JP2010173906A - Ceramic structure - Google Patents

Ceramic structure Download PDF

Info

Publication number
JP2010173906A
JP2010173906A JP2009019501A JP2009019501A JP2010173906A JP 2010173906 A JP2010173906 A JP 2010173906A JP 2009019501 A JP2009019501 A JP 2009019501A JP 2009019501 A JP2009019501 A JP 2009019501A JP 2010173906 A JP2010173906 A JP 2010173906A
Authority
JP
Japan
Prior art keywords
honeycomb
random
ceramic
hole
ceramic structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009019501A
Other languages
Japanese (ja)
Inventor
Mariko Takayama
満利子 高山
Masahiko Suzuki
正彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pilot Corp
Original Assignee
Pilot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilot Corp filed Critical Pilot Corp
Priority to JP2009019501A priority Critical patent/JP2010173906A/en
Publication of JP2010173906A publication Critical patent/JP2010173906A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Prostheses (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic structure 1 which has a multidirectional property, and an increased surface area, and is suitable particularly as artificial bones, bone filling materials, cell culture carriers and the like which fix and carry cells, facilitate cell invasion from multiple directions, and are suitable to more proliferate and culture cells. <P>SOLUTION: The ceramic structure comprises a combination of a honeycomb structure 2 in which through-holes 2A are located in at least one direction, and a random structure 3 which is an aggregate of fine formed bodies 4 each having at least one through-hole 4A and in which the through-holes 4A are located in three-dimensional directions, wherein the random structure 3 is arranged outside or inside the honeycomb structure 2, or these are formed in a layered shape. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、貫通孔を有するセラミックス構造体に関し、特に生体用の場合には骨補填材などの生体組織補填材や細胞培養担体などに用いられ、骨や血管となる細胞を定着、担持させ、増殖、培養させるのに適するセラミックス構造体に関するものである。   The present invention relates to a ceramic structure having a through-hole, and in particular, in the case of a living body, it is used for a biological tissue filling material such as a bone filling material or a cell culture carrier, to fix and carry cells that become bones or blood vessels, The present invention relates to a ceramic structure suitable for growth and culture.

従来セラミックス構造体は、その気孔を利用して触媒担体や濾過材、蓄熱材など種々の用途に利用されており、例えばその一つとして骨腫瘍摘出や外傷などによる骨の欠損や細胞の培養にかかる生体組織補填材あるいは細胞培養基盤として検討されている。このとき用いられる気孔形状としては、一般的な多孔質体や三次元網状の気孔を有するフォーム状のもの、あるいは貫通孔を設けたり、ハニカム状にするなど各種挙げられる。しかし、多孔質体は気孔の多方向性はあるもののその大きさや分布を制御することが製造上困難であるため、細胞の侵入がスムーズにいかない場合が多々生じて十分に生長が促進されないという問題があり、またフォーム状のものは気孔径がある程度設定でき、しかも多方向性を有するという特徴があるが、製造上骨格部にクラックが発生し易く強度が極端に低くなると同時に、一通の貫通孔が全くないため細胞の増殖を促進させるのに今一つ十分ではない。またハニカム状のものは気孔の制御が容易であり、かつ均一な径を有する一通の貫通孔が得られるため、表面積の向上により細胞の十分な生長が望まれ、強度も安定したものであるが、貫通孔がすべて一定方向に向いているため他方向からの細胞侵入が困難となり、場所によっては十分な効果が得られ難い。こうした状況の中で、生体との親和性および融合力を高めるために上記構造を組み合わせたものも考えられ、例えば多孔質中に貫通孔を設ける方法などが知られている(特許文献1参照)。この構造とすることにより、表面積が増加すると同時に、一方向ばかりでなく多方向からの細胞侵入が可能となるのである。   Conventional ceramic structures have been used for various applications such as catalyst carriers, filter media, and heat storage materials by utilizing the pores. For example, bone structures such as bone tumor removal and trauma, etc. It has been studied as a biological tissue supplement or cell culture platform. Examples of the pore shape used at this time include various types such as a general porous body, a foam shape having three-dimensional network pores, a through-hole, or a honeycomb shape. However, although the porous body has multi-directionality of pores, it is difficult to control the size and distribution of the porous material, so that invasion of cells does not always occur smoothly and the growth is not sufficiently promoted. There is a problem, and the foam type has the feature that the pore diameter can be set to some extent and has multi-directionality, but it is easy to crack in the skeleton part due to manufacturing, the strength becomes extremely low, and at the same time, the penetration The lack of pores is not enough to promote cell growth. In addition, since the honeycomb-shaped one can easily control the pores and a single through-hole having a uniform diameter can be obtained, sufficient cell growth is desired by improving the surface area, and the strength is stable. Since all the through-holes are oriented in a certain direction, it is difficult for cells to enter from other directions, and it is difficult to obtain a sufficient effect depending on the location. In such a situation, a combination of the above-described structures in order to increase the affinity and fusion power with a living body is also conceivable. For example, a method of providing a through-hole in a porous body is known (see Patent Document 1). . By adopting this structure, the surface area increases, and at the same time, cells can enter not only from one direction but also from multiple directions.

特開2004−275202号公報JP 2004-275202 A

しかしながら、上記構造においては多孔質体を用いているため前記したような多孔質の問題点がそのまま生じ、さらに多孔質体中に貫通孔を設けると強度上の問題が生じるため多数設けるのは難しく、特に生体との親和性や融合力向上のための適切な数や径を有する貫通孔と、適度の気孔を有する多孔質体との組み合わせを求めるためには種々の問題がある。   However, since the porous body is used in the above structure, the above-described porous problems occur as they are, and further, if through holes are provided in the porous body, there is a problem in strength, so it is difficult to provide a large number. In particular, there are various problems in obtaining a combination of a through-hole having an appropriate number and diameter for improving affinity and fusion power with a living body and a porous body having appropriate pores.

本発明は、上記問題を解消したセラミックス構造体にあり、貫通孔の方向が一方向に位置されてなるハニカム状構造体と、少なくとも1つの貫通孔を有する微小成形物の集合体であって該貫通孔の方向が三次元方向にランダムに位置されてなるランダム状構造体との組み合わせからなることを第1の要旨とする。   The present invention is a ceramic structure in which the above problems are solved, and is an aggregate of a honeycomb-like structure in which the direction of the through-hole is positioned in one direction and a micro-molded product having at least one through-hole. The first gist is that the direction of the through hole is a combination with a random structure in which the direction of the through hole is randomly positioned in the three-dimensional direction.

またハニカム状構造体の外部又は内部にランダム状構造体が配置されてなることを第2の要旨とする。   A second gist is that a random structure is disposed outside or inside the honeycomb structure.

さらにハニカム状構造体とランダム状構造体とが多層状に配置されてなることを第3の要旨とする。   Furthermore, the third gist is that the honeycomb structure and the random structure are arranged in multiple layers.

さらにはランダム状構造体の微小成形物どうしが自己固着してなることを第4の要旨とする。   Furthermore, the fourth gist is that the micro-molded products of random structures are self-adhered.

さらにはセラミックス構造体が生体用であることを第5の要旨とする。   Furthermore, the fifth gist is that the ceramic structure is for living bodies.

本発明のセラミックス構造体は、貫通孔の孔方向が一方向性ばかりでなく多方向性も有し、かつ孔径の大きさや分布などが容易に制御でき、さらに表面積がきわめて増大するという顕著な特徴を有するもので、なお特には生体用として用いた場合、一方向のみあるいは多方向からの細胞侵入が同時に可能となり、埋入の仕方や方向を気にすることなく容易に埋め込むことができ、しかも細胞侵入がスムーズに進行され十分な生長が促進されると同時に、細胞の種類や量あるいは骨の補填場所に適した形状に成形でき、さらには表面積が向上するためより多くの細胞を付着させることができるなど、生体との親和性および融合力の飛躍的な向上が見込まれるという面で種々の利点を有するものである。   The ceramic structure of the present invention has a remarkable feature that the direction of the through-hole is not only unidirectional but also multidirectional, the size and distribution of the hole diameter can be easily controlled, and the surface area is extremely increased. In particular, when used as a living body, cells can enter from only one direction or from multiple directions at the same time, and can be easily embedded without worrying about the way and direction of implantation. Cell invasion progresses smoothly and sufficient growth is promoted, and at the same time, it can be molded into a shape suitable for the type and amount of cells or the location of bone replacement, and more cells are attached because the surface area is improved. It has various advantages in that it can be expected to dramatically improve the affinity with the living body and the fusion power.

本発明のセラミックス構造体を示す斜視概略図である。It is a perspective schematic diagram showing a ceramic structure of the present invention. ランダム状構造体を示す部分概略図である。It is a partial schematic diagram showing a random structure. 本発明の他のセラミックス構造体を示す斜視概略図である。It is a perspective schematic diagram which shows the other ceramic structure of this invention. 本発明のさらに他のセラミックス構造体を示す斜視概略図である。It is a perspective schematic diagram showing other ceramic structures of the present invention. 本発明のさらに他のセラミックス構造体を示す斜視概略図である。It is a perspective schematic diagram showing other ceramic structures of the present invention.

本発明のセラミックス構造体は、特に生体用として用いた場合一方向および多方向からの細胞の侵入が可能となり、細胞の生成と生長が促進されるという目的を実現した。次に、本発明のセラミックス構造体を図面に沿って説明する。   The ceramic structure of the present invention achieves the purpose of enabling cell invasion from one direction and multiple directions, especially when used for living organisms, and promoting cell generation and growth. Next, the ceramic structure of the present invention will be described with reference to the drawings.

図1は、本発明のセラミックス構造体1を示す斜視概略図で、図2はランダム状構造体3の構造を示す部分概略図である。セラミックス構造体1は、一通の貫通孔2Aを有する円柱状のハニカム状構造体2の外部に円筒状のランダム状構造体3が配置された構成となっている。   FIG. 1 is a schematic perspective view showing a ceramic structure 1 of the present invention, and FIG. 2 is a partial schematic view showing the structure of a random structure 3. The ceramic structure 1 has a configuration in which a cylindrical random structure 3 is disposed outside a columnar honeycomb structure 2 having a single through hole 2A.

ハニカム状構造体2は、図1の上から下に向かって一通の貫通孔2Aが複数個設けられており、押出成形やプレス成形、射出成形あるいは機械的に穿孔することでハニカム状にしたもの、もしくは少なくとも1つの貫通孔を有する棒状体を束ねてハニカム状としてもよい。この場合、棒状体の断面形状は丸、三角、四角、六角など任意である。ハニカム状構造体2の外形形状は円柱状であるが、この他三角柱、四角柱、六角柱等任意である。   The honeycomb structure 2 is provided with a plurality of through-holes 2A from the top to the bottom of FIG. 1, and is formed into a honeycomb shape by extrusion molding, press molding, injection molding or mechanical perforation. Alternatively, a rod-shaped body having at least one through hole may be bundled to form a honeycomb shape. In this case, the cross-sectional shape of the rod-shaped body is arbitrary, such as a circle, a triangle, a square, and a hexagon. The outer shape of the honeycomb structure 2 is a columnar shape, but any other triangular prism, quadrangular column, hexagonal column or the like can be used.

貫通孔2Aの孔径は、細胞、血管、骨などが十分に生成し、生長できる範囲であればよく、使用条件に応じて適宜設定できるが、例えば10〜1000μm、特には細胞侵入に適切な径である200〜1000μmの範囲が好ましい。さらに孔径の異なった貫通孔を有するものも用いることができる。貫通孔2Aの断面形状は円形、楕円形、三角形、四角形、六角形など任意であるが、通常は円形が好適に用いられる。   The diameter of the through-hole 2A is not limited as long as cells, blood vessels, bones and the like are sufficiently generated and can be grown, and can be set as appropriate according to use conditions. For example, the diameter is 10 to 1000 μm, particularly suitable for cell invasion. The range of 200 to 1000 μm is preferable. Furthermore, what has the through-hole from which a hole diameter differs can be used. The cross-sectional shape of the through-hole 2A is arbitrary, such as a circle, an ellipse, a triangle, a quadrangle, and a hexagon, but usually a circle is preferably used.

ランダム状構造体3は、図2に示すように円柱状の微小成形物4の長手方向に貫通孔4Aが設けられ、この貫通孔4Aの方向を三次元方向にランダムに位置させるように微小成形物4を集合・固着させたものであり、集合・固着された微小成形物4どうしはそれぞれ接触部において接合し、接触部以外の外周面の大部分が接合しないまま三次元的に入り組んだ状態となるため、結果としてその間隙が三次元網状の気孔3Aとして形成される。したがって、貫通孔4Aに気孔3Aが加わることにより表面積が増大することになる。   As shown in FIG. 2, the random structure 3 is provided with through holes 4A in the longitudinal direction of the columnar micro-molded product 4, and is micro-molded so that the direction of the through-holes 4A is randomly positioned in the three-dimensional direction. The assembled and fixed micro-molded products 4 are joined to each other at the contact part, and the outer peripheral surface other than the contact part is joined in a three-dimensional manner without joining. As a result, the gap is formed as a three-dimensional network-like pore 3A. Therefore, the surface area is increased by adding the pores 3A to the through holes 4A.

微小成形物4の外形形状は、例えば球状や、円柱状、三角柱状、四角柱状、六角柱状などの柱状が挙げられ、これらを組み合わせて用いることもできるが、好ましくは柱状、特には円柱状が好適である。つまり、各微小成形物4を三次元方向にランダムに配置させることが容易となり、さらにその結果として微小成形物4間の間隙に気孔3Aが形成され易くなるのである。なお、柱状の場合において微小成形物4のL/D(L:長さ、D:外径)は任意であるが、好ましくは1.5以上がよく、特には3以上が好適である。L/Dが1.5未満だと、限りなく円板状になるため、貫通孔の孔方向をランダムに位置させようとしても密に重なり易くなり、セラミックス構造体1の作製が困難となる。その結果、微小成形物間の間隙に目的とする気孔を得ることも困難となるのである。   Examples of the external shape of the micro-molded product 4 include a columnar shape such as a spherical shape, a columnar shape, a triangular columnar shape, a quadrangular columnar shape, and a hexagonal columnar shape, and these can be used in combination, but preferably a columnar shape, particularly a cylindrical shape. Is preferred. That is, it becomes easy to arrange the micromolded articles 4 randomly in the three-dimensional direction, and as a result, the pores 3A are easily formed in the gaps between the micromolded articles 4. In the case of the columnar shape, L / D (L: length, D: outer diameter) of the micromolded product 4 is arbitrary, but is preferably 1.5 or more, and particularly preferably 3 or more. When L / D is less than 1.5, the shape is infinitely disk-shaped, so that even if the hole directions of the through-holes are randomly located, they are likely to overlap closely, making it difficult to produce the ceramic structure 1. As a result, it is difficult to obtain the desired pores in the gaps between the micromolded products.

微小成形物4の貫通孔4Aの孔径は、ハニカム状構造体2の貫通孔2Aと同様に10〜1000μm、特には200〜1000μmが好ましい。また貫通孔4Aの数は少なくとも1つであり、代表的には図2のようにパイプ形状のものが好ましいが、複数の貫通孔を有するハニカム状のものも用いることができる。貫通孔4Aの断面形状は円形、楕円形、三角形、四角形、六角形など任意であるが、特には円形が好適に用いられる。   The diameter of the through hole 4A of the micromolded product 4 is preferably 10 to 1000 μm, particularly 200 to 1000 μm, like the through hole 2A of the honeycomb structure 2. The number of the through holes 4A is at least one, and typically a pipe shape is preferable as shown in FIG. 2, but a honeycomb shape having a plurality of through holes can also be used. The cross-sectional shape of the through hole 4A is arbitrary, such as a circle, an ellipse, a triangle, a quadrangle, and a hexagon, but a circle is particularly preferably used.

ランダム状構造体3を得るための微小成形物4間の固着構造としては、例えば塗布固着あるいは自己固着が挙げられ、特には自己固着が好ましい。塗布固着は、微小成形物4の外周面に粘着材あるいは粘着材から炭素を形成させることで微小成形物4どうしを接合させた構造である。自己固着は、粘着材を用いずに微小成形物4自身の有する自己接着力、即ち微小成形物4内に内包された結合材や結合材から焼成して得られる炭素あるいは後述する主材の焼結力を利用して接合させた構造であり、製造上塗布固着のような煩雑さが少なく、かつ微小成形物間の間隙に三次元網状の明瞭な気孔が得られ易くなるという特徴を有する。なお、粘着材あるいは結合材としては天然樹脂、合成樹脂やコラーゲン、ゼラチンなどの生体吸収性高分子物質などが挙げられる。   Examples of the fixing structure between the micro-molded products 4 for obtaining the random structure 3 include coating fixing and self-fixing, and self-fixing is particularly preferable. The coating and fixing is a structure in which the micromolded products 4 are joined to each other by forming carbon from the adhesive material or the adhesive material on the outer peripheral surface of the micromolded product 4. Self-adhesion is the self-adhesive strength of the micro-molded product 4 itself without using an adhesive material, that is, the bonding material contained in the micro-molded product 4 or the carbon obtained by firing from the binding material or the firing of the main material described later. It has a structure in which the bonding force is used for joining, and has features such that there is less complexity such as coating fixation in production, and three-dimensional network-like clear pores are easily obtained in the gaps between the micro-molded products. Examples of the adhesive material or binding material include natural resins, synthetic resins, bioabsorbable polymer materials such as collagen and gelatin.

ハニカム状構造体2およびランダム状構造体3の微小成形物4に用いる主材としてはセラミックが用いられ、特に骨補填材や細胞培養担体などに使用する場合には酸化アルミニウム、酸化ジルコニウム、リン酸カルシウムなどのセラミックが好ましく、さらにはリン酸カルシウム系セラミックが生体材に近い特質を有することから好適であり、具体的には例えば第一リン酸カルシウム、メタリン酸カルシウム、第二リン酸カルシウム、ピロリン酸カルシウム、リン酸三カルシウム、リン酸四カルシウム、リン酸八カルシウム、ハイドロキシアパタイト、Ca不足ハイドロキシアパタイトなどが挙げられる。前記主材のほかに他の材料が添加されていてもよく、例えば主材に用いられる材料以外のセラミックや樹脂が挙げられ、さらにコラーゲン、ゼラチンなどの生体吸収性高分子物質や炭素などの生体用として好適に用いられている材料が挙げられる。なお、ハニカム状構造体とランダム状構造体に用いられる主材は同一であることが好ましいが、異なっていてもよい。   Ceramic is used as a main material used for the micro-molded product 4 of the honeycomb structure 2 and the random structure 3, and particularly when used as a bone filling material or a cell culture carrier, aluminum oxide, zirconium oxide, calcium phosphate, etc. The ceramics are preferable, and further, the calcium phosphate ceramic is suitable because it has characteristics close to that of biological materials. Specifically, for example, primary calcium phosphate, calcium metaphosphate, dibasic calcium phosphate, calcium pyrophosphate, tricalcium phosphate, phosphoric acid. Examples include tetracalcium, octacalcium phosphate, hydroxyapatite, and Ca-deficient hydroxyapatite. Other materials may be added in addition to the main material, such as ceramics and resins other than the materials used for the main material, and bioabsorbable polymer substances such as collagen and gelatin, and biological materials such as carbon. Examples thereof include materials that are suitably used for applications. The main materials used for the honeycomb structure and the random structure are preferably the same, but may be different.

図1のセラミックス構造体1以外に他の組み合わせ構造として、例えば図3、図4、図5の構造が挙げられる。図3はセラミックス構造体5の斜視概略図であり、円筒状のハニカム状構造体6の内部にランダム状構造体7が配置された組み合わせ構造を示す。ここで図1の場合において、ランダム状構造体3の外部にさらにハニカム状構造体を設けてもよいし、図3の場合においてハニカム状構造体6の外部にさらにランダム状構造体を設けてもよい。図4はセラミックス構造体8の斜視概略図であり、セラミックス構造体8はランダム状構造体9の内部に2つのハニカム状構造体10を設けたものであり、また図示していないが逆にハニカム状構造体の内部に2つ以上のランダム状構造体を設けてもよい。図5は、さらに他の組み合わせ構造を示すセラミックス構造体11の斜視概略図であって、ハニカム状構造体12とランダム状構造体13とがそれぞれ層状に重なったものであり、図5では2層であるが、交互に積み重ねて2以上の層状構造としてもよい。   In addition to the ceramic structure 1 of FIG. 1, examples of other combined structures include the structures of FIGS. 3, 4, and 5. FIG. 3 is a schematic perspective view of the ceramic structure 5 and shows a combined structure in which a random structure 7 is arranged inside a cylindrical honeycomb structure 6. Here, in the case of FIG. 1, a honeycomb structure may be further provided outside the random structure 3, or a random structure may be further provided outside the honeycomb structure 6 in FIG. Good. FIG. 4 is a schematic perspective view of the ceramic structure 8. The ceramic structure 8 is provided with two honeycomb-like structures 10 inside a random-like structure 9, and on the contrary, although not shown, Two or more random structures may be provided inside the structure. FIG. 5 is a schematic perspective view of a ceramic structure 11 showing still another combination structure, in which the honeycomb structure 12 and the random structure 13 overlap each other, and in FIG. However, two or more layered structures may be stacked alternately.

次に、本発明のセラミックス構造体の製造法について簡単に述べると、まず原材料としてセラミックスなどの主材と樹脂などの結合材を混練して、ハニカム状に押出成形するかもしくはパイプ状に成形して一方向に束ねたものを適宜の形状とし、乾燥又は高温で焼成してハニカム状構造体とする。一方、主材として同一あるいは他の材料を用いて少なくとも1つの貫通孔を有する押出素材を作製し、適宜の長さに切断したのち、得られた微小成形物素材を貫通孔の孔方向が三次元方向にランダムになるように集合・固着させ、乾燥又は焼成してランダム状構造体とする。このランダム状構造体およびハニカム状構造体を所定の型内に充填して互いに外部、内部となるように、あるいは層状に適宜組み合わせて相互に固定し、最終的に乾燥又は焼成してセラミックス構造体とする。次に、本発明の実施例を示す。なお、「部」は「質量部」である。   Next, the manufacturing method of the ceramic structure of the present invention will be briefly described. First, a main material such as ceramic and a binder such as resin are kneaded as a raw material and extruded into a honeycomb shape or formed into a pipe shape. Then, the one bundled in one direction is formed into an appropriate shape, and dried or fired at a high temperature to obtain a honeycomb structure. On the other hand, after producing an extruded material having at least one through-hole using the same or another material as a main material, cutting it to an appropriate length, the obtained micro-molded material has a three-dimensional hole direction of the through-hole. It is assembled and fixed so as to be random in the original direction, dried or fired to obtain a random structure. The random structure and the honeycomb structure are filled in a predetermined mold and fixed to each other so that they are externally or internally, or appropriately combined in layers, and finally dried or fired to form a ceramic structure. And Next, examples of the present invention will be described. “Part” means “part by mass”.

主材としてリン酸三カルシウム80部と結合材であるポリビニルアルコール20部に水100部を加え、混練後に押出成形して、長さ5.0mm、外径2.0mmで、孔径が300μmの貫通孔を14個有する円柱状のハニカム状素材を作製した。この素材を内径8mmの円筒状の型内中央に固定した。次に、上記と同様の原材料および配合を用い、混練後に押出成形して長さ1.6mm、外径0.5mmで孔径が300μmの貫通孔を有する円柱状の微小成形物の素材を多数作製した。この微小成形物素材を型内においてハニカム状素材の周囲にランダムに集合させてランダム状素材とし、水を散布して軽く押圧した。このとき、ハニカム状素材および微小成形物素材内部の結合材が水に濡れて素材表面が活性化され、微小成形物素材どうしおよび微小成形物素材とハニカム状素材とが接合された組み合わせ素材が得られた。この組み合わせ素材を酸素雰囲気中において最高温度1100℃で焼成し、ハニカム状構造体の外部に貫通孔の方向が三次元方向にランダムになるように微小成形物が集合・固着されたランダム状構造体が円筒状に配置された構造を有するリン酸三カルシウムからなるセラミックス構造体が得られた。このとき、ハニカム状素材および微小成形物素材どうしの接触部において、内包された結合材どうしが表面で接合し、焼成により結合材が酸素中で昇華すると同時に、主材の焼結力によって各素材どうしが固着されている。得られたセラミックス構造体は、白色でハニカム構造体の周囲に配置されたランダム状構造体のランダムさの程度がきわめて良好であり、また破壊しにくく、さらに微小成形物間の間隙には三次元網状の構造を有する気孔も明瞭に形成された。このセラミックス構造体を生体用としてウサギに対する骨補填材として埋設し、4週間後に取り出したところハニカム状構造体およびランダム状構造体の貫通孔、さらには間隙の三次元網状気孔内にも多くの骨芽細胞が増殖し、十分な生長がみられた。   100 parts of water is added to 80 parts of tricalcium phosphate as a main material and 20 parts of polyvinyl alcohol as a binder, and after kneading, extrusion molding is performed with a length of 5.0 mm, an outer diameter of 2.0 mm, and a pore diameter of 300 μm. A columnar honeycomb-shaped material having 14 holes was produced. This material was fixed in the center of a cylindrical mold having an inner diameter of 8 mm. Next, using the same raw materials and blends as above, extrusion molding after kneading to produce a large number of cylindrical micro-molded materials having through holes with a length of 1.6 mm, an outer diameter of 0.5 mm and a hole diameter of 300 μm did. The micro-molded material was gathered at random around the honeycomb-shaped material in the mold to obtain a random-shaped material, and water was sprayed and pressed lightly. At this time, the bonding material inside the honeycomb-shaped material and the micro-molded material is wetted with water and the surface of the material is activated, and a combined material in which the micro-molded material and the micro-molded material and the honeycomb-shaped material are joined is obtained. It was. This combined material is fired at a maximum temperature of 1100 ° C. in an oxygen atmosphere, and a random structure in which micro-molded products are assembled and fixed so that the direction of the through-holes is random in the three-dimensional direction outside the honeycomb structure. The ceramic structure which consists of a tricalcium phosphate which has the structure arrange | positioned cylindrically was obtained. At this time, in the contact portion between the honeycomb-shaped material and the micro-molded material, the encapsulated bonding materials are bonded to each other on the surface, and the bonding material is sublimated in oxygen by firing. The two are fixed. The obtained ceramic structure is white and the degree of randomness of the random structure arranged around the honeycomb structure is extremely good, it is not easily broken, and there is a three-dimensional gap in the space between the micro-molded products. The pores having a net-like structure were also clearly formed. This ceramic structure was embedded as a bone grafting material for rabbits for living body and taken out after 4 weeks. When the ceramic structure was taken out after 4 weeks, many bones were also found in the through holes of the honeycomb structure and the random structure, and also in the three-dimensional network pores in the gap. The blasts proliferated and showed sufficient growth.

実施例1と同じ原材料、配合を用い、押出成形して長さ6.0mm、高さ6.0mm、厚さが2.0mmで孔径300μmの貫通孔を20個有するハニカム状素材とした。ここで、貫通孔は高さ方向に連通している。また微小成形物素材は、実施例1と同様のものを用いた。次に内部が長さ6.0mm、高さ6.0mm、厚さ8.0mmの直方体状の型内の中央にハニカム状素材を配置し、その両側の3mm厚部に微小成形物の素材を充填し、ランダムに集合させてランダム状素材とし、水を散布して軽く押圧し、実施例1と同様に微小成形物素材どうしおよび微小成形物とハニカム状素材とが接合された組み合わせ素材が得られた。この素材を酸素雰囲気中において最高温度1100℃で焼成し、ハニカム状構造体とランダム状構造体とが3層状に配置されたセラミックス構造体が得られた。このセラミックス構造体は、実施例1と同様の特徴が得られた。   The same raw materials and blends as in Example 1 were used and extruded to form a honeycomb-shaped material having 20 through-holes having a length of 6.0 mm, a height of 6.0 mm, a thickness of 2.0 mm and a pore diameter of 300 μm. Here, the through hole communicates with the height direction. Moreover, the thing similar to Example 1 was used for the micromolded material. Next, a honeycomb-shaped material is arranged in the center of a rectangular parallelepiped mold having a length of 6.0 mm, a height of 6.0 mm, and a thickness of 8.0 mm. Filled together, randomly assembled into a random material, sprinkled with water and pressed lightly to obtain a combination material in which the micro-molded materials are joined together and the micro-molded material and the honeycomb-shaped material are joined as in Example 1. It was. This material was fired at a maximum temperature of 1100 ° C. in an oxygen atmosphere to obtain a ceramic structure in which a honeycomb structure and a random structure were arranged in three layers. This ceramic structure had the same characteristics as in Example 1.

本発明のセラミックス構造体は、気孔の有する表面積がきわめて大きく、しかも多方向性を有することから触媒担体や濾過材、蓄熱材など種々の用途に応用でき、特には生体用として血管の形成や細胞の増殖を促進し、かつ多方向からの細胞侵入が容易となるため、良好な骨補填材あるいは細胞培養担体となり、医療分野の要請に対して十分適用できる。   The ceramic structure of the present invention has a very large pore surface area and is multidirectional, so that it can be applied to various uses such as a catalyst carrier, a filtering material, and a heat storage material. Since the proliferation of the cells is promoted and cell invasion from multiple directions is facilitated, the bone substitute material or the cell culture carrier can be satisfactorily applied to the medical field.

1 セラミックス構造体
2 ハニカム状構造体
2A ハニカム状構造体2の貫通孔
3 ランダム状構造体
3A ランダム状構造体3の気孔
4 微小成形物
4A 微小成形物4の貫通孔
5 セラミックス構造体
6 ハニカム状構造体
7 ランダム状構造体
8 セラミックス構造体
9 ランダム状構造体
10 ハニカム状構造体
11 セラミックス構造体
12 ハニカム状構造体
13 ランダム状構造体
DESCRIPTION OF SYMBOLS 1 Ceramic structure 2 Honeycomb-like structure 2A Through-hole of honeycomb-like structure 2 3 Random-like structure 3A Pores of random-like structure 3 4 Micro-molded product 4A Through-hole of micro-molded product 4 5 Ceramic-structure 6 Honeycomb Structure 7 Random structure 8 Ceramic structure 9 Random structure 10 Honeycomb structure 11 Ceramic structure 12 Honeycomb structure 13 Random structure

Claims (5)

貫通孔の方向が一方向に位置されてなるハニカム状構造体と、少なくとも1つの貫通孔を有する微小成形物の集合体であって該貫通孔の方向が三次元方向にランダムに位置されてなるランダム状構造体との組み合わせからなることを特徴とするセラミックス構造体。   An assembly of a honeycomb-like structure in which the direction of the through-hole is positioned in one direction and a micro-molded product having at least one through-hole, and the direction of the through-hole is randomly positioned in a three-dimensional direction A ceramic structure comprising a combination with a random structure. ハニカム状構造体の外部又は内部にランダム状構造体が配置されてなることを特徴とする請求項1記載のセラミックス構造体。   2. The ceramic structure according to claim 1, wherein a random structure is disposed outside or inside the honeycomb structure. ハニカム状構造体とランダム状構造体とが多層状に配置されてなることを特徴とする請求項1記載のセラミックス構造体。   2. The ceramic structure according to claim 1, wherein the honeycomb structure and the random structure are arranged in a multilayer shape. ランダム状構造体の微小成形物どうしが自己固着してなることを特徴とする請求項1乃至3のいずれか1項記載のセラミックス構造体。   The ceramic structure according to any one of claims 1 to 3, wherein the minute molded products of the random structure are self-adhering to each other. セラミックス構造体が生体用であることを特徴とする請求項1乃至4のいずれか1項記載のセラミックス構造体。   The ceramic structure according to any one of claims 1 to 4, wherein the ceramic structure is for a living body.
JP2009019501A 2009-01-30 2009-01-30 Ceramic structure Pending JP2010173906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019501A JP2010173906A (en) 2009-01-30 2009-01-30 Ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019501A JP2010173906A (en) 2009-01-30 2009-01-30 Ceramic structure

Publications (1)

Publication Number Publication Date
JP2010173906A true JP2010173906A (en) 2010-08-12

Family

ID=42705234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019501A Pending JP2010173906A (en) 2009-01-30 2009-01-30 Ceramic structure

Country Status (1)

Country Link
JP (1) JP2010173906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133381A1 (en) * 2014-03-03 2015-09-11 イビデン株式会社 Heat regenerator
WO2021177457A1 (en) * 2020-03-05 2021-09-10 邦夫 石川 Medical honeycomb structure and manufacturing method thereof, medical tissue reconstruction bag, and forming mold

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195006A (en) * 1988-01-29 1989-08-04 Pilot Precision Co Ltd Manufacture of ceramic honeycomb structure
JPH09301785A (en) * 1996-05-15 1997-11-25 Mitsui Mining & Smelting Co Ltd Ceramic porous body and its production
JP2004073849A (en) * 2002-06-18 2004-03-11 National Institute Of Advanced Industrial & Technology Globular calcium phosphate coated with biodegradable plastic and its application
JP2005124709A (en) * 2003-10-22 2005-05-19 Olympus Corp Biomaterial and its manufacturing method thereof
JP5138313B2 (en) * 2007-08-27 2013-02-06 株式会社パイロットコーポレーション Biological structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195006A (en) * 1988-01-29 1989-08-04 Pilot Precision Co Ltd Manufacture of ceramic honeycomb structure
JPH09301785A (en) * 1996-05-15 1997-11-25 Mitsui Mining & Smelting Co Ltd Ceramic porous body and its production
JP2004073849A (en) * 2002-06-18 2004-03-11 National Institute Of Advanced Industrial & Technology Globular calcium phosphate coated with biodegradable plastic and its application
JP2005124709A (en) * 2003-10-22 2005-05-19 Olympus Corp Biomaterial and its manufacturing method thereof
JP5138313B2 (en) * 2007-08-27 2013-02-06 株式会社パイロットコーポレーション Biological structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133381A1 (en) * 2014-03-03 2015-09-11 イビデン株式会社 Heat regenerator
WO2021177457A1 (en) * 2020-03-05 2021-09-10 邦夫 石川 Medical honeycomb structure and manufacturing method thereof, medical tissue reconstruction bag, and forming mold

Similar Documents

Publication Publication Date Title
Dorozhkin Calcium orthophosphate-based bioceramics
US20100075419A1 (en) Biomaterial, method of constructing the same and use thereof
JP4403268B2 (en) Method for producing calcium phosphate porous sintered body and method for producing artificial bone using the same
WO1989011300A1 (en) Artificial bone structure for transplantation of bone
JP2009516544A (en) Porous load-bearing ceramic or metal implant
AU2016202847B2 (en) Particulate alloplastic bone replacement material and method for producing a free-formed porous body
JP2010537679A5 (en)
CN106518143A (en) Three-dimensional connected honeycomb porous calcium phosphate ceramic artificial bone material and preparation method thereof
CN100540071C (en) Medical reinforced porous biological ceramic and preparation method thereof
CN104645408B (en) A kind of preparation method of gradient β phase tricalcium phosphate bone alternate material
US20220273440A1 (en) Synthetic tissue-graft scaffold
KR102230646B1 (en) Multi-component joining of plastic preparations in order to produce medical products with functional surfaces
JP2010173906A (en) Ceramic structure
Islam et al. Effects of compressive ratio and sintering temperature on mechanical properties of biocompatible collagen/hydroxyapatite composite scaffolds fabricated for bone tissue engineering
JP6224766B2 (en) Plane bone replacement material and method for producing porous body
JP5138313B2 (en) Biological structure
JP5382919B2 (en) Biological structure
JP2010188023A (en) Structure for living body
CN105999397A (en) Application of mineralized three-dimensional porous graphene material in bone defect filler
US10702631B2 (en) Core-centered hydroxyapatite granule composed of micro-structure body
JP2010194042A (en) Structure for living body
JP2006346159A (en) Method for producing biological tissue supplementation material
JP4827158B2 (en) Biomaterial
JP2023537046A (en) Method for manufacturing biocompatible implants and implants
KR20180112698A (en) Bi-layered scaffold of porous ceramic and polymer with channels aligned along the one axis, preparation method thereof and using the same for osteochondral regeneration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401