JP2010172952A - WELDING MATERIAL COMPOSED OF HIGH-Cr CONTAINING Ni-BASED ALLOY, AND WELDING METHOD USING THE SAME - Google Patents

WELDING MATERIAL COMPOSED OF HIGH-Cr CONTAINING Ni-BASED ALLOY, AND WELDING METHOD USING THE SAME Download PDF

Info

Publication number
JP2010172952A
JP2010172952A JP2009021140A JP2009021140A JP2010172952A JP 2010172952 A JP2010172952 A JP 2010172952A JP 2009021140 A JP2009021140 A JP 2009021140A JP 2009021140 A JP2009021140 A JP 2009021140A JP 2010172952 A JP2010172952 A JP 2010172952A
Authority
JP
Japan
Prior art keywords
welding
less
content
mass
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009021140A
Other languages
Japanese (ja)
Inventor
Yasuo Morishima
康雄 森島
Hidenori Takahashi
英則 高橋
Tomoji Tanabe
友治 田邊
Yoshinori Katayama
義紀 片山
Satoru Asai
知 浅井
Wataru Kono
渉 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009021140A priority Critical patent/JP2010172952A/en
Publication of JP2010172952A publication Critical patent/JP2010172952A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding material composed of a high-Cr containing Ni-based alloy capable of more enhancing tensile strength than heretofore, and to provide a welding method using the welding material. <P>SOLUTION: The welding material composed of a high-Cr containing Ni-based alloy has a composition composed of, by mass, ≤0.04% C, ≤0.50% Si, ≤1.00% Mn, 28.0-31.5% Cr, ≤0.50% Mo, 7.0-11.0% Fe, ≤0.30% Cu, ≤0.10% Nb+Ta, 0.5-3.0% Al, and 0.5-3.0% Ti, with inevitable impurities containing ≤0.020% P and ≤0.015% S and the balance Ni. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高クロム(Cr)含有ニッケル(Ni)基合金溶接材料及びこれを用いた溶接方法に関する。   The present invention relates to a high chromium (Cr) -containing nickel (Ni) based alloy welding material and a welding method using the same.

沸騰水型原子炉の圧力容器の内面溶接や、制御棒駆動機構スタブチューブやシュラウドサポートの溶接部には、Ni基合金溶接材料が使用されている。現在使用されているNi基合金溶接材料ASME(アメリカ機械学会(The American Society of Mechanical Engineers : ASME)) SFA−5.14 ERNiCr−3のCr含有量は約20%である。   Ni-base alloy welding materials are used for the inner surface welding of the pressure vessel of the boiling water reactor and the welded portion of the control rod drive mechanism stub tube and shroud support. Currently used Ni-based alloy welding material ASME (The American Society of Mechanical Engineers: ASME) SFA-5.14 The Cr content of ERNiCr-3 is about 20%.

一方、Cr含有量が約30%の高Cr含有Ni基合金溶接材料として、Ni−Cr−Fe系合金であるASME SFA−5.14 ERNi−Cr−Fe−7及びERNi−Cr−Fe−7Aがあり、更なる耐食性向上のためにこれらの高Cr含有Ni基合溶接材料の適用が検討されている。   On the other hand, as a high Cr content Ni-base alloy welding material having a Cr content of about 30%, ASME SFA-5.14 ERNi-Cr-Fe-7 and ERNi-Cr-Fe-7A, which are Ni-Cr-Fe based alloys, are used. In order to further improve the corrosion resistance, application of these high Cr-containing Ni-based welding materials is being studied.

上記した溶接材料の化学成分に関する規定値を表1に示す。なお、表1に示した数値の単位は質量%である。   Table 1 shows specified values relating to the chemical components of the above-mentioned welding materials. The unit of the numerical values shown in Table 1 is mass%.

Figure 2010172952
Figure 2010172952

上記したERNi−Cr−Fe−7及びERNi−Cr−Fe−7Aの引張強度は、溶接の際の相手材の1つであるNCF690の引張強度と略同等である。このため、溶接部の更なる強度向上が望まれている。   The tensile strengths of ERNi-Cr-Fe-7 and ERNi-Cr-Fe-7A described above are substantially equivalent to the tensile strength of NCF690, which is one of the counterpart materials during welding. For this reason, the further strength improvement of a welding part is desired.

そこで、上記ERNi−Cr−Fe−7等をベースとし、添加元素の微調整を行うことにより引張強度に優れる高Cr含有Ni基合金溶接材料の開発が進められている。このような高Cr含有Ni基合金溶接材料の1つとして、例えば、窒素(N)を0.03〜0.3%添加することにより、引張強度特性の向上を図った高Cr含有Ni基合金溶接材料が知られている(例えば、特許文献1参照)。また、窒素(N)、タングステン(W)、バナジウム(V)を複合添加することにより、引張強度特性の向上を図った高Cr含有Ni基合金溶接材料が知られている(例えば、特許文献2参照)。   Therefore, development of a high Cr-containing Ni-based alloy welding material which is excellent in tensile strength by finely adjusting the additive element based on the above ERNi-Cr-Fe-7 or the like is underway. As one of such high Cr content Ni-base alloy welding materials, for example, a high Cr content Ni-base alloy whose tensile strength characteristics are improved by adding 0.03 to 0.3% of nitrogen (N) is used. A welding material is known (see, for example, Patent Document 1). Further, there is known a high Cr-containing Ni-based alloy welding material in which tensile strength characteristics are improved by composite addition of nitrogen (N), tungsten (W), and vanadium (V) (for example, Patent Document 2). reference).

特許第3170166号公報Japanese Patent No. 3170166 特許第3382834号公報Japanese Patent No. 3382834

上述したように高Cr含有Ni基合金溶接材料については、ERNi−Cr−Fe−7をベースに、窒素(N)、タングステン(W)、バナジウム(V)を添加することにより、材料の引張強度の向上を図ることが行われている。この場合、窒素(N)は、チタン(Ti)等と窒化物(TiN)を作り、材料の引張強度を改善する。また、タングステン(W)、バナジウム(V)は、マトリックスに固溶することにより、材料の引張強度を向上させる。   As described above, with regard to the high Cr content Ni-base alloy welding material, the tensile strength of the material can be obtained by adding nitrogen (N), tungsten (W), and vanadium (V) based on ERNi-Cr-Fe-7. Improvements are being made. In this case, nitrogen (N) forms nitrides (TiN) with titanium (Ti) and the like, and improves the tensile strength of the material. Tungsten (W) and vanadium (V) improve the tensile strength of the material by dissolving in the matrix.

しかしながら、従来の高Cr含有Ni基合金溶接材料の開発においては、Al、Ti等の析出強化に寄与する元素の影響と引張強度との関係は言及されていない。   However, in the development of conventional high Cr content Ni-base alloy welding materials, the relationship between the influence of elements contributing to precipitation strengthening such as Al and Ti and the tensile strength is not mentioned.

そこで、本発明は、ERNi−Cr−Fe−7系高Cr含有Ni基合金溶接材料におけるAl及びTiの含有量と熱処理後の引張強度との関係を明らかにし、従来に比べて引張強度を向上させた高Cr含有Ni基合金溶接材料及びこれを用いた溶接方法を提供することを目的とする。   Therefore, the present invention clarifies the relationship between the content of Al and Ti in the ERNi-Cr-Fe-7 series high Cr content Ni-base alloy welding material and the tensile strength after heat treatment, and improves the tensile strength compared to the prior art. It is an object of the present invention to provide a high Cr content Ni-base alloy welding material and a welding method using the same.

本発明の高Cr含有Ni基合金溶接材料の一態様は、質量%で、C:0.04%以下、Si:0.50%以下、Mn:1.00%以下、Cr:28.0%〜31.5%、Mo:0.50%以下、Fe:7.0%〜11.0%、Cu:0.30%以下、Nb+Ta:0.10%以下、Al:0.5%〜3.0%、Ti:0.5%〜3.0%を含有し、さらに不可避的不純物として、P:0.020%以下、S:0.015以下を含み、残部がNiからなる組成を有することを特徴とする。   One aspect of the high Cr content Ni-based alloy welding material of the present invention is, in mass%, C: 0.04% or less, Si: 0.50% or less, Mn: 1.00% or less, Cr: 28.0%. -31.5%, Mo: 0.50% or less, Fe: 7.0% to 11.0%, Cu: 0.30% or less, Nb + Ta: 0.10% or less, Al: 0.5% to 3 0.0%, containing Ti: 0.5% to 3.0%, further containing P: 0.020% or less, S: 0.015 or less as unavoidable impurities, with the balance being Ni. It is characterized by that.

本発明の高Cr含有Ni基合金溶接材料の他の態様は、質量%で、C:0.04%以下、Si:0.50%以下、Mn:1.00%以下、Cr:28.0%〜31.5%、Mo:0.50%以下、Fe:7.0%〜11.0%、Cu:0.30%以下、Nb+Ta:0.5%〜1.0%、Al:0.5%〜3.0%、Ti:0.5%〜3.0%を含有し、さらに不可避的不純物として、P:0.020%以下、S:0.015以下を含み、残部がNiからなる組成を有することを特徴とする。   Another aspect of the high Cr content Ni-base alloy welding material of the present invention is, in mass%, C: 0.04% or less, Si: 0.50% or less, Mn: 1.00% or less, Cr: 28.0. % To 31.5%, Mo: 0.50% or less, Fe: 7.0% to 11.0%, Cu: 0.30% or less, Nb + Ta: 0.5% to 1.0%, Al: 0 0.5% to 3.0%, Ti: 0.5% to 3.0%, further containing P: 0.020% or less and S: 0.015 or less as inevitable impurities, the balance being Ni It has the composition which consists of.

本発明によれば、従来に比べて引張強度を向上させた高Cr含有Ni基合金溶接材料及びこれを用いた溶接方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the high Cr content Ni base alloy welding material which improved the tensile strength compared with the past, and the welding method using the same can be provided.

高Cr含有Ni基合金溶接材料中のAl及びTiの含有量と溶接後の熱処理前後の常温及び高温引張強度との関係を示す図。The figure which shows the relationship between the content of Al and Ti in high Cr content Ni base alloy welding material, and the normal temperature and high temperature tensile strength before and after heat processing after welding. Ni基合金(Alloy718)中における析出曲線を示すグラフ。The graph which shows the precipitation curve in Ni base alloy (Alloy718).

以下、本発明の実施形態に係る高Cr含有Ni基合金溶接材料及びこれを用いた溶接方法について、図面を参照して説明する。   Hereinafter, a high Cr content Ni-base alloy welding material and a welding method using the same according to an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係るERNi−Cr−Fe−7系高Cr含有Ni基合金溶接材料は、質量%で、C:0.04%以下、Si:0.50%以下、Mn:1.00%以下、Cr:28.0%〜31.5%、Mo:0.50%以下、Fe:7.0%〜11.0%、Cu:0.30%以下、Nb+Ta:0.10%以下、Al:0.5%〜3.0%、Ti:0.5%〜3.0%を含有し、さらに不可避的不純物として、P:0.020%以下、S:0.015以下を含み、残部がNiからなる組成を有する。   The ERNi-Cr-Fe-7 high Cr-containing Ni-base alloy welding material according to the present embodiment is mass%, C: 0.04% or less, Si: 0.50% or less, Mn: 1.00% or less. Cr: 28.0% to 31.5%, Mo: 0.50% or less, Fe: 7.0% to 11.0%, Cu: 0.30% or less, Nb + Ta: 0.10% or less, Al : 0.5% to 3.0%, Ti: 0.5% to 3.0%, further, P: 0.020% or less, S: 0.015 or less as an inevitable impurity, the balance Has a composition of Ni.

表1に示したように、ASME SFA−5.14 ERNi−Cr−Fe−7では、Alの含有量が1.10質量%以下、Tiの含有量が1.0質量%以下となっている。これに対して、本実施形態では、Alの含有量を0.5質量%〜3.0質量%、Tiの含有量を0.5質量%〜3.0質量%とすることによって、引張強度を向上させたERNi−Cr−Fe−7系高Cr含有Ni基合金溶接材料とすることができる。なお、上記の組成のうちAl及びTi以外については、表1に示したERNi−Cr−Fe−7と同一となっている。   As shown in Table 1, in ASME SFA-5.14 ERNi-Cr-Fe-7, the Al content is 1.10% by mass or less and the Ti content is 1.0% by mass or less. . On the other hand, in this embodiment, the tensile strength is adjusted by setting the Al content to 0.5 mass% to 3.0 mass% and the Ti content to 0.5 mass% to 3.0 mass%. The ERNi-Cr-Fe-7 high Cr-containing Ni-base alloy welding material can be improved. In addition, except Al and Ti among said composition, it is the same as ERNi-Cr-Fe-7 shown in Table 1.

上記の組成のうちCは、固溶体強化元素であり、C量の増加により引張強度は増加するが、耐応力腐食割れ性を劣化させるので、両特性を考慮してC量は0質量%を超え0.04質量%以下となっている。   Among the above compositions, C is a solid solution strengthening element, and the tensile strength increases with an increase in the amount of C. However, the stress corrosion cracking resistance is deteriorated, so the C amount exceeds 0% by mass considering both characteristics. It is 0.04 mass% or less.

Siは、溶接時における脱酸作用を有する一方Si量が多くなると溶接高温割れ感受性が高くなるので、Si量は0質量%を超え0.50質量%以下となっている。   Si has a deoxidizing effect during welding, but when the amount of Si increases, the susceptibility to hot cracking at welding increases. Therefore, the amount of Si exceeds 0% by mass and is 0.50% by mass or less.

Mnは、溶接時における脱酸作用及び脱硫作用を有する一方Mn量を1%を超えて添加すると、溶接時にスラグの湯流れを悪くし、溶接作業性を劣化させるので、Mn量は0質量%を超え1質量%以下となっている。   Mn has a deoxidizing action and a desulfurizing action at the time of welding, but if the amount of Mn is added exceeding 1%, the hot water flow of slag is deteriorated at the time of welding and welding workability is deteriorated. 1 mass% or less.

Crは、耐食性向上に必須の元素であり、耐応力腐食割れ性の効果を十分に得るためには28質量%以上が必要である一方、31.5質量%を越えると溶加材の製造時の熱間加工性が著しく劣化するのでCr量は28質量%〜31.5質量%となっている。   Cr is an essential element for improving corrosion resistance, and in order to sufficiently obtain the effect of stress corrosion cracking resistance, 28% by mass or more is necessary. On the other hand, if it exceeds 31.5% by mass, the filler material is produced. Therefore, the Cr content is 28% by mass to 31.5% by mass.

Moは、マトリックスに固溶して引張強度を向上させるが、Mo量の増加は溶加材の製造時の熱間加工性が著しく劣化させる。このため、Mo量は0質量%を超え0.50質量%以下となっている。   Mo is dissolved in the matrix to improve the tensile strength, but an increase in the amount of Mo significantly degrades the hot workability during the production of the filler metal. For this reason, Mo amount exceeds 0 mass% and is 0.50 mass% or less.

Feは、高Cr量の場合に生じるスケール発生を防止又は抑制するが、Fe量が7質量%未満ではスケール発生が著しくなり、11質量%を超えて過剰に添加すると応力腐食割れ性を劣化させる。このため、Feは7質量%〜11質量%となっている。   Fe prevents or suppresses the generation of scale that occurs when the amount of Cr is high, but scale generation becomes significant when the amount of Fe is less than 7% by mass, and stress corrosion cracking deteriorates when added in excess of 11% by mass. . For this reason, Fe is 7 mass%-11 mass%.

Cuは、高温に加熱されるとマトリックス中に微細分散析出して引張強度を高めるが、過剰になると耐溶接割れ感受性を高めるのでCu量は0質量%を超え0.30質量%以下となっている。   When Cu is heated to a high temperature, it is finely dispersed and precipitated in the matrix to increase the tensile strength. However, when it is excessive, the resistance to weld cracking is increased, so the amount of Cu exceeds 0% by mass and is 0.30% by mass or less. Yes.

Nb及びTaは、炭化物を形成する傾向の強い元素であり、引張強度を向上させるが、Nb及びTa量の増加は加工性を損なうのでNb+Ta量は0質量%を超え0.10質量%以下となっている。   Nb and Ta are elements that have a strong tendency to form carbides and improve tensile strength. However, an increase in the amount of Nb and Ta impairs workability, so the amount of Nb + Ta exceeds 0% by mass and is 0.10% by mass or less. It has become.

Pは、Niと低融点の共晶を作り、溶接高温割れ感受性を高めるので含有量は少ないほどよいが、過度な制限は経済性の低下を招くため、P量は0.020質量%以下となっている。   P makes a low-melting point eutectic with Ni and increases the weld hot cracking susceptibility. Therefore, the lower the content, the better. However, excessive restriction causes a decrease in economic efficiency, so the P content is 0.020% by mass or less. It has become.

Sは、Pと同じようにNiと低融点の共晶を作り、溶接高温割れ感受性を高めるので含有量は少ないほどよい。このためS量は0.015質量%以下となっている。   S, like P, forms a low-melting eutectic with Ni and increases the weld hot cracking susceptibility, so the smaller the content, the better. For this reason, the amount of S is 0.015 mass% or less.

なお、Alの含有量が0.5質量%〜3.0質量%、Tiの含有量が0.5質量%〜3.0質量%となっている理由については後述する。   The reason why the Al content is 0.5 mass% to 3.0 mass% and the Ti content is 0.5 mass% to 3.0 mass% will be described later.

実施例として、Alの含有量を0.67質量%、Tiの含有量を0.53質量%としたERNi−Cr−Fe−7系高Cr含有Ni基合金溶接材料を作製した。また、比較例として、Alの含有量を0.10質量%、Tiの含有量を0.21質量%としたERNi−Cr−Fe−7系高Cr含有Ni基合金溶接材料を作製した。これら実施例と比較例のERNi−Cr−Fe−7系高Cr含有Ni基合金溶接材料の成分を表2に示す。なお、表2に示した数値の単位は質量%である。   As an example, an ERNi-Cr-Fe-7 high Cr-containing Ni-based alloy welding material having an Al content of 0.67% by mass and a Ti content of 0.53% by mass was produced. As a comparative example, an ERNi-Cr-Fe-7 high Cr-containing Ni-based alloy welding material having an Al content of 0.10% by mass and a Ti content of 0.21% by mass was produced. Table 2 shows the components of the ERNi-Cr-Fe-7 series high Cr-containing Ni-base alloy welding materials of these examples and comparative examples. The unit of the numerical values shown in Table 2 is mass%.

Figure 2010172952
Figure 2010172952

図1は、上記の実施例と、比較例について、溶接後の熱処理前と熱処理後に、常温及び高温における引張強度を調べた結果を示すものである。なお、図1において、(A)は常温引張強度(MPa)を、(B)は高温(302℃)引張強度(MPa)を示している。なお、このときの溶接の後熱処理の条件は、略615℃(615±20℃程度)で45時間であった。   FIG. 1 shows the results of examining the tensile strength at normal temperature and high temperature before and after heat treatment after welding for the above-described examples and comparative examples. 1A shows normal temperature tensile strength (MPa), and FIG. 1B shows high temperature (302 ° C.) tensile strength (MPa). The conditions for the post-weld heat treatment at this time were approximately 615 ° C. (about 615 ± 20 ° C.) and 45 hours.

図1(A)に示すように、Al含有量が0.10質量%、Ti含有量が0.21質量%の比較例の場合、溶接後の熱処理による常温引張強度の上昇はほとんど見られず、熱処理前後ともに常温引張強度は約600MPaで、比較材であるNCF690合金の常温における引張強度586MPa(JSME 発電用原子力設備規格 設計・建設規格(2005年版)JSME S NC1−2005 付録図表Part5 材料の各温度における設計引張強さSu(MPa))と略同等であった。   As shown in FIG. 1A, in the case of the comparative example in which the Al content is 0.10% by mass and the Ti content is 0.21% by mass, there is hardly any increase in the room temperature tensile strength due to the heat treatment after welding. The normal temperature tensile strength before and after heat treatment is about 600 MPa, and the tensile strength of NCF690 alloy, which is a comparative material, at normal temperature is 586 MPa (JSME power generation nuclear equipment standard design and construction standard (2005 version) JSMES NC1-2005 Appendix Chart Part5 Design tensile strength at temperature (Su (MPa)).

一方、Al含有量が0.67%、Ti含有量が0.53%の実施例の場合、溶接後の熱処理により、常温引張強度が約570MPaから約680MPaに上昇しており、熱処理後の常温引張強度は、比較材であるNCF690合金の常温における引張強度586MPaよりも大きな値を示した。   On the other hand, in the case of the example in which the Al content is 0.67% and the Ti content is 0.53%, the normal temperature tensile strength is increased from about 570 MPa to about 680 MPa by the heat treatment after welding, The tensile strength showed a value larger than the tensile strength 586 MPa at normal temperature of the NCF690 alloy as a comparative material.

また、図1(B)に示すように、Al含有量が0.10%、Ti含有量が0.21%の比較例の場合、溶接後の熱処理により高温(302℃)引張強度は、約550MPaから約490MPaに低下しており、熱処理後の高温引張強度は、比較材であるNCF690合金の高温(302℃)における引張強度540MPa(JSME 発電用原子力設備規格 設計・建設規格(2005年版)JSME S NC1−2005 付録図表Part5 材料の各温度における設計引張強さSu(MPa))より低い値を示した。   Further, as shown in FIG. 1B, in the case of the comparative example in which the Al content is 0.10% and the Ti content is 0.21%, the high temperature (302 ° C.) tensile strength is about The high-temperature tensile strength after heat treatment is reduced from 550 MPa to about 490 MPa, and the tensile strength at high temperature (302 ° C.) of the NCF690 alloy, which is a comparative material, is 540 MPa (JSME Power Generation Nuclear Equipment Standard Design and Construction Standard (2005 edition) JSME S NC1-2005 Appendix Chart Part 5 Designed to a value lower than the material design tensile strength Su (MPa) at each temperature.

一方、Al含有量が0.67%、Ti含有量が0.53%の実施例の場合、溶接後の熱処理により高温(302℃)引張強度が約530MPaから約560MPaに上昇しており、熱処理後の高温(302℃)引張強度は、比較材であるNCF690合金の高温(302℃)における引張強度540MPaよりも大きな値を示した。このように、実施例において熱処理後に常温及び高温の引張強度が向上する理由としては、NiAl、NiTi等の析出物が結晶粒内に析出したことによると考えられる。 On the other hand, in the case of the example in which the Al content is 0.67% and the Ti content is 0.53%, the high temperature (302 ° C.) tensile strength is increased from about 530 MPa to about 560 MPa by the heat treatment after welding. The subsequent high temperature (302 ° C.) tensile strength was higher than the tensile strength of 540 MPa at the high temperature (302 ° C.) of the comparative NCF690 alloy. Thus, it is thought that the reason why the tensile strength at normal temperature and high temperature is improved after heat treatment in the examples is that precipitates such as Ni 3 Al and Ni 3 Ti are precipitated in the crystal grains.

以上の結果より、ERNi−Cr−Fe−7系高Cr含有Ni基合金溶接材料において、Al含有量及びTi含有量を多くすることによって、溶接後の熱処理により常温引張強度及び高温(302℃)引張強度が高くなることが示された。すなわち、ERNi−Cr−Fe−7系高Cr含有Ni基合金溶接材料のAl含有量を0.50%以上の0.67%、Ti含有量を0.50%以上の0.53%とし、溶接後、溶接部に、温度略615℃で45時間の熱処理を施すことにより、NCF690合金の引張強度よりも大きな引張強度が得られることが分かった。   From the above results, in the ERNi-Cr-Fe-7 series high Cr content Ni-base alloy welding material, by increasing the Al content and Ti content, normal temperature tensile strength and high temperature (302 ° C) by heat treatment after welding. It was shown that the tensile strength was increased. That is, Al content of ERNi-Cr-Fe-7 series high Cr content Ni-base alloy welding material is 0.57% or more 0.67%, Ti content is 0.50% or more 0.53%, It was found that a tensile strength greater than the tensile strength of NCF690 alloy can be obtained by performing a heat treatment for 45 hours at a temperature of about 615 ° C. after welding.

一方、Alを添加し過ぎると、他の特性を悪化させる可能性、例えば溶接作業性を劣化させる可能性がある。このため、Al含有量は、3.0質量%以下程度とすることが好ましい。また、Tiの含有量についても、同様の理由から、3.0質量%以下程度とすることが好ましい。   On the other hand, when Al is added too much, other characteristics may be deteriorated, for example, welding workability may be deteriorated. For this reason, it is preferable that Al content shall be about 3.0 mass% or less. The Ti content is preferably about 3.0% by mass or less for the same reason.

以上の理由から、ERNi−Cr−Fe−7系高Cr含有Ni基合金溶接材料において、Al含有量Alの含有量を0.5質量%〜3.0質量%、Tiの含有量を0.5質量%〜3.0質量%とする。そして、溶接後、溶接部に対して略615℃の温度(例えば、615±20℃の温度)で少なくとも45時間の熱処理を施すことにより、常温及び高温の引張強度を向上させることができる。なお、溶接方法としては、ティグ溶接やミグ溶接等を用いることができる。   For the above reasons, in the ERNi-Cr-Fe-7 high Cr content Ni-base alloy welding material, the Al content Al content is 0.5 mass% to 3.0 mass%, and the Ti content is 0.00. 5 mass% to 3.0 mass%. After welding, the tensile strength at normal temperature and high temperature can be improved by subjecting the welded portion to heat treatment at a temperature of approximately 615 ° C. (for example, a temperature of 615 ± 20 ° C.) for at least 45 hours. As a welding method, TIG welding, MIG welding, or the like can be used.

上記の実施例では、溶接後に略615℃の温度(例えば、615±20℃の温度)で少なくとも45時間の熱処理を施し、これによってNiAl、NiTi等の析出物を結晶粒内に析出させて常温及び高温の引張強度を向上させた。しかし、このような熱処理の条件はかかる条件に限定されるものではなく、NiAl、NiTi等の析出物を結晶粒内に析出させて常温及び高温の引張強度を向上させられる条件であればよい。 In the above embodiment, after the welding, heat treatment is performed at a temperature of about 615 ° C. (for example, a temperature of 615 ± 20 ° C.) for at least 45 hours, thereby depositing precipitates such as Ni 3 Al and Ni 3 Ti in the crystal grains. The tensile strength at room temperature and high temperature was improved by precipitation. However, the conditions for such heat treatment are not limited to such conditions, and are conditions under which precipitates such as Ni 3 Al and Ni 3 Ti can be precipitated in the crystal grains to improve the normal temperature and high temperature tensile strength. I just need it.

縦軸をエイジング温度、横軸をエイジング時間とした図2のグラフに、Ni基合金(Alloy718)中における析出曲線(SCC SUSCEPTIBILITY OF ALLOY 718, M.Tsubota et.al, Workshop on Advanced High-Strength Materials, EPRI, 1986)を示す。図2より、Ni基合金中において、NiAl及びNiTiは、約750℃〜約850℃の温度で5時間以上の熱処理を加えることで析出することが分かる。 The vertical axis of aging temperature and the horizontal axis of aging time are shown in the graph of Fig. 2. The precipitation curve in Ni-based alloy (Alloy 718) (SCC SUSCEPTIBILITY OF ALLOY 718, M. Tsubota et.al, Workshop on Advanced High-Strength Materials) , EPRI, 1986). From FIG. 2, it can be seen that Ni 3 Al and Ni 3 Ti are precipitated in the Ni-based alloy by applying a heat treatment at a temperature of about 750 ° C. to about 850 ° C. for 5 hours or more.

したがって、ERNi−Cr−Fe−7系高Cr含有Ni基合金溶接材料のAl含有量を0.5質量%〜3.0質量%、Ti含有量を0.5質量%〜3.0質量%とし、溶接後、この溶接部に、約750℃〜約850℃の範囲内の温度で5時間以上の熱処理を行う。これによって、ERNi−Cr−Fe−7系高Cr含有Ni基合金溶接材料の常温及び高温での引張強度を向上させることができる。   Therefore, the Al content of the ERNi-Cr-Fe-7 high Cr content Ni-base alloy welding material is 0.5 mass% to 3.0 mass%, and the Ti content is 0.5 mass% to 3.0 mass%. Then, after welding, this weld is heat-treated at a temperature in the range of about 750 ° C. to about 850 ° C. for 5 hours or more. Thereby, the tensile strength at normal temperature and high temperature of ERNi-Cr-Fe-7 system high Cr content Ni base alloy welding material can be improved.

なお、上記の実施形態及び実施例では、Nb+Taの含有量が0.10質量%以下であるERNi−Cr−Fe−7系高Cr含有Ni基合金溶接材料について説明した。しかし、Nb+Taの含有量が0.5質量%〜1.0質量%であるERNi−Cr−Fe−7A系高Cr含有Ni基合金溶接材料についても同様にして適用することができる。   In the above-described embodiments and examples, the ERNi—Cr—Fe-7 high Cr content Ni-based alloy welding material having a Nb + Ta content of 0.10% by mass or less has been described. However, the present invention can also be applied in the same manner to an ERNi—Cr—Fe-7A-based high Cr-containing Ni-base alloy welding material having a Nb + Ta content of 0.5 mass% to 1.0 mass%.

Claims (6)

質量%で、C:0.04%以下、Si:0.50%以下、Mn:1.00%以下、Cr:28.0%〜31.5%、Mo:0.50%以下、Fe:7.0%〜11.0%、Cu:0.30%以下、Nb+Ta:0.10%以下、Al:0.5%〜3.0%、Ti:0.5%〜3.0%を含有し、さらに不可避的不純物として、P:0.020%以下、S:0.015以下を含み、残部がNiからなる組成を有することを特徴とする高Cr含有Ni基合金溶接材料。   In mass%, C: 0.04% or less, Si: 0.50% or less, Mn: 1.00% or less, Cr: 28.0% to 31.5%, Mo: 0.50% or less, Fe: 7.0% to 11.0%, Cu: 0.30% or less, Nb + Ta: 0.10% or less, Al: 0.5% to 3.0%, Ti: 0.5% to 3.0% A high Cr-containing Ni-base alloy welding material containing a composition containing P: 0.020% or less and S: 0.015 or less as an inevitable impurity, with the balance being made of Ni. 請求項1に記載の高Cr含有Ni基合金溶接材料を用いて溶接を行った後、当該溶接を行った溶接部に、略615℃の温度で45時間以上の熱処理を施して前記溶接部の引張強度を向上させることを特徴とする溶接方法。   After welding using the high Cr content Ni-base alloy welding material according to claim 1, the welded portion subjected to the welding is subjected to a heat treatment at a temperature of about 615 ° C. for 45 hours or more, and A welding method characterized by improving tensile strength. 請求項1に記載の高Cr含有Ni基合金溶接材料を用いて溶接を行った後、当該溶接を行った溶接部に、750℃〜850℃の温度で5時間以上の熱処理を施して前記溶接部の引張強度を向上させることを特徴とする溶接方法。   After welding using the high Cr content Ni-base alloy welding material according to claim 1, the welded portion subjected to the welding is subjected to a heat treatment at a temperature of 750 ° C. to 850 ° C. for 5 hours or more to perform the welding. The welding method characterized by improving the tensile strength of a part. 質量%で、C:0.04%以下、Si:0.50%以下、Mn:1.00%以下、Cr:28.0%〜31.5%、Mo:0.50%以下、Fe:7.0%〜11.0%、Cu:0.30%以下、Nb+Ta:0.5%〜1.0%、Al:0.5%〜3.0%、Ti:0.5%〜3.0%を含有し、さらに不可避的不純物として、P:0.020%以下、S:0.015以下を含み、残部がNiからなる組成を有することを特徴とする高Cr含有Ni基合金溶接材料。   In mass%, C: 0.04% or less, Si: 0.50% or less, Mn: 1.00% or less, Cr: 28.0% to 31.5%, Mo: 0.50% or less, Fe: 7.0% to 11.0%, Cu: 0.30% or less, Nb + Ta: 0.5% to 1.0%, Al: 0.5% to 3.0%, Ti: 0.5% to 3 High Cr content Ni-base alloy welding characterized by containing 0.0% and further containing P: 0.020% or less and S: 0.015 or less as unavoidable impurities, with the balance being made of Ni. material. 請求項4に記載の高Cr含有Ni基合金溶接材料を用いて溶接を行った後、当該溶接を行った溶接部に、略615℃の温度で45時間以上の熱処理を施して前記溶接部の引張強度を向上させることを特徴とする溶接方法。   After performing welding using the high Cr content Ni-base alloy welding material according to claim 4, the welded portion subjected to the welding is subjected to a heat treatment at a temperature of about 615 ° C for 45 hours or more, and A welding method characterized by improving tensile strength. 請求項4に記載の高Cr含有Ni基合金溶接材料を用いて溶接を行った後、当該溶接を行った溶接部に、750℃〜850℃の温度で5時間以上の熱処理を施して前記溶接部の引張強度を向上させることを特徴とする溶接方法。   After welding using the high Cr content Ni-base alloy welding material according to claim 4, the welded portion subjected to the welding is subjected to a heat treatment at a temperature of 750 ° C to 850 ° C for 5 hours or more, and the welding is performed. The welding method characterized by improving the tensile strength of a part.
JP2009021140A 2009-02-02 2009-02-02 WELDING MATERIAL COMPOSED OF HIGH-Cr CONTAINING Ni-BASED ALLOY, AND WELDING METHOD USING THE SAME Withdrawn JP2010172952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021140A JP2010172952A (en) 2009-02-02 2009-02-02 WELDING MATERIAL COMPOSED OF HIGH-Cr CONTAINING Ni-BASED ALLOY, AND WELDING METHOD USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021140A JP2010172952A (en) 2009-02-02 2009-02-02 WELDING MATERIAL COMPOSED OF HIGH-Cr CONTAINING Ni-BASED ALLOY, AND WELDING METHOD USING THE SAME

Publications (1)

Publication Number Publication Date
JP2010172952A true JP2010172952A (en) 2010-08-12

Family

ID=42704400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021140A Withdrawn JP2010172952A (en) 2009-02-02 2009-02-02 WELDING MATERIAL COMPOSED OF HIGH-Cr CONTAINING Ni-BASED ALLOY, AND WELDING METHOD USING THE SAME

Country Status (1)

Country Link
JP (1) JP2010172952A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063503A1 (en) 2010-11-12 2012-05-18 株式会社神戸製鋼所 Ni-based alloy solid wire for welding
KR101197990B1 (en) 2010-11-12 2012-11-05 가부시키가이샤 고베 세이코쇼 Ni BASE ALLOY SOLID WIRE FOR WELDING
CN103567661A (en) * 2013-10-30 2014-02-12 西安理工大学 Welding material for butt fusion welding transition layer of titanium-steel composite board and preparation method of welding material
CN104511700A (en) * 2013-09-26 2015-04-15 宝山钢铁股份有限公司 Nickel base alloy welding wire and preparation method thereof
CN106695173A (en) * 2017-03-17 2017-05-24 中国石油天然气集团公司 Welding material for welding near-titanium layer of titanium-steel composite plate, and preparation method thereof
KR20180102174A (en) 2016-02-22 2018-09-14 가부시키가이샤 고베 세이코쇼 Ni-based alloys for welding Solid wires and Ni-based alloys Weld metal
CN111001964A (en) * 2019-12-17 2020-04-14 江苏双勤新能源科技有限公司 Preparation method and welding process of high-temperature corrosion resistant nickel-based solid welding wire for petrochemical equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063503A1 (en) 2010-11-12 2012-05-18 株式会社神戸製鋼所 Ni-based alloy solid wire for welding
CN102463422A (en) * 2010-11-12 2012-05-23 株式会社神户制钢所 Ni base alloy solid wire for welding
JP2012101273A (en) * 2010-11-12 2012-05-31 Kobe Steel Ltd Ni-BASED ALLOY SOLID WIRE FOR WELDING
KR101197990B1 (en) 2010-11-12 2012-11-05 가부시키가이샤 고베 세이코쇼 Ni BASE ALLOY SOLID WIRE FOR WELDING
US8343419B2 (en) 2010-11-12 2013-01-01 Kobe Steel, Ltd. Ni base alloy solid wire for welding
EP2639007A4 (en) * 2010-11-12 2016-07-20 Kobe Steel Ltd Ni-based alloy solid wire for welding
CN104511700A (en) * 2013-09-26 2015-04-15 宝山钢铁股份有限公司 Nickel base alloy welding wire and preparation method thereof
CN103567661A (en) * 2013-10-30 2014-02-12 西安理工大学 Welding material for butt fusion welding transition layer of titanium-steel composite board and preparation method of welding material
KR20180102174A (en) 2016-02-22 2018-09-14 가부시키가이샤 고베 세이코쇼 Ni-based alloys for welding Solid wires and Ni-based alloys Weld metal
US10710201B2 (en) 2016-02-22 2020-07-14 Kobe Steel, Ltd. Ni-based alloy solid wire for welding and Ni-based alloy weld metal
CN106695173A (en) * 2017-03-17 2017-05-24 中国石油天然气集团公司 Welding material for welding near-titanium layer of titanium-steel composite plate, and preparation method thereof
CN106695173B (en) * 2017-03-17 2019-09-20 中国石油天然气集团公司 A kind of welding material and preparation method thereof welding the nearly titanium layer of titanium-steel composite board
CN111001964A (en) * 2019-12-17 2020-04-14 江苏双勤新能源科技有限公司 Preparation method and welding process of high-temperature corrosion resistant nickel-based solid welding wire for petrochemical equipment

Similar Documents

Publication Publication Date Title
JP6393993B2 (en) Ni-base superalloy with high temperature strength and capable of hot forging
JP5254693B2 (en) Welding material for Ni-base alloy
JP5236651B2 (en) Low thermal expansion Ni-base superalloy for boiler excellent in high temperature strength, boiler component using the same, and method for manufacturing boiler component
EP2511389B1 (en) Austenitic heat-resistant alloy
JP6390723B2 (en) Method for producing austenitic heat-resistant alloy welded joint
JP5670103B2 (en) High strength austenitic heat resistant steel
JP6398277B2 (en) Manufacturing method of Ni-base heat-resistant alloy welded joint
WO2018151222A1 (en) Ni-BASED HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING SAME
JP2010172952A (en) WELDING MATERIAL COMPOSED OF HIGH-Cr CONTAINING Ni-BASED ALLOY, AND WELDING METHOD USING THE SAME
JP6034041B2 (en) High-temperature piping and its manufacturing method
JP6733210B2 (en) Ni-based superalloy for hot forging
JP2016196685A (en) METHOD FOR MANUFACTURING Ni-BASED HEAT-RESISTANT ALLOY WELD JOINT AND WELD JOINT OBTAINED USING THE SAME
JP6733211B2 (en) Ni-based superalloy for hot forging
JP6772735B2 (en) Ni-based heat-resistant alloy member and its manufacturing method
JP6439579B2 (en) Method for producing austenitic heat-resistant alloy welded joint and welded joint obtained using the same
JP6795038B2 (en) Austenitic heat-resistant alloy and welded joints using it
JP6756147B2 (en) Welding material for austenitic heat resistant steel
JPS63309392A (en) Filler material for tig welding for austenitic heat resistant alloy
JP6825514B2 (en) Austenitic heat resistant alloy member
JP2001300763A (en) Tig welding material for austenitic heat resisting steel excellent in high-temperature strength
JP2021011610A (en) Austenitic heat-resistant alloy weld joint
KR102308405B1 (en) Nickel-based alloy welding material, welding material for nuclear reactor, equipment and structure for nuclear power, and method of repairing equipment and structure for nuclear power
JP6908539B2 (en) 9Cr-1Mo Steel Welding TIG Wire
JP6238276B2 (en) Method for manufacturing member for steam turbine
JP2013067843A (en) Austenitic heat-resistant steel excellent in high-temperature strength, and manufacturing method of the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120403