JP2010175131A - Heat exchange device, refrigerating air conditioner and method of manufacturing heat exchanger - Google Patents

Heat exchange device, refrigerating air conditioner and method of manufacturing heat exchanger Download PDF

Info

Publication number
JP2010175131A
JP2010175131A JP2009017733A JP2009017733A JP2010175131A JP 2010175131 A JP2010175131 A JP 2010175131A JP 2009017733 A JP2009017733 A JP 2009017733A JP 2009017733 A JP2009017733 A JP 2009017733A JP 2010175131 A JP2010175131 A JP 2010175131A
Authority
JP
Japan
Prior art keywords
heat
heat transfer
transfer surface
heat exchanger
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009017733A
Other languages
Japanese (ja)
Inventor
Takesuke Tashiro
雄亮 田代
Mamoru Hamada
守 濱田
Fumitake Unezaki
史武 畝崎
Takeshi Maekawa
武之 前川
Hisatoshi Fukumoto
久敏 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009017733A priority Critical patent/JP2010175131A/en
Publication of JP2010175131A publication Critical patent/JP2010175131A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein a heat exchanger of a conventional refrigerating cycle device mainly requires processing of a fin, such as application of hydrophilic nature and change in the fin shape to improve water draining performance. <P>SOLUTION: By providing pores on a fin surface, water draining performance is improved. When condensed droplets are generated on the fin surface, to improve condensation heat transfer, -OH group on the fin surface is controlled so that the fin includes both a hydrophilic portion and a water repellent portion, or to improve heat transfer performance, irregularities are provided on the fin surface so as to increase the surface area. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、空調機、低温機器、給湯機器等に配備されている、空気と熱交換を行う熱交換器において、熱交換器の水切り性を向上させることで、除霜水の排水を促すものである。 This invention is a heat exchanger that is installed in air conditioners, low-temperature equipment, hot-water supply equipment, etc., that exchanges heat with air, and promotes drainage of defrost water by improving drainage of the heat exchanger. It is.

従来の冷凍サイクルシステムにおいて、伝熱面に用いられるフィンの表面温度が空気露点温度以下に冷却されるとき、フィン表面で空気中の水蒸気が凝縮され表面に水滴が発生する。特にフィン温度が0℃以下になる場合、空気中の水蒸気がフィン表面で霜となる着霜現象が生じる。 In the conventional refrigeration cycle system, when the surface temperature of the fin used for the heat transfer surface is cooled below the air dew point temperature, water vapor in the air is condensed on the fin surface and water droplets are generated on the surface. In particular, when the fin temperature is 0 ° C. or lower, a frosting phenomenon occurs in which water vapor in the air becomes frost on the fin surface.

フィン表面上の着霜が進むにつれフィン表面の熱抵抗が増し、その結果空気との熱交換量が減少し、装置の性能低下につながる。さらに霜が付着することによりフィン間が閉塞し、風路抵抗が増加し、装置の性能は大きく低下する。 As frost formation on the fin surface progresses, the thermal resistance of the fin surface increases. As a result, the amount of heat exchange with air decreases, leading to a reduction in the performance of the apparatus. Furthermore, frost adheres, the gap between the fins is blocked, the air path resistance is increased, and the performance of the apparatus is greatly deteriorated.

このような性能低下を回避するために、冷蔵庫のように冷凍サイクルなどを使用した装置は定期的にデフロスト(除霜)運転を行う。 In order to avoid such performance degradation, an apparatus using a refrigeration cycle or the like such as a refrigerator periodically performs a defrost (defrost) operation.

デフロスト運転には例えば冷凍サイクルの冷媒の流れを切り替えて対象となる熱交換器を内部から加熱するホットガス方式や熱交換器の近傍に設けたヒーターで外部から加熱するヒーター方式などがあるが、デフロスト運転での除霜中は装置としての役割、例えば空調での快適性が低下し、また機器の効率も低下するため、極力デフロスト運転時間を短縮する必要がある。 Defrost operation includes, for example, a hot gas system that heats the target heat exchanger from the inside by switching the refrigerant flow in the refrigeration cycle, and a heater system that heats from the outside with a heater provided near the heat exchanger. During the defrosting in the defrost operation, the role as an apparatus, for example, the comfort in air conditioning is reduced, and the efficiency of the equipment is also reduced. Therefore, it is necessary to shorten the defrost operation time as much as possible.

しかしながら、デフロスト時間を安易に短縮し、フィン上に除霜水が残ったまま熱交換器の冷却運転を再開させると、残った除霜水が起点となって早く霜が発生する、また残った除霜水がフィン間をブリッジングするなど、結果的にデフロスト間隔を短くすることになり、かえってエネルギー消費を増やすことになる。 However, when the defrost time is easily shortened and the cooling operation of the heat exchanger is restarted with the defrost water remaining on the fins, the remaining defrost water is the starting point, and frost is generated quickly. As a result, the defrost interval is shortened, for example, the defrost water bridges between the fins, and the energy consumption is increased.

そのためにも水切り性が高い熱交換器はデフロスト運転時間の短縮につながり機器の省エネにつながる。 For this reason, a heat exchanger with high drainage performance shortens the defrosting operation time and leads to energy saving of the equipment.

この熱交換器の水切り性に対して従来技術では、例えばフィン表面に疎水性塗料による皮膜と親水性塗料による皮膜を設けるなど皮膜に親水性の部分を設けて水の排水性を高めたり、またはフィンのスリット形状を変化させて水が流れやすい形状として排水性を促している(例えば、特許文献1、2参照)。また例えば冷蔵庫の冷却プレートに対して少なくとも冷却パイプの通る位置を親水性にし、水滴を付着させにくくする例が存在する(例えば、特許文献3参照)。 With respect to the drainability of this heat exchanger, in the prior art, for example, a hydrophobic part and a hydrophilic paint film are provided on the fin surface, for example, a hydrophilic part is provided on the film to improve water drainage, or The shape of the fins is changed to facilitate drainage as a shape that facilitates water flow (see, for example, Patent Documents 1 and 2). Further, for example, there is an example in which at least a position through which a cooling pipe passes is made hydrophilic with respect to a cooling plate of a refrigerator to make it difficult for water droplets to adhere (see, for example, Patent Document 3).

また蒸気タービンブレードに衝突する液滴に対し低い液体濡れ性を有する表面を得るために、表面に細穴を設け、この細穴のメジアン径aとメジアン間隔bとの比b/aを最大10とし、細穴サイズを最大10マイクロメータとした技術が知られている。(例えば特許文献4) In addition, in order to obtain a surface having low liquid wettability with respect to droplets colliding with the steam turbine blade, a fine hole is provided on the surface, and the ratio b / a between the median diameter a and the median interval b of the fine hole is 10 at the maximum. In addition, a technique in which the fine hole size is set to a maximum of 10 micrometers is known. (For example, Patent Document 4)

特開平1−014596号公報(3,4頁など)JP-A-1-014596 (pages 3, 4 etc.) 特開2000−193389号公報(請求項1など)JP 2000-193389 A (Claim 1 etc.) 特開2005−164199号公報(図1など)Japanese Patent Laying-Open No. 2005-164199 (FIG. 1 etc.) 特開2007−130747号公報(請求項1、4など)JP 2007-130747 A (Claims 1 and 4 etc.)

従来の冷凍サイクル装置の熱交換器では、水きり性能向上のため塗料により親水性にする若しくはフィン形状を変化させるなどフィンへの加工が主で伝熱性能の改善とは無関係で、逆に伝熱性能の低下をもたらすなどという問題があった。また細穴加工により衝突する液滴に対し濡れ性を得るため細穴のサイズや分布により背圧を得ようとするものが知られているが伝熱性能とは関係の無い穴の選定条件が厳しく製造が困難で大きな穴に限定されるなど冷凍サイクルなどへの適用は難しく実用的ではなかった。 In the heat exchanger of the conventional refrigeration cycle equipment, the processing to fins is mainly done by making it hydrophilic with paint or changing the fin shape to improve drainage performance, and it is irrelevant to the improvement of heat transfer performance. There was a problem that it caused a decrease in performance. In addition, in order to obtain wettability for droplets that collide by fine hole processing, it is known to obtain back pressure by the size and distribution of fine holes, but there are conditions for selecting holes that are not related to heat transfer performance. It was difficult and difficult to manufacture and limited to large holes, so it was difficult and practical to apply to refrigeration cycles.

また従来の冷凍サイクル装置の冷却プレートでは、熱交換量の向上を図るためではなく清潔感を高くするために親水性を高めることが主であった。 Further, in the cooling plate of the conventional refrigeration cycle apparatus, it has been mainly to improve the hydrophilicity in order to enhance the cleanliness rather than to improve the amount of heat exchange.

この発明は、熱交換器の伝熱面に細孔を設けることでフィンの水きり性能の向上させ、かつ熱伝達性能の向上を図る。もしくは、伝熱面の-OH基を有する面積を増加させ、または、伝熱面の-OH基の存在量を調整して伝熱面を親水状態にすることで、水きり性能を向上させ、かつ熱伝達性能を向上させる。 In the present invention, fin drainage performance is improved by providing pores on the heat transfer surface of the heat exchanger, and heat transfer performance is improved. Alternatively, by increasing the area having —OH groups on the heat transfer surface, or adjusting the abundance of —OH groups on the heat transfer surface to make the heat transfer surface hydrophilic, improving drainage performance, and Improve heat transfer performance.

本発明に係る熱交換装置は、送風される空気を冷却する熱交換器内の冷媒と空気との熱交換を行う上下方向に設けられた熱交換器の伝熱面と、伝熱面に形成された細穴であって、伝熱面に付着した液滴の表面エネルギーを含む平衡蒸気圧が細穴の無い平面に付着したマクロな液滴の平衡蒸気圧より所定値以上大きくする液滴径以下の径を有する伝熱面に分布して設けられた複数の細孔と、を備え、伝熱面上の排水を促進する。 The heat exchange device according to the present invention is formed on the heat transfer surface of the heat exchanger provided in the vertical direction for heat exchange between the refrigerant in the heat exchanger that cools the air to be blown and air, and the heat transfer surface. The diameter of the droplet is such that the equilibrium vapor pressure including the surface energy of the droplet adhering to the heat transfer surface is larger than the equilibrium vapor pressure of the macro droplet adhering to the flat surface without the hole by a predetermined value or more. A plurality of pores distributed on the heat transfer surface having the following diameters to promote drainage on the heat transfer surface.

また本発明に熱交換装置は、送風される空気を冷却する熱交換器内の冷媒と空気との熱交換を行う上下方向に設けられアルミにて形成された熱交換器の伝熱面と、伝熱面の表面酸化処理時に伝熱面上の一部における-OH基の存在量を調整して形成された親水性表面と、を備え、伝熱面に前記親水性表面を混在させて伝熱面からの排水を促進する。 The heat exchange device according to the present invention includes a heat transfer surface of a heat exchanger formed of aluminum and provided in the vertical direction for heat exchange between the refrigerant in the heat exchanger that cools the blown air and the air, And a hydrophilic surface formed by adjusting the abundance of -OH groups in a part of the heat transfer surface during the surface oxidation treatment of the heat transfer surface. Promotes drainage from hot surfaces.

また本発明に係る熱交換器製造方法は、アルミにて形成された熱交換器の伝熱面を洗浄後、陽極酸化処理して表面に複数の細穴を有する酸化膜を生成させるステップと、酸化処理後洗浄してから細穴を封孔させずに安定させる熱処理を行うステップと、を備え、熱処理の時間は伝熱面に−OH基を残す短い時間とする。 Moreover, the heat exchanger manufacturing method according to the present invention is a step of generating an oxide film having a plurality of fine holes on the surface by anodizing after washing the heat transfer surface of the heat exchanger formed of aluminum, And a step of performing a heat treatment to stabilize the fine holes without sealing after the oxidation treatment, and the heat treatment time is set to a short time for leaving —OH groups on the heat transfer surface.

この発明により、熱交換器の水切り性が向上し、熱交換器に生じる除霜水の排水を促すことが可能となり、デフロスト運転時間の短縮が可能となる。特にこの効果を低温機器、例えば冷蔵庫の冷却器に設けることでデフロスト時間の短縮によって、省エネルギーを低減できる。また水切り性の向上のため、熱交換器表面に凹凸を設けて-OH基を有する面積をフィン表面に増加させ、親水性を高める。また熱交換器表面の-OH基の存在量を調節することで、熱交換器表面に親水性の部分を与えることができ、熱伝達性能の向上を可能とする。以上により、機器や装置の省エネにつながり環境保護に役立つ。 According to the present invention, drainage of the heat exchanger is improved, drainage of defrost water generated in the heat exchanger can be promoted, and defrosting operation time can be shortened. In particular, energy saving can be reduced by shortening the defrost time by providing this effect in a low-temperature device such as a refrigerator cooler. In order to improve drainage, unevenness is provided on the surface of the heat exchanger to increase the area having —OH groups on the fin surface, thereby improving hydrophilicity. In addition, by adjusting the amount of —OH groups present on the surface of the heat exchanger, it is possible to impart a hydrophilic portion to the surface of the heat exchanger, thereby improving the heat transfer performance. With the above, it leads to energy saving of equipment and devices and is useful for environmental protection.

この発明の実施の形態1を示す冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the freezing apparatus which shows Embodiment 1 of this invention. この発明の実施の形態1を示す蒸発器熱交換器の詳細図である。It is detail drawing of the evaporator heat exchanger which shows Embodiment 1 of this invention. この発明の実施の形態1を示す蒸発器熱交換器の着霜時の説明図である。It is explanatory drawing at the time of frost formation of the evaporator heat exchanger which shows Embodiment 1 of this invention. この発明の実施の形態1を示す冷凍サイクルの着霜時の運転フロー図である。It is an operation | movement flowchart at the time of frost formation of the refrigerating cycle which shows Embodiment 1 of this invention. この発明の実施の形態1を示す冷蔵庫の構造説明図である。It is structure explanatory drawing of the refrigerator which shows Embodiment 1 of this invention. この発明の実施の形態1の特性説明図である。It is characteristic explanatory drawing of Embodiment 1 of this invention. この発明の実施の形態1を示す細孔を持った熱交換器の模式説明図である。It is a model explanatory drawing of the heat exchanger with the pore which shows Embodiment 1 of this invention. この発明の実施の形態1を示す陽極酸化処理の内容を説明する説明図である。It is explanatory drawing explaining the content of the anodizing process which shows Embodiment 1 of this invention. この発明の実施の形態2を示すスリットを持つフィンの概略図である。It is the schematic of the fin with a slit which shows Embodiment 2 of this invention. この発明の実施の形態3を示す蒸発器熱交換器の詳細図である。It is detail drawing of the evaporator heat exchanger which shows Embodiment 3 of this invention. この発明の実施の形態3を示す表面状態の模式説明図である。It is a schematic explanatory drawing of the surface state which shows Embodiment 3 of this invention.

実施の形態1.
この発明の実施の形態1の構成について、冷凍装置を例にして図を用いて説明する。図1は、冷凍装置の冷媒回路図である。この冷凍装置は、蒸気圧縮式の冷凍サイクル運転を行う装置である。図において圧縮機11、凝縮器12、凝縮器用ファン13を備え、膨張手段14、蒸発器15、蒸発器熱交換器用ファン16が備えられている。装置内には冷媒が充填されている。この凝縮器12、蒸発器15を利用してエアコンや除湿機などの空調機、冷凍庫や冷蔵庫などの低温機器、給湯機器などを高い効率で運転させることができる。
Embodiment 1.
The configuration of the first embodiment of the present invention will be described using a refrigeration apparatus as an example with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus. This refrigeration apparatus is an apparatus that performs vapor compression refrigeration cycle operation. In the figure, a compressor 11, a condenser 12, and a condenser fan 13 are provided, and an expansion means 14, an evaporator 15, and an evaporator heat exchanger fan 16 are provided. The apparatus is filled with a refrigerant. By using the condenser 12 and the evaporator 15, an air conditioner such as an air conditioner or a dehumidifier, a low-temperature device such as a freezer or a refrigerator, a hot water supply device, or the like can be operated with high efficiency.

装置内の冷媒は圧縮機11で圧縮され、高温高圧となって凝縮器12へと流れ込む。冷媒は凝縮器12で放熱し液冷媒となり、その後、膨張手段14により膨張され気液二相の冷媒となる。蒸発器15では冷媒は周囲空気から吸熱を行い、気体となって圧縮機11へと戻る。なおフロン系冷媒やHC冷媒の場合、凝縮が起こりガスと液の冷媒が存在するためガスを液に凝縮する凝縮器12としたが、CO2のように超臨界圧冷媒の場合は熱を放熱する放熱器12となる。 The refrigerant in the apparatus is compressed by the compressor 11 and flows into the condenser 12 at a high temperature and a high pressure. The refrigerant dissipates heat in the condenser 12 to become a liquid refrigerant, and then expands by the expansion means 14 to become a gas-liquid two-phase refrigerant. In the evaporator 15, the refrigerant absorbs heat from the ambient air and returns to the compressor 11 as a gas. In the case of chlorofluorocarbon refrigerants and HC refrigerants, condensation occurs and gas and liquid refrigerants are present, so the condenser 12 is used to condense the gases into liquids. However, in the case of supercritical pressure refrigerants such as CO2, heat is dissipated. It becomes the heat radiator 12.

図2に図1の蒸発器15の詳細を示した。ここでは冷凍装置や空調機に広く利用されているフィンチューブ式の熱交換器を示した。凝縮器15は主として複数の熱交換フィン21と複数の伝熱管22とで構成されている。このフィン21は所定の間隔で複数枚積層されており、各フィンに設けた貫通穴を貫通するように、伝熱管22が設けられている。伝熱管22を通じて流れ込んだ液冷媒が気化することで吸熱を行い、外部の空気とフィン21を介して熱交換する。フィン材は加工しやすく熱伝導率のよいアルミ板がよく用いられる。空気との熱交換過程を効率的に行うため、蒸発器15にはフィン21に向かって平行に設けられた蒸発器用ファン16により空気が送り込まれる。なおここでは平行な板状フィンで説明するが、例えばコルゲート式のフィンなどであっても同一の動作と効果を生ずる。 FIG. 2 shows details of the evaporator 15 shown in FIG. Here, the fin tube type heat exchanger widely used for the refrigeration apparatus and the air conditioner is shown. The condenser 15 is mainly composed of a plurality of heat exchange fins 21 and a plurality of heat transfer tubes 22. A plurality of fins 21 are laminated at a predetermined interval, and a heat transfer tube 22 is provided so as to penetrate through holes provided in each fin. The liquid refrigerant flowing through the heat transfer tube 22 is vaporized to absorb heat and exchange heat with the external air via the fins 21. As the fin material, an aluminum plate that is easy to process and has good thermal conductivity is often used. In order to efficiently perform the heat exchange process with air, the evaporator 15 is fed with air by an evaporator fan 16 provided in parallel toward the fins 21. Although the parallel plate-like fins will be described here, the same operation and effect can be obtained even with a corrugated fin, for example.

例えば冷蔵庫では蒸発器15に流れ込む空気温度は約−15℃、蒸発器15内の液冷媒の蒸発温度は約−20℃である。フィン表面は0℃以下であり、フィン21上では流れ込む空気中の水蒸気により着霜が生じる。着霜により、図3のようにフィン21間が霜層31で閉塞され風量が減少し、空気との熱交換量が低下し、冷却性能が悪化する。図3のイは熱交換器要部を斜めから見た図、ロはイのA−A断面図である。図4にフィン表面に着霜が生じる際の一般的な冷凍サイクル装置の運転動作プロセスを示す。 For example, in a refrigerator, the temperature of the air flowing into the evaporator 15 is about −15 ° C., and the evaporation temperature of the liquid refrigerant in the evaporator 15 is about −20 ° C. The fin surface is 0 ° C. or less, and frost formation occurs on the fins 21 due to water vapor flowing in the air. Due to the frost formation, the space between the fins 21 is blocked by the frost layer 31 as shown in FIG. 3, the air volume is reduced, the amount of heat exchange with the air is reduced, and the cooling performance is deteriorated. 3 is a view of the main part of the heat exchanger as seen from an angle, and FIG. FIG. 4 shows an operation process of a general refrigeration cycle apparatus when frost forms on the fin surface.

上記フィンに生成した霜層31を除去するため、装置は除霜(デフロスト)運転を行うが、例えば冷蔵庫では蒸発器15周辺にヒーターを置き、ヒーターを加熱することで霜層31を融解させる。図5に冷蔵庫の構造説明図を示す。冷蔵庫本体の庫室の背面側に図示されていない圧縮機など冷媒回路が設けられ、これに接続される蒸発器15である冷却器51を通過して冷却された冷気が送風機にて冷蔵庫本体内の各庫室、冷凍室、冷蔵室、野菜室などへ循環して収納された食品を冷却して高い温度となった空気は再び冷却器15に戻り冷却される構造である。 In order to remove the frost layer 31 generated on the fin, the apparatus performs a defrosting operation. For example, in a refrigerator, a heater is placed around the evaporator 15 and the frost layer 31 is melted by heating the heater. FIG. 5 shows a structure explanatory diagram of the refrigerator. A refrigerant circuit such as a compressor (not shown) is provided on the rear side of the refrigerator compartment of the refrigerator body, and the cool air cooled by passing through a cooler 51 which is an evaporator 15 connected to the refrigerator circuit is blown into the refrigerator body by the blower. In this structure, the air that has been circulated and stored in each of the storage rooms, the freezing room, the refrigeration room, the vegetable room, etc. and cooled to a high temperature is returned to the cooler 15 and cooled.

融解した霜は除霜水となりフィンをつたって重力方向に落下し、蒸発器15である冷却器51から排水路52を通して下部に設置されているドレンパンに集められ外部へと蒸発させられ流出する。 The melted frost becomes defrosted water, falls through the fins in the direction of gravity, is collected from the cooler 51, which is the evaporator 15, to the drain pan installed in the lower part through the drainage channel 52, is evaporated to the outside, and flows out.

例えば冷蔵庫では図5に示すように重力方向に排水路52を持つ排水構造となっており、ドレンパン53は冷却器51の下部に設置されている。 For example, a refrigerator has a drainage structure having a drainage channel 52 in the direction of gravity as shown in FIG. 5, and a drain pan 53 is installed below the cooler 51.

この時、除霜水をフィン21上に残したまま図4に示すように再び冷凍装置の運転を開始すると、フィン21上に残った除霜水が起点となって霜が発生する。そのために確実にフィン21表面から除霜水を除去することが重要となる。すなわち冷蔵庫の場合、例えば図4のように、冷蔵庫に電源が入れられ、あるいは、圧縮機が動作するなどにより、冷却運転がスタート(S01)し、冷蔵庫の野菜室などから発生する湿気が冷却器51にふれると霜となり伝熱面に付着する(S02)。冷却器に着霜すると冷気の循環を妨げ、あるいは熱伝達率を低下させて冷蔵庫を冷やすという本来の冷却性能が低下するので(S03)、一定時間ごとに、あるいは冷却器51に霜がついたことを温度などで検知したらヒーターを加熱する等により除霜(S04)を行う。 At this time, when the operation of the refrigeration apparatus is started again as shown in FIG. 4 while leaving the defrost water on the fins 21, frost is generated starting from the defrost water remaining on the fins 21. Therefore, it is important to reliably remove the defrost water from the surface of the fin 21. That is, in the case of a refrigerator, for example, as shown in FIG. 4, when the refrigerator is turned on or the compressor is operated, the cooling operation starts (S01), and moisture generated from the vegetable compartment of the refrigerator is cooled by the cooler. If it touches 51, it will become frost and will adhere to a heat-transfer surface (S02). When the frost is formed on the cooler, the original cooling performance of hindering the circulation of cold air or cooling the refrigerator by lowering the heat transfer rate is lowered (S03). If this is detected by temperature or the like, defrosting (S04) is performed by heating the heater or the like.

以下に図4に示す除霜の時間を短縮するため、フィン表面に細孔を設けて熱交換器の水切り性を向上させる手法について述べる。初めに液滴の表面エネルギーの影響を考察する。 In the following, in order to shorten the defrosting time shown in FIG. 4, a technique for improving the drainability of the heat exchanger by providing pores on the fin surface will be described. First, the influence of the surface energy of the droplet is considered.

半径rの水滴に対して表面エネルギーを加味したときの水滴の平衡蒸気圧pは以下の式で与えられる。 The equilibrium vapor pressure p of the water droplet when the surface energy is added to the water droplet of radius r is given by the following equation.

Figure 2010175131
Figure 2010175131

ここでkはボルツマン定数、Tは温度、peは平らな平面を持つマクロな水滴の平衡蒸気圧、vは分子1個の体積、γ は表面エネルギー密度を表わす。 Where k is the Boltzmann constant, T is the temperature, p e is the equilibrium vapor pressure of a macroscopic water droplet with a flat plane, v is the volume of one molecule, and γ is the surface energy density.

図6は特性説明図であって、このイはT =0 [℃]としたときのp/ peを水滴の半径rの関数として表わした図である。但し、γ =76 [erg/cm2]、v =3*10-23 [cm3](水の0℃における物性値)を用いた。なお図6に示したp/ peの水滴半径r依存性はTを変化させても(例えばT=-10,10 [℃]としても)、値は大きく変化しない。 Figure 6 is a characteristic diagram, the y is a view showing a p / p e when the T = 0 [℃] as a function of the radius r of the water droplets. However, γ = 76 [erg / cm 2 ] and v = 3 * 10 −23 [cm 3 ] (physical property values of water at 0 ° C.) were used. Note also water droplet radius r dependency of p / p e shown in FIG. 6 changes the T (e.g. T = -10,10 even [° C.]), the value does not change significantly.

図6のロは水滴径が大きいときの水滴外周部73における水滴の平衡蒸気圧を説明する図である。図6のイに示すように、半径rが大きくなるにつれp/ peが1に漸近している。図6ではr=1000 [nm]までしか記載していないが、r>1000 [nm]ではp/ peはほぼ1となる。これは細穴を開けた表面に付着した水滴の半径r>1000 [nm]の水滴は、図6のロに示すように細穴の無い平面に付着したマクロな水滴の平衡蒸気圧と等しいことを意味する。 FIG. 6B is a diagram for explaining the equilibrium vapor pressure of water droplets at the water droplet outer peripheral portion 73 when the water droplet diameter is large. As shown in (a) of FIG. 6, p / p e is asymptotic to 1 as the radius r increases. FIG. 6 shows only up to r = 1000 [nm], but p / pe is almost 1 at r> 1000 [nm]. This means that a water droplet with a radius r> 1000 [nm] attached to a surface with a fine hole is equal to the equilibrium vapor pressure of a macro water droplet attached to a flat surface without a fine hole, as shown in FIG. Means.

一方、図6のハは水滴径が小さいときの水滴外周部73における水滴の平衡蒸気圧を説明する図である。水滴半径がr<1000 nmではp/ peが1以上となっている。p> peとなることから、水滴の平衡蒸気圧が平面で与えられるマクロな水滴の平衡蒸気圧より大きくなる。これは液滴が小さくなることで、体積に対する表面積の占める割合が大きくなり、表面エネルギーの不利を受けるため、液滴中の水分子が不安定となるため生じる。 On the other hand, FIG. 6C is a diagram for explaining the equilibrium vapor pressure of water droplets at the water droplet outer peripheral portion 73 when the water droplet diameter is small. When the water droplet radius is r <1000 nm, p / pe is 1 or more. Since the p> p e, the equilibrium vapor pressure of the water droplets is greater than the equilibrium vapor pressure of macroscopic droplets given in the plane. This is because the ratio of the surface area to the volume increases as the droplets become smaller, and the surface energy is disadvantageous, so that water molecules in the droplets become unstable.

以上を模式図6に示すように、例えば空気温度2℃、相対湿度80%の空気中に水滴が存在しているとき、水滴の表面ではpe=564 Paで空気から水蒸気分が流入している。一方でこの水滴が半径r0で安定に存在しているとき、水滴からもpeで水分が蒸発し、流入量と流出量がつりあっている。 As shown in the schematic diagram 6 above, for example, when water droplets exist in air having an air temperature of 2 ° C. and a relative humidity of 80%, water vapor flows from the air at the surface of the water droplets at p e = 564 Pa. Yes. On the other hand when the water droplets are present stable at radius r 0, the water is evaporated at p e from water droplets, inflow and outflow are balanced.

一方で径が小さい水滴では上記表面エネルギーの影響により、peで流入する水蒸気以上の水分が水滴内から流出し、水滴径r0はだんだんと小さくなる。 On the other hand due to the influence of the surface energy in the diameter is small water droplets, water vapor or moisture flowing in p e flows out from the water droplets, water droplets diameter r 0 is increasingly smaller.

つまり、半径の小さい液滴を安定に生成させるためには、その液滴が平面を持つマクロな水滴としたときに得られる平衡蒸気圧pe以上の蒸気圧を与える必要がある。 That is, in order to produce a small radius of the droplet stability, it is necessary to give the equilibrium vapor pressure p e or more vapor pressure obtained when the liquid droplet is a macro water drops with plane.

図7に表面に100 nmの径の細孔72が多数存在しているときの状況を模式的に示した。100 nmの径の細孔内に存在できる水滴径は100 nm以下で、この時、図6よりp>1.01 peとなる。 FIG. 7 schematically shows the situation when there are many pores 72 having a diameter of 100 nm on the surface. Water droplet size that can be present in the pores of diameters of 100 nm is below 100 nm, this time, from FIG. 6 p> and 1.01 p e.

このような細孔72上部に除霜水71が来たとき、細孔72上部では除霜水71(マクロな水滴)が安定に生成しており、その平衡蒸気圧はpeである。しかし細孔72内で液滴が生成するためには、peの1.01倍以上の蒸気圧を必要とする。つまり、水滴は細孔72内では安定に存在できないため、細孔72内には除霜水71は侵入できず空気層で満たされる。 When such pores 72 Joshimosui 71 at the top came, pore 72 top Joshimosui 71 (macro water drop) is generated stably, its equilibrium vapor pressure is p e. However, to droplets in the pores 72 are generated requires 1.01 times more vapor pressure p e. That is, since water droplets cannot exist stably in the pores 72, the defrost water 71 cannot enter the pores 72 and is filled with an air layer.

結果的に図7のように空気層を内部に有する細孔72が多数表面上に存在するとき、除霜水外周部73は空気層を内部に有する細孔72と接することになる。 As a result, when a large number of pores 72 having an air layer are present on the surface as shown in FIG. 7, the defrosted water outer peripheral portion 73 comes into contact with the pores 72 having the air layer inside.

除霜水71の外周部73と空気層を内部に有する細孔72とが接するとき、水の表面張力が大きいため、除霜水71は細孔72上で留まることはできず、空気層から離れようとする。この効果により、除霜水外周部73は空気層を持つ細孔71と触れている限り、細孔71上では留まらずフィン21表面から重力方向へと流れ落ちていく。 When the outer peripheral portion 73 of the defrost water 71 and the pore 72 having the air layer are in contact with each other, since the surface tension of water is large, the defrost water 71 cannot stay on the pore 72 and from the air layer. Try to leave. Due to this effect, as long as the defrosted water outer peripheral portion 73 is in contact with the pore 71 having an air layer, it does not stay on the pore 71 but flows down from the surface of the fin 21 in the direction of gravity.

より効率的に除霜水71を排除するためには、図7に示すように重力方向にフィン21の最下部まで空気層で満たされた細孔72を空けておく事が重要となる。図7のイはフィン21の表面に除霜水71が付着した説明図であり、同図ロは横から細穴72を見た説明図、同図ハは除霜水が重力で下方に流れやすい構成を説明した図である。 In order to remove the defrosted water 71 more efficiently, it is important to keep the pores 72 filled with the air layer in the direction of gravity to the lowest part of the fins 21 as shown in FIG. 7A is an explanatory diagram in which the defrost water 71 is attached to the surface of the fin 21, FIG. 7B is an explanatory diagram in which the narrow hole 72 is viewed from the side, and FIG. 7C is a diagram in which the defrost water flows downward by gravity. It is a figure explaining the easy structure.

また排除時間をより短くするためには図7ニ、ホに示すように重力方向にフィンが長い熱交換器よりもむしろ重力方向にフィンが短く重力と垂直方向に長い熱交換器が有効である。このような熱交換器として例えば冷蔵庫に利用されている冷却器が挙げられる。したがって、例えば冷蔵庫などでは冷却器として重力方向にほぼ並行なフィンを設け、横幅が高さ方向幅より大きな熱交換器とすると良い。更に、伝熱面の下端部まで細孔が存在することで重力により流れる除霜水が霜により停留することなく伝熱面からの水切りがスムースに行われる。 In order to shorten the exclusion time, a heat exchanger having short fins in the gravity direction and long in the vertical direction is effective rather than a heat exchanger having long fins in the gravity direction, as shown in FIG. . An example of such a heat exchanger is a cooler used in a refrigerator. Therefore, for example, in a refrigerator or the like, it is preferable to provide fins substantially parallel to the direction of gravity as a cooler and to make a heat exchanger whose lateral width is larger than the height direction width. Furthermore, since the pores exist up to the lower end of the heat transfer surface, the defrost water flowing due to gravity is smoothly drained from the heat transfer surface without stopping due to frost.

以上のことから、表面エネルギーの不利が顕著となる小さな径の細孔をフィン表面に多数設けることで、除霜水の排出を促すことができフィンの水きり性能を向上させることができる。これによりデフロスト時間の短縮が可能となり、装置の省エネ化が可能となる。このような細孔は図6に示すように径が小さいほど大きな蒸気圧が必要なため、より安定に細孔72内では空気層が得られる。 From the above, by providing a large number of small-diameter pores on the fin surface where the disadvantage of surface energy is significant, the discharge of defrost water can be promoted, and the draining performance of the fin can be improved. As a result, the defrost time can be shortened and energy saving of the apparatus can be achieved. Since such pores require a larger vapor pressure as the diameter is smaller as shown in FIG. 6, an air layer can be obtained in the pores 72 more stably.

なおフィン表面の細孔の数は上記では限定していないが、細孔の数が多いほうが水切りの効果は上記で説明したように高いといえる。また細孔はフィンを貫通していても問題ないが、フィンの強度を考えると貫通穴より一端封じの細孔でその深さも数nm以上空いて入れば効果が十分に得られるといえる。 Although the number of pores on the fin surface is not limited in the above, it can be said that the effect of draining is higher as the number of pores is larger as described above. There is no problem even if the pore penetrates the fin, but considering the strength of the fin, it can be said that the effect is sufficiently obtained if the pore is sealed at one end from the through hole and the depth is several nm or more.

例えば熱交換器表面にナノオーダーの穴を空ける手法として、陽極酸化法が挙げられる。陽極酸化法とは処理対象となる金属を陽極とし、不溶性電極を陰極として電解質溶液中で直流電解操作を行うものである。陽極酸化処理に関する説明図を図8に示す。図8のイは陽極酸化処理を行う装置の模式図、図8のロは一般の陽極酸化処理工程を示す。装置において電解溶液83を充填した液槽内に、陰極81の間に陽極82である処理対象物、例えばフィン板のようなアルミ板を設置し、チョッパー電源のような電圧可変な直流電源から電圧を印加しあらかじめ設定された電流になるように制御し、設定された時間通電すると良い。なおこの陽極酸化処理(S16)の前、先ずフィン板のような処理対象物に対し表面洗浄として、一般に脱脂(S10)、水洗い(S11)、フィンプレート表面に形成された自然酸化膜を除去するアルカリエッチング(S12)、水洗い(S13)、ウェットエッチングで表面に生成した不純物である反応物を除去するデスマット処理(S14)、水洗い(S15)が行われる。この後本発明の処理対象物を例えば20℃に制御した0.5M−H2SO4電解溶液中に浸し、例えば30分程度の定電流制御により陽極酸化処理し、その後にはイオン交換水での水洗い(S17)とブロワー水切りを行い、直ちに150℃に加熱しておいたオーブンに入れ60分間の熱処理(S18)を行い徐冷させる。これにより表面に形成された細穴を安定させることができる。なお上記で説明した例のような熱処理を行わなければ細穴は短期間で崩れてくるし、またアルマイト処理の場合は細穴を塞ぐ沸騰水や水蒸気中などの熱処理を行うが、本発明での熱処理は長期間使用状態で安定する細穴を維持するためのものである。 For example, an anodic oxidation method can be cited as a method for forming nano-order holes on the surface of the heat exchanger. In the anodic oxidation method, direct current electrolysis is performed in an electrolyte solution using a metal to be treated as an anode and an insoluble electrode as a cathode. An explanatory diagram relating to the anodizing treatment is shown in FIG. FIG. 8A is a schematic diagram of an anodizing apparatus, and FIG. 8B shows a general anodizing process. In the apparatus, an object to be processed as an anode 82, for example, an aluminum plate such as a fin plate, is installed between cathodes 81 in a liquid tank filled with an electrolytic solution 83, and a voltage is supplied from a voltage variable DC power source such as a chopper power source. It is good to control so that it may become a preset electric current, and to energize for the preset time. Prior to the anodizing process (S16), first, as a surface cleaning of the object to be processed such as a fin plate, generally, degreasing (S10), washing with water (S11), and a natural oxide film formed on the surface of the fin plate are removed. Alkali etching (S12), washing with water (S13), desmutting treatment (S14) for removing reactants as impurities generated on the surface by wet etching, and washing with water (S15) are performed. Thereafter, the object to be treated of the present invention is immersed in, for example, a 0.5M-H 2 SO 4 electrolytic solution controlled at 20 ° C., anodized by constant current control for about 30 minutes, and then rinsed with ion-exchanged water ( The blower is drained with S17), immediately put into an oven heated to 150 ° C., and subjected to a heat treatment (S18) for 60 minutes, followed by slow cooling. Thereby, the fine hole formed in the surface can be stabilized. If heat treatment such as the example described above is not performed, the narrow hole will collapse in a short period of time, and in the case of alumite treatment, heat treatment such as boiling water or steam that closes the narrow hole is performed. The heat treatment is for maintaining a fine hole that is stable for a long period of use.

図8のイに示すように陰極81と陽極82とが通電することで、陽極の金属の表面が酸化し、金属の一部がイオン化して電解質溶液83中に溶解する。特にアルミニウム、ニオブ、タンタルなどが陽極酸化法により酸化皮膜を持つ。この酸化皮膜は電気伝導率が悪いため、陽極酸化処理が進むにつれ、金属酸化物が素地上に形成され、規則正しく成長した細孔構造ができる。細孔の深さは電圧を印加する時間によって決まるが、先に述べたように貫通しない程度が強度の面からよいといえる。図8のイの装置構成ではフィン単体の模式説明を行ったが、熱交換器全体に対し陽極酸化を行っても良い。例えば熱交換器のフィンに対し風が通る方向に熱交換器の中心軸を設け、この中心軸の中心線に対し風をさえぎる位置の両側に平板上のカーボン板を複数の陰電極として設置して陽極酸化を行う。フィンや熱交換器外回り全体のアルミ部分に形成された本発明の細穴は、空気中の水分が0℃以下に冷却された蒸発器熱交換器にふれて水滴となり着霜することを防ぐものであり、付着した水滴を直ちに重力により滴下させるため、フィン表面等に細孔を設けることでフィンの水きり性能の向上を図る。このため100nm以下の径の細穴を設ければよく、陽極酸化処理は時間を長く取ると穴が崩れ径が大きくなるのでこの処理の時間を設定し時間を制限することにより、100nm以下の径の細穴は容易に形成できる。また、できるだけ熱交換器全体に対し均等に細穴を開けるように陰極位置を設定したとしても、積層されたフィン等という構造上の問題で、ばらつきが生じ100nm以下であっても10nm程度以上というように穴径がばらついて生成し、穴径の数倍か数十倍のピッチで分布する細穴を得る可能性はあるが、特別な治具なしに容易に細穴を形成できる。この発明の細孔は、穴の中に空気層があり、かつ、水滴が複数の孔にかかる程度の穴の分布があれば水切りが行えるので、特に孔を深くしたり孔の径をより小さくする必要が無く、簡単な試行により陽極酸化条件を設定できるので製造は容易である。 8A and 8B, when the cathode 81 and the anode 82 are energized, the metal surface of the anode is oxidized, and a part of the metal is ionized and dissolved in the electrolyte solution 83. In particular, aluminum, niobium, tantalum and the like have an oxide film by an anodic oxidation method. Since this oxide film has poor electrical conductivity, a metal oxide is formed on the substrate as the anodizing treatment proceeds, and a regularly grown pore structure is formed. The depth of the pores is determined by the time during which the voltage is applied, but it can be said that the degree of not penetrating is good in terms of strength as described above. In the apparatus configuration shown in FIG. 8A, the fins are schematically described. However, the entire heat exchanger may be anodized. For example, the central axis of the heat exchanger is provided in the direction that the wind passes through the fins of the heat exchanger, and carbon plates on a flat plate are installed as a plurality of negative electrodes on both sides of the position where the air is blocked with respect to the center line of the central axis. Anodizing is performed. The narrow hole of the present invention formed in the aluminum part of the entire outer periphery of the fin and heat exchanger prevents water from forming mist and frosting by touching the evaporator heat exchanger cooled to 0 ° C. or less. In order to immediately drop the adhered water droplets by gravity, the fin drainage performance is improved by providing pores on the fin surface or the like. For this reason, it is only necessary to provide a fine hole with a diameter of 100 nm or less. In the anodizing treatment, if a long time is taken, the hole collapses and the diameter becomes large. Therefore, by setting the time of this treatment and limiting the time, the diameter of 100 nm or less The narrow hole can be easily formed. Moreover, even if the cathode position is set so as to make fine holes as evenly as possible in the entire heat exchanger as much as possible, due to structural problems such as laminated fins, even if the variation occurs and is 100 nm or less, it is about 10 nm or more In this way, there is a possibility that the hole diameters vary and are generated, and fine holes distributed at a pitch several or several tens of times larger than the hole diameter may be obtained, but the fine holes can be easily formed without a special jig. The pores of the present invention can be drained if there is an air layer in the hole and the distribution of holes is such that water droplets are applied to a plurality of holes. In particular, the holes can be deepened or the diameter of the holes can be made smaller. This is easy to manufacture because the anodization conditions can be set by simple trials.

また、酸化皮膜は熱伝導率も悪いので、表面と空気との熱交換を悪化させるため、必ずしも深い穴を空けることが良いとはいえない。しかし、本質的には貫通した穴に対しても、上述の効果は変わらない。1ミリよりも小さい極端に薄い板厚のフィンを持った熱交換器に対しては、貫通した穴を空けてもよい。またフィンに空ける穴はナノサイズであるため、経年的にごみやちりによって穴が埋まることはない。 In addition, since the oxide film has poor thermal conductivity, it is not always good to make a deep hole in order to deteriorate the heat exchange between the surface and air. However, the above-described effect does not change even for a hole that penetrates essentially. For heat exchangers with extremely thin fins smaller than 1 mm, a through hole may be made. In addition, since the holes in the fins are nano-sized, the holes will not be filled with dust or dust over time.

また冷蔵庫等の冷却器は伝熱管を含めすべてアルミニウムでできているため、陽極酸化処理を行う際は、熱交換器全体を陽極酸化処理することで熱交換器表面のいたるところにナノサイズの細孔を設けることができ、熱交換器全体の水きり性能の向上が見込まれる。意図的に伝熱管22の内部など酸化処理を行わない部分にはマスキングして陽極酸化処理を行えばよい。 Coolers such as refrigerators are all made of aluminum, including heat transfer tubes. Therefore, when anodizing, the entire heat exchanger is anodized so that nano-sized fine particles can be found all over the surface of the heat exchanger. A hole can be provided, and the drainage performance of the entire heat exchanger is expected to be improved. A part that is not intentionally oxidized, such as the inside of the heat transfer tube 22, may be masked and anodized.

実施の形態2.
この発明の実施の形態2の構成について、以下で説明する。フィン水きり性の向上は熱伝達やフィン間の閉塞など熱交換器の性能向上につながることは実施の形態1で述べたが、水切り性向上には表面を親水性にすることで得られることが一般的に知られている。なお実施の形態1の図1ないし図7にて説明した構成、動作はこの実施の形態2でも同様な構成、動作である。
Embodiment 2.
The configuration of the second embodiment of the present invention will be described below. As described in the first embodiment, the improvement of fin drainage improves the performance of the heat exchanger such as heat transfer and blockage between fins. However, the improvement of drainage can be obtained by making the surface hydrophilic. Generally known. The configuration and operation described in FIGS. 1 to 7 in the first embodiment are the same as those in the second embodiment.

また金属表面の親水性は表面上の親水基によって得られる。親水基の具体例として-OH基や-O基がある。特に-OH基は親水性が高く、-OH基が表面にあると表面の水滴は濡れ性が向上するため、水滴の接触角を小さくする目的で広く用いられている。また表面の-OH基が増加すればするほど、表面の親水性はさらに向上する。 The hydrophilicity of the metal surface is obtained by the hydrophilic group on the surface. Specific examples of the hydrophilic group include —OH group and —O group. In particular, the —OH group has high hydrophilicity, and when the —OH group is present on the surface, the water droplets on the surface improve the wettability. Therefore, the —OH group is widely used for the purpose of reducing the contact angle of the water droplets. Further, as the number of —OH groups on the surface increases, the hydrophilicity of the surface is further improved.

通常の蒸発器で用いられるアルミニウムに対して、-OH基を得るため表面を酸化処理する手法としては化成処理があり、たとえばベーマイト処理や陽極酸化処理、例えばアルマイト処理がある。これらの酸化処理によりアルミ板の表面は-OH基となり、更に熱処理を加え-O基となったとしても親水性は維持される。 As a method for oxidizing the surface of aluminum used in an ordinary evaporator to obtain —OH groups, there is a chemical conversion treatment, for example, a boehmite treatment or an anodization treatment such as an alumite treatment. By these oxidation treatments, the surface of the aluminum plate becomes —OH groups, and even if heat treatment is applied to become —O groups, the hydrophilicity is maintained.

アルマイト処理は実施の形態1で述べたが、ベーマイト処理はアルミを高温水や加圧水蒸気中で処理して表面に-OH基を生成させる化学処理で、アルミ表面に酸化皮膜を生成する。 Although the alumite treatment is described in the first embodiment, the boehmite treatment is a chemical treatment in which aluminum is treated in high-temperature water or pressurized steam to generate —OH groups on the surface, and an oxide film is formed on the aluminum surface.

両処理においても表面により多くの-OH基を付与するためは、熱交換器のサイズにより制限されるフィンの縦横の寸法を維持したままフィン板表面に設けた凹凸により表面積を増やすことが効果的である。また、フィン等に設けた穴を利用することで、フィン表面の-OH基を有する面積を増加させ、フィン表面等の親水性を一層向上させ、フィン等の水切り性を高める。ここで説明する凹凸や穴は、陽極酸化などによる細穴加工、治具を使用した機械加工、レーザーなどによる穴加工、プレスによる変形加工等様々なもので良く、また、穴の大きさは大きく、深いほど熱交換器のサイズはそのままでも伝熱面の空気がふれる表面積増加に有効である。 In order to add more -OH groups to the surface in both treatments, it is effective to increase the surface area by the unevenness provided on the surface of the fin plate while maintaining the vertical and horizontal dimensions of the fin limited by the size of the heat exchanger It is. Further, by utilizing the holes provided in the fins or the like, the area having —OH groups on the fin surface is increased, the hydrophilicity of the fin surface or the like is further improved, and the drainage property of the fins or the like is enhanced. The irregularities and holes described here may be various such as fine hole machining by anodizing, machining using a jig, drilling by laser, deformation processing by press, etc. The deeper the heat exchanger, the more effective the surface area of the heat transfer surface can be touched even if the heat exchanger size remains the same.

このフィンの表面積を増やす手法として、陽極酸化処理法が挙げられる。実施の形態1でも述べたが、アルミニウムを陽極酸化処理すると微細若しくはある程度径の大きな穴を数多く分布させて設けることができる。この生成した穴の表面に対しても陽極酸化処理によって-OH基は生成しており、-OH基を表面に持つ量を増加させることができる。 An example of a method for increasing the surface area of the fin is an anodizing method. As described in Embodiment Mode 1, when aluminum is anodized, a large number of fine or large-sized holes can be distributed and provided. The —OH group is also generated on the surface of the generated hole by the anodizing treatment, and the amount of —OH group on the surface can be increased.

この-OH基に対して、熱処理などで表面の酸化膜を安定化させれば親水性が向上した熱交換器を作成でき、熱交換器の水切り性を向上させることができる。 If the surface oxide film is stabilized by heat treatment or the like for this —OH group, a heat exchanger with improved hydrophilicity can be produced, and the drainage of the heat exchanger can be improved.

上記親水処理法の利用方法として、図9に示すように、例えば空気との熱交換を効率的に行うようフィン92にスリット91を持つ熱交換器に対しても有効である。スリットフィン92は空気との熱交換を積極的に行わせるためにスリット91をフィン92上に持つ。この時、スリットの立ち方と空気流れ方向、重力方向の関係は図9イ、ロに示すような位置関係である。 As a method of using the hydrophilic treatment method, as shown in FIG. 9, it is also effective for a heat exchanger having a slit 91 in the fin 92 so as to efficiently exchange heat with air, for example. The slit fin 92 has a slit 91 on the fin 92 in order to actively exchange heat with air. At this time, the relationship between how the slit stands, the direction of air flow, and the direction of gravity are as shown in FIGS.

スリット91は上記記載の効果を生むが、スリット91部では熱交換量が多いため凝縮液滴の生成量が多い。そのためスリットフィンではしばしばスリット部に凝縮水滴が停滞し、風路を塞ぐことが起きる。 Although the slit 91 produces the effect described above, the amount of condensed droplets is large because the amount of heat exchange is large in the slit 91 portion. For this reason, in the slit fin, condensed water droplets often stagnate in the slit portion and block the air path.

スリット91の効果を継続的に得るために、図9ハのようにスリット91部に穴93を空けて表面積を増やすことで親水性が増し、排水性の向上が見込まれスリット91が凝縮水滴発生時にも効果的に機能する。図8のようにフィン全体に陽極酸化処理による細穴を開けてから、スリットをプレス加工で形成させても良いし、スリット周囲位置を除きマスキングしてスリット部に細穴を形成させるものでも良い。 In order to continuously obtain the effect of the slit 91, as shown in FIG. 9C, by making a hole 93 in the slit 91 portion to increase the surface area, the hydrophilicity is increased and the drainage is expected to be improved. Sometimes it works effectively. As shown in FIG. 8, after making a fine hole by anodizing treatment in the entire fin, the slit may be formed by press working, or the fine hole may be formed in the slit portion by masking except for the position around the slit. .

また設ける穴径を通常室内や室外で想定されるごみやちり等の径に比べて十分に小さくすることで、穴が塞がることはなく、経年的に効果を維持できる。大きな穴を加工したり凹凸により親水性を有する表面積を増やすことにより水きり性のよい熱交換器が得られる。 Further, by making the hole diameter to be sufficiently smaller than the diameter of dust, dust or the like normally assumed indoors or outdoors, the hole is not blocked and the effect can be maintained over time. A heat exchanger with good drainage can be obtained by processing large holes or increasing the hydrophilic surface area by unevenness.

本発明の熱交換器の種類は以上の説明に限るものではなく、例えば自動車に使われている空調機のコルゲートフィンにも適用可能である。またこの発明の蒸発器を使用する冷凍サイクルを利用した冷凍倉庫や給湯装置、あるいは除湿機などの空調機など多くの装置にも適用可能である。 The type of the heat exchanger of the present invention is not limited to the above description, and can be applied to, for example, a corrugated fin of an air conditioner used in an automobile. Further, the present invention can be applied to many devices such as a refrigeration warehouse using a refrigeration cycle using the evaporator of the present invention, a hot water supply device, or an air conditioner such as a dehumidifier.

実施の形態3.
この発明の実施の形態3の構成について、図を用いて説明する。図10に実施の形態1で示した図1、2の蒸発器15のフィン21及び伝熱管22の一部を示した。
Embodiment 3.
The configuration of the third embodiment of the present invention will be described with reference to the drawings. FIG. 10 shows a part of the fins 21 and the heat transfer tubes 22 of the evaporator 15 of FIGS. 1 and 2 shown in the first embodiment.

フィン21が空気露点温度以下に冷却されているとき、フィン表面では空気中の水蒸気が凝縮して水滴となる。この時フィン表面が親水性であると接触角が小さくなるため膜状凝縮が起き、水膜101がフィン21表面上に生成する。 When the fin 21 is cooled below the air dew point temperature, water vapor in the air condenses on the fin surface to form water droplets. At this time, if the fin surface is hydrophilic, the contact angle becomes small, so that film condensation occurs, and a water film 101 is formed on the fin 21 surface.

一方、フィン表面が親水性でなく撥水性若しくは親水処理のされていない金属面では、接触角が大きいため表面では滴状凝縮が発生し、水滴102がフィン21表面上に生成する。 On the other hand, on a metal surface that is not hydrophilic and is not water repellent or hydrophilic, the contact angle is large, so droplet condensation occurs on the surface, and water droplets 102 are generated on the surface of the fin 21.

一般的に滴状凝縮の方が膜状凝縮より凝縮熱伝達は大きく(10倍程度)、熱交換器で滴状凝縮が実現されると熱交換量の増加が見込まれる。例えば蒸発器15が除湿器として運転する時には凝縮による熱交換量が支配的となるので、効率的な運転に滴状凝縮が重要といえる。 Generally, condensation heat transfer is larger in the case of droplet condensation than in film condensation (about 10 times), and when the condensation is realized by a heat exchanger, an increase in the amount of heat exchange is expected. For example, when the evaporator 15 is operated as a dehumidifier, the amount of heat exchange due to condensation becomes dominant, so that it can be said that droplet condensation is important for efficient operation.

ただしこの効果はフィン間の間隔にも依存する。極端にフィンピッチが狭い熱交換器に対しては表面上に滴状の凝縮水滴が存在すると、フィン間の風路抵抗となり、蒸発器用ファン16への入力が大きくなったりファンの騒音の問題も発生する。 However, this effect also depends on the spacing between the fins. For heat exchangers with extremely narrow fin pitches, the presence of droplets of condensed water droplets on the surface results in air path resistance between the fins, which increases the input to the evaporator fan 16 and causes fan noise problems. appear.

そのために滴状凝縮に加え排水を促すことで熱交換量の増加につながる。つまりフィンに最適な親水度を与えることで凝縮熱伝達の高い熱交換器が実現できる。親水度として捕らえることが難しい場合には、親水の部分と撥水の部分を混在させるように、最後の熱処理の際フィンなどに熱湯につける熱処理を行い、この熱処理を行う範囲を限定するなどのほう甫江が可能である。 For this reason, the amount of heat exchange is increased by encouraging drainage in addition to droplet condensation. That is, a heat exchanger with high condensation heat transfer can be realized by giving an optimum hydrophilicity to the fins. If it is difficult to capture the degree of hydrophilicity, perform a heat treatment that adds hot water to the fins during the final heat treatment so that the hydrophilic portion and the water-repellent portion are mixed, and limit the range of this heat treatment. Ho Li River is possible.

例えば冷蔵庫の冷却器ではフィンピッチが列ごとに異なるため、各位置で最適な親水度があると予想できる。 For example, in a refrigerator cooler, the fin pitch is different for each row, so it can be expected that there is an optimal hydrophilicity at each position.

以下にフィン表面の親水度を調節する手法を述べる。 A method for adjusting the hydrophilicity of the fin surface will be described below.

図11に親水性のアルミニウムフィン表面の分子状態を模式的に示した。実施の形態2でも述べたが、表面に-OH基が存在するとき表面は親水性となり、表面の水滴は濡れ性が向上する。熱処理を十分加えることにより−OH基が−O基に変化するが、この−O基も−OH基ほどではないが親水性がある。 FIG. 11 schematically shows the molecular state of the hydrophilic aluminum fin surface. As described in the second embodiment, when an —OH group is present on the surface, the surface becomes hydrophilic, and water droplets on the surface improve wettability. When sufficient heat treatment is applied, the —OH group changes to the —O group, but this —O group is also hydrophilic, although not as much as the —OH group.

表面に-OH基を与える手法として、例えばベーマイト処理では表面に安定な水和酸化物を生成させることできわめて高い親水性を得ている。 As a method for imparting —OH groups to the surface, for example, boehmite treatment achieves extremely high hydrophilicity by generating a stable hydrated oxide on the surface.

また実施の形態1で述べた陽極酸化処理では、処理過程で図10に示すようにアルミフィン表面上の表面水酸基-OH基を熱処理し-OH基を水H2Oとして取り出し、表面に-O基を持たせて安定化させている。 In the anodic oxidation treatment described in the first embodiment, as shown in FIG. 10, the surface hydroxyl group-OH group on the surface of the aluminum fin is heat-treated to remove the —OH group as water H 2 O, and the surface has the —O group. It has been stabilized.

図11では表面すべての-OH基を熱処理により-O基に変換しているが、熱処理の時間を調節することで、表面上に-OH基を適量残すことが可能である。例えば熱処理時間を短くすることで表面の-OH基を一部だけ-O基に変換させ、フィンの親水性を一部は維持できる。 In FIG. 11, —OH groups on the entire surface are converted to —O groups by heat treatment, but an appropriate amount of —OH groups can be left on the surface by adjusting the heat treatment time. For example, by shortening the heat treatment time, a part of the surface —OH groups can be converted into —O groups, and part of the hydrophilicity of the fin can be maintained.

また、図10では親水性の水膜と撥水性水滴が混在する状態を示すが、これらは酸化処理時にマスキングするなどで簡単に製造できる。またこのフィンの風上側と風下側で熱処理時間を調節(-OH基を調節)する方法もある。あるいは、フィンピッチの大小で区分けしても良い。一般的に風上側では熱伝達率が高いため、膜状凝縮が起きても熱交換量の減少は少ないが、風下側では滴状凝縮とすることでフィンの熱交換量を一層増加させることが可能となる。これにより水切り性を向上させ、かつ、熱伝達性能の向上を図ることができる。 Further, FIG. 10 shows a state where a hydrophilic water film and water-repellent water droplets are mixed, but these can be easily manufactured by masking at the time of oxidation treatment. There is also a method of adjusting the heat treatment time (adjusting the -OH group) on the upwind side and downwind side of this fin. Or you may classify by the size of fin pitch. Generally, the heat transfer rate is high on the leeward side, so the decrease in the heat exchange amount is small even if film-like condensation occurs, but the heat exchange amount of the fins can be further increased by using droplet condensation on the leeward side. It becomes possible. As a result, drainage can be improved and heat transfer performance can be improved.

このような-OH基の調整方法により目的とした親水度の熱交換器が作成可能となり、またフィン表面で親水度に分布を持たせることができ、熱交換器の性能向上につながる。この-OH基を一部だけ-O基に調整する方法として、陽極酸化処理後の熱処理時間を調整する、あるいは、対象物の一部だけ熱処理温度条件、あるいは熱処理の環境を変える、すなわち対象物の一部をマスキングする、熱湯を付けるところと付けないところを区分けするなど、陽極酸化処理の際などの熱処理対策に対し、対象物の形状、大きさ、適用する装置の構造に応じて親水の部分と撥水の部分を混合して設ける構造とすればよい。 Such a method for adjusting the —OH group makes it possible to produce a heat exchanger having the desired hydrophilicity, and to impart a distribution of hydrophilicity on the fin surface, leading to improved performance of the heat exchanger. As a method of adjusting this -OH group to a part of -O group, the heat treatment time after anodizing treatment is adjusted, or the heat treatment temperature condition or the heat treatment environment of only a part of the object is changed, that is, the object. For some heat treatment measures such as anodizing, such as masking a part of the product, separating the hot water from the non-heated, etc., depending on the shape and size of the object and the structure of the device to be applied, A structure in which a portion and a water-repellent portion are mixed and provided.

本発明の熱交換器は、冷凍サイクルを実行する装置内の熱交換器内の空気と熱交換を行う伝熱面に、表面エネルギーが影響を与える液滴径以下の細孔を設け、上記細孔内を空気層で満たし、フィン表面上の除霜水の排水を促す、また熱交換器全体に細穴を設けることにより、この熱交換器を冷却器に使用する際の冷却器にふれて凝縮した水滴の水切りが簡単に行え、熱交換性能を向上させる装置が得られる。 The heat exchanger according to the present invention is provided with pores having a diameter equal to or less than the droplet diameter on which the surface energy affects the heat transfer surface that exchanges heat with the air in the heat exchanger in the apparatus that performs the refrigeration cycle. By filling the hole with an air layer, facilitating drainage of defrost water on the fin surface, and providing a narrow hole in the entire heat exchanger, it is possible to touch the cooler when using this heat exchanger as a cooler. A device that can easily drain the condensed water droplets and improve the heat exchange performance is obtained.

本発明の熱交換器は、冷凍サイクルを実行する装置内の熱交換器内の空気と熱交換を行う表面上の-OH基の数を調節することで、この表面の親水性を熱交換器表面に与える。また、空気の流れの風下側やあるいは風上側の-OH基を調節することにより、この熱交換器を冷却器に使用する際の冷却器にふれて凝縮した水滴の水切りが簡単に行え、熱交換性能を向上させる装置が得られる。 The heat exchanger of the present invention adjusts the hydrophilicity of this surface by adjusting the number of —OH groups on the surface that exchanges heat with the air in the heat exchanger in the apparatus that performs the refrigeration cycle. Give to the surface. Also, by adjusting the -OH group on the leeward side or on the upwind side of the air flow, water droplets condensed by touching the cooler when this heat exchanger is used in a cooler can be easily drained, and heat A device that improves the exchange performance is obtained.

本発明の熱交換器は、冷凍サイクルを実行する装置内の熱交換器内の空気と熱交換を行う表面上の親水性向上のため、熱交換器表面に多くの穴を設け、この凹凸により、熱交換器の表面積を増加させ、熱交換器表面上に存在する-OH基を増加させる。また伝熱フィンにスリットを持つスリットフィンを設け、前記スリット部分近傍に親水性向上のため穴を多数持たせることにより、熱交換性能を向上させる装置が得られる。 The heat exchanger of the present invention is provided with many holes on the surface of the heat exchanger in order to improve hydrophilicity on the surface that exchanges heat with the air in the heat exchanger in the apparatus that performs the refrigeration cycle. Increase the surface area of the heat exchanger and increase the —OH groups present on the heat exchanger surface. Moreover, the apparatus which improves a heat exchange performance is provided by providing the slit fin with a slit in a heat-transfer fin, and giving many holes for the hydrophilicity improvement in the said slit part vicinity.

本発明を利用すれば、空気と熱交換する熱交換器の水切り性が向上し、表面上に生じる除霜水の排水性向上につながる。特に冷凍サイクルシステムでは、除霜時間を短縮することで省エネが得られる。また熱交換器表面を目的とする親水度とすることで凝縮熱伝達の高い熱交換器が実現でき、機器の熱交換量向上が見込まれる。さらに熱交換器表面の表面積を増加させることで親水性が一層向上し、業務用冷凍庫や家庭用冷蔵庫などの冷凍装置やエアコン、除湿機などの冷凍・空調装置にとって省エネにつながる。 If this invention is utilized, the draining property of the heat exchanger which heat-exchanges with air will improve, and it will lead to the drainage improvement of the defrost water produced on the surface. In particular, in the refrigeration cycle system, energy can be saved by shortening the defrosting time. In addition, by setting the heat exchanger surface to a desired hydrophilicity, a heat exchanger with high condensation heat transfer can be realized, and the heat exchange amount of the equipment can be improved. Furthermore, increasing the surface area of the heat exchanger surface further improves hydrophilicity, leading to energy saving for refrigeration equipment such as commercial freezers and household refrigerators, and refrigeration and air conditioning equipment such as air conditioners and dehumidifiers.

本発明に係る熱交換器を有する冷凍サイクル装置は、圧縮機、凝縮器、膨張手段、蒸発器を接続し、冷媒を循環させる冷媒サイクルと、蒸発器に空気を送風する送風手段と、蒸発器を構成する熱交換器表面に細孔を設け、その細孔径は表面エネルギーが影響を与える液滴径以下とし、上記細孔内を空気層で満たし、フィン表面上の除霜水の排水を促すことにより、水切り性能を向上させて熱伝達効率の良い装置が得られる。 A refrigeration cycle apparatus having a heat exchanger according to the present invention includes a refrigerant cycle in which a compressor, a condenser, an expansion unit, and an evaporator are connected to circulate a refrigerant, a blowing unit that blows air to the evaporator, and an evaporator Provided with pores on the surface of the heat exchanger that makes up the pores, the pore size should be less than the droplet size that the surface energy affects, fill the pores with an air layer, and promote drainage of defrost water on the fin surface As a result, it is possible to improve the drainage performance and to obtain a device with good heat transfer efficiency.

また本発明に係る熱交換器を有する冷凍サイクル装置は、圧縮機、凝縮器、膨張手段、蒸発器を接続し、冷媒を循環させる冷媒サイクルと、蒸発器に空気を送風する送風手段と、蒸発器を構成させる熱交換器表面の親水性向上のため、熱交換器表面に穴を設けて、熱交換器の表面積を増加させるので、性能の良い装置が得られる。 Further, the refrigeration cycle apparatus having the heat exchanger according to the present invention includes a refrigerant cycle in which a compressor, a condenser, an expansion unit, and an evaporator are connected to circulate the refrigerant, a blowing unit that blows air to the evaporator, and evaporation Since the surface of the heat exchanger is increased by providing holes in the surface of the heat exchanger in order to improve the hydrophilicity of the surface of the heat exchanger constituting the heat exchanger, a device with good performance can be obtained.

また本発明に係る熱交換器を有する冷凍サイクル装置は、圧縮機、凝縮器、膨張手段、蒸発器を接続し、冷媒を循環させる冷媒サイクルと、蒸発器に空気を送風する送風手段と、蒸発器を構成させる熱交換器表面上の-OH基の数を調節することで親水性を熱交換器表面に与え、水きり性能を向上させることができる。 Further, the refrigeration cycle apparatus having the heat exchanger according to the present invention includes a refrigerant cycle in which a compressor, a condenser, an expansion unit, and an evaporator are connected to circulate the refrigerant, a blowing unit that blows air to the evaporator, and evaporation By adjusting the number of —OH groups on the surface of the heat exchanger constituting the vessel, hydrophilicity can be imparted to the surface of the heat exchanger, and drainage performance can be improved.

この発明は、0℃以下に冷却される蒸発器熱交換器フィンに対して、フィン表面に細孔を設けることでフィンの水きり性能の向上を図る。また、フィンに設けた穴を利用することで、フィン表面の-OH基を有する面積を増加させ、フィン表面の親水性を一層向上させ、フィンの水切り性を高める。さらに、蒸発器熱交換器フィンが空気露点温度以下に冷却される際に、フィン表面に凝縮水滴が発生するが、凝縮熱伝達を向上させるため、フィン表面の-OH基の存在量を制御してフィン表面の親水状態を最適にすることで、フィンを任意の親水度にして凝縮熱伝達を向上させる。 This invention aims at improving the drainage performance of fins by providing pores on the fin surface with respect to the evaporator heat exchanger fins cooled to 0 ° C. or lower. Further, by utilizing the holes provided in the fin, the area having the —OH group on the fin surface is increased, the hydrophilicity of the fin surface is further improved, and the drainage property of the fin is enhanced. In addition, when the evaporator heat exchanger fins are cooled below the air dew point temperature, condensed water droplets are generated on the fin surface.In order to improve condensation heat transfer, the amount of --OH groups present on the fin surface is controlled. By optimizing the hydrophilic state of the fin surface, the fin can be made to have an arbitrary hydrophilicity to improve the heat transfer of condensation.

この発明により、熱交換器の水切り性が向上し、熱交換器に生じる除霜水の排水を促すことが可能となり、デフロスト時間の短縮が可能となる。特にこの効果を低温機器、例えば冷蔵庫の冷却器に設けることでデフロスト時間の短縮によって、省エネをはかることができる。また水切り性の更なる向上のため、熱交換器表面に穴を設けて-OH基を有する面積をフィン表面に増加させ、親水性を高める。また熱交換器表面の-OH基を調節することで、目的とする親水性を熱交換器表面に与えることができ、凝縮熱伝達の向上を可能とする。以上の効果により、機器の省エネにつながる。 According to the present invention, the drainability of the heat exchanger is improved, drainage of defrost water generated in the heat exchanger can be promoted, and defrost time can be shortened. In particular, energy saving can be achieved by shortening the defrost time by providing this effect in a low-temperature device such as a refrigerator cooler. In order to further improve drainage, a hole is provided on the surface of the heat exchanger to increase the area having —OH groups on the fin surface, thereby increasing hydrophilicity. In addition, by adjusting the -OH group on the surface of the heat exchanger, the desired hydrophilicity can be imparted to the surface of the heat exchanger, and condensation heat transfer can be improved. The above effects lead to energy saving of equipment.

11 圧縮機、12 凝縮器、13 凝縮器用ファン、14 膨張手段、15 蒸発器、16 蒸発器用ファン、21 伝熱フィン、22 伝熱管、31 霜層、51 冷却器、52 排水路、53 ドレンパン、71 除霜水、72 空気で満たされた細孔、73 除霜水外周部、81 陰極、82 陽極、83 電解溶液、91 スリット、92 スリットフィン、93 穴、101 水膜、102 水滴。 DESCRIPTION OF SYMBOLS 11 Compressor, 12 Condenser, 13 Condenser fan, 14 Expansion means, 15 Evaporator, 16 Evaporator fan, 21 Heat transfer fin, 22 Heat transfer pipe, 31 Frost layer, 51 Cooler, 52 Drain channel, 53 Drain pan, 71 defrosted water, 72 pores filled with air, 73 outer periphery of defrosted water, 81 cathode, 82 anode, 83 electrolytic solution, 91 slit, 92 slit fin, 93 hole, 101 water film, 102 water droplets.

Claims (16)

送風される空気を冷却する熱交換器内の冷媒と前記空気との熱交換を行う上下方向に設けられた前記熱交換器の伝熱面と、前記伝熱面に形成された細穴であって、前記伝熱面に付着した液滴の表面エネルギーを含む平衡蒸気圧が細穴の無い平面に付着した液滴の平衡蒸気圧より所定値以上大きくする液滴径以下の径を有する前記伝熱面に分布して設けられた複数の細孔と、を備え、前記伝熱面上の排水を促進することを特徴とする熱交換装置。 There are a heat transfer surface of the heat exchanger provided in the vertical direction for heat exchange between the refrigerant in the heat exchanger for cooling the air to be blown and the air, and a narrow hole formed in the heat transfer surface. And the equilibrium vapor pressure including the surface energy of the droplets adhering to the heat transfer surface has a diameter equal to or smaller than a droplet diameter that is larger than the equilibrium vapor pressure of the droplets adhering to a flat surface without a fine hole by a predetermined value or more. A heat exchange device comprising: a plurality of pores distributed on a hot surface, and promoting drainage on the heat transfer surface. 前記伝熱面に付着した液滴の表面エネルギーを含む平衡蒸気圧が細穴の無い平面に付着したマクロな液滴の平衡蒸気圧より大きくする所定値は1.03倍であることを特徴とする請求項1に記載の熱交換装置。 The predetermined value for making the equilibrium vapor pressure including the surface energy of the droplets adhering to the heat transfer surface larger than the equilibrium vapor pressure of the macro droplets adhering to a flat surface without a fine hole is 1.03 times. The heat exchange device according to claim 1. 前記伝熱面に付着した液滴の表面エネルギーを含む平衡蒸気圧が細穴の無い平面に付着したマクロな液滴の平衡蒸気圧より所定値以上大きくする液滴径以下の径は100nm以下の径であることを特徴とする請求項1に記載の熱交換装置。 The equilibrium vapor pressure including the surface energy of the droplets adhering to the heat transfer surface is larger than the equilibrium vapor pressure of the macro droplets adhering to the flat surface without fine holes by a predetermined value or more. The heat exchange device according to claim 1, wherein the heat exchange device has a diameter. 前記伝熱面の上下に渡り形成された複数の細穴は、すくなくとも伝熱面下端近傍まで形成することを特徴とする請求項1に記載の熱交換装置。 The heat exchange device according to claim 1, wherein the plurality of narrow holes formed on the upper and lower sides of the heat transfer surface are formed to at least the vicinity of the lower end of the heat transfer surface. 送風される空気を冷却する熱交換器内の冷媒と前記空気との熱交換を行う上下方向に設けられアルミにて形成された前記熱交換器の伝熱面と、前記伝熱面の表面酸化処理時に前記伝熱面上の一部における-OH基の存在量を調整して形成された親水性表面と、を備え、前記伝熱面に前記親水性表面を混在させて前記伝熱面からの排水を促進することを特徴とする熱交換装置。 The heat transfer surface of the heat exchanger formed of aluminum provided in the vertical direction for heat exchange between the refrigerant in the heat exchanger that cools the air to be blown and the air, and surface oxidation of the heat transfer surface A hydrophilic surface formed by adjusting the abundance of -OH groups in a part of the heat transfer surface during the treatment, and mixing the hydrophilic surface with the heat transfer surface from the heat transfer surface A heat exchange device that promotes drainage of water. 前記伝熱面上の一部における-OH基の存在量を調整して形成される親水性表面を、前記熱交換器を流れる空気の風下側にもうけることを特徴とする請求項5に記載の熱交換装置。 The hydrophilic surface formed by adjusting the abundance of —OH groups in a part of the heat transfer surface is provided on the leeward side of the air flowing through the heat exchanger. Heat exchange device. 送風される空気を冷却する熱交換器内の冷媒と前記空気との熱交換を行う上下方向に設けられた前記熱交換器の伝熱面と、前記伝熱面表面に分布して設けられた複数の凹凸と、を備え、前記凹凸により前記熱交換器の-OH基を有する前記空気と接触可能な表面積を増加させることを特徴とする熱交換装置。 Provided in a distributed manner on the heat transfer surface of the heat exchanger provided in the vertical direction for exchanging heat between the refrigerant in the heat exchanger that cools the air to be blown and the air. A heat exchange device comprising: a plurality of irregularities, wherein the irregularities increase a surface area that can come into contact with the air having —OH groups of the heat exchanger. 前記伝熱面に形成された前記親水性表面は、前記伝熱面酸化処理後に前記伝熱面の一部の熱処理条件を変えて-OH基の存在量を調整することを特徴とする請求項5または7に記載の熱交換装置。 The hydrophilic surface formed on the heat transfer surface is characterized in that after the heat transfer surface oxidation treatment, a heat treatment condition of a part of the heat transfer surface is changed to adjust the abundance of -OH groups. The heat exchange apparatus according to 5 or 7. 前記伝熱面を形成するフィンは表面に複数のスリットを有し、前記スリット近傍に複数の孔をすることを特徴とする請求項1または5または7に記載の熱交換装置。 The heat exchange apparatus according to claim 1, wherein the fin forming the heat transfer surface has a plurality of slits on a surface thereof and a plurality of holes in the vicinity of the slits. 前記伝熱面の上下に渡り形成された複数の細穴、または凹凸は、前記伝熱面を流れる空気の風上側に形成されることを特徴とする請求項1または7に記載の熱交換装置。 The heat exchanging apparatus according to claim 1 or 7, wherein the plurality of fine holes or irregularities formed above and below the heat transfer surface are formed on the windward side of the air flowing through the heat transfer surface. . 前記伝熱面を形成するフィンは横幅より縦幅を短くしたことを特徴とする請求項1または5または7に記載の熱交換装置。 The heat exchange device according to claim 1, wherein the fins forming the heat transfer surface have a vertical width shorter than a horizontal width. 前記細穴または凹凸は、前記熱交換器全体に形成されることを特徴とする請求項1または5または7に記載の熱交換装置。 The heat exchange apparatus according to claim 1, wherein the narrow hole or the unevenness is formed in the entire heat exchanger. 請求項1ないし12のいずれかに記載の熱交換装置を蒸発器として接続した冷凍サイクルと、前記冷凍サイクルを動作させ空気と熱交換を行う前記熱交換器の伝熱面に付着した霜を間歇的に加熱して除去する霜取装置と、前記霜取装置により除去された排水を前記熱交換器の下部で集める排水収集手段と、備えたことを特徴とする冷凍・空調装置。 A refrigeration cycle in which the heat exchange device according to any one of claims 1 to 12 is connected as an evaporator, and frost adhering to a heat transfer surface of the heat exchanger that operates the refrigeration cycle and exchanges heat with air is intermittently removed. A refrigeration / air-conditioning apparatus comprising: a defrosting device that is heated and removed, and drainage collecting means that collects wastewater removed by the defrosting device at a lower portion of the heat exchanger. アルミにて形成された熱交換器の伝熱面を洗浄後、陽極酸化処理して表面に複数の細穴を有する酸化膜を生成させるステップと、酸化処理後洗浄してから前記細穴を封孔させずに安定させる熱処理を行うステップと、を備え、前記熱処理の時間は前記伝熱面に−OH基を残す短い時間とすることを特徴とする熱交換器製造方法。 After cleaning the heat transfer surface of the heat exchanger made of aluminum, anodizing is performed to form an oxide film having a plurality of fine holes on the surface, and after the oxidation treatment, the fine holes are sealed. And a step of performing heat treatment that stabilizes without forming holes, and the heat treatment time is a short time for leaving -OH groups on the heat transfer surface. 前記伝熱面であるフィンまたは熱交換器全体を陽極とし、電解液中での陽極酸化処理にて製造される際、前記フィンまたは熱交換器全体の一部は、マスキングされることを特徴とする請求項14に記載の熱交換器製造方法。 The fin or heat exchanger as a heat transfer surface is used as an anode, and a part of the fin or the entire heat exchanger is masked when manufactured by anodizing treatment in an electrolytic solution. The heat exchanger manufacturing method according to claim 14. アルミにて形成された熱交換器の伝熱面を洗浄後、化成処理して表面に酸化膜を生成させるステップと、酸化処理後洗浄してから前記伝熱面を安定させる熱処理を行うステップと、を備え、前記熱処理の時間は前記伝熱面に−OH基を残す短い時間とすることを特徴とする熱交換器製造方法。 After cleaning the heat transfer surface of the heat exchanger formed of aluminum, performing a chemical conversion treatment to generate an oxide film on the surface, and performing a heat treatment to stabilize the heat transfer surface after cleaning after the oxidation treatment; The heat treatment time is a short time for leaving -OH groups on the heat transfer surface.
JP2009017733A 2009-01-29 2009-01-29 Heat exchange device, refrigerating air conditioner and method of manufacturing heat exchanger Pending JP2010175131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009017733A JP2010175131A (en) 2009-01-29 2009-01-29 Heat exchange device, refrigerating air conditioner and method of manufacturing heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009017733A JP2010175131A (en) 2009-01-29 2009-01-29 Heat exchange device, refrigerating air conditioner and method of manufacturing heat exchanger

Publications (1)

Publication Number Publication Date
JP2010175131A true JP2010175131A (en) 2010-08-12

Family

ID=42706280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009017733A Pending JP2010175131A (en) 2009-01-29 2009-01-29 Heat exchange device, refrigerating air conditioner and method of manufacturing heat exchanger

Country Status (1)

Country Link
JP (1) JP2010175131A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084473A1 (en) 2011-12-09 2013-06-13 パナソニック株式会社 Refrigerator
WO2013161263A1 (en) 2012-04-23 2013-10-31 パナソニック株式会社 Fin tube heat exchanger and method for manufacturing same
EP2765385A4 (en) * 2011-10-03 2015-10-07 Mitsubishi Electric Corp Refrigeration cycle device
DE212014000178U1 (en) 2013-08-28 2016-04-22 Panasonic intellectual property Management co., Ltd fridge
CN108168345A (en) * 2018-02-11 2018-06-15 中国科学院工程热物理研究所 For the heat sink and its manufacturing method under superelevation heat flow density
US10107574B2 (en) 2014-08-07 2018-10-23 Sharp Kabushiki Kaisha Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415556A (en) * 1977-06-29 1979-02-05 Hitachi Ltd Heat exchanger fin
JPS5687796A (en) * 1979-12-18 1981-07-16 Sharp Corp Fin tube type heat exchanger
JPS58165493U (en) * 1982-04-23 1983-11-04 株式会社日立製作所 Cross finch tube heat exchanger
JPS62104638A (en) * 1985-11-01 1987-05-15 Mitsubishi Alum Co Ltd Manufacture of fin for heat exchanger
JPH04136692A (en) * 1990-09-27 1992-05-11 Kubota Corp Fin for heat exchanger
JPH06307792A (en) * 1993-04-26 1994-11-01 Matsushita Electric Ind Co Ltd Heat exchanger and manufacture thereof
JPH09143753A (en) * 1995-11-17 1997-06-03 Hitachi Plant Eng & Constr Co Ltd Fin for heat exchanger
JPH10220916A (en) * 1997-02-03 1998-08-21 Calsonic Corp Evaporator
JP2000337755A (en) * 1999-05-28 2000-12-08 Matsushita Refrig Co Ltd Refrigerator
JP2005294655A (en) * 2004-04-02 2005-10-20 Iwatani Materials Corp Method of manufacturing profile including conductive layer on its surface, and heatsink
JP2006220326A (en) * 2005-02-08 2006-08-24 Mitsubishi Electric Corp Heat exchanging system
JP2007017016A (en) * 2005-07-05 2007-01-25 Matsushita Electric Ind Co Ltd Low temperature storage cabinet
JP2007130747A (en) * 2005-08-03 2007-05-31 General Electric Co <Ge> Surface and article resistant to impinging liquid

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415556A (en) * 1977-06-29 1979-02-05 Hitachi Ltd Heat exchanger fin
JPS5687796A (en) * 1979-12-18 1981-07-16 Sharp Corp Fin tube type heat exchanger
JPS58165493U (en) * 1982-04-23 1983-11-04 株式会社日立製作所 Cross finch tube heat exchanger
JPS62104638A (en) * 1985-11-01 1987-05-15 Mitsubishi Alum Co Ltd Manufacture of fin for heat exchanger
JPH04136692A (en) * 1990-09-27 1992-05-11 Kubota Corp Fin for heat exchanger
JPH06307792A (en) * 1993-04-26 1994-11-01 Matsushita Electric Ind Co Ltd Heat exchanger and manufacture thereof
JPH09143753A (en) * 1995-11-17 1997-06-03 Hitachi Plant Eng & Constr Co Ltd Fin for heat exchanger
JPH10220916A (en) * 1997-02-03 1998-08-21 Calsonic Corp Evaporator
JP2000337755A (en) * 1999-05-28 2000-12-08 Matsushita Refrig Co Ltd Refrigerator
JP2005294655A (en) * 2004-04-02 2005-10-20 Iwatani Materials Corp Method of manufacturing profile including conductive layer on its surface, and heatsink
JP2006220326A (en) * 2005-02-08 2006-08-24 Mitsubishi Electric Corp Heat exchanging system
JP2007017016A (en) * 2005-07-05 2007-01-25 Matsushita Electric Ind Co Ltd Low temperature storage cabinet
JP2007130747A (en) * 2005-08-03 2007-05-31 General Electric Co <Ge> Surface and article resistant to impinging liquid

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765385A4 (en) * 2011-10-03 2015-10-07 Mitsubishi Electric Corp Refrigeration cycle device
US9958194B2 (en) 2011-10-03 2018-05-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus with a heating unit for melting frost occurring in a heat exchanger
WO2013084473A1 (en) 2011-12-09 2013-06-13 パナソニック株式会社 Refrigerator
WO2013161263A1 (en) 2012-04-23 2013-10-31 パナソニック株式会社 Fin tube heat exchanger and method for manufacturing same
DE212014000178U1 (en) 2013-08-28 2016-04-22 Panasonic intellectual property Management co., Ltd fridge
US10107574B2 (en) 2014-08-07 2018-10-23 Sharp Kabushiki Kaisha Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member
US11280563B2 (en) 2014-08-07 2022-03-22 Sharp Kabushiki Kaisha Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member
CN108168345A (en) * 2018-02-11 2018-06-15 中国科学院工程热物理研究所 For the heat sink and its manufacturing method under superelevation heat flow density

Similar Documents

Publication Publication Date Title
JP2010175131A (en) Heat exchange device, refrigerating air conditioner and method of manufacturing heat exchanger
CN101055110B (en) Heat exchanger and indoor thermoelectric air conditioner possessing same
JP4849086B2 (en) Refrigeration cycle equipment, refrigeration / air conditioning equipment, hot water supply equipment
CN101765753B (en) Heat exchanger, method of producing the heat exchanger
JP5661202B2 (en) Plate fin tube type heat exchanger and refrigeration air conditioning system including the same
JP5456160B2 (en) Cross fin type heat exchanger and refrigeration cycle apparatus using the cross fin type heat exchanger
JP5132762B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
CN105157281A (en) Tube-in-tube evaporative condenser with fins
JP5170290B2 (en) Refrigeration cycle equipment, refrigeration / air conditioning equipment, hot water supply equipment
JP5397522B2 (en) Refrigeration cycle equipment, refrigeration / air conditioning equipment, hot water supply equipment
JP6320071B2 (en) Air conditioning system and heat exchange device
CN211120728U (en) Water-saving efficient cooling tower
JP2006046695A (en) Refrigerating device
JP2017150756A (en) Heat exchanger and manufacturing method of fin
CN101865590B (en) Refrigeratory
JP2006105541A (en) Air conditioner and outdoor unit therefor
JP2011122769A (en) Heat transfer material for heat exchanger and method for processing heat transfer surface
CN203395996U (en) Air conditioner
CN201463652U (en) Evaporative type air cooler
CN200961968Y (en) A heat exchanger and indoor thermal electrical air-conditioner with the same
KR20140096706A (en) Evaporator
JP2012088051A (en) Heat transfer material for heat exchanger and method for processing heat transfer surface
KR20070073165A (en) Heat exchanger and an air conditioner utilizing it
WO2021054247A1 (en) Heat exchanger member, heat exchanger, air conditioner, and refrigerator
JP2010025490A (en) Heat exchanger and air conditioner using same

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20110729

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20111004

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20111130

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A02 Decision of refusal

Effective date: 20120724

Free format text: JAPANESE INTERMEDIATE CODE: A02