JP2010170817A - Method for manufacturing solid polymer fuel cell stack - Google Patents

Method for manufacturing solid polymer fuel cell stack Download PDF

Info

Publication number
JP2010170817A
JP2010170817A JP2009011694A JP2009011694A JP2010170817A JP 2010170817 A JP2010170817 A JP 2010170817A JP 2009011694 A JP2009011694 A JP 2009011694A JP 2009011694 A JP2009011694 A JP 2009011694A JP 2010170817 A JP2010170817 A JP 2010170817A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
conductive coating
coating film
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009011694A
Other languages
Japanese (ja)
Inventor
Shinichi Kamoshita
真一 鴨志田
Yoshikazu Morita
芳和 守田
Keiji Izumi
圭二 和泉
Takahiro Fujii
孝浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2009011694A priority Critical patent/JP2010170817A/en
Publication of JP2010170817A publication Critical patent/JP2010170817A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce total contact resistance while securing corrosion resistance of a metal base material constituting a separator in a solid polymer fuel cell stack. <P>SOLUTION: A method for manufacturing the solid polymer fuel cell stack comprises using, as a base material, stainless steel having a roughened surface with a surface area not less than twice the projection area and with a surface roughness SRa of 2 μm or less, arranging MEAs (membrane electrode assemblies) and separators alternately on the roughened surface of the base material to form a laminated structure, using the separators having conductive coating films with an average thickness of 3-50 μm formed by solidifying conductive carbon particles with thermosetting resin. The laminated structure is fixed so that the average surface pressure at a contact part between the electrode surface of the MEA and the conductive coating film surface of the separator is 0.5-5 MPa, and then in the fixed state, heat treatment is applied so that the conductive coating film of each separator is held for 10 minutes or longer at 90-200°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数のセルを持つ固体高分子型燃料電池スタックの製造方法に関する。   The present invention relates to a method for producing a polymer electrolyte fuel cell stack having a plurality of cells.

固体高分子型燃料電池においては、イオン交換膜である固体高分子膜と、その両側の電極(正極および負極)、および各電極に面するガス流路によって1つのセルが形成され、通常は豊富な起電力を得るために各セルをセパレータで隔離することによって積層した「スタック」の形態として利用される。電極およびイオン交換膜の部材としては一般に、イオン交換膜の両側にカーボンペーパーなどの電極シートを接合したMEA(膜・電極接合体;Membrane Electrode Assembly)が使用される。セパレータは各セルを隔離するとともに、隣り合うセルの正極と負極を電気的に接続する役割を有する。したがって、MEAの電極表面(例えばカーボンペーパー表面)とセパレータの表面は部分的に接触しているとともに、両者の間にはガスの流路となる空隙が設けられている。通常、セパレータの表面に複数の溝をつけることによりガス流路と電極との接触箇所が形成される。   In a polymer electrolyte fuel cell, one cell is formed by a solid polymer membrane, which is an ion exchange membrane, electrodes on both sides (positive electrode and negative electrode), and a gas flow channel facing each electrode. In order to obtain a large electromotive force, each cell is separated by a separator and used as a stacked “stack”. As members of the electrode and the ion exchange membrane, MEA (membrane electrode assembly) in which an electrode sheet such as carbon paper is joined to both sides of the ion exchange membrane is generally used. The separator has a role of isolating each cell and electrically connecting the positive and negative electrodes of adjacent cells. Therefore, the MEA electrode surface (for example, carbon paper surface) and the separator surface are in partial contact with each other, and a gap serving as a gas flow path is provided between the two. Usually, a contact portion between the gas flow path and the electrode is formed by forming a plurality of grooves on the surface of the separator.

セパレータとしては、従来、カーボン製のものが各種実用化試験等に供されていたが、最近では振動や衝撃に強く、価格の安い金属材料を適用する開発が進められている。ただし、金属セパレータを適用するには腐食の問題をクリアする必要がある。すなわち、イオン交換膜としてフッ素樹脂などを用いた一般的な固体高分子型燃料電池ではイオン交換膜の分解によって酸性物質が発生し、これが金属セパレータを腐食させる大きな要因となる。金属セパレータが腐食するとセパレータ/電極間の接触抵抗が増大して電池出力が低下するだけでなく、腐食により溶出した金属イオンがイオン交換膜に侵入するとイオン伝導性が低下し、さらには、この金属イオンによりイオン交換膜の分解が促進されることもある。   Conventionally, separators made of carbon have been used for various practical tests and the like, but recently, development of applying a metal material that is resistant to vibration and impact and is inexpensive is underway. However, to apply a metal separator, it is necessary to clear the problem of corrosion. That is, in a general polymer electrolyte fuel cell using a fluororesin or the like as an ion exchange membrane, an acidic substance is generated by the decomposition of the ion exchange membrane, which becomes a major factor that corrodes the metal separator. When the metal separator corrodes, not only does the contact resistance between the separator and electrode increase and the battery output decreases, but also the metal ions eluted due to corrosion enter the ion exchange membrane, the ion conductivity decreases. Decomposition of the ion exchange membrane may be promoted by ions.

比較的安価な高耐食性材料としてステンレス鋼があるが、その耐食性は周知のとおり不動態皮膜によって確保されている。しかし、不動態皮膜は導電性に劣るため、ステンレス鋼をそのままセパレータに用いるとセパレータ/電極間の接触抵抗が増大してしまう。また、耐食性の高いステンレス鋼種を選択したとしても、酸性環境となる固体高分子型燃料電池の内部環境に曝した場合には必ずしも満足できる耐食性を示すとは限らない。一方、金、白金などの貴金属材料は良好な耐食性と導電性を呈するものの、高価であるため固体高分子型燃料電池の普及を図るためには採用し難い。   As a relatively inexpensive high corrosion resistance material, there is stainless steel, and its corrosion resistance is secured by a passive film as is well known. However, since the passive film is inferior in conductivity, the contact resistance between the separator and the electrode increases if stainless steel is used as it is for the separator. Even if a stainless steel type with high corrosion resistance is selected, it does not always show satisfactory corrosion resistance when exposed to the internal environment of a solid polymer fuel cell that is in an acidic environment. On the other hand, noble metal materials such as gold and platinum exhibit good corrosion resistance and conductivity, but are expensive and difficult to adopt in order to popularize solid polymer fuel cells.

そこで、ステンレス鋼の表面に導電性の被覆層を設ける手法が提案されている(特許文献1、2)。   Therefore, a method of providing a conductive coating layer on the surface of stainless steel has been proposed (Patent Documents 1 and 2).

特開平11−345618号公報JP-A-11-345618 特開2001−283880号公報JP 2001-283880 A 特許第3818723号公報Japanese Patent No. 3818723

特許文献1には、オーステナイト系ステンレス鋼の表面に厚さ3〜20μmのグラファイト(黒鉛)含有樹脂被覆層を形成したセパレータ材料が記載されている。この材料は、基材表面の強固な不動態皮膜が酸洗処理により除去されており、不動態皮膜に起因する接触抵抗は低減されていると考えられる。しかし、このセパレータ材料では被覆層の密着性を確保する上でグラファイトの含有量に制約を受け、結果的に、基材/被覆層の接触抵抗と、被覆層自体の電気抵抗と、被覆層/カーボン電極間の接触抵抗をすべて考慮に入れた抵抗(トータル接触抵抗)については、必ずしも満足できるレベルに低減できていない。つまり、被覆層を設けたことによりトータル接触抵抗は増大してしまう。   Patent Document 1 describes a separator material in which a graphite (graphite) -containing resin coating layer having a thickness of 3 to 20 μm is formed on the surface of austenitic stainless steel. In this material, the strong passive film on the surface of the base material is removed by the pickling treatment, and it is considered that the contact resistance due to the passive film is reduced. However, in this separator material, the content of graphite is limited in securing the adhesion of the coating layer, and as a result, the contact resistance of the substrate / coating layer, the electrical resistance of the coating layer itself, and the coating layer / The resistance taking into account all the contact resistances between the carbon electrodes (total contact resistance) has not necessarily been reduced to a satisfactory level. That is, the total contact resistance increases due to the provision of the coating layer.

特許文献2には、粗面化処理したステンレス鋼基材の表面にカーボン含有樹脂被覆層を形成させたセパレータ材料が記載されている。この場合、被覆層の密着性が改善される。しかし、その後の調査によれば、特許文献2の手法で作製した樹脂被覆ステンレス鋼材は、耐食性において必ずしも満足できる特性を有していないことがわかった。その原因として被覆層厚さが1μm程度と薄いことが考えられる。そこで、引用文献2の技術を利用して被覆層厚さを増大することを試みた。ところが、被覆層中のカーボン量が少ないこともあり、被覆層厚さを増大するとトータル接触抵抗も増大してしまった。   Patent Document 2 describes a separator material in which a carbon-containing resin coating layer is formed on the surface of a roughened stainless steel substrate. In this case, the adhesion of the coating layer is improved. However, according to subsequent investigations, it was found that the resin-coated stainless steel material produced by the method of Patent Document 2 does not necessarily have satisfactory characteristics in corrosion resistance. It is conceivable that the coating layer thickness is as thin as about 1 μm. Then, it tried to increase the coating layer thickness using the technique of the cited reference 2. FIG. However, since the amount of carbon in the coating layer is small, increasing the coating layer thickness also increases the total contact resistance.

これらの文献の技術を応用すれば、ステンレス鋼基材の表面を粗面化処理して被覆層の密着性を向上させ、かつ被覆層中のカーボン量を増大させることにより、被覆層厚さを厚くしたときのトータル接触抵抗の向上と、固体高分子型燃料電池環境での耐食性の改善を同時に実現することができるのではないかと考えられた。しかしながら、必ずしもその通りにはいかないことがわかった。   By applying the techniques of these documents, the surface of the stainless steel substrate is roughened to improve the adhesion of the coating layer, and the amount of carbon in the coating layer is increased, thereby increasing the coating layer thickness. It was thought that the improvement of the total contact resistance when thickened and the improvement of the corrosion resistance in the polymer electrolyte fuel cell environment could be realized at the same time. However, it turned out that it was not always the case.

本発明は、金属を基材とするセパレータと、カーボンペーパーなどの電極を持つ一般的なMEAとを組み合わせた固体高分子型燃料電池のスタックにおいて、セパレータを構成する金属基材の耐食性を確保しながら、トータル接触抵抗の低減を図る技術を提供しようというものである。   The present invention secures the corrosion resistance of a metal substrate constituting a separator in a stack of polymer electrolyte fuel cells in which a separator based on a metal and a general MEA having an electrode such as carbon paper are combined. However, it is intended to provide a technique for reducing the total contact resistance.

上記目的は、MEA(膜・電極接合体)とセパレータを交互に配置して複数のセルを持つ固体高分子型燃料電池のスタックを構築するに際し、
MEAとして、イオン交換膜の表面に繊維状炭素で構成される電極シートを接合したものを用い、
セパレータとして、表面積が投影面積に対し2倍以上であり、かつ面粗さSRaが2μm以下である粗面化表面を持つステンレス鋼を基材とし、その基材の粗面化表面上に、導電性炭素粒子を熱硬化性樹脂で固めた平均厚さ3〜50μmの導電塗膜を有するものを用い、
MEAとセパレータを交互に配置して積層構造とし、MEAの電極表面と、セパレータの導電塗膜表面の接触箇所における平均面圧が0.5〜5MPaとなるように当該積層構造を固定したのち、前記固定状態のまま各セパレータの導電塗膜が90〜200℃で10分以上保持されるように熱処理を施す固体高分子型燃料電池スタックの製造方法によって達成される。
The above purpose is to construct a polymer electrolyte fuel cell stack having a plurality of cells by alternately arranging MEAs (membrane / electrode assemblies) and separators.
As the MEA, an electrode sheet composed of fibrous carbon is joined to the surface of the ion exchange membrane,
As a separator, a stainless steel having a rough surface with a surface area of 2 times or more of the projected area and a surface roughness SRa of 2 μm or less is used as a base material. Using a conductive coating film having an average thickness of 3 to 50 μm obtained by solidifying the carbon particles with a thermosetting resin,
The MEA and the separator are alternately arranged to form a laminated structure, and after fixing the laminated structure so that the average surface pressure at the contact point between the electrode surface of the MEA and the conductive coating surface of the separator is 0.5 to 5 MPa, This is achieved by a method for producing a polymer electrolyte fuel cell stack in which heat treatment is performed so that the conductive coating film of each separator is held at 90 to 200 ° C. for 10 minutes or longer in the fixed state.

ここで、基材の投影面積は、ステンレス鋼基材の板面に垂直な方向(鋼板の厚さ方向)から見た、ある測定領域(顕微鏡視野)の面積である。表面積が投影面積に対し2倍以上とは、その測定領域での実表面積が、測定領域の投影面積の2倍以上であることを意味する。面粗さSRaは、表面粗さ曲線をサインカーブで近似した際の中心面(基準面)における平均粗さ(三次元平均表面粗さ)を意味し、レーザー顕微鏡などを用いて得た各点の高さを測定し、それらの測定データについて三次元表面粗さ解析を行うことにより求められる。その測定領域は例えば1辺が40μm以上の矩形領域(例えば50μm×50μm)とすればよい。実表面積および面粗さSRaは、走査型共焦点レーザー顕微鏡を用いて測定される値が採用される。導電塗膜の平均厚さは、基材の粗面化表面における凹部に入り込んでいる被覆層部分も含めた平均厚さであり、塗布量と塗膜厚さの関係が判っていれば、基材表面の単位投影面積あたりの塗布量から導電塗膜の平均厚さを算出することができる。   Here, the projected area of the base material is an area of a certain measurement region (microscope field of view) as seen from a direction perpendicular to the plate surface of the stainless steel base material (thickness direction of the steel plate). That the surface area is more than twice the projected area means that the actual surface area in the measurement region is more than twice the projected area of the measurement region. The surface roughness SRa means the average roughness (three-dimensional average surface roughness) in the center plane (reference plane) when the surface roughness curve is approximated by a sine curve, and each point obtained using a laser microscope or the like It is calculated | required by measuring the height of these and performing three-dimensional surface roughness analysis about those measurement data. The measurement area may be, for example, a rectangular area (for example, 50 μm × 50 μm) having a side of 40 μm or more. As the actual surface area and the surface roughness SRa, values measured using a scanning confocal laser microscope are employed. The average thickness of the conductive coating film is the average thickness including the coating layer portion that has entered the recesses on the roughened surface of the base material. If the relationship between the coating amount and the coating film thickness is known, The average thickness of the conductive coating film can be calculated from the coating amount per unit projected area on the material surface.

導電塗膜は、熱硬化性樹脂100質量部に対し導電性炭素粒子として黒鉛30〜300質量部を含有するものが好適であり、さらにカーボンブラックを100質量部以下の範囲で含有するものを採用しても構わない。導電塗膜の熱硬化性樹脂は例えばフェノール樹脂が挙げられる。基材の粗面化表面は、化学的除去手段により形成されたものが好ましい。前記熱処理は、各セルのガス流路に90〜200℃のガスを流すこと、あるいは各セルを前記固定状態のまま90〜200℃の雰囲気中に置くことによって行うことがができる。各セルを前記固定状態のまま90〜200℃の雰囲気中に置くとともに、各セルのガス流路に90〜200℃のガスを流してもよい。   The conductive coating film preferably contains 30 to 300 parts by mass of graphite as conductive carbon particles with respect to 100 parts by mass of the thermosetting resin, and further contains carbon black in a range of 100 parts by mass or less. It doesn't matter. An example of the thermosetting resin of the conductive coating film is a phenol resin. The roughened surface of the substrate is preferably formed by chemical removal means. The heat treatment can be performed by flowing a gas of 90 to 200 ° C. through the gas flow path of each cell, or by placing each cell in an atmosphere of 90 to 200 ° C. in the fixed state. While each cell is placed in an atmosphere of 90 to 200 ° C. in the fixed state, a gas of 90 to 200 ° C. may be allowed to flow through the gas flow path of each cell.

本発明によれば、セパレータ材料としてステンレス鋼を用いた固体高分子型燃料電池において、セパレータとMEAの間の接触抵抗を簡便な手法で顕著に低減することが可能となる。また、燃料電池内部の酸性環境において、ステンレス鋼の腐食も十分に防止することができる。したがって本発明は、固体高分子型燃料電池の普及に寄与しうる。   According to the present invention, in a polymer electrolyte fuel cell using stainless steel as a separator material, the contact resistance between the separator and the MEA can be significantly reduced by a simple method. In addition, corrosion of stainless steel can be sufficiently prevented in an acidic environment inside the fuel cell. Therefore, the present invention can contribute to the spread of solid polymer fuel cells.

本発明の対象となるセパレータの表面付近の断面SEM写真。The cross-sectional SEM photograph of the surface vicinity of the separator used as the object of this invention. カーボンペーパー表面のSEM写真。SEM photograph of carbon paper surface. 熱処理後におけるセパレータと電極の炭素繊維との接触箇所の断面SEM写真。The cross-sectional SEM photograph of the contact location of the separator and the carbon fiber of an electrode after heat processing. 熱処理温度と、セパレータ/電極間のトータル接触抵抗の関係を示したグラフ。The graph which showed the relationship between heat processing temperature and the total contact resistance between a separator / electrode. 温度変動を6サイクル施した場合のトータル接触抵抗の経時変化を示したグラフ。The graph which showed the time-dependent change of the total contact resistance at the time of performing a temperature fluctuation for 6 cycles.

ステンレス鋼基材の表面に導電塗膜を形成したセパレータと、カーボンペーパーなどの繊維状炭素を用いた電極との間のトータル接触抵抗(セパレータ/電極間のトータル接触抵抗)は、「ステンレス鋼基材/導電塗膜の接触抵抗」、「導電塗膜の内部抵抗」および「導電塗膜/電極の接触抵抗」に大きく依存する。   The total contact resistance (total contact resistance between separator / electrode) between a separator having a conductive coating film formed on the surface of a stainless steel substrate and an electrode using fibrous carbon such as carbon paper is “stainless steel base It greatly depends on “contact resistance of material / conductive coating film”, “internal resistance of conductive coating film” and “contact resistance of conductive coating film / electrode”.

発明者らは詳細な検討の結果、以下の知見を得た。
(i)「ステンレス鋼基材/導電塗膜の接触抵抗」を低減するためには、ステンレス鋼基材の表面を特異な粗面化形態とすることが極めて効果的である。また、後述の熱処理を施すことが有効である。さらに、そのステンレス鋼の粗面化表面を覆う導電塗膜には、片状黒鉛などの粒子径の大きい導電性炭素粒子を多量に含有させることが有利となる。
(ii)「導電塗膜の内部抵抗」を低減するためには、塗膜中の導電性炭素粒子の含有量を多くすることが有効であり、特に片状黒鉛を含有させることが有利となる。
(iii)「導電塗膜/電極の接触抵抗」を低減するためには、塗膜中の導電性炭素粒子と、電極を構成する炭素繊維が十分に接触している状態を作り出すことが重要であり、そのためには後述の熱処理を施すことが極めて効果的である。特に、導電塗膜中に片状黒鉛を多量に含有させることが有利となる。
本発明はこのような知見に基づいて完成したものである。以下、本発明を特定するための事項について説明する。
As a result of detailed studies, the inventors have obtained the following findings.
(I) In order to reduce the “contact resistance of the stainless steel substrate / conductive coating film”, it is extremely effective to make the surface of the stainless steel substrate have a specific roughened form. It is also effective to perform a heat treatment described later. Further, it is advantageous that the conductive coating film covering the roughened surface of the stainless steel contains a large amount of conductive carbon particles having a large particle diameter such as flake graphite.
(Ii) In order to reduce “internal resistance of the conductive coating film”, it is effective to increase the content of conductive carbon particles in the coating film, and it is particularly advantageous to contain flake graphite. .
(Iii) In order to reduce the “contact resistance of the conductive coating film / electrode”, it is important to create a state where the conductive carbon particles in the coating film and the carbon fibers constituting the electrode are in sufficient contact. For this purpose, it is extremely effective to perform the heat treatment described later. In particular, it is advantageous to contain a large amount of flake graphite in the conductive coating film.
The present invention has been completed based on such findings. Hereinafter, matters for specifying the present invention will be described.

〔ステンレス鋼基材〕
基材であるステンレス鋼の表面は特異な粗面化形態を有していることが必要である。種々検討の結果、表面積が投影面積に対し2倍以上であり、かつ面粗さSRaが2μm以下である粗面化表面としたとき、「ステンレス鋼基材/導電塗膜の接触抵抗」が顕著に低減する。そのメカニズムについては必ずしも明確ではないが、後述の面圧を付与した状態での熱処理によって塗膜の樹脂が変形し、その際、上記の特異な粗面化形態を有している場合には導電フィラーとステンレス鋼基材との接触機会が大幅に増大するのではないかと推察される。特に片状の黒鉛粒子を多量に配合した塗膜の場合、黒鉛粒子はカーボンブラックなど一般的に多用されている導電性炭素系フィラーと比べ粒子径が格段に大きく、形状が片状であることから、基材の粗面化表面における凸部と黒鉛粒子との接触機会が大幅に増大するものと考えられ、「ステンレス鋼基材/導電塗膜の接触抵抗」を低減する上で特に有効となる。
[Stainless steel substrate]
The surface of stainless steel as a base material needs to have a specific roughened form. As a result of various studies, when the surface is a roughened surface having a surface area of 2 times or more than the projected area and a surface roughness SRa of 2 μm or less, “contact resistance of stainless steel substrate / conductive coating film” is remarkable. To reduce. Although the mechanism is not necessarily clear, the resin of the coating film is deformed by heat treatment in a state where a surface pressure is applied as described below. It is presumed that the contact opportunity between the filler and the stainless steel base material may be greatly increased. In particular, in the case of a coating film containing a large amount of flake graphite particles, the graphite particles have a remarkably large particle size and a flake shape compared to commonly used conductive carbon fillers such as carbon black. Therefore, it is considered that the chance of contact between the projections and the graphite particles on the roughened surface of the base material is greatly increased, and is particularly effective in reducing the “contact resistance of the stainless steel base material / conductive coating film”. Become.

ただし、基材の粗面化表面を構成するピットは過剰に大きくないことが重要である。具体的には面粗さSRaが2μmを超えて大きくなると、表面積が投影面積に対し2倍以上となるような基材の凹凸形態であっても、「ステンレス鋼基材/導電塗膜の接触抵抗」が十分に低下しない場合がある。その原因の1つとして、粗面化表面の凸部と導電フィラー粒子との接触箇所の数が減少することが考えられる。   However, it is important that the pits constituting the roughened surface of the substrate are not excessively large. Specifically, when the surface roughness SRa is larger than 2 μm, the “contact of stainless steel substrate / conductive coating film” may be used even if the substrate has an uneven shape such that the surface area is twice or more the projected area. The “resistance” may not decrease sufficiently. As one of the causes, it can be considered that the number of contact portions between the convex portions on the roughened surface and the conductive filler particles is reduced.

表面積の投影面積に対する大きさは2倍以上であることが必要であるが、塩化第二鉄水溶液中での交番電解処理(特許文献3参照)によれば、8倍近いものを作製することもできる。そのようなものでも「ステンレス鋼基材/導電塗膜の接触抵抗」の低減作用が得られることを確認している。したがって、表面積の投影面積に対する大きさは2〜8倍程度の範囲で調整すればよい。一方、面粗さSRaについては2μm以下に規定されるが、その下限は、表面積の投影面積に対する比率を2倍以上に規定することによって制約を受けるので、特に規定する必要はない。特に好ましいSRaの範囲は0.5〜2μmである。   The size of the surface area with respect to the projected area needs to be twice or more, but according to the alternating electrolysis treatment in ferric chloride aqueous solution (see Patent Document 3), it is possible to produce a thing close to 8 times. it can. It has been confirmed that even such a thing can reduce the “contact resistance of the stainless steel substrate / conductive coating film”. Therefore, the size of the surface area relative to the projected area may be adjusted in the range of about 2 to 8 times. On the other hand, the surface roughness SRa is specified to be 2 μm or less, but the lower limit is not particularly required because it is restricted by specifying the ratio of the surface area to the projected area to be twice or more. A particularly preferable SRa range is 0.5 to 2 μm.

基材に用いるステンレス鋼としては、特段に耐食性を向上させた鋼種を適用する必要はない。「ステンレス鋼」とはJIS G0203:2000の番号4201に記載されるように、Cr含有量が10.5%以上の鋼であり、種々の鋼種が適用対象となる。オーステナイト系であればCr:10.5〜40質量%好ましくは11〜30質量%、Ni:5〜30質量%程度、フェライト系であればCr:10.5〜40質量%程度好ましくは15〜30質量%程度の鋼種を採用することができる。例えばJIS G4305:2005に規定される鋼種を例示すればオーステナイト系ではSUS304、SUS316、SUS310S等が挙げられ、フェライト系ではSUS430、SUS436L、SUS444、SUS445J1、SUS445J2、SUS447J1等が挙げられる。   As the stainless steel used for the base material, it is not necessary to apply a steel type with particularly improved corrosion resistance. “Stainless steel” is steel having a Cr content of 10.5% or more as described in JIS G0203: 2000, number 4201, and various steel types are applicable. For austenite, Cr: 10.5 to 40% by mass, preferably 11 to 30% by mass, Ni: about 5 to 30% by mass, and for ferrite, Cr: about 10.5 to 40% by mass, preferably 15 to A steel grade of about 30% by mass can be adopted. For example, SUS304, SUS316, SUS310S etc. are mentioned in the austenite type if the steel types specified in JIS G4305: 2005 are exemplified, and SUS430, SUS436L, SUS444, SUS445J1, SUS445J2, SUS447J1, etc. are mentioned in the ferrite type.

基材ステンレス鋼板の板厚は例えば0.1〜0.6mm程度のものが使用できる。セル内にガス流路を形成するために、波板状に加工した形状とされるのが一般的である。平板の状態で化学的除去手段による粗面化処理を施し、その後、所定の形状に成形加工すればよい。後述の塗膜を形成させるための塗装は、加工前の平板の状態で行ってもよいし(プレコート)、加工後に行ってもよい(ポストコート)。   For example, the base stainless steel plate having a thickness of about 0.1 to 0.6 mm can be used. In order to form a gas flow path in the cell, the shape is generally processed into a corrugated plate shape. What is necessary is just to give the roughening process by a chemical removal means in the state of a flat plate, and shape | mold it in a predetermined shape after that. The coating for forming the coating film described later may be performed in a state of a flat plate before processing (pre-coating) or after processing (post-coating).

〔導電塗膜〕
上記ステンレス鋼基材の粗面化表面上に、導電性フィラーである炭素粒子が熱硬化性樹脂をバインダーとして固められている導電塗膜を形成することによって本発明に適用可能なセパレータが得られる。
[Conductive coating]
A separator applicable to the present invention is obtained by forming a conductive coating film in which carbon particles, which are conductive fillers, are hardened with a thermosetting resin as a binder on the roughened surface of the stainless steel substrate. .

塗膜の構成材料である樹脂としては、フェノール樹脂、エポキシ樹脂などの熱硬化性樹脂が効果的である。熱硬化性樹脂は後述の熱処理において過度に軟化することがなく、熱処理後においてもセパレータ/電極間の面圧が十分に高く維持されるので、トータル接触抵抗の低減効果に優れる。フェノール樹脂やエポキシ樹脂は耐水性に優れるという点でも固体高分子型燃料電池の用途に適している。   As the resin that is a constituent material of the coating film, thermosetting resins such as phenol resins and epoxy resins are effective. The thermosetting resin is not excessively softened in the heat treatment described later, and the surface pressure between the separator and the electrode is maintained sufficiently high even after the heat treatment, and thus is excellent in the effect of reducing the total contact resistance. Phenol resins and epoxy resins are also suitable for solid polymer fuel cell applications because of their excellent water resistance.

導電性炭素粒子としては、黒鉛粒子を使用することが望ましい。特に片状の黒鉛粒子であることが抵抗低減に効果的である。片状とすることで塗料を塗布した際に黒鉛粒子の広面(厚さ方向に垂直な平面)が基材表面に対して平行に近い角度で配向しやすく、塗膜中において個々の黒鉛粒子が重なった状態で並びやすくなるので、基材とMEAの間に面圧を付与したときに個々の黒鉛粒子の接触による導通が確保されやすくなる。片状黒鉛は、レーザー回折式粒度分布測定装置による平均粒子径D50が1〜20μmの片状黒鉛粉体を使用することが望ましい。このような片状黒鉛粉体は平均厚さが1〜5μm、平均直径(長径)が5〜100μm程度の粒子で構成されるものである。   It is desirable to use graphite particles as the conductive carbon particles. In particular, flake graphite particles are effective in reducing resistance. When the coating is applied, the wide surface of the graphite particles (the plane perpendicular to the thickness direction) is easily oriented at an angle close to the parallel to the substrate surface when the paint is applied. Since it becomes easy to line up in the state which overlapped, when surface pressure is given between a substrate and MEA, conduction by contact of each graphite particle becomes easy to be secured. As the flake graphite, it is desirable to use flake graphite powder having an average particle diameter D50 of 1 to 20 μm by a laser diffraction particle size distribution analyzer. Such flake graphite powder is composed of particles having an average thickness of 1 to 5 μm and an average diameter (major axis) of about 5 to 100 μm.

熱硬化性樹脂100質量部に対し黒鉛30質量部以上を配合させることが望ましく、45質量部以上配合させることがより好ましい。このように多量の黒鉛を熱硬化性樹脂で固めることによって、「導電塗膜の内部抵抗」を低く抑えることができる。また、「ステンレス鋼基材/導電塗膜の接触抵抗」および「導電塗膜/電極の接触抵抗」を低減するためにも有利となる。ただし、黒鉛の含有量が過剰に多くなると樹脂との混練性が低下するようになるので、黒鉛の含有量は塗料の調合が可能な範囲で調整する必要がある。例えば、熱硬化性樹脂100質量部に対する黒鉛配合量は300質量部以下とすることが望ましい。   It is desirable to add 30 parts by mass or more of graphite to 100 parts by mass of the thermosetting resin, and it is more preferable to add 45 parts by mass or more. By solidifying a large amount of graphite with a thermosetting resin in this manner, the “internal resistance of the conductive coating film” can be kept low. It is also advantageous to reduce “stainless steel substrate / conductive coating contact resistance” and “conductive coating / electrode contact resistance”. However, if the graphite content is excessively high, the kneadability with the resin is lowered, so the graphite content needs to be adjusted within a range where the paint can be prepared. For example, it is desirable that the amount of graphite blended with respect to 100 parts by mass of the thermosetting resin is 300 parts by mass or less.

黒鉛以外の導電性炭素粒子としては、炭素繊維が利用できる。特に直径2〜20μm程度の炭素繊維を長さ5〜100μm程度に切断した短繊維を導電性炭素粒子として使用することができる。   Carbon fibers can be used as the conductive carbon particles other than graphite. In particular, short fibers obtained by cutting carbon fibers having a diameter of about 2 to 20 μm into lengths of about 5 to 100 μm can be used as the conductive carbon particles.

塗膜の導電性をより向上させるために、さらにカーボンブラックを含有させることが一層好ましい。その場合、熱硬化性樹脂100質量部に対しカーボンブラックを10質量部以上配合させることがより効果的であり、20質量部以上とすることが一層効果的である。ただし、過剰に含有させると混練性が低下し、均一な塗料を調製することが困難となるので、カーボンブラックを配合させる場合は熱硬化性樹脂100質量部に対し100質量部以下の範囲で行うことが望ましい。   In order to further improve the conductivity of the coating film, it is more preferable to further contain carbon black. In that case, it is more effective to add 10 parts by mass or more of carbon black to 100 parts by mass of the thermosetting resin, and it is more effective to add 20 parts by mass or more. However, when it is excessively contained, kneadability is lowered and it becomes difficult to prepare a uniform paint. Therefore, when carbon black is blended, it is performed in a range of 100 parts by mass or less relative to 100 parts by mass of the thermosetting resin. It is desirable.

導電塗膜の平均厚さ(基材表面に形成した硬化塗膜の面圧付与前の平均厚さ)は3〜50μmとすることが望ましい。3μm未満では膜厚中に含まれる黒鉛の数が減少し、また、加熱による塗膜の変形が起こりにくくなることでトータル接触抵抗が低下しにくくなる。また、耐食性も低下する。50μmを超えると後述の加圧下での熱処理において塗膜の変形が大きくなって面圧低下を招きやすい。その場合、トータル接触抵抗の低減効果が小さくなる。   The average thickness of the conductive coating film (the average thickness of the cured coating film formed on the substrate surface before application of surface pressure) is preferably 3 to 50 μm. If the thickness is less than 3 μm, the number of graphite contained in the film thickness decreases, and the deformation of the coating film due to heating becomes difficult to occur, so that the total contact resistance is unlikely to decrease. Moreover, corrosion resistance also falls. If it exceeds 50 μm, the deformation of the coating film becomes large in the heat treatment under pressure described later, and the surface pressure tends to decrease. In that case, the effect of reducing the total contact resistance is reduced.

図1に、本発明の対象となるセパレータの表面付近の断面SEM写真を例示する。この例は、表面積が投影面積に対し約5.5倍であり、かつ面粗さSRaが1.1μmである粗面化表面を持つSUS445J1の基材表面に、フェノール樹脂100質量部に対し、片状黒鉛粉体を110質量部配合させ、さらにカーボンブラックを40質量部配合させた導電塗膜を形成させたものである。黒鉛粒子(塗膜中で明るく見える部分)は、その広面(厚さ方向に垂直な平面)が基材表面に対して平行に近い角度となるように配向している様子がわかる。   FIG. 1 illustrates a cross-sectional SEM photograph near the surface of a separator that is the subject of the present invention. In this example, the surface area of SUS445J1 having a roughened surface with a surface area of about 5.5 times the projected area and a surface roughness SRa of 1.1 μm is applied to 100 parts by mass of phenol resin. A conductive coating film is formed by blending 110 parts by mass of flake graphite powder and further blending 40 parts by mass of carbon black. It can be seen that the graphite particles (portions that appear bright in the coating film) are oriented so that their wide surfaces (planes perpendicular to the thickness direction) are at angles close to parallel to the substrate surface.

〔MEA〕
MEA(膜・電極接合体;Membrane Electrode Assembly)は、工業用材料として市販されている種々のものが適用できるが、その表面にカーボンペーパーなど、炭素繊維で構成されるシート状電極を有するものが好適である。
[MEA]
MEA (Membrane Electrode Assembly) can be applied to various commercially available materials, but those having a sheet-like electrode composed of carbon fiber such as carbon paper on the surface thereof. Is preferred.

図2に、カーボンペーパー表面のSEM写真を例示する。カーボンペーパーは炭素繊維で構成されており、空隙率が例えば80%程度と高い。このため、セパレータ塗膜面と接触させたときには、炭素繊維と導電塗膜との接触点における接触圧力が高まり、接触抵抗の低減に有利となる。   FIG. 2 illustrates an SEM photograph of the carbon paper surface. Carbon paper is composed of carbon fibers and has a high porosity of about 80%, for example. For this reason, when it is made to contact with the separator coating film surface, the contact pressure at the contact point between the carbon fiber and the conductive coating film increases, which is advantageous in reducing the contact resistance.

〔スタック〕
固体高分子型燃料電池スタックの構成部材であるセパレータとしては、前記の粗面化ステンレス鋼板の表面に前記導電塗膜を形成させたものを使用する。1枚の波板状ステンレス鋼基材の両面に導電塗膜を有するタイプのセパレータや、2枚の波板状ステンレス鋼基材を溶接、ろう付け、プレス等により張り合わせて内部に冷却水流路を設け、両側の外面に導電塗膜を有するようにしたタイプのセパレータを適用することができる。MEAとセパレータを交互に配置して積層構造とする。積層構造の両端部には通常、セパレータと同様構造の集電体が配置される。両端の集電体の間に圧縮荷重を付与し、各MEAとセパレータの接触箇所における平均面圧が0.5〜5MPaとなる状態で積層構造を固定することにより、固体高分子型燃料電池のスタックが構築される。実際に使用される際の面圧が付与されていればよいが、平均面圧が低すぎると接触抵抗が大きくなる。逆に平均面圧が高すぎるとMEAやセパレータが不用意に変形して所定の構造が維持できなくなる場合がある。特にMEAの電極にカーボンペーパーを使用した場合には、カーボンペーパーの組織構造が座屈して、導電塗膜との接触抵抗が十分に改善されない場合がある。平均面圧は1〜3MPaの範囲とすることがより好ましい。
〔stack〕
As the separator that is a constituent member of the polymer electrolyte fuel cell stack, a separator in which the conductive coating film is formed on the surface of the roughened stainless steel plate is used. A separator with a conductive coating on both sides of a corrugated stainless steel substrate, and two corrugated stainless steel substrates are welded, brazed, pressed, etc., and a cooling water flow path is formed inside A separator of a type provided with a conductive coating on the outer surfaces on both sides can be applied. MEAs and separators are alternately arranged to form a laminated structure. Usually, current collectors having the same structure as the separator are disposed at both ends of the laminated structure. By applying a compressive load between the current collectors at both ends and fixing the laminated structure in a state where the average surface pressure at the contact portion between each MEA and the separator is 0.5 to 5 MPa, the solid polymer fuel cell A stack is built. It is sufficient that the surface pressure at the time of actual use is applied, but if the average surface pressure is too low, the contact resistance increases. On the other hand, if the average surface pressure is too high, the MEA and the separator may be carelessly deformed and the predetermined structure may not be maintained. In particular, when carbon paper is used for the MEA electrode, the structure of the carbon paper may buckle, and the contact resistance with the conductive coating may not be sufficiently improved. The average surface pressure is more preferably in the range of 1 to 3 MPa.

〔熱処理〕
本発明では、各MEAとセパレータの接触箇所における平均面圧が0.5〜5MPaとなるように固定された状態のスタックに対して、各セパレータの導電塗膜が90〜200℃で10分以上保持されるように熱処理を施す。発明者らは、この熱処理によって、セパレータ/電極間のトータル接触抵抗が顕著に低減し、その後の使用においても、低い接触抵抗が維持されることを見出した。通常、固体高分子型燃料電池の使用温度(ガス温度)は20〜90℃程度に設定されることが多いが、イオン交換膜の種類によってはさらに高温に設定することも可能と考えられる。実際の使用温度が90〜200℃の間にある場合は、実際の使用における初期の加熱を熱処理として利用しても構わない。この熱処理によってトータル接触抵抗が顕著に低減するメカニズムについては現時点で不明な点も多いが、導電塗膜の樹脂が加圧下での加熱によって少し変形し、導電フィラーである導電性炭素粒子、特に粒径の大きい片状黒鉛やカーボン短繊維が、基材、電極(カーボンペーパーの場合は炭素繊維)および隣接する導電性炭素粒子に対して一層接触しやすい状態に再配向することが要因になっているのではないかと推察される。
〔Heat treatment〕
In the present invention, the conductive coating film of each separator is 10 minutes or more at 90 to 200 ° C. with respect to the stack in a state where the average surface pressure at the contact point between each MEA and the separator is 0.5 to 5 MPa. Heat treatment is performed so that it is maintained. The inventors have found that this heat treatment significantly reduces the total contact resistance between the separator / electrode and maintains a low contact resistance even in subsequent use. Usually, the use temperature (gas temperature) of the polymer electrolyte fuel cell is often set to about 20 to 90 ° C., but it is considered that it can be set to a higher temperature depending on the type of the ion exchange membrane. When the actual use temperature is between 90 and 200 ° C., the initial heating in the actual use may be used as the heat treatment. There are many unclear points about the mechanism by which the total contact resistance is significantly reduced by this heat treatment, but the conductive coating resin is slightly deformed by heating under pressure, and conductive carbon particles, especially particles, are conductive fillers. This is due to the fact that flake graphite and carbon short fibers having a large diameter are reoriented so as to be more in contact with the base material, electrodes (carbon fibers in the case of carbon paper) and adjacent conductive carbon particles. It is guessed that there is.

熱処理温度が90℃未満では、再配向の程度が不十分となりやすいと考えられ、実際にトータル接触抵抗の低減効果は小さい。一方、200℃を超える高温に加熱するとイオン交換膜が劣化しやすい。また、90〜200℃の間に保持する時間が10分未満では、再配向の途上で抵抗低減の余地を大きく残したまま熱処理が終了してしまう場合が多くなり好ましくない。通常、10分〜3時間の範囲で最適時間を見出すことができる。0.5〜2時間の範囲で設定しても構わない。   If the heat treatment temperature is less than 90 ° C., it is considered that the degree of reorientation tends to be insufficient, and the effect of reducing the total contact resistance is actually small. On the other hand, when heated to a high temperature exceeding 200 ° C., the ion exchange membrane tends to deteriorate. In addition, if the time of holding between 90 and 200 ° C. is less than 10 minutes, the heat treatment often ends with much room for resistance reduction in the course of reorientation, which is not preferable. Usually, the optimum time can be found in the range of 10 minutes to 3 hours. You may set in the range of 0.5 to 2 hours.

図3に、熱処理後におけるセパレータと電極の炭素繊維との接触箇所の断面SEM写真を例示する。ステンレス鋼基材(SUS445J1)の粗面化表面および電極の炭素繊維と、導電塗膜とが、加圧力を受けてタイトに接触していることがわかる。   In FIG. 3, the cross-sectional SEM photograph of the contact location of the separator and the carbon fiber of an electrode after heat processing is illustrated. It can be seen that the roughened surface of the stainless steel substrate (SUS445J1), the carbon fibers of the electrode, and the conductive coating film are in contact with the tight under pressure.

熱処理の加熱は、スタック全体を加熱炉に装入して行ってもよいし、実際の固体高分子型燃料電池の発電システムを構築した後に、初期の段階で各セルのガス流路に90〜200℃のガスを流すことによって行ってもよい。この熱処理を受けたスタックは、解体されることなく、そのまま固体高分子型燃料電池システムに適用される。   The heat treatment may be performed by charging the entire stack into a heating furnace, or after constructing an actual power generation system for a polymer electrolyte fuel cell, in an initial stage, 90 to 90 gas flow paths in each cell. You may carry out by flowing 200 degreeC gas. The stack subjected to the heat treatment is directly applied to the polymer electrolyte fuel cell system without being disassembled.

固体高分子型燃料電池スタックにおけるセパレータとMEAの接触構造を模擬して、「ステンレス鋼基材/導電塗膜/カーボンペーパー」からなる接触構造を形成し、熱処理によるトータル接触抵抗の低減効果を調べた実験例を示す。   Simulating the contact structure between the separator and MEA in a polymer electrolyte fuel cell stack, forming a contact structure consisting of “stainless steel substrate / conductive coating / carbon paper”, and examining the effect of reducing the total contact resistance by heat treatment An experimental example is shown.

基材用のステンレス鋼板として以下の化学組成を有するSUS445J1の板厚0.2mm、No.2D仕上材を用意し、これに下記の条件で電解粗面化処理を行うことによって面積が投影面積に対し約6.2倍であり、かつ面粗さSRaが1.1μmである粗面化表面を有するステンレス鋼基板を用意した。
〔化学組成〕
質量%で、C:0.006%、Si:0.24%、Mn:0.19%、Ni:0.14%、Cr:21.94%、P:0.034%、S:0.001%、Cu:0.07%、Mo:1.12%、残部Feおよび不可避的不純物
〔電解粗面化処理条件〕
12質量%FeCl3水溶液、50℃、アノード電流密度3.0kA/m2、カソード電流密度0.5kA/m2、交番電解サイクル2.5Hz、処理時間60秒
As the stainless steel plate for the base material, a SUS445J1 plate having a thickness of 0.2 mm and a No. 2D finishing material having the following chemical composition is prepared. A stainless steel substrate having a roughened surface having a surface roughness SRa of about 6.2 μm and a surface roughness SRa of 1.1 μm was prepared.
[Chemical composition]
In mass%, C: 0.006%, Si: 0.24%, Mn: 0.19%, Ni: 0.14%, Cr: 21.94%, P: 0.034%, S: 0.0. 001%, Cu: 0.07%, Mo: 1.12%, balance Fe and inevitable impurities [electrolytic surface roughening treatment conditions]
12 mass% FeCl 3 aqueous solution, 50 ° C., anode current density 3.0 kA / m 2 , cathode current density 0.5 kA / m 2 , alternating electrolysis cycle 2.5 Hz, treatment time 60 seconds

導電塗料として以下のものを調合し、これをバーコーター法にて前記基材の粗面化表面上に塗布し、150℃で30分間加熱することにより樹脂を硬化させることにより硬化後の平均塗膜厚さが15μmの塗膜を形成し、セパレータ試料とした。
〔導電塗料〕
樹脂; フェノール樹脂
導電性炭素粒子;
・片状黒鉛:レーザー回折式粒度分布測定装置による平均粒子径D50:5μm
・カーボンブラック:ケッチェン・ブラック・インターナショナル(株)製、商品名「ケッチェンブラックEC」
配合; 樹脂100質量部に対し、片状黒鉛110質量部、およびカーボンブラック40質量部
The following is prepared as a conductive paint, applied on the roughened surface of the substrate by the bar coater method, and heated at 150 ° C. for 30 minutes to cure the resin, thereby curing the average coating after curing. A coating film having a film thickness of 15 μm was formed as a separator sample.
[Conductive paint]
Resin; phenol resin; conductive carbon particles;
・ Flake graphite: Average particle diameter D50 by laser diffraction particle size distribution analyzer: 5 μm
・ Carbon black: Ketjen Black International Co., Ltd., trade name “Ketjen Black EC”
Compounding: 110 parts by mass of flake graphite and 40 parts by mass of carbon black with respect to 100 parts by mass of resin

一方、電極材料としてカーボンペーパー(東レ(株)製;TGP−H−120)を用意した。
前記セパレータ試料から直径50mmの円板を切り出し、導電塗膜の表面にカーボンペーパー載せて、平均面圧が1MPaとなるように圧縮荷重を付与した状態で、基材とカーボンペーパーの間に電流密度0.3A/cm2の直流電流を流した状態で、80〜130℃の種々の温度に設定した炉中に装入し、4端子法にて基材とカーボンペーパーの間の電位差をモニターすることにより、接触抵抗(mΩ・cm2)の変化を調べた。
On the other hand, carbon paper (manufactured by Toray Industries, Inc .; TGP-H-120) was prepared as an electrode material.
A disk having a diameter of 50 mm is cut out from the separator sample, carbon paper is placed on the surface of the conductive coating film, and a current density is applied between the base material and the carbon paper with a compressive load applied so that the average surface pressure is 1 MPa. In a state where a direct current of 0.3 A / cm 2 was passed, the sample was placed in a furnace set at various temperatures of 80 to 130 ° C., and the potential difference between the base material and the carbon paper was monitored by the four-terminal method. Thus, the change in contact resistance (mΩ · cm 2 ) was examined.

図4に、所定温度における保持時間が10分経過時点および24時間経過時点のトータル接触抵抗を示す。この接触抵抗値が10mΩ・cm2以下であれば固体高分子型燃料電池スタックとして実用的な性能が得られると評価される。図4からわかるように、熱処理によって接触抵抗が低減し、特に90℃以上で10分以上加熱すると安定して10mΩ・cm2以下の接触抵抗が得られるようになる。
なお、粗面化表面を有していないステンレス鋼基材を用いた場合には、前記各熱処理条件において、10mΩ・cm2以下の接触抵抗を得ることができなかった。
FIG. 4 shows the total contact resistance when the holding time at a predetermined temperature is 10 minutes and when 24 hours have elapsed. If this contact resistance value is 10 mΩ · cm 2 or less, it is evaluated that practical performance can be obtained as a polymer electrolyte fuel cell stack. As can be seen from FIG. 4, the contact resistance is reduced by the heat treatment, and particularly when heated at 90 ° C. or more for 10 minutes or more, a contact resistance of 10 mΩ · cm 2 or less can be stably obtained.
When a stainless steel substrate having no roughened surface was used, a contact resistance of 10 mΩ · cm 2 or less could not be obtained under each heat treatment condition.

図5に、上記の加熱方法にて温度変動を6サイクル施した場合のトータル接触抵抗の経時変化を示す。温度変動パターンの下限温度は25℃、上限温度は80〜130℃の種々の温度である。図5からわかるように、熱処理の初期の段階で接触抵抗は急激に低下し、その後は温度変動を繰り返しても、接触抵抗は低い状態に保たれる。   FIG. 5 shows a change with time of the total contact resistance when the temperature variation is performed 6 cycles by the above heating method. The lower limit temperature of the temperature variation pattern is 25 ° C., and the upper limit temperature is various temperatures of 80 to 130 ° C. As can be seen from FIG. 5, the contact resistance rapidly decreases at the initial stage of the heat treatment, and thereafter, the contact resistance is kept low even if the temperature variation is repeated.

Claims (8)

MEA(膜・電極接合体)とセパレータを交互に配置して複数のセルを持つ固体高分子型燃料電池のスタックを構築するに際し、
MEAとして、イオン交換膜の表面に繊維状炭素で構成される電極シートを接合したものを用い、
セパレータとして、表面積が投影面積に対し2倍以上であり、かつ面粗さSRaが2μm以下である粗面化表面を持つステンレス鋼を基材とし、その基材の粗面化表面上に、導電性炭素粒子を熱硬化性樹脂によって固めた平均厚さ3〜50μmの導電塗膜を有するものを用い、
MEAとセパレータを交互に配置して積層構造とし、MEAの電極表面と、セパレータの導電塗膜表面の接触箇所における平均面圧が0.5〜5MPaとなるように当該積層構造を固定したのち、前記固定状態のまま各セパレータの導電塗膜が90〜200℃で10分以上保持されるように熱処理を施す固体高分子型燃料電池スタックの製造方法。
When constructing a stack of polymer electrolyte fuel cells having a plurality of cells by alternately arranging MEAs (membrane / electrode assemblies) and separators,
As the MEA, an electrode sheet composed of fibrous carbon is joined to the surface of the ion exchange membrane,
As a separator, a stainless steel having a rough surface with a surface area of 2 times or more of the projected area and a surface roughness SRa of 2 μm or less is used as a base material. Using a conductive coating film having an average thickness of 3 to 50 μm obtained by solidifying carbonaceous particles with a thermosetting resin,
The MEA and the separator are alternately arranged to form a laminated structure, and after fixing the laminated structure so that the average surface pressure at the contact point between the electrode surface of the MEA and the conductive coating surface of the separator is 0.5 to 5 MPa, A method for producing a polymer electrolyte fuel cell stack, in which heat treatment is performed so that the conductive coating film of each separator is maintained at 90 to 200 ° C. for 10 minutes or more in the fixed state.
導電塗膜は、熱硬化性樹脂100質量部に対し導電性炭素粒子として黒鉛30〜300質量部を含有するものである請求項1に記載の固体高分子型燃料電池スタックの製造方法。   The method for producing a polymer electrolyte fuel cell stack according to claim 1, wherein the conductive coating film contains 30 to 300 parts by mass of graphite as conductive carbon particles with respect to 100 parts by mass of the thermosetting resin. 導電塗膜は、導電性炭素粒子としてさらにカーボンブラックを100質量部以下の範囲で含有するものである請求項2に記載の固体高分子型燃料電池スタックの製造方法。   The method for producing a polymer electrolyte fuel cell stack according to claim 2, wherein the conductive coating film further contains carbon black as conductive carbon particles in a range of 100 parts by mass or less. 導電塗膜の熱硬化性樹脂はフェノール樹脂である請求項1〜3のいずれかに記載の固体高分子型燃料電池スタックの製造方法。   The method for producing a polymer electrolyte fuel cell stack according to any one of claims 1 to 3, wherein the thermosetting resin of the conductive coating film is a phenol resin. 基材の粗面化表面は、化学的除去手段により形成されたものである請求項1〜4のいずれかに記載の固体高分子型燃料電池スタックの製造方法。   The method for producing a polymer electrolyte fuel cell stack according to any one of claims 1 to 4, wherein the roughened surface of the substrate is formed by chemical removal means. 前記熱処理は、各セルのガス流路に90〜200℃のガスを流すことによって行う請求項1〜5のいずれかに記載の固体高分子型燃料電池スタックの製造方法。   The method for producing a polymer electrolyte fuel cell stack according to any one of claims 1 to 5, wherein the heat treatment is performed by flowing a gas of 90 to 200 ° C through a gas flow path of each cell. 前記熱処理は、各セルを前記固定状態のまま90〜200℃の雰囲気中に置くことによって行う請求項1〜5のいずれかに記載の固体高分子型燃料電池スタックの製造方法。   The method for producing a polymer electrolyte fuel cell stack according to any one of claims 1 to 5, wherein the heat treatment is performed by placing each cell in an atmosphere of 90 to 200 ° C in the fixed state. 前記熱処理は、各セルを前記固定状態のまま90〜200℃の雰囲気中に置くとともに、各セルのガス流路に90〜200℃のガスを流すことによって行う請求項1〜5のいずれかに記載の固体高分子型燃料電池スタックの製造方法。   The heat treatment is performed by placing each cell in an atmosphere of 90 to 200 ° C in the fixed state and flowing a gas of 90 to 200 ° C through a gas flow path of each cell. The manufacturing method of the polymer electrolyte fuel cell stack of description.
JP2009011694A 2009-01-22 2009-01-22 Method for manufacturing solid polymer fuel cell stack Withdrawn JP2010170817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009011694A JP2010170817A (en) 2009-01-22 2009-01-22 Method for manufacturing solid polymer fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009011694A JP2010170817A (en) 2009-01-22 2009-01-22 Method for manufacturing solid polymer fuel cell stack

Publications (1)

Publication Number Publication Date
JP2010170817A true JP2010170817A (en) 2010-08-05

Family

ID=42702763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009011694A Withdrawn JP2010170817A (en) 2009-01-22 2009-01-22 Method for manufacturing solid polymer fuel cell stack

Country Status (1)

Country Link
JP (1) JP2010170817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021005531A (en) * 2019-06-27 2021-01-14 日鉄ケミカル&マテリアル株式会社 Composite material, and separator for fuel battery, cell, and stack using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021005531A (en) * 2019-06-27 2021-01-14 日鉄ケミカル&マテリアル株式会社 Composite material, and separator for fuel battery, cell, and stack using the same
JP7235607B2 (en) 2019-06-27 2023-03-08 日鉄ケミカル&マテリアル株式会社 Composite materials and separators, cells and stacks for fuel cells using the same

Similar Documents

Publication Publication Date Title
Asri et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review
Antunes et al. Corrosion of metal bipolar plates for PEM fuel cells: A review
US6670066B2 (en) Separator for fuel cell
JP5343731B2 (en) Stainless steel material for separator of polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same
Lin et al. An investigation of coated aluminium bipolar plates for PEMFC
KR101387767B1 (en) Sheet stainless steel for separators in solid polymer fuel cells, and solid polymer fuel cells using the same
JP4236445B2 (en) Low contact resistance PEM fuel cell
EP2025027B1 (en) Fuel cell stack and method of producing its separator plates
Brett et al. Review of materials and characterization methods for polymer electrolyte fuel cell flow-field plates
CN103484910B (en) The method depositing the thin gold plating of durability on fuel battery double plates
WO2006135108A1 (en) Metal separator for fuel cell and manufacturing method thereof
WO2005018032A1 (en) Adhesive bonds for metallic bipolar plates
Satola Bipolar plates for the vanadium redox flow battery
JP2005093172A (en) Separator for fuel cell and fuel cell
Hung et al. Durability and characterization studies of chromium carbide coated aluminum fuel cell stack
JP4639434B2 (en) Bipolar plate and polymer electrolyte fuel cell
JP5292578B2 (en) Metal separator for fuel cell, method for producing metal separator for fuel cell, and fuel cell
JP6225716B2 (en) Titanium material for separator of polymer electrolyte fuel cell and method for producing the same
JP2005150014A (en) Fuel cell and separator for cooling used for it
Taherian et al. Performance and material selection of nanocomposite bipolar plate in proton exchange membrane fuel cells
JP2001236967A (en) Separator for solid polymer electrolyte fuel cell
JP2010170817A (en) Method for manufacturing solid polymer fuel cell stack
Yang et al. Graphite-polypyrrole coated 316L stainless steel as bipolar plates for proton exchange membrane fuel cells
JP3956746B2 (en) Solid polymer fuel cell, separator and method for producing the same
JP5288761B2 (en) Material for separator of polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120403