰り返し行って温度センサ3の計測温度PVに補正値BAを加算した補正温度と基準温度センサ4の基準温度SPとの温度差BAxが、所定の許容範囲内に入るように補正値BAを更新したが、ある程度の精度を確保できる温度センサ3の温度校正方法であれば、特に制限なく採用することができる。例えば、温度校正装置50を用いて公知の温度センサの温度校正方法により温度センサの計測温度の補正を行うこともできる。
<Another embodiment>
(1) In the above embodiment, when correcting the measured temperature PV of the temperature sensor 3 with the reference temperature SP using the temperature calibration device 50, the measured temperature PV of the temperature sensor 3 is repeatedly performed by repeatedly performing the temperature measurement process and the discrimination process. The correction value BA is updated so that the temperature difference BAx between the correction temperature obtained by adding the correction value BA to the reference temperature SP and the reference temperature SP of the reference temperature sensor 4 falls within a predetermined allowable range. If it is the temperature calibration method of 3, it can employ | adopt without a restriction | limiting in particular. For example, the measurement temperature of the temperature sensor can be corrected using the temperature calibration device 50 by a known temperature sensor temperature calibration method.

(2)上記実施形態では、温度校正装置50を用いて、第1補正工程、第2補正工程を実行する温度校正方法としたが、温度センサに要求される精度に応じて、第1補正工程のみ、第1補正工程及び第2補正工程及び第3補正工程、或いは、第3補正工程に加えて、段階的に補正工程を追加して実行する構成としてもよい。
例えば、第1補正工程及び第2補正工程及び第3補正工程を行う場合には、上記第1補正工程及び第2補正工程に加え、温度計測判定処理部10aが、第3補正工程を実行する。この第3補正工程では、第2補正工程と同様の補正を行うが、温度計測処理における計測温度PV及び基準温度PVのサンプリング周期(X秒毎)はそのままでサンプリング回数をNb回(例えば、250回)からNc回(例えば、500回)に増加させる形態で、第2補正工程におけるサンプリング時間よりも第3補正工程におけるサンプリング時間を長くするように構成されている点で異なる。また、第3補正工程において、サンプリング時間内に取得した計測温度PVを補正する際の補正値BAを、第2補正工程において温度差BAxが第2許容範囲±Tbに入った際の補正値BAを用いている点でも、第2補正工程とは異なる。さらに、第2補正工程で用いられる第2許容範囲よりも狭い範囲の第3許容範囲を第3補正工程において用いる点においても異なる。これにより、第3補正工程においては、基準温度SPに対して計測温度PVが第2許容範囲±Tb内となる補正値BAを前提として、基準温度SPに対して計測温度PVが第2許容範囲±Tbよりも狭い範囲の第3許容範囲±Tcになるように高精度に補正値BAを求めることができる。
(2) In the above embodiment, the temperature calibration method is used to execute the first correction process and the second correction process using the temperature calibration device 50. However, the first correction process is performed according to the accuracy required for the temperature sensor. In addition to the first correction process, the second correction process, the third correction process, or the third correction process, the correction process may be added and executed in stages.
For example, when performing a 1st correction process, a 2nd correction process, and a 3rd correction process, in addition to the said 1st correction process and a 2nd correction process, the temperature measurement determination process part 10a performs a 3rd correction process. . In this third correction step, the same correction as in the second correction step is performed, but the sampling frequency of the measurement temperature PV and the reference temperature PV (every X seconds) in the temperature measurement process is kept as it is, and the number of samplings is Nb times (for example, 250). In this embodiment, the sampling time in the third correction process is set longer than the sampling time in the second correction process. Further, in the third correction step, the correction value BA when correcting the measured temperature PV acquired within the sampling time is the correction value BA when the temperature difference BAx falls within the second allowable range ± Tb in the second correction step. The point which uses is also different from the second correction step. Furthermore, it is different in that the third tolerance range, which is narrower than the second tolerance range used in the second correction step, is used in the third correction step. Accordingly, in the third correction step, the measured temperature PV is set to the second allowable range with respect to the reference temperature SP on the assumption that the measured temperature PV is within the second allowable range ± Tb with respect to the reference temperature SP. The correction value BA can be obtained with high accuracy so that the third allowable range ± Tc in a range narrower than ± Tb is obtained.

(3)上記実施形態では、ファン5を本体円筒部1の他端1b側に設けたが、ファン5による発熱の影響が少ない場合には、ファン5を本体円筒部1の一端側1aに設けることもできる。また、ファン5を本体台座部2内の側部2bに設ける構成とすることもできる。 (3) In the above embodiment, the fan 5 is provided on the other end 1 b side of the main body cylindrical portion 1. However, when the influence of heat generated by the fan 5 is small, the fan 5 is provided on the one end side 1 a of the main body cylindrical portion 1. You can also. Further, the fan 5 may be provided on the side part 2 b in the main body base part 2.

(4)上記実施形態では、基準温度センサ4を基準温度センサ配置ステー7bの基準温度センサ挿入部7aに挿入して、基準温度センサ4の全体を本体円筒部1内に挿入した状態で配置する構成としたが、基準温度センサ4の温度検知部4aが本体円筒部1内に挿入されていれば、基準温度センサ4の全体が本体円筒部1内に配置されている構成でなくてもよい。例えば、基準温度センサ配置ステーを本体円筒部1の上部に設け、基準温度センサ配置ステーの基準温度センサ挿入部に基準温度センサを挿入して、基準温度センサの温度検知部が本体円筒部内に配置されるように構成してもよい。 (4) In the above embodiment, the reference temperature sensor 4 is inserted into the reference temperature sensor insertion portion 7a of the reference temperature sensor arrangement stay 7b, and the entire reference temperature sensor 4 is arranged in the main body cylindrical portion 1. Although the configuration is adopted, as long as the temperature detection unit 4 a of the reference temperature sensor 4 is inserted in the main body cylindrical portion 1, the entire reference temperature sensor 4 may not be configured in the main body cylindrical portion 1. . For example, a reference temperature sensor arrangement stay is provided in the upper part of the main body cylindrical portion 1, a reference temperature sensor is inserted into the reference temperature sensor insertion portion of the reference temperature sensor arrangement stay, and the temperature detection portion of the reference temperature sensor is arranged in the main body cylindrical portion. You may comprise.

本発明は、温度センサの計測温度を基準温度センサの基準温度にて補正する際に、より簡便な構成で高精度に補正することができるとともに、製作コスト及び運転コストをも低減できる技術として有用に利用可能である。   INDUSTRIAL APPLICABILITY The present invention is useful as a technique that can correct a measurement temperature of a temperature sensor with a reference temperature of a reference temperature sensor with high accuracy with a simpler configuration and can reduce manufacturing costs and operation costs. Is available.

1 本体円筒部(支持体)
1a 本体円筒部の一端
1b 本体円筒部の他端
2 本体台座部
2a 本体台座部の上部
2b 本体台座部の側部
3 温度センサ
4 基準温度センサ
5 ファン
50 温度校正装置
A 空気
X 軸芯
1 Body cylinder (support)
DESCRIPTION OF SYMBOLS 1a One end of main body cylindrical part 1b Other end of main body cylindrical part 2 Main body base part 2a Upper part of main body base part 2b Side part of main body base part 3 Temperature sensor 4 Reference temperature sensor 5 Fan 50 Temperature calibration apparatus A Air X Axis

Claims (6)

温度センサを支持する支持体を備えた温度センサの配置構造であって、
前記支持体として内部に空気を通流可能に形成された円筒状の本体円筒部を備え、棒状に形成された複数の前記温度センサが、前記本体円筒部の径方向外側から軸芯方向に向かって前記本体円筒部内に挿入された状態で放射状に配置されるとともに、
前記本体円筒部の一端から他端に向けて空気を通流させ、前記放射状に配置された前記温度センサに前記空気を供給するファンを備えた温度センサの配置構造。
An arrangement structure of a temperature sensor including a support for supporting the temperature sensor,
The supporting body includes a cylindrical main body cylindrical portion formed to allow air to flow therein, and a plurality of the temperature sensors formed in a rod shape extend from the radially outer side of the main body cylindrical portion in the axial direction. And arranged radially in a state of being inserted into the main body cylindrical portion,
An arrangement structure of a temperature sensor comprising a fan that allows air to flow from one end to the other end of the main body cylindrical portion and supplies the air to the radially arranged temperature sensors.
棒状に形成された基準温度センサが、前記本体円筒部の軸芯と平行で前記軸芯上に配置されている請求項1に記載の温度センサの配置構造。   The temperature sensor arrangement structure according to claim 1, wherein a reference temperature sensor formed in a rod shape is arranged on the axis parallel to the axis of the main body cylindrical portion. 前記ファンが前記本体円筒部の他端側に設けられ、前記ファンによる前記空気の流れ方向の上流側に前記基準温度センサ及び前記温度センサが配置されている請求項2に記載の温度センサの配置構造。   The arrangement of the temperature sensor according to claim 2, wherein the fan is provided on the other end side of the main body cylindrical portion, and the reference temperature sensor and the temperature sensor are arranged on the upstream side in the air flow direction of the fan. Construction. 前記本体円筒部の下部に当該本体円筒部を支持する本体台座部を備え、前記ファンにより前記本体円筒部の他端側から排出された空気が、前記本体台座部の上部から導入されて内部を通流し、当該本体台座部の側部から排出されるように構成されている請求項1から3の何れか一項に記載の温度センサの配置構造。   A main body pedestal portion supporting the main body cylindrical portion is provided at a lower portion of the main body cylindrical portion, and air exhausted from the other end side of the main body cylindrical portion by the fan is introduced from the upper portion of the main body pedestal portion so that the inside The temperature sensor arrangement structure according to any one of claims 1 to 3, wherein the temperature sensor is configured to flow through and be discharged from a side portion of the main body pedestal portion. 温調対象空間内の温度を計測する温度センサの計測温度を、基準温度センサにより計測された基準温度にて補正する温度補正手段を備えた温度校正装置であって、
請求項1から4の何れか一項に記載の温度センサの配置構造を備え、前記温度センサの配置構造に前記温度センサ及び前記基準温度センサを配置した状態で、
前記温度補正手段が、前記ファンを駆動させて前記温度センサの計測温度及び前記基準温度センサの基準温度を計測し、前記温度センサの計測温度を前記基準温度センサの基準温度にて補正するように構成されている温度校正装置。
A temperature calibration device including temperature correction means for correcting a measurement temperature of a temperature sensor that measures a temperature in a temperature adjustment target space with a reference temperature measured by a reference temperature sensor,
A temperature sensor arrangement structure according to any one of claims 1 to 4, wherein the temperature sensor and the reference temperature sensor are arranged in the temperature sensor arrangement structure,
The temperature correction means drives the fan to measure the measured temperature of the temperature sensor and the reference temperature of the reference temperature sensor, and corrects the measured temperature of the temperature sensor with the reference temperature of the reference temperature sensor. Configured temperature calibration device.
請求項5に記載の温度校正装置を用いて、前記温度センサの計測温度を前記基準温度にて補正する温度校正方法であって、
サンプリング時間内に前記温度センサ及び前記基準温度センサにて温度計測処理を行い、その温度計測処理における前記温度センサの計測温度を補正値にて補正した補正温度と前記温度計測処理における前記基準温度センサの基準温度との温度差を求め、その求めた温度差が許容範囲内であるか否かを判別する判別処理を行い、前記温度差が前記許容範囲外であれば前記温度差が前記許容範囲内となるまで前記温度計測処理及び前記判別処理を繰り返し実行する構成で、
前記許容範囲を第1許容範囲に設定し、前記補正値について、1回目の前記判別処理では補正値をゼロとし、2回目以降の前記判別処理では前回の判別処理における温度差を前回の判別処理における補正値に加算して更新した更新後の補正値を用いる第1補正工程を実行し、
前記温度差が前記第1許容範囲内になると、前記許容範囲を前記第1許容範囲よりも狭い範囲に設定された第2許容範囲に設定し、前記補正値について、1回目の前記判別処理では前記第1補正工程において前記温度差が前記第1許容範囲内となったときの補正値を用い、2回目以降の前記判別処理では前回の判別処理における温度差を前回の判別処理における補正値に加算して更新した更新後の補正値を用いる第2補正工程を実行して、
前記第2補正工程において前記温度差が前記第2許容範囲内であると判別したときの補正値を、前記計測温度を前記基準温度にて補正するときの校正用補正値として求め、前記計測温度に前記校正用補正値を加算して前記計測温度を補正する温度校正方法。
A temperature calibration method for correcting the measured temperature of the temperature sensor with the reference temperature using the temperature calibration device according to claim 5,
A temperature measurement process is performed by the temperature sensor and the reference temperature sensor within a sampling time, and a correction temperature obtained by correcting the measurement temperature of the temperature sensor in the temperature measurement process with a correction value and the reference temperature sensor in the temperature measurement process A temperature difference from the reference temperature is determined, and a determination process is performed to determine whether the determined temperature difference is within an allowable range. If the temperature difference is outside the allowable range, the temperature difference is within the allowable range. In the configuration to repeatedly execute the temperature measurement process and the determination process until it is within,
The allowable range is set to a first allowable range, and the correction value for the correction value is set to zero in the first determination process, and the temperature difference in the previous determination process is determined to be the previous determination process in the second and subsequent determination processes. Performing the first correction step using the updated correction value updated by adding to the correction value in
When the temperature difference falls within the first allowable range, the allowable range is set to a second allowable range that is set narrower than the first allowable range, and the correction value is determined in the first determination process. Using the correction value when the temperature difference falls within the first allowable range in the first correction step, the temperature difference in the previous determination process is changed to the correction value in the previous determination process in the second and subsequent determination processes. Executing the second correction step using the updated correction value added and updated;
A correction value obtained when the temperature difference is determined to be within the second allowable range in the second correction step is obtained as a correction value for calibration when the measured temperature is corrected with the reference temperature, and the measured temperature A temperature calibration method for correcting the measured temperature by adding the calibration correction value to the calibration value.
JP2009017218A 2009-01-28 2009-01-28 Arrangement structure of temperature sensor, temperature calibration device, and temperature calibration method Pending JP2010175344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009017218A JP2010175344A (en) 2009-01-28 2009-01-28 Arrangement structure of temperature sensor, temperature calibration device, and temperature calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009017218A JP2010175344A (en) 2009-01-28 2009-01-28 Arrangement structure of temperature sensor, temperature calibration device, and temperature calibration method

Publications (1)

Publication Number Publication Date
JP2010175344A true JP2010175344A (en) 2010-08-12

Family

ID=42706473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009017218A Pending JP2010175344A (en) 2009-01-28 2009-01-28 Arrangement structure of temperature sensor, temperature calibration device, and temperature calibration method

Country Status (1)

Country Link
JP (1) JP2010175344A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095528A (en) * 2010-12-07 2011-06-15 西华大学 Temperature sensor calibration device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095528A (en) * 2010-12-07 2011-06-15 西华大学 Temperature sensor calibration device
CN102095528B (en) * 2010-12-07 2012-03-07 西华大学 Temperature sensor calibration device

Similar Documents

Publication Publication Date Title
TWI281694B (en) Control process, temperature control process, temperature regulator, heat treatment and recordable medium
JP5139666B2 (en) Brightness adjusting device and brightness adjusting method
EP3770569B1 (en) Method using dry block temperature calibrator to calibrate short temperature measuring apparatus
JP5101490B2 (en) Accurate temperature measurement in semiconductor applications
US20100116896A1 (en) Thermostat apparatus including calibration device
JP7037828B2 (en) Temperature control method for electric radiant tube
CN108614597B (en) Heating control method and device for cooking appliance and cooking appliance
JP3617032B2 (en) Humidity sensor calibration method and humidity sensor using the same
JP2018107175A5 (en)
JP2010175344A (en) Arrangement structure of temperature sensor, temperature calibration device, and temperature calibration method
US9696219B2 (en) Method for calibrating a measuring device in a mobile terminal
JP2004226369A (en) Device for measuring linear expansion coefficient
JP6401350B2 (en) Calibration method of temperature adjustment during thermal analysis of sample
JP2005062199A (en) Calibration method for humidity sensor, and humidity sensor using it
JP5123867B2 (en) Temperature calibration device
JP4043408B2 (en) Substrate processing apparatus and substrate processing method
JP6580957B2 (en) Display device and method
JP2022150688A (en) Controller of air conditioner
JP2013020471A (en) Temperature controller and temperature control method
JP2007255823A (en) Drying machine
JP2005043296A (en) Thermogravimetry
CN212255479U (en) Thermal control system and temperature correction device
JP2007208066A (en) Substrate heat treatment apparatus
US11698206B2 (en) Controller for air conditioner
JP2013257085A (en) Drying device