JP2010169213A - Vehicular power transmission device - Google Patents

Vehicular power transmission device Download PDF

Info

Publication number
JP2010169213A
JP2010169213A JP2009013263A JP2009013263A JP2010169213A JP 2010169213 A JP2010169213 A JP 2010169213A JP 2009013263 A JP2009013263 A JP 2009013263A JP 2009013263 A JP2009013263 A JP 2009013263A JP 2010169213 A JP2010169213 A JP 2010169213A
Authority
JP
Japan
Prior art keywords
rotating member
deceleration
acceleration
press
spline teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009013263A
Other languages
Japanese (ja)
Inventor
Shogo Yamada
章吾 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009013263A priority Critical patent/JP2010169213A/en
Publication of JP2010169213A publication Critical patent/JP2010169213A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicular power transmission device having rotary members integrally constituted by press-fitting spline teeth to each other, in which gear noise is reduced. <P>SOLUTION: A clearance 30 is formed in a part of a tooth face press-fitting section of spline teeth 26, 28 of a first rotary member 18 and a second rotary member 22 interacting each other when a counter driven gear sub-assembly 14 is rotated to one side. The connection rigidity of the first rotary member 18 and second rotary member 22 is thereby made different according to deceleration and acceleration of a vehicle, and a resonance frequency is made different according to the deceleration and acceleration of the vehicle. The gear noise is then reduced by shifting the resonance frequency from a peak point of a gear noise waveform in either deceleration or acceleration. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、歯車機構の一部として機能する第1回転部材および第2回転部材に形成されているスプラインが互いに圧入されることにより一体的に構成される回転部材を有する車両用動力伝達装置に係り、特に、歯車機構のギヤノイズ低減に関するものである。   The present invention provides a vehicular power transmission device having a rotating member integrally formed by press-fitting splines formed on a first rotating member and a second rotating member that function as a part of a gear mechanism. In particular, the present invention relates to gear noise reduction of a gear mechanism.

歯車機構の一部として機能する第1回転部材および第2回転部材に形成されているスプラインが互いに圧入されることにより、一体的に構成される回転部材を有する車両用動力伝達装置がよく知られている。図6は、第1回転部材100および第2回転部材102に形成されている複数個のスプライン歯が互いに圧入されることで嵌め着けられた状態を一部のみ示す図である。図6に示すように、第1回転部材100のスプライン歯104の両斜面106と、第2回転部材102のスプライン歯108の斜面とが、圧入された状態となっている。なお、図6においては、一部のスプライン歯が嵌め着けられた状態のみを示したが、実際には、各スプライン歯が上記のように嵌め着けられている。   A vehicular power transmission device having a rotating member that is integrally formed by press-fitting splines formed on a first rotating member and a second rotating member that function as a part of a gear mechanism is well known. ing. FIG. 6 is a view showing only a part of a state in which a plurality of spline teeth formed on the first rotating member 100 and the second rotating member 102 are press-fitted together. As shown in FIG. 6, both inclined surfaces 106 of the spline teeth 104 of the first rotating member 100 and the inclined surfaces of the spline teeth 108 of the second rotating member 102 are press-fitted. FIG. 6 shows only a state in which some spline teeth are fitted, but in actuality, each spline tooth is fitted as described above.

特開2004−168249号公報JP 2004-168249 A

ところで、前記第1回転部材や第2回転部材は、それぞれ歯車機構の一部として機能するため、歯車機構から発生するギヤノイズを低減することが好ましい。通常、上記ギヤノイズは、車両の加速および減速でノイズ波形が異なっており、加速および減速に応じてギヤノイズのピークが異なる領域(周波数)で発生する。   By the way, since the first rotating member and the second rotating member function as a part of the gear mechanism, it is preferable to reduce gear noise generated from the gear mechanism. Usually, the gear noise has different noise waveforms depending on acceleration and deceleration of the vehicle, and is generated in a region (frequency) where the peak of the gear noise varies depending on the acceleration and deceleration.

図4は、歯車機構の周波数特性とギヤノイズ波形との関係を示す図である。図4において、実線が車両減速時の減速ノイズ波形を示しており、破線が車両加速時の加速ノイズ波形を示している。図4に示すように、車両加速時と減速時とでは、ギヤノイズが最大となるピーク点がそれぞれ異なる周波数領域で発生することとなる。ここで、図4に示すように、車両減速時の減速ノイズ波形のピーク点Aと歯車機構の共振周波数Cが重なっている場合、減速ノイズ波形のピーク点Aでのギヤノイズを低下させるため、歯車機構の共振周波数を異なる周波数にずらすことが望まれる。しかしながら、歯車機構の共振周波数を周波数領域Dにずらすと、車両加速時の加速ノイズ波形のピーク点Bと重なってしまい、加速ノイズが悪化する問題があった。通常、歯車機構の共振周波数は、車両の加速および減速に拘わらず一定であるが、車両の加速および減速時に応じて歯車機構の共振周波数をそれぞれ異なる周波数に変更することで、加速ノイズ波形および減速ノイズ波形のピーク点と共振周波数とが重なることを防止してギヤノイズを低減する技術が必要とされていた。   FIG. 4 is a diagram showing the relationship between the frequency characteristic of the gear mechanism and the gear noise waveform. In FIG. 4, the solid line indicates the deceleration noise waveform when the vehicle is decelerated, and the broken line indicates the acceleration noise waveform when the vehicle is accelerated. As shown in FIG. 4, peak points at which gear noise is maximum occur in different frequency regions during vehicle acceleration and deceleration. Here, as shown in FIG. 4, when the peak point A of the deceleration noise waveform at the time of deceleration of the vehicle and the resonance frequency C of the gear mechanism overlap, the gear noise at the peak point A of the deceleration noise waveform is reduced. It is desirable to shift the resonant frequency of the mechanism to a different frequency. However, if the resonance frequency of the gear mechanism is shifted to the frequency region D, there is a problem that the acceleration noise deteriorates because it overlaps the peak point B of the acceleration noise waveform during vehicle acceleration. Normally, the resonance frequency of the gear mechanism is constant regardless of the acceleration and deceleration of the vehicle, but by changing the resonance frequency of the gear mechanism to a different frequency according to the acceleration and deceleration of the vehicle, the acceleration noise waveform and the deceleration are reduced. There has been a need for a technique for reducing gear noise by preventing the peak point of the noise waveform and the resonance frequency from overlapping.

これに対して、特許文献1に開示されているように、車両のプロペラシャフトのインナパイプとアウタパイプとの連結部において、スプライン歯面の両側に正転方向と逆転方向とで厚さが異なるゴム材を介在させることでギヤ系の共振周波数を変更することが可能となる。しかしながら、特許文献1では、プロペラシャフトの回転方向に応じて厚さの異なるゴム材が必要となるなど、製造工程の複雑化や部品点数の増加が発生する問題があった。   On the other hand, as disclosed in Patent Document 1, in the connecting portion between the inner pipe and the outer pipe of the propeller shaft of the vehicle, the rubber having different thicknesses in the forward direction and the reverse direction on both sides of the spline tooth surface. It becomes possible to change the resonance frequency of the gear system by interposing the material. However, in Patent Document 1, there is a problem in that the manufacturing process is complicated and the number of parts is increased, for example, rubber materials having different thicknesses are required depending on the rotation direction of the propeller shaft.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、歯車機構の一部として機能機能する第1回転部材および第2回転部材に形成されているスプラインが互いに圧入されることにより、一体的に構成される回転部材を有する車両用動力伝達装置において、容易に車両の加速および減速に応じて歯車機構の共振周波数を変更することで、車両加速時および減速時のギヤノイズを低下させることができる車両用動力伝達装置を提供することにある。   The present invention has been made against the background of the above circumstances, and the object of the present invention is that splines formed on the first rotating member and the second rotating member functioning as part of the gear mechanism are mutually connected. In a vehicle power transmission device having a rotating member that is integrally formed by press-fitting, the resonance frequency of the gear mechanism is easily changed according to the acceleration and deceleration of the vehicle, so that the vehicle is accelerated and decelerated. An object of the present invention is to provide a vehicle power transmission device that can reduce gear noise.

上記目的を達成するための、請求項1にかかる発明の要旨とするところは、(a)歯車機構の一部として機能する第1回転部材および第2回転部材に形成されたスプラインが互いに圧入されることにより一体的に構成される回転部材を有する車両用動力伝達装置において、(b)前記回転部材のいずれか一方向側への回転時に互いに反力を受ける前記第1回転部材および第2回転部材のスプライン歯の歯面圧入部の一部において、間隙が形成されていることを特徴とする。   To achieve the above object, the gist of the invention according to claim 1 is that (a) the splines formed on the first rotating member and the second rotating member functioning as part of the gear mechanism are press-fitted together. (B) the first rotating member and the second rotating member that receive a reaction force when rotating the rotating member in any one direction; A gap is formed in a part of the tooth surface press-fitting portion of the spline teeth of the member.

請求項1にかかる発明の車両用動力伝達装置によれば、前記回転部材のいずれか一方向側への回転時に互いに反力を受ける前記第1回転部材および第2回転部材のスプライン歯の歯面圧入部の一部において、間隙が形成されているため、車両の減速および加速に応じて第1回転部材および第2回転部材の結合剛性を異ならすことができ、車両の減速および加速に応じて共振周波数を異ならすことができる。したがって、共振周波数を好適に設定することで、減速および加速のいずれにおいてもギヤノイズ波形のピーク点から共振周波数をずらすことで、ギヤノイズを低減することができる。   According to the vehicle power transmission device of the first aspect of the present invention, the tooth surface of the spline teeth of the first rotating member and the second rotating member that receive a reaction force with each other when the rotating member rotates in one direction. Since a gap is formed in a part of the press-fitting portion, the coupling rigidity of the first rotating member and the second rotating member can be made different according to deceleration and acceleration of the vehicle, and according to deceleration and acceleration of the vehicle. The resonance frequency can be made different. Therefore, by appropriately setting the resonance frequency, the gear noise can be reduced by shifting the resonance frequency from the peak point of the gear noise waveform in both deceleration and acceleration.

本発明が適用された動力伝達装置において、歯車機構の一部であるカウンタドリブンギヤサブアッシの構造を説明する断面図である。It is sectional drawing explaining the structure of the counter driven gear sub-assembly which is a part of gear mechanism in the power transmission device with which this invention was applied. 図1に示すスプライン圧入部を矢印A側から見た矢視図である。It is the arrow line view which looked at the spline press injection part shown in FIG. 1 from the arrow A side. 図2において破線に示す領域を拡大した部分拡大図である。It is the elements on larger scale which expanded the area | region shown with a broken line in FIG. 歯車機構の周波数特性とギヤノイズ波形との関係を示す図である。It is a figure which shows the relationship between the frequency characteristic of a gear mechanism, and a gear noise waveform. 図2において破線に示す領域を拡大した他の部分拡大図である。FIG. 3 is another partial enlarged view in which a region indicated by a broken line in FIG. 2 is enlarged. 従来の第1回転部材および第2回転部材に形成されているスプライン歯が互いに圧入されることで嵌め着けられた状態を一部のみ示す図である。It is a figure which shows only the state in which the spline teeth currently formed in the conventional 1st rotation member and the 2nd rotation member were fitted by mutually press-fitting.

ここで、好適には、スプライン歯の歯面圧入部の一部に形成される間隙は、車両の加速時および減速時において、歯車機構から発生する加速ノイズのピーク点および減速ノイズのピーク点と、歯車機構の共振周波数とが重なり合わないように設定されるものである。このようにすれば、加速ノイズのピーク点および減速ノイズのピーク点の大きさを抑制することができ、ギヤノイズを抑制することができる。   Here, preferably, the gap formed in a part of the tooth surface press-fitting portion of the spline teeth is a peak point of acceleration noise and a peak point of deceleration noise generated from the gear mechanism during acceleration and deceleration of the vehicle. The resonance frequency of the gear mechanism is set so as not to overlap. In this way, the magnitude of the peak point of acceleration noise and the peak point of deceleration noise can be suppressed, and gear noise can be suppressed.

以下、本発明の実施例を図面を参照しつつ詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、本発明が適用された車両用動力伝達装置10において、歯車機構12の一部であるカウンタドリブンギヤサブアッシ14(本発明の回転部材に相当)の構造を説明する断面図である。カウンタドリブンギヤサブアッシ14は、ドライブピニオンギヤ16を有する第1回転部材18と、ドリブンギヤ20を有する第2回転部材22とを有している。そして、第1回転部材18の外周面に形成されているスプライン歯26と、第2回転部材22の内周面に形成されているスプライン歯28とが、互いに嵌合された状態で圧入されることによりカウンタドリブンギヤサブアッシ14が一体的に構成される。なお、カウンタドリブンギヤサブアッシ14は、例えばドリブンギヤ20と噛み合う図示しないドライブギヤから伝達される駆動力をドライブピニオンギヤ16と噛み合う図示しないディファレンシャルリングギヤに伝達するために使用される。   FIG. 1 is a cross-sectional view illustrating the structure of a counter driven gear sub-assembly 14 (corresponding to a rotating member of the present invention) that is a part of a gear mechanism 12 in a vehicle power transmission device 10 to which the present invention is applied. The counter driven gear sub-assembly 14 includes a first rotating member 18 having a drive pinion gear 16 and a second rotating member 22 having a driven gear 20. The spline teeth 26 formed on the outer peripheral surface of the first rotating member 18 and the spline teeth 28 formed on the inner peripheral surface of the second rotating member 22 are press-fitted in a state of being fitted to each other. Thus, the counter driven gear sub-assembly 14 is integrally formed. The counter driven gear sub-assembly 14 is used, for example, to transmit a driving force transmitted from a drive gear (not shown) meshing with the driven gear 20 to a differential ring gear (not shown) meshing with the drive pinion gear 16.

図2は、図1に示すスプライン圧入部24を矢印A側から見た矢視図である。図2に示すように、第1回転部材18の外周面には、スプライン歯26が複数個形成されており、「○」で示す部位に対応するスプライン歯26においては、歯幅が広く設定されており径方向に圧入されている(大径圧入部)。また、第2回転部材22の内周面には、第1回転部材18に形成されるスプライン歯26に嵌合するように複数個のスプライン歯28が形成されている。そして、スプライン歯26、28は、互いに圧入されることで、軸心方向への移動が阻止されている。また、「△」で示すスプライン圧入部24では、スプライン歯26の歯面とスプライン歯28の歯面とによって圧入されている(歯面圧入部32)。なお、上記「△」で示すスプライン圧入部24では、径方向には圧入されていない。   2 is an arrow view of the spline press-fit portion 24 shown in FIG. 1 as viewed from the arrow A side. As shown in FIG. 2, a plurality of spline teeth 26 are formed on the outer peripheral surface of the first rotating member 18, and the spline teeth 26 corresponding to the portions indicated by “◯” have a wide tooth width. It is press-fitted in the radial direction (large-diameter press-fitting part). A plurality of spline teeth 28 are formed on the inner peripheral surface of the second rotating member 22 so as to be fitted to the spline teeth 26 formed on the first rotating member 18. The spline teeth 26 and 28 are press-fitted together to prevent movement in the axial direction. Further, in the spline press-fit portion 24 indicated by “Δ”, the spline teeth 26 are press-fitted by the tooth surfaces of the spline teeth 26 and the spline teeth 28 (tooth surface press-fit portion 32). Note that the spline press-fitting portion 24 indicated by “Δ” is not press-fitted in the radial direction.

図3は、図2において破線に示す領域を拡大した部分拡大図である。図に示すように、図2の「△」で示すスプライン歯26、28の歯面圧入部32において、第2回転部材22の隣り合うスプライン歯28間の距離が拡大されていることで、圧入されているスプライン歯26とスプライン歯28の歯面圧入部32の片側が欠歯されて間隙30が形成されている。上記間隙30は、図3に示すように、時計回り方向側(片側)に形成されており、図2に示す他の「△」で示す歯面圧入部32においても同様に、時計回り方向側(片側)に形成される。なお、この間隙30は、図2の「△」で示す部位のみに形成されるものであるので、他のスプライン圧入部24の部位においては、間隙30は形成されない。したがって、上記間隙30が形成されても、第1回転部材18と第2回転部材22とが相対回転することはない。   FIG. 3 is a partially enlarged view in which a region indicated by a broken line in FIG. 2 is enlarged. As shown in the drawing, in the tooth surface press-fitting portion 32 of the spline teeth 26 and 28 indicated by “Δ” in FIG. 2, the distance between the adjacent spline teeth 28 of the second rotating member 22 is increased, so One side of the tooth surface press-fitting portion 32 of the spline teeth 26 and the spline teeth 28 is missing and a gap 30 is formed. As shown in FIG. 3, the gap 30 is formed on the clockwise direction side (one side). Similarly, in the tooth surface press-fitting portion 32 indicated by “Δ” shown in FIG. It is formed on (one side). Note that the gap 30 is formed only in the portion indicated by “Δ” in FIG. 2, and therefore the gap 30 is not formed in the portion of the other spline press-fitting portion 24. Therefore, even if the gap 30 is formed, the first rotating member 18 and the second rotating member 22 do not rotate relative to each other.

上記のようにスプライン圧入部24が構成される場合、例えば車両加速時において第2回転部材22が図2の矢印a方向に回転させられるとすると、図3の(c)で示す側のスプライン歯26、28の歯面圧入部32は正常に圧入されていることから、互いに反力を受けることとなる。したがって、車両加速時では、第1回転部材18および第2回転部材22は、通常の結合剛性を得ることとなる。一方、車両減速時において、第2回転部材22が図2の矢印b方向側(一方向側)に回転させられるとすると、通常であれば、図3の(d)で示す側のスプライン歯26、28の歯面圧入部32が互いに反力を受けることとなるが、本実施例では、反力を受ける歯面圧入部32の一部において、図3に示すように歯面圧入部32の片側(d)は、欠歯されて間隙30が形成されているため、加速時に比べて第1回転部材18と第2回転部材22との結合剛性が低下する。   When the spline press-fit portion 24 is configured as described above, for example, if the second rotating member 22 is rotated in the direction of arrow a in FIG. 2 during vehicle acceleration, the spline teeth on the side shown in FIG. Since the tooth surface press-fit portions 32 of 26 and 28 are normally press-fitted, they receive a reaction force with each other. Therefore, at the time of vehicle acceleration, the first rotating member 18 and the second rotating member 22 obtain normal coupling rigidity. On the other hand, if the second rotating member 22 is rotated in the direction of arrow b (one direction) in FIG. 2 during vehicle deceleration, the spline teeth 26 on the side shown in FIG. 28, the tooth surface press-fit portions 32 receive a reaction force with each other. In this embodiment, a portion of the tooth surface press-fit portion 32 that receives the reaction force is shown in FIG. Since one side (d) is not toothed and the gap 30 is formed, the coupling rigidity between the first rotating member 18 and the second rotating member 22 is lower than that during acceleration.

したがって、車両の加速時と減速時とで、第1回転部材18と第2回転部材22との結合剛性が異なることとなる。ここで、上記のように結合剛性が異なると、それに伴って加速時と減速時とで歯車機構12の共振周波数が変化する。これより、例えば図4において車両減速時の共振周波数を周波数領域CからDに変更することで、減速ノイズのピークと共振周波数とをずらすことができるので、減速時の減速ノイズのピーク点Aの値を低下させることができる。一方、車両加速時においては、共振周波数を周波数領域Cに維持することで、破線で示す加速時の加速ノイズのピーク点Bの値の増加を抑制することができる。なお、上記共振周波数の具体的なチューニングは、車両加速時および減速時のそれぞれのノイズ波形に基づいて、各ノイズ波形のピーク点と歯車機構12の共振周波数とが、共に重なり合わないように実験的または解析的に設定される。   Therefore, the coupling rigidity of the first rotating member 18 and the second rotating member 22 differs between when the vehicle is accelerated and when the vehicle is decelerated. Here, when the coupling rigidity is different as described above, the resonance frequency of the gear mechanism 12 changes accordingly during acceleration and deceleration. Accordingly, for example, by changing the resonance frequency at the time of vehicle deceleration in FIG. 4 from the frequency region C to D, the peak of the deceleration noise and the resonance frequency can be shifted. The value can be lowered. On the other hand, at the time of vehicle acceleration, by maintaining the resonance frequency in the frequency region C, an increase in the value of the peak point B of acceleration noise during acceleration indicated by a broken line can be suppressed. Note that the specific tuning of the resonance frequency is based on the noise waveforms during vehicle acceleration and deceleration, so that the peak point of each noise waveform and the resonance frequency of the gear mechanism 12 do not overlap each other. Or set analytically.

ここで、図3においては、第2回転部材22の隣り合うスプライン歯28間の距離が拡大されることで、圧入されているスプライン歯26のスプライン歯28の歯面圧入部32の一方側が欠歯されて間隙30が形成されているが、図5に示すように、第1回転部材18のスプライン歯26の一方側が一部切削されることで欠歯されて間隙30が形成されても構わない。このように構成される場合であっても、スプライン圧入部24の回転方向の一方側では、互いのスプライン歯26、28が正常に圧入される一方、他方側では間隙30が形成されることで、車両の加速時と減速時とで第1回転部材18および第2回転部材22の結合剛性を変更させることが可能となる。したがって、上記結合剛性の変化に基づいて、車両の減速時および加速時とで、歯車機構12の共振周波数を異ならすことが可能となり、加速時および減速時の両方において異なるノイズ波形のピーク点と共振周波数とが重なることを回避することができ、ギヤノイズを低減することができる。   Here, in FIG. 3, the distance between the adjacent spline teeth 28 of the second rotating member 22 is increased, so that one side of the tooth surface press-fitting portion 32 of the spline teeth 28 of the press-fitted spline teeth 26 is missing. As shown in FIG. 5, the gap 30 may be formed by cutting one side of the spline teeth 26 of the first rotating member 18 and partially cutting the teeth. Absent. Even in such a configuration, the spline teeth 26 and 28 are normally press-fitted on one side in the rotational direction of the spline press-fitting portion 24, while the gap 30 is formed on the other side. The coupling rigidity of the first rotating member 18 and the second rotating member 22 can be changed during acceleration and deceleration of the vehicle. Therefore, the resonance frequency of the gear mechanism 12 can be made different when the vehicle is decelerating and accelerating based on the change in the coupling rigidity, and the peak point of the noise waveform that is different during both acceleration and deceleration. Overlapping with the resonance frequency can be avoided, and gear noise can be reduced.

上述のように、本実施例によれば、カウンタドリブンギヤサブアッシ14のいずれか一方側への回転時に互いに作用し合う第1回転部材18および第2回転部材22のスプライン歯26、28の歯面の一部には、間隙30が形成されているため、車両の減速および加速に応じて第1回転部材18および第2回転部材22の結合剛性を異ならすことができ、車両の減速および加速に応じて共振周波数を異ならすことができる。したがって、共振周波数を好適に設定することで、減速および加速のいずれにおいてもギヤノイズ波形のピーク点から共振周波数をずらすことで、ギヤノイズを低減することができる。   As described above, according to this embodiment, the tooth surfaces of the spline teeth 26 and 28 of the first rotating member 18 and the second rotating member 22 that interact with each other when rotating to either one side of the counter driven gear sub-assembly 14. Since a gap 30 is formed in a part of the vehicle, the coupling rigidity of the first rotating member 18 and the second rotating member 22 can be made different according to the deceleration and acceleration of the vehicle. Accordingly, the resonance frequency can be made different. Therefore, by appropriately setting the resonance frequency, the gear noise can be reduced by shifting the resonance frequency from the peak point of the gear noise waveform in both deceleration and acceleration.

また、本実施例によれば、スプライン歯26、28の歯面圧入部32の一部に形成される間隙30は、車両の加速時および減速時において、歯車機構21から発生する加速ノイズのピーク点および減速ノイズのピーク点と、歯車機構12の共振周波数とが重なり合わないように設定されるものである。このようにすれば、加速ノイズのピーク点および減速ノイズのピーク点の大きさを抑制することができ、ギヤノイズを抑制することができる。   Further, according to the present embodiment, the gap 30 formed in a part of the tooth surface press-fitting portion 32 of the spline teeth 26 and 28 has a peak of acceleration noise generated from the gear mechanism 21 during acceleration and deceleration of the vehicle. The point and the peak point of the deceleration noise are set so that the resonance frequency of the gear mechanism 12 does not overlap. In this way, the magnitude of the peak point of acceleration noise and the peak point of deceleration noise can be suppressed, and gear noise can be suppressed.

以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。   As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect.

例えば、前述の実施例では、カウンタドリブンギヤサブアッシ14において本発明が適用されているが、本発明はカウンタドリブンギヤサブアッシ14に限定されるものではなく、歯車機構を有する回転部材であれば適宜適用することができる。   For example, in the above-described embodiment, the present invention is applied to the counter driven gear sub-assembly 14, but the present invention is not limited to the counter-driven gear sub assembly 14, and may be appropriately applied to any rotating member having a gear mechanism. can do.

また、前述の実施例では、間隙30はスプライン歯26の時計方向側に形成されているが、上記は一例であり、加速時および減速時の第1回転部材18および第2回転部材22の回転方向やギヤノイズ波形、並びに共振周波数等に応じて反時計方向側に形成されることもある。   In the above-described embodiment, the gap 30 is formed on the clockwise side of the spline teeth 26, but the above is an example, and the rotation of the first rotating member 18 and the second rotating member 22 during acceleration and deceleration is performed. Depending on the direction, gear noise waveform, resonance frequency, etc., it may be formed counterclockwise.

また、前述の実施例では、車両減速時に互いに反力を受ける側の歯面圧入部32の一部において間隙30が形成されているが、減速側に限定されるものではなく、車両加速時に互いに反力を受ける側の歯面圧入部32の一部に間隙30が形成されても構わない。   Further, in the above-described embodiment, the gap 30 is formed in a part of the tooth surface press-fitting portion 32 on the side receiving the reaction force when the vehicle is decelerated. However, the gap 30 is not limited to the decelerating side. A gap 30 may be formed in a part of the tooth surface press-fitting portion 32 on the side receiving the reaction force.

また、前述の実施例では、間隙30は、図2の「△」で示すように等角度間隔で6つ形成されているが、例えば共振周波数のチューニング等に応じて、間隙の個数や形成される位置が適宜変更される。   Further, in the above-described embodiment, six gaps 30 are formed at equal angular intervals as indicated by “Δ” in FIG. 2, but the number of gaps and the number of gaps formed depending on, for example, tuning of the resonance frequency. The position to be changed is appropriately changed.

なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   The above description is only an embodiment, and the present invention can be implemented in variously modified and improved forms based on the knowledge of those skilled in the art.

10:車両用動力伝達装置
12:歯車機構
14:カウンタドリブンギヤサブアッシ(回転部材)
18:第1回転部材
22:第2回転部材
26:スプライン歯
28:スプライン歯
30:間隙
32:歯面圧入部
10: Power transmission device for vehicle 12: Gear mechanism 14: Counter driven gear sub-assembly (rotating member)
18: First rotating member 22: Second rotating member 26: Spline teeth 28: Spline teeth 30: Gap 32: Tooth surface press-fitting portion

Claims (1)

歯車機構の一部として機能する第1回転部材および第2回転部材に形成されたスプライン歯が互いに圧入されることにより一体的に構成される回転部材を有する車両用動力伝達装置であって、
前記回転部材のいずれか一方向側への回転時に互いに反力を受ける前記第1回転部材および第2回転部材のスプライン歯の歯面圧入部の一部において、間隙が形成されていることを特徴とする車両用動力伝達装置。
A vehicular power transmission device having a rotating member integrally formed by press-fitting spline teeth formed on a first rotating member and a second rotating member that function as a part of a gear mechanism,
A gap is formed in a part of the tooth surface press-fitting portion of the spline teeth of the first rotating member and the second rotating member that receive a reaction force when rotating in any one direction of the rotating member. A vehicle power transmission device.
JP2009013263A 2009-01-23 2009-01-23 Vehicular power transmission device Pending JP2010169213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009013263A JP2010169213A (en) 2009-01-23 2009-01-23 Vehicular power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013263A JP2010169213A (en) 2009-01-23 2009-01-23 Vehicular power transmission device

Publications (1)

Publication Number Publication Date
JP2010169213A true JP2010169213A (en) 2010-08-05

Family

ID=42701551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013263A Pending JP2010169213A (en) 2009-01-23 2009-01-23 Vehicular power transmission device

Country Status (1)

Country Link
JP (1) JP2010169213A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184796A (en) * 2011-03-04 2012-09-27 Aisin Ai Co Ltd Press fitting structure of spline
JP2014077474A (en) * 2012-10-10 2014-05-01 Aisin Ai Co Ltd Spline connection structure
JP2018197601A (en) * 2017-05-25 2018-12-13 いすゞ自動車株式会社 Fixing method and fixing construction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184796A (en) * 2011-03-04 2012-09-27 Aisin Ai Co Ltd Press fitting structure of spline
JP2014077474A (en) * 2012-10-10 2014-05-01 Aisin Ai Co Ltd Spline connection structure
JP2018197601A (en) * 2017-05-25 2018-12-13 いすゞ自動車株式会社 Fixing method and fixing construction

Similar Documents

Publication Publication Date Title
JP6222164B2 (en) Vehicle power transmission structure
JP6372455B2 (en) Power transmission device for vehicle
CN108458047B (en) Friction damper
JP2011214646A (en) Support structure for rotor shaft
JP6380361B2 (en) Vehicle power transmission device
JP2010169213A (en) Vehicular power transmission device
US20120325037A1 (en) Helical gear and power transmission apparatus
JP2017009115A (en) Spur gear
KR20100078768A (en) Gear box having double planetary gear system
JP2017166626A (en) Shaft supporting structure of driving device
JP2008309337A (en) Fastening mechanism of friction clutch and differential device having this fastening mechanism
US20240068523A1 (en) Shaft-hub connection with a spline toothing
US20100326224A1 (en) Gear device and power transmission apparatus
JP6233324B2 (en) Support structure for vehicle rotation shaft
JP2005069401A (en) Helical gear
WO2010097969A1 (en) Coupling structure of snap ring for vehicle
JP2017206083A (en) Power transmission device
JP2004340226A (en) Rotation number detecting structure of automatic transmission
CN111059252A (en) Gear for vehicle
JP6372454B2 (en) Spline shaft mating structure
JP4632234B2 (en) Output shaft support structure of transmission
JP2011017362A (en) Synchronous meshing device for vehicular parallel shaft type transmission
JP2010185560A (en) Gear transmission
KR101283187B1 (en) Gear Structure for Transmission
JP2007040351A (en) Coupling