JP2010173054A - Power tool and method of controlling rotation of motor - Google Patents

Power tool and method of controlling rotation of motor Download PDF

Info

Publication number
JP2010173054A
JP2010173054A JP2009021807A JP2009021807A JP2010173054A JP 2010173054 A JP2010173054 A JP 2010173054A JP 2009021807 A JP2009021807 A JP 2009021807A JP 2009021807 A JP2009021807 A JP 2009021807A JP 2010173054 A JP2010173054 A JP 2010173054A
Authority
JP
Japan
Prior art keywords
motor
voltage
current
rotation speed
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009021807A
Other languages
Japanese (ja)
Other versions
JP5402030B2 (en
Inventor
Norimoto Agehara
紀元 揚原
Atsushi Matsuoka
篤史 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Co Ltd
Original Assignee
Max Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Co Ltd filed Critical Max Co Ltd
Priority to JP2009021807A priority Critical patent/JP5402030B2/en
Publication of JP2010173054A publication Critical patent/JP2010173054A/en
Application granted granted Critical
Publication of JP5402030B2 publication Critical patent/JP5402030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
  • Portable Power Tools In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control torque-rotation speed characteristics of a motor to achieve an optimum operational efficiency. <P>SOLUTION: Current is inputted from the rotating motor 14 to a current detection section 34. The voltage of a rechargeable battery 12 is inputted to a voltage control section 36. The voltage control section 36 outputs a drive voltage corresponding to the optimum rotational frequency of the motor 14 to a motor driver 13 based on the inputted voltage and the current inputted to the current detection section 34. That is, it corresponds to the optimum rotation speed irrespective of the charged condition or load torque of the rechargeable battery, and therefore an impact screwdriver fastens different types of screws as well most efficiently. Accordingly, the motor is controlled based on a load current proportionally related to the load torque and the voltage of the rechargeable battery 12. Hence the motor drive voltage can be suitably varied depending on the load torque, namely, the optimum rotation speed corresponding to a screw load, and the torque-rotation speed characteristics of the motor in response to the power tool can be controlled to achieve the optimum operational efficiency. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えばボルトやナット等のねじ類の締付け作業(ねじ締め作業)に使用する電動工具およびモータの回転制御方法に関するものであり、特にモータの回転を最適回転数になるように制御する電動工具およびモータの回転制御方法に関する。   The present invention relates to an electric power tool used for tightening work (screw tightening work) of screws such as bolts and nuts, for example, and a motor rotation control method, and in particular, controls the rotation of a motor so as to have an optimum rotation speed. The present invention relates to a power tool and a motor rotation control method.

電動工具たとえばインパクトドライバでは、モータの回転数を全く制御しない工具または回転数を制御する工具がある(特許文献1参照)。回転数を制御する一般的な方法としては、目標回転数を一定にする回転数制御方式または目標電圧を一定にする電圧制御方式がある。以下、上述した各電動工具のブロック図を、図9(A)乃至図9(C)に基づいて各々説明する。   As an electric tool, for example, an impact driver, there is a tool that does not control the rotational speed of a motor or a tool that controls the rotational speed (see Patent Document 1). As a general method for controlling the rotational speed, there is a rotational speed control system for keeping the target rotational speed constant or a voltage control system for making the target voltage constant. Hereafter, the block diagram of each electric tool mentioned above is each demonstrated based on FIG. 9 (A) thru | or FIG. 9 (C).

モータの回転数を全く制御しない電動工具は、図9(A)に示すように、電源となる充電池80と,図示しないハンマを作動させるモータ82と、充電池80及びモータ84の間に配置されるモータドライバ81を備える。上述した回転数制御方式では、図9(B)に示すように、CPU84とモータドライバ81が接続されており、CPU84はメモリ86および回転数制御部88を備える。そして、モータ82の回転数が回転数制御部88へ入力され、この入力された回転数がメモリ86に予め設定されている目標回転数になるよう回転数制御部88は制御する。即ち、回転数制御方式では、常に一定の目標回転数になるよう制御する方式である。なお、CPU84は、充電池80に接続され、電圧が印加される。また、図9(B)において、図9(A)に示す構成と実質的に同一部分については同一符号を付して説明を省略する。   As shown in FIG. 9A, an electric tool that does not control the rotational speed of the motor is disposed between a rechargeable battery 80 that serves as a power source, a motor 82 that operates a hammer (not shown), and the rechargeable battery 80 and motor 84. The motor driver 81 is provided. In the rotation speed control method described above, as shown in FIG. 9B, a CPU 84 and a motor driver 81 are connected, and the CPU 84 includes a memory 86 and a rotation speed control unit 88. Then, the rotational speed of the motor 82 is input to the rotational speed controller 88, and the rotational speed controller 88 controls the input rotational speed to be a target rotational speed preset in the memory 86. That is, the rotation speed control method is a method in which control is performed so that the target rotation speed is always constant. In addition, CPU84 is connected to the rechargeable battery 80 and a voltage is applied. In FIG. 9B, substantially the same parts as those shown in FIG. 9A are denoted by the same reference numerals and description thereof is omitted.

上述した電圧制御方式では、図9(C)に示すように、CPU84には電圧制御部90が設けられている。そして、充電池80の電圧が電圧制御部90へ入力され、この入力された電圧がメモリ86に予め設定されている目標電圧になるよう電圧制御部90は制御する。即ち、電圧制御方式では、常に一定の目標電圧になるよう制御する方式である。なお、図9(C)において、図9(B)に示す構成と実質的に同一部分については同一符号を付して説明を省略する。   In the voltage control method described above, as shown in FIG. 9C, the CPU 84 is provided with a voltage control unit 90. Then, the voltage of the rechargeable battery 80 is input to the voltage control unit 90, and the voltage control unit 90 controls the input voltage to be a target voltage preset in the memory 86. In other words, the voltage control method is a method in which control is performed so that the target voltage is always constant. Note that in FIG. 9C, components that are substantially the same as those in the configuration illustrated in FIG. 9B are denoted by the same reference numerals, and description thereof is omitted.

実開平8−141925号公報Japanese Utility Model Publication No. 8-141925

ところで、図9(A)に示す制御しない電動工具では、モータ82の回転数は充電池80の充電量によって変動し、例えば充電量が低下するとねじ締め速度が落ちる。即ち、図10(A)に示すように、充電残量が多い状態(以下、満充電という)と充電残量が少ない状態(以下、放電末期という)は、回転数および負荷トルクが比例(平行)して増減するので、使い勝手が悪い。なお、図10は、回転数と負荷トルクの関係を、充電池の充電状態で比較した図である。ここで、負荷トルクは、ハンマ等で構成される打撃機構が打撃時に受けるトルクであり、ねじの種類によって異なる。また、負荷トルクはモータの負荷電流に比例し、モータの回転数は充電池の電圧と負荷トルクによって決定する。そして、図10(A)の○印に示すように、最適回転数とは満充電時のある負荷トルクでの一点のみが一致するのみで、作業効率が悪い。理由は、以下に説明する。   By the way, in the electric tool which is not controlled shown in FIG. 9A, the rotation speed of the motor 82 varies depending on the charge amount of the rechargeable battery 80. For example, when the charge amount decreases, the screw tightening speed decreases. That is, as shown in FIG. 10A, in a state where the remaining charge amount is large (hereinafter referred to as full charge) and a state where the remaining charge amount is small (hereinafter referred to as end-of-discharge period), the rotational speed and load torque are proportional (parallel). ) And increase / decrease, so it is not easy to use. In addition, FIG. 10 is the figure which compared the relationship between rotation speed and load torque in the charge condition of a rechargeable battery. Here, the load torque is a torque received by the striking mechanism composed of a hammer or the like at the time of striking, and varies depending on the type of screw. The load torque is proportional to the load current of the motor, and the rotation speed of the motor is determined by the voltage of the rechargeable battery and the load torque. As indicated by the circles in FIG. 10 (A), the optimum rotational speed only matches one point at a certain load torque at the time of full charge, and the working efficiency is poor. The reason will be described below.

(最適回転数の説明)
ここで、最適回転数(この内容自体は新規事項である)について説明する。まず、異なるねじ(ねじ締めトルク)において回転数を変化させた時の一打撃の進み角と打撃周波数との関係を、図11に示す。図11より、異なるねじにおいて、回転数を必要以上に高くしても進み角は大きくならず(即ち、打撃力が強くならず)、打撃周波数が高くなるのみである。このことより、回転数には、ねじ負荷に応じる最適回転数があることを意味し、この最適回転数を目標の回転数とすれば効率良く打撃し得、且つ打撃周波数を抑えられる。なお、打撃周波数は、ハンマが図示しないアンビルを打撃する際の周波数である。
(Explanation of optimum rotation speed)
Here, the optimum rotational speed (this content itself is a new matter) will be described. First, FIG. 11 shows the relationship between the striking angle and the striking frequency when one rotation is changed with different screws (screw tightening torque). From FIG. 11, even if the number of rotations is increased more than necessary in different screws, the advance angle does not increase (that is, the impact force does not increase) and the impact frequency only increases. This means that the number of rotations has an optimum number of rotations according to the screw load. If this optimum number of rotations is set as the target number of rotations, it can be hit efficiently and the hitting frequency can be suppressed. The striking frequency is a frequency when the hammer strikes an anvil (not shown).

そして、ねじ負荷をモータの負荷トルクに置換する際の上記負荷トルクと最適回転数を表す図を、図12に示す。この図12の最適回転数と図11に示す最適回転数とは同一であり、荷重が異なるねじ等であっても最適回転数を示す線上に位置する。即ち、最適回転数でモータを回転させると、インパクトドライバはねじが異なる場合でもねじ締めを最も効率良く行う。従って、図10(A)に示すように、最適回転数を外れる場合は、作業能率が悪い。   And the figure showing the said load torque at the time of replacing a screw load with the load torque of a motor, and the optimal rotation speed is shown in FIG. The optimum rotational speed shown in FIG. 12 and the optimum rotational speed shown in FIG. 11 are the same, and even a screw having a different load is positioned on a line indicating the optimum rotational speed. That is, when the motor is rotated at the optimum rotational speed, the impact driver performs the screw tightening most efficiently even when the screws are different. Therefore, as shown in FIG. 10 (A), when the optimum rotational speed is deviated, the work efficiency is poor.

一方、図9(B)に示す回転数制御方式では、回転数が略一定になるので、ある負荷トルクでしか最適回転数と一致しない。即ち、回転数は、満充電時において、一致する部分から離れるにしたがって最適回転数から大きく外れることになる。なお、回転数制御方式の放電末期では、図10(A)の放電末期と同様な直線を描く。   On the other hand, in the rotation speed control method shown in FIG. 9B, the rotation speed becomes substantially constant, and therefore, the rotation speed control method matches only with a certain load torque. That is, the rotational speed greatly deviates from the optimal rotational speed as the distance from the coincident portion increases at full charge. Note that a straight line similar to that at the end of discharge in FIG.

図9(C)に示す電圧制御方式では、目標電圧が一定になるよう制御されるので、モータ自体のモータ特性に対応する直線を描くことになる。即ち、電圧制御方式では図10(A)のモータ特性と平行な直線になるが、回転数制御方式と同様に、ある負荷トルクでしか最適回転数と一致しない。従って、回転数は、一致する部分から離れるにしたがって最適回転数から外れることになる。   In the voltage control method shown in FIG. 9C, since the target voltage is controlled to be constant, a straight line corresponding to the motor characteristics of the motor itself is drawn. That is, in the voltage control method, a straight line parallel to the motor characteristics of FIG. 10A is obtained, but, as in the rotation speed control method, it matches the optimum rotation speed only at a certain load torque. Accordingly, the rotational speed deviates from the optimal rotational speed as the distance from the matching portion increases.

そこで、本発明は、モータのトルク−回転数特性を最も作業効率が良くなるように制御する電動工具およびモータの回転制御方法を、提供することを目的とする。   Therefore, an object of the present invention is to provide a power tool and a motor rotation control method for controlling the torque-rotational speed characteristics of a motor so that the working efficiency is improved.

本発明に係る電動工具は、電源の電圧を検出する電圧検出手段と、モータの回転中における電流を検出する電流検出手段と、上記各検出手段で検出した電圧および電流に基づき、上記モータの最適回転数に対応する駆動電圧を演算し、この演算結果の駆動電圧を上記モータへ出力する回転制御手段と、を備えることを特徴とする。ここで、最適回転数は、モータの負荷トルクが変わっても、例えば打撃などの作業を最も効率良く行うことができる回転数である。   An electric power tool according to the present invention includes a voltage detection unit that detects a voltage of a power source, a current detection unit that detects a current during rotation of the motor, and an optimum motor that is based on the voltage and current detected by each of the detection units. And a rotation control means for calculating a drive voltage corresponding to the rotation speed and outputting the calculated drive voltage to the motor. Here, the optimum rotational speed is the rotational speed at which work such as striking can be performed most efficiently even when the load torque of the motor changes.

また、本発明に係るモータの回転数制御方法は、電源の電圧を検出すると共にモータの回転中における電流を検出し、検出した電圧および電流に基づいて上記モータの最適回転数に対応する駆動電圧を演算し、この演算結果の駆動電圧を上記モータへ出力することを特徴とする。   Further, the motor rotation speed control method according to the present invention detects the voltage of the power supply, detects the current during rotation of the motor, and based on the detected voltage and current, the drive voltage corresponding to the optimum rotation speed of the motor. And the drive voltage of the calculation result is output to the motor.

本発明に係る電動工具およびモータの回転制御方法では、例えばモータに加わる負荷トルクまたは充電池の充電状態に拘らず、最適回転数に一致するので、モータを換えることなく電動工具は作業を最も効率良く行う。即ち、本発明に係る電動工具およびモータの回転制御方法によれば、モータの負荷トルクと比例関係にある負荷電流および電源の電圧に基づいてモータ制御を行うので、モータ駆動電圧を負荷トルク例えばねじ負荷に対応する最適回転数に適宜変動し得、電動工具に応じるモータのトルク−回転数特性を最も作業効率が良くなるように制御できる。   In the electric tool and motor rotation control method according to the present invention, for example, regardless of the load torque applied to the motor or the state of charge of the rechargeable battery, it matches the optimum rotation speed, so that the electric tool performs the most efficient work without changing the motor. Do well. That is, according to the electric tool and the motor rotation control method of the present invention, the motor control is performed based on the load current and the voltage of the power source that are proportional to the load torque of the motor. The optimum rotational speed corresponding to the load can be appropriately changed, and the torque-rotational speed characteristic of the motor corresponding to the electric tool can be controlled so as to obtain the best working efficiency.

本発明に係る第1実施例の電動工具の断面図である。It is sectional drawing of the electric tool of 1st Example which concerns on this invention. 図1に示す電動工具のブロック図である。It is a block diagram of the electric tool shown in FIG. 図1に示す電動工具のモータ駆動モードに関するフローチャート図である。It is a flowchart figure regarding the motor drive mode of the electric tool shown in FIG. 図3に示すモータ駆動方式を用いた場合の充電池電圧−電流による制御デューティを表す図である。It is a figure showing the control duty by the rechargeable battery voltage-current at the time of using the motor drive system shown in FIG. 図3に示すモータ駆動方式を用いた場合の14.4V時における電圧補正−電圧・電流の関係を表す図である。It is a figure showing the relationship of the voltage correction-voltage and electric current at the time of 14.4V at the time of using the motor drive system shown in FIG. 満充電からの連続ねじ締めを行った時のねじ締め本数(充電量)によるねじ締め速度の変化を表す図である。It is a figure showing the change of the screw fastening speed by the screw fastening number (charge amount) when performing continuous screw fastening from a full charge. 図3に示すモータ駆動モードでの回転数と負荷トルクの関係を充電池の充電状態で比較した図である。It is the figure which compared the relationship between the rotation speed in the motor drive mode shown in FIG. 3, and load torque in the charge condition of the rechargeable battery. 本発明に係る第2実施例の電動工具のブロック図である。It is a block diagram of the electric tool of 2nd Example which concerns on this invention. 従来例に係る電動工具の各ブロック図、(A)は制御しない場合、(B)は回転数制御方式、(C)は電圧制御方式のブロック図である。Each block diagram of the electric tool which concerns on a prior art example, (A) is not controlling, (B) is a rotation speed control system, (C) is a block diagram of a voltage control system. 図9に示す各モータ特性を表す図、(A)は制御しない場合、(B)は回転数制御方式、(C)は電圧制御方式のモータ特性を表す図である。FIGS. 9A and 9B are diagrams illustrating the motor characteristics illustrated in FIG. 9. FIG. 10A is a diagram illustrating the motor characteristics of the rotation speed control method and FIG. 最適回転数を説明するための図であり、異なるねじ(ねじ締めトルク)において回転数を変化させた時の一打撃の進み角と打撃周波数との関係を示す図である。It is a figure for demonstrating the optimal rotation speed, and is a figure which shows the relationship between the striking angle of one stroke when a rotation speed is changed in a different screw (screw tightening torque), and a striking frequency. 最適回転数を説明するための図であり、ねじ負荷をモータの負荷トルクに置換する際の負荷トルクと最適回転数を表す図である。It is a figure for demonstrating the optimal rotation speed, and is a figure showing the load torque and optimal rotation speed at the time of replacing a screw load with the load torque of a motor.

以下、本発明を実施するための形態について、具体化した実施例1及び実施例2を各々説明する。   Hereinafter, the embodied Example 1 and Example 2 are demonstrated respectively about the form for implementing this invention.

以下、本発明の第1実施例である電動工具およびモータの回転制御方法は、図1に示すインパクトドライバに適用した例として説明する。   Hereinafter, the electric tool and motor rotation control method according to the first embodiment of the present invention will be described as an example applied to the impact driver shown in FIG.

(インパクトドライバの概略構成)
図1に示すように、インパクトドライバ10は、電源である充電池12、駆動手段であるモータ14、モータ14の回転を減速する減速機構16、減速機構16の出力を受けてスライドするハンマ18、ハンマ18の回転打撃力が伝わるアンビル20、トリガレバー22を備える。なお、アンビル20には、図示しないドライバビットなどが装着される。また、充電池12は、着脱可能に配置されている。
(Schematic configuration of impact driver)
As shown in FIG. 1, the impact driver 10 includes a rechargeable battery 12 that is a power source, a motor 14 that is a driving means, a speed reduction mechanism 16 that reduces the rotation of the motor 14, a hammer 18 that slides in response to the output of the speed reduction mechanism 16, An anvil 20 and a trigger lever 22 through which the hammering force of the hammer 18 is transmitted are provided. Note that a driver bit (not shown) is attached to the anvil 20. The rechargeable battery 12 is detachably disposed.

(インパクトドライバの制御系に関する構成)
インパクトドライバは、図2に示すように、充電池12、モータドライバ13、モータ14、回転制御手段であるCPU30を備える。このCPU30は、不揮発性のメモリ32と電流検出部34と電圧制御部36とを備え、インパクトドライバ10の全体的な動作を司る。記録手段であるメモリ32は、各種の処理を制御するプログラムを記憶する記憶領域および各種データの読み書き用の記録領域を有し、この記録領域に演算データ及び目標電圧データなどが記録される。
(Configuration of impact driver control system)
As shown in FIG. 2, the impact driver includes a rechargeable battery 12, a motor driver 13, a motor 14, and a CPU 30 that is a rotation control means. The CPU 30 includes a nonvolatile memory 32, a current detection unit 34, and a voltage control unit 36, and controls the overall operation of the impact driver 10. The memory 32 as recording means has a storage area for storing programs for controlling various processes and a recording area for reading and writing various data, and operation data, target voltage data, and the like are recorded in this recording area.

目標電圧データは、図11及び図12に示す最適回転数における電圧値のデータである。ここで、最適回転数は、モータ12の負荷トルクが変わっても例えば打撃などの作業を最も効率良く行うことができる回転数で、図11及び図12で既に説明した通りの内容(この内容自体は新規事項)である。なお、CPU30は、充電池12に接続されており、電圧が印加される。   The target voltage data is voltage value data at the optimum rotational speed shown in FIGS. 11 and 12. Here, the optimum rotational speed is the rotational speed at which work such as striking can be performed most efficiently even when the load torque of the motor 12 changes, and the contents already described in FIGS. 11 and 12 (this content itself) Is a new matter). In addition, CPU30 is connected to the rechargeable battery 12, and a voltage is applied.

図2に示すように、電流検出部34には回転中のモータ14から電流が入力され、電圧検出手段である電圧制御部36には充電池12の電圧が入力される。そして、電圧制御部36は、電流検出部34に入力された電流(即ち、負荷トルク)及び電圧制御部36に入力された電圧に基づいてモータ12の最適回転数(図7参照)に対応する駆動電圧を、モータドライバ13に出力する。なお、上記駆動電圧の演算については、後述する。   As shown in FIG. 2, a current is input from the rotating motor 14 to the current detector 34, and a voltage of the rechargeable battery 12 is input to the voltage controller 36 that is a voltage detector. The voltage control unit 36 corresponds to the optimum rotational speed (see FIG. 7) of the motor 12 based on the current (that is, load torque) input to the current detection unit 34 and the voltage input to the voltage control unit 36. The drive voltage is output to the motor driver 13. The calculation of the drive voltage will be described later.

(本実施例の作用)
図3に示すフローチャートに基づき、モータを最適回転数で駆動させるモータ駆動モードに関する処理を説明する。図1に示すインパクトドライバ10における処理は、トリガレバー22が引き操作され図示しないスイッチがオンになると、CPU30がプログラムをロードすることによって実行される。実行される処理ルーチンは図3のフローチャートで表され、これらのプログラムは予めメモリ32(図2参照)のプログラム領域に記憶されている。そして、本ルーチンは、モータ回転中において、所定電気角たとえば0°でのタイミングで行う処理である。
(Operation of this embodiment)
Based on the flowchart shown in FIG. 3, the process regarding the motor drive mode which drives a motor by optimal rotation speed is demonstrated. The processing in the impact driver 10 shown in FIG. 1 is executed by the CPU 30 loading a program when the trigger lever 22 is pulled and a switch (not shown) is turned on. The processing routine to be executed is represented by the flowchart of FIG. 3, and these programs are stored in advance in the program area of the memory 32 (see FIG. 2). This routine is a process performed at a timing at a predetermined electrical angle, for example, 0 °, while the motor is rotating.

(モータ駆動モード)
図3に示すステップ100において、CPU30の電圧制御部36(図2参照)は充電池12の電圧Vadを検出し、その検出した電圧Vadをメモリ32に記録する。ステップ102において、CPU30の電流検出部34は回転中のモータ14の電流Iadを検出し、その検出した電流Iadをメモリ32に記録する。ステップ104において、CPU30はメモリ32から読出した電圧値Vad及び電流値Iadに基づき駆動電圧(駆動信号)を演算する。
(Motor drive mode)
In step 100 shown in FIG. 3, the voltage control unit 36 (see FIG. 2) of the CPU 30 detects the voltage Vad of the rechargeable battery 12 and records the detected voltage Vad in the memory 32. In step 102, the current detection unit 34 of the CPU 30 detects the current Iad of the rotating motor 14 and records the detected current Iad in the memory 32. In step 104, the CPU 30 calculates a drive voltage (drive signal) based on the voltage value Vad and the current value Iad read from the memory 32.

具体的には、駆動電圧=(Vref−α・Iad)/Vadで演算する。ここで、Vrefは目標電圧であり、αは実験値より決定した係数である。この係数αは、図4の実験データに基づいて算出したもので、モータ及び打撃機構など他の要因によって変動する。なお、図4は、充電池の電圧が満充電状態(16V),放電末期の状態(12V)、その中間の通常状態(14.4V)における実験値を示す図である。   Specifically, the calculation is performed with drive voltage = (Vref−α · Iad) / Vad. Here, Vref is a target voltage, and α is a coefficient determined from experimental values. This coefficient α is calculated based on the experimental data of FIG. 4 and varies depending on other factors such as the motor and the striking mechanism. In addition, FIG. 4 is a figure which shows the experimental value in the voltage of a rechargeable battery in a full charge state (16V), the state at the end of discharge (12V), and the normal state (14.4V) in the middle.

ステップ106において、CPU30の電圧制御部36は、ステップ104で演算した駆動電圧をモータドライバ13に出力し、モータ14を最適回転数になるように制御する。そして、本ルーチンの処理は、モータ14が回転している間、電気角たとえば0°でのタイミングで再び繰り返す。   In step 106, the voltage control unit 36 of the CPU 30 outputs the drive voltage calculated in step 104 to the motor driver 13 and controls the motor 14 so as to have an optimum rotational speed. The processing of this routine is repeated again at a timing at an electrical angle, for example, 0 °, while the motor 14 is rotating.

なお、上述したプログラムの処理の流れ(図3参照)は一例であり、本発明の主旨を逸脱しない範囲内において適宜変更可能である。例えば、電圧Vad及び電流Iadを複数回に亘って検出し、その平均に基づいてステップ104での演算を行うようにしても良い。また、電気角たとえば60°または180°などのいずれを基準としてルーチンを開始させても良い。   Note that the above-described program processing flow (see FIG. 3) is an example, and can be changed as appropriate without departing from the gist of the present invention. For example, the voltage Vad and the current Iad may be detected a plurality of times, and the calculation in step 104 may be performed based on the average. Further, the routine may be started based on any electrical angle such as 60 ° or 180 °.

本実施例においては、図5に示すように、電圧および電流で補正する場合すなわち本実施例を適用した場合、負荷トルク即ち負荷電流の変動に対応してデューティも変動する。一方、電圧だけで補正する場合には、負荷電流が変動してもデューティは一定のままである。また、図6に示すように、本実施例の制御がある場合は、制御がない場合に比べ、ねじ締め本数の大小に拘らず、ねじ締め速度が常に速く良好であることを示す。   In the present embodiment, as shown in FIG. 5, when correction is performed with voltage and current, that is, when this embodiment is applied, the duty also varies in accordance with variation in load torque, that is, load current. On the other hand, when the correction is performed using only the voltage, the duty remains constant even if the load current varies. Further, as shown in FIG. 6, when the control according to the present embodiment is present, the screw tightening speed is always fast and good regardless of the number of screw tightening compared to the case without the control.

本実施例によれば、図7に示すように、充電池の充電状態または負荷トルクに拘らず最適回転数に一致するので、モータを換えることなく(即ち、既に取付けらているモータのままで)インパクトドライバはねじが異なる場合でもねじ締めを最も効率良く行うことができ、且つ騒音が抑えられる。例えば、負荷トルクが高い重量のあるねじの場合は、回転数を落とすことにより、打撃を最適化する。   According to the present embodiment, as shown in FIG. 7, since it matches the optimum rotational speed regardless of the state of charge of the rechargeable battery or the load torque, the motor is not changed (that is, the motor that has already been installed is not changed). ) The impact driver can perform screw tightening most efficiently even when the screws are different, and noise can be suppressed. For example, in the case of a heavy screw with a high load torque, the impact is optimized by reducing the rotational speed.

即ち、本実施例によれば、モータの負荷トルクと比例関係にある負荷電流に基づいてモータ制御を行うので、モータ駆動電圧を負荷トルク即ちねじ負荷に対応する最適回転数に適宜変動し得、電動工具に応じるモータのトルク−回転数特性を最も作業効率が良くなるように制御できる。   That is, according to the present embodiment, since the motor control is performed based on the load current proportional to the load torque of the motor, the motor drive voltage can be appropriately changed to the optimum rotational speed corresponding to the load torque, that is, the screw load, It is possible to control the torque-rotational speed characteristic of the motor corresponding to the electric tool so that the working efficiency becomes the best.

以下、本発明の第2実施例である電動工具およびモータの回転制御方法を、図8に示すインパクトドライバのブロック図で説明する。なお、上記実施例1と実質的に同一部分については同一符号を付して説明を省略又は簡略化し、主として異なる部分について説明する。   Hereinafter, an electric power tool and motor rotation control method according to a second embodiment of the present invention will be described with reference to a block diagram of an impact driver shown in FIG. Note that parts substantially the same as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted or simplified, and different parts are mainly described.

回転制御手段であるCPU40は、不揮発性のメモリ42と電流検出部44と回転数制御部46とを備え、図1に示すインパクトドライバ10の全体的な動作を司る。記録手段であるメモリ42は、各種の処理を制御するプログラムを記憶する記憶領域および各種データの読み書き用の記録領域を有し、この記録領域に目標回転数データなどが記録される。目標回転数データは、図7に示す最適回転数におけるデータである。   The CPU 40 that is a rotation control means includes a nonvolatile memory 42, a current detection unit 44, and a rotation speed control unit 46, and controls the overall operation of the impact driver 10 shown in FIG. The memory 42 as recording means has a storage area for storing programs for controlling various processes and a recording area for reading and writing various data, and the target rotational speed data and the like are recorded in this recording area. The target rotational speed data is data at the optimal rotational speed shown in FIG.

図8に示すように、電流検出部44には回転中のモータ14から電流Iadが入力され、電圧検出手段である回転数制御部46には充電池12の電圧Vad及び今現在のモータ回転数が入力される。そして、回転数制御部46は、電流検出部44に入力されたモータ14の負荷電流および充電池12の電圧に基づいて目標回転数を演算すると共に、演算した目標回転数および今現在の回転数の差よりモータ出力電圧を演算してモータドライバ13へ出力する。具体的には、回転数制御部46は例えばPI制御(比例・積分制御)により、モータ14の回転数が目標回転数になるように制御する。   As shown in FIG. 8, the current Iad is input from the rotating motor 14 to the current detection unit 44, and the voltage Vad of the rechargeable battery 12 and the current motor rotation number are input to the rotation number control unit 46 as voltage detection means. Is entered. Then, the rotation speed control unit 46 calculates the target rotation speed based on the load current of the motor 14 and the voltage of the rechargeable battery 12 input to the current detection unit 44, and calculates the calculated target rotation speed and the current rotation speed. The motor output voltage is calculated from the difference between the two and output to the motor driver 13. Specifically, the rotational speed control unit 46 performs control so that the rotational speed of the motor 14 becomes the target rotational speed, for example, by PI control (proportional / integral control).

即ち、本実施例は、第1実施例と異なり、負荷電流でモータ駆動電圧を直接に演算するのでは無く、モータの負荷電流および充電池の電圧で一旦目標回転数を演算し、上述した回転数の差に基づき最終的にモータ出力電圧を演算する。従って、本実施例によれば、モータ特性が各々異なる場合でも、モータ14の回転数が目標回転数になるよう更に正確に制御し得る。なお、モータ14の回転数は、例えば回転中のモータの逆起電圧や,回転センサ(ホールセンサ,エンコーダ)に基づいて検出する。その他の構成及び作用効果は、第1実施例と同一である。   That is, unlike the first embodiment, this embodiment does not directly calculate the motor drive voltage with the load current, but once calculates the target rotational speed with the motor load current and the rechargeable battery voltage, The motor output voltage is finally calculated based on the difference in number. Therefore, according to the present embodiment, even when the motor characteristics are different from each other, it is possible to more accurately control the rotational speed of the motor 14 so as to become the target rotational speed. The rotation speed of the motor 14 is detected based on, for example, a counter electromotive voltage of a rotating motor or a rotation sensor (Hall sensor, encoder). Other configurations and operational effects are the same as those of the first embodiment.

上記各実施例では電動工具がインパクトドライバの例であるが、本発明は例えばドリルなどの電動工具にも適用し得る。また、本発明は、電源として商業電源を利用する電動工具でも適用し得る。   In each of the above embodiments, the power tool is an example of an impact driver, but the present invention can also be applied to a power tool such as a drill. The present invention can also be applied to an electric tool that uses a commercial power source as a power source.

10 インパクトドライバ(電動工具)
12 充電池(電源)
14 モータ(駆動手段)
30、40 CPU(回転制御手段)
32、42 メモリ(記録手段)
34、44 電流検出部(電流検出手段)
36 電圧制御部(電圧検出手段および電圧制御手段)
46 回転数制御部(電圧検出手段および回転数制御手段)
10 Impact driver (electric tool)
12 Rechargeable battery (power supply)
14 Motor (drive means)
30, 40 CPU (rotation control means)
32, 42 Memory (Recording means)
34, 44 Current detection unit (current detection means)
36 Voltage control unit (voltage detection means and voltage control means)
46 Rotational speed control unit (voltage detection means and rotational speed control means)

Claims (2)

電源の電圧を検出する電圧検出手段と、
モータの回転中における電流を検出する電流検出手段と、
上記各検出手段で検出した電圧および電流に基づき、上記モータの最適回転数に対応する駆動電圧を演算し、この演算結果の駆動電圧を上記モータへ出力する回転制御手段と、 を備えることを特徴とする電動工具。
Voltage detection means for detecting the voltage of the power supply;
Current detection means for detecting current during rotation of the motor;
Rotation control means for calculating a drive voltage corresponding to the optimum rotational speed of the motor based on the voltage and current detected by each of the detection means, and outputting the drive voltage of the calculation result to the motor. A power tool.
電源の電圧を検出すると共にモータの回転中における電流を検出し、検出した電圧および電流に基づいて上記モータの最適回転数に対応する駆動電圧を演算し、この演算結果の駆動電圧を上記モータへ出力することを特徴とするモータの回転制御方法。   The power supply voltage is detected, the current during rotation of the motor is detected, a drive voltage corresponding to the optimum rotational speed of the motor is calculated based on the detected voltage and current, and the drive voltage of the calculation result is supplied to the motor. A method for controlling the rotation of a motor, characterized by comprising:
JP2009021807A 2009-02-02 2009-02-02 Electric tool and motor rotation control method Active JP5402030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021807A JP5402030B2 (en) 2009-02-02 2009-02-02 Electric tool and motor rotation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021807A JP5402030B2 (en) 2009-02-02 2009-02-02 Electric tool and motor rotation control method

Publications (2)

Publication Number Publication Date
JP2010173054A true JP2010173054A (en) 2010-08-12
JP5402030B2 JP5402030B2 (en) 2014-01-29

Family

ID=42704487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021807A Active JP5402030B2 (en) 2009-02-02 2009-02-02 Electric tool and motor rotation control method

Country Status (1)

Country Link
JP (1) JP5402030B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016210A (en) * 2009-07-10 2011-01-27 Hitachi Koki Co Ltd Power tool
KR20160001373A (en) * 2014-06-27 2016-01-06 주식회사 우신이엠시 Electric tool controller for dirving free voltage
US10243491B2 (en) 2014-12-18 2019-03-26 Black & Decker Inc. Control scheme to increase power output of a power tool using conduction band and advance angle
GB2576314A (en) * 2018-08-13 2020-02-19 Black & Decker Inc Power tool
CN112536754A (en) * 2020-11-27 2021-03-23 固高派动(东莞)智能科技有限公司 Screw fastening system and method
US11329597B2 (en) 2015-11-02 2022-05-10 Black & Decker Inc. Reducing noise and lowering harmonics in power tools using conduction band control schemes
US11569765B2 (en) 2019-10-11 2023-01-31 Black & Decker Inc. Power tool receiving different capacity battery packs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919102A (en) * 1982-07-23 1984-01-31 株式会社マキタ電機製作所 Motor tool also controlling at constant speed
JPH09183075A (en) * 1995-12-28 1997-07-15 Shibaura Eng Works Co Ltd Bolt fastener

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919102A (en) * 1982-07-23 1984-01-31 株式会社マキタ電機製作所 Motor tool also controlling at constant speed
JPH09183075A (en) * 1995-12-28 1997-07-15 Shibaura Eng Works Co Ltd Bolt fastener

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016210A (en) * 2009-07-10 2011-01-27 Hitachi Koki Co Ltd Power tool
KR20160001373A (en) * 2014-06-27 2016-01-06 주식회사 우신이엠시 Electric tool controller for dirving free voltage
KR101681612B1 (en) * 2014-06-27 2016-12-12 주식회사 우신이엠시 Electric tool controller for dirving free voltage
US10243491B2 (en) 2014-12-18 2019-03-26 Black & Decker Inc. Control scheme to increase power output of a power tool using conduction band and advance angle
US11329597B2 (en) 2015-11-02 2022-05-10 Black & Decker Inc. Reducing noise and lowering harmonics in power tools using conduction band control schemes
GB2576314A (en) * 2018-08-13 2020-02-19 Black & Decker Inc Power tool
US11219993B2 (en) 2018-08-13 2022-01-11 Black & Decker Inc. Power tool
US11569765B2 (en) 2019-10-11 2023-01-31 Black & Decker Inc. Power tool receiving different capacity battery packs
CN112536754A (en) * 2020-11-27 2021-03-23 固高派动(东莞)智能科技有限公司 Screw fastening system and method
CN112536754B (en) * 2020-11-27 2022-05-06 固高派动(东莞)智能科技有限公司 Screw fastening system and method

Also Published As

Publication number Publication date
JP5402030B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5402030B2 (en) Electric tool and motor rotation control method
US8302701B2 (en) Electric power tool and motor control method thereof
CN200988190Y (en) Impact rotating tool
US11325228B2 (en) Rotary impact tool
US10343268B2 (en) Rotary impact tool
JP5784473B2 (en) Rotating hammer tool
CN1291816C (en) Power tool used for fastening screw or bolt
JP6297854B2 (en) Rotating hammer tool
CN102794732B (en) Screwdriver and the method being used for controlling screwdriver
TWI480132B (en) Shock Action Control Method and Device for Impact Power Tools
JP5792123B2 (en) Rotating hammer tool
US20150158157A1 (en) Electric power tool
CN103023422A (en) Electric power tool
CN110695902A (en) Intelligent electric screw driver control system and method
JP6705632B2 (en) Rotary impact tool
EP3624994B1 (en) Electric pulse tool
JP2021053721A (en) Rotary hammering tool
JP2008213089A (en) Rotary tool
JP2009083002A (en) Impact rotary tool
JP2001246574A (en) Impact rotatry tool
JP7403067B2 (en) Impact rotary tool, torque calculation method and program
JP7450221B2 (en) Impact tool, impact tool control method and program
JP7442139B2 (en) Impact tool, impact tool control method and program
JP6621013B2 (en) Method and system for determining whether screw tightening is good or bad
JP2015193078A (en) Rotary impact tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5402030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150