WO2010097969A1 - Coupling structure of snap ring for vehicle - Google Patents

Coupling structure of snap ring for vehicle Download PDF

Info

Publication number
WO2010097969A1
WO2010097969A1 PCT/JP2009/055492 JP2009055492W WO2010097969A1 WO 2010097969 A1 WO2010097969 A1 WO 2010097969A1 JP 2009055492 W JP2009055492 W JP 2009055492W WO 2010097969 A1 WO2010097969 A1 WO 2010097969A1
Authority
WO
WIPO (PCT)
Prior art keywords
snap ring
circumferential groove
inner circumferential
axis
opening end
Prior art date
Application number
PCT/JP2009/055492
Other languages
French (fr)
Japanese (ja)
Inventor
隆幸 杉本
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2010097969A1 publication Critical patent/WO2010097969A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/067Fixing them in a housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/344Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear

Definitions

  • the present invention relates to a technique for improving the reliability of a connecting structure of a vehicle snap ring.
  • a connecting structure of a vehicle snap ring in which a bearing fitted in a fitting hole of a support member fixed to a vehicle body is fixed to the support member in a uniaxial direction by a snap ring is known.
  • the connection structure of the snap ring for vehicles disclosed by FIG. 5, FIG. 6 of patent document 1 is it.
  • the snap ring has a rectangular cross section as a whole, and an annular ring portion and the diameter of the ring portion protruding in the radial direction from the ring portion are enlarged.
  • a pair of operation units for reducing the size is provided.
  • annular inner circumferential groove is provided on the inner circumferential surface of the fitting hole, and an annular outer circumferential groove facing the annular inner circumferential groove is provided on the outer circumferential surface of the bearing.
  • the support member in a state where the snap ring is attached to the support member, a part around the fitting hole is cut away so that the operation portion of the snap ring does not interfere with the support member.
  • the annular inner circumferential groove is cut off at the cutout portion of the cutout and opens in the circumferential direction. That is, the support member has a pair of open end portions whose annular inner peripheral grooves are opened in the circumferential direction.
  • the snap ring has a thin thickness in the uniaxial direction at a part of the tip of the snap ring, it does not reach the full width in the radial direction.
  • the thrust load is received by the entire side wall surface including the opening end. Then, stress concentration occurs at the opening end of the support member, and the durability of the support member may be reduced. Such a problem is not yet known.
  • the present invention has been made against the background of the above circumstances, and the object of the present invention is to provide a connecting structure for a vehicle snap ring that improves stress by reducing stress concentration at the opening end. It is to provide.
  • the gist of the present invention includes (a) a fitting hole centered on one axis and an inner circumferential groove provided around the one axis on the inner circumferential surface of the fitting hole.
  • the outer peripheral groove opposite to the inner peripheral groove is provided on the outer peripheral surface, and the fitting member inserted into the fitting hole is snapped into the inner peripheral groove and the outer peripheral groove,
  • a vehicle snap ring coupling structure for fixing in the uniaxial direction wherein (b) the annular inner circumferential groove is interrupted in a circumferential direction in which a part around the fitting hole of the fixing member is notched.
  • the side wall surface of the inner peripheral groove on the side receiving the pressing force And the side surface of the snap ring facing the side wall surface During is to have a gap over the entire depth direction of the inner peripheral groove.
  • the pressing force does not act directly on the side wall surface on the side receiving the pressing force due to the gap on at least one of the opening end portions. Therefore, stress concentration is relaxed at the opening end portion, and the durability of the fixing member can be improved. And the reliability of the connection structure of this vehicle snap ring can be improved. In addition, by having the said clearance gap in both of a pair of said opening edge part, durability of the said fixing member can be improved further and the reliability of the connection structure of the said snap ring for vehicles can be improved.
  • the thickness of the snap ring in the uniaxial direction is thinner than the other portions at the opening end. In this way, by configuring the snap ring so that the gap is generated, the durability of the fixing member is improved without requiring a change in the shape of the fixing member for generating the gap. Can be made.
  • the thickness of the snap ring in the uniaxial direction is continuously thinner than the other portions at the opening end.
  • the snap ring avoids or suppresses stress concentration due to a change in the thickness of the snap ring, thereby suppressing a decrease in durability.
  • the groove width in the uniaxial direction of the inner circumferential groove is wider than the other portions at the opening end. If it does in this way, the shape of the inner peripheral groove is formed so that the gap is generated at the opening end thereof, and the fixing member is not required to change the shape of the snap ring for generating the gap. The durability of can be improved. Note that, at the opening end, the uniaxial thickness of the snap ring may be reduced and the uniaxial groove width of the inner circumferential groove may be increased. There is no problem.
  • the groove width in the uniaxial direction of the inner circumferential groove is continuously wider than the other portions at the opening end. If it does in this way, the stress concentration by the change of the said groove
  • the fixing member is a transfer case that distributes the driving force of the vehicle to a plurality of driving wheels
  • the fitting member is connected to the fixing member.
  • An output shaft bearing that rotatably supports the output shaft about the one axis. In this way, the durability of the transfer can be improved against the uniaxial pressing force applied to the output shaft.
  • FIG. 1 is a skeleton diagram illustrating a configuration of a front and rear wheel drive vehicle based on a front engine rear wheel drive (FR) having a vehicle power transmission device to which the present invention is preferably applied.
  • FIG. 2 is a schematic diagram of a transfer provided in the power transmission device of FIG. 1. It is sectional drawing which showed the inside of the transfer shown in FIG. 2 simply. It is the figure which expanded the IV section of FIG.
  • FIG. 5 is a diagram showing a schematic shape of a snap ring for fixing a rear wheel side bearing in the axial direction with respect to the fitting hole of the transfer shown in FIG. 4 in a single state.
  • FIG. 1 is a skeleton diagram illustrating a configuration of a front and rear wheel drive vehicle based on a front engine rear wheel drive (FR) having a vehicle power transmission device to which the present invention is preferably applied.
  • FIG. 2 is a schematic diagram of a transfer provided in the power transmission device of FIG. 1. It is sectional drawing which showed the inside of the transfer
  • FIG. 5 is an AA arrow view of the transfer case and the rear wheel side bearing as viewed in the direction of arrow A in FIG. 4.
  • FIG. 7 is a view showing an inner peripheral groove and a snap ring of the transfer case at one of a pair of opening end portions of the transfer case of FIG. 3, that is, at a portion B shown in FIG. 6.
  • FIG. 8 is a view for explaining another snap ring connection structure different from that corresponding to FIG. 7 in the portion B shown in FIG. 6.
  • FIG. 1 is a skeleton diagram illustrating the configuration of a front and rear wheel drive vehicle based on a front engine rear wheel drive (FR) having a power transmission device 10 for a vehicle 8 to which the present invention is preferably applied.
  • the driving force (torque) generated by the engine 12 that is the driving force source of the vehicle 8 is transmitted to the transfer 22 via the automatic transmission 14.
  • the driving force transmitted to the transfer 22 is distributed to a front propeller shaft 23 that is a front wheel driving force transmission shaft and a rear propeller shaft 24 that is a rear wheel driving force transmission shaft.
  • the driving force transmitted to the front propeller shaft 23 is transmitted to a pair of left and right front wheels 20l and 20r via a front wheel differential gear device (front differential) 16 and a pair of left and right front wheel axles 18l and 18r.
  • the driving force transmitted to the rear propeller shaft 24 is transmitted to the left and right pair of rear wheels 30l and 30r via the rear wheel differential gear device 26 and the left and right pair of rear wheel axles 28l and 28r.
  • the transfer 22 distributes the driving force of the vehicle 8 to each of a plurality of driving wheels, that is, the front wheels 20 and the rear wheels 30.
  • the power transmission device 10 includes an engine 12, an automatic transmission 14, a torque converter that is a power transmission mechanism (not shown) interposed between the engine 12 and the automatic transmission 14, a transfer 22, a front A propeller shaft 23, a front wheel differential gear device 16, a front wheel axle 18, a rear propeller shaft 24, a rear wheel differential gear device 26, and a rear wheel axle 28 are provided.
  • the engine 12 is, for example, an internal combustion engine such as a gasoline engine or a diesel engine that generates a driving force by combustion of fuel injected in a cylinder.
  • the automatic transmission 14 is, for example, a stepped automatic transmission (automatic transmission) that outputs the rotation input from the engine 12 by decelerating or increasing the speed at a predetermined gear ratio ⁇ . Any one of the first gear, the reverse gear, and the neutral is selectively established, and the speed conversion corresponding to each gear ratio ⁇ is performed.
  • the input shaft of the automatic transmission 14 is connected to the output shaft of the engine 12 via a torque converter (not shown).
  • FIG. 2 is a skeleton diagram of the transfer 22 of FIG.
  • the axes of the input shaft 56, the first output shaft 48, the second output shaft 50, the first shift fork shaft 88, and the second shift fork shaft 92, which will be described later, are in a common plane. It is the expanded view shown.
  • the transfer 22 includes a transfer case 42 as a non-rotating member connected to the vehicle rear side of the transmission case 40 of the automatic transmission 14.
  • the transfer 22 is supported in the transfer case 42 so as to be rotatable around an axis C (one axis) and an auxiliary transmission 46 mainly composed of a single pinion type planetary gear unit 44 in the transfer case 42.
  • the differential (central differential) 52 and either of the two power transmission paths from the sub-transmission 46 to the center differential 52 are connected to each other, so that the low speed side gear stage or the high speed side gear stage is selected.
  • the transfer 22 shifts the rotation of the input shaft 56 supported by the transfer case 42 so as to be rotatable about the axis C, and outputs from the first output shaft 48 and the second output shaft 50 in a differential state or a direct connection state, respectively.
  • the input shaft 56 is connected to the output shaft 58 of the automatic transmission 14 via a spline fitting joint or the like, and is driven to rotate by a driving force (torque) input from the engine 12 via the automatic transmission 14.
  • the axis C corresponds to one axis of the present invention
  • the transfer case 42 corresponds to the fixing member of the present invention
  • the first output shaft 48 corresponds to the output shaft of the transfer of the present invention.
  • the planetary gear unit 44 is disposed so as to be non-rotatable around the axis C with respect to the outer peripheral surface of the input shaft 56, and is disposed substantially concentrically with the sun gear S1 and fixed to the vehicle body.
  • a carrier CA1 that supports a ring gear R1 that is non-rotatably connected around a shaft center C to a transfer case 42 that is a fixed member, and a sun gear S1 and a plurality of pinion gears P1 that mesh with the ring gear R1 and that can revolve around the sun gear S1. And have. Therefore, the rotational speed of the sun gear S1 is constant with respect to the input shaft 56, and the rotational speed of the carrier CA1 is decelerated with respect to the input shaft 56.
  • a clutch gear 60 as an asynchronous member of the synchronous mesh clutch 72 that is involved in the establishment of the high speed gear stage (high speed gear stage) in the mesh clutch device 53 has an axis C relative to the sun gear S1. It is fixed so that it cannot rotate around.
  • a clutch gear 62 as an asynchronous member of a later-described meshing clutch 74, which is involved in the establishment of the low-speed gear stage (low-speed gear stage) in the meshing clutch device 53, has an axial center with respect to the carrier CA1. It is fixed so that it cannot rotate around C.
  • the center differential 52 is a well-known Torsen-type differential gear limiting device, and includes a differential case 64 that is supported on the first output shaft so as to be rotatable around the axis C, and an axial center within the differential case 64.
  • a ring gear R2 that is connected to the first output shaft 48 so as not to rotate about C, and is arranged substantially concentrically with respect to the ring gear R2, so that the first output shaft 48 can rotate relative to the first output shaft 48 about the axis C.
  • a carrier CA2 that supports a sun gear S2 supported on the outer periphery of one output shaft 48 and a plurality of pinion gears P2 meshing with the sun gear S2 and the ring gear R2 so as to be capable of rotating and revolving around the sun gear S2, and connected to a differential case 64. And have.
  • the sun gear S2 is connected to a first output gear 66 supported on the first output shaft 48 so as to be rotatable about the axis C, similarly to the sun gear S2.
  • the first output gear 66 rotates with respect to the second output gear 68 connected to the second output shaft 50 so as not to rotate around the second output shaft 50. It is transmitted via a transmission belt 70 wound around the outer periphery of the belt.
  • the meshing clutch device 53 has a synchronous meshing clutch 72 for establishing a high speed side gear stage and a meshing clutch 74 for establishing a low speed side gear stage.
  • the synchronous mesh clutch 72 includes a well-known so-called synchro mechanism, and is relatively non-rotatable around the axis C and is relatively movable in the direction of the axis C by, for example, spline fitting to the differential case 64.
  • a cylindrical sleeve 76 provided on the inner peripheral surface of the sleeve 76, and an outer peripheral tooth meshing with an inner peripheral tooth of the inner peripheral surface of the sleeve 76 so as not to rotate around the axis C and to move relative to the axis C.
  • the clutch gear 60 disposed between the planetary gear unit 44 and the differential case 64 and fixed to the sun gear S1 as described above, and when the rotation of the sleeve 76 and the clutch gear 60 is asynchronous, the clutch gear of the sleeve 76 And a synchronizer ring (synchronization ring) 78 for preventing movement in the 60 direction.
  • the sleeve 76 corresponds to a shift ring that is moved in the direction of the axis C by a shift actuator 86 described later.
  • the meshing clutch 74 meshes with a sleeve 76 as the shift ring and an outer peripheral tooth 80 provided on an outer peripheral portion of the sleeve 76 so as not to be rotatable about the axis C and to be relatively movable in the direction of the axis C. It has an inner peripheral tooth and is arranged on the opposite side of the outer peripheral tooth 80 from the clutch gear 62 and has the clutch gear 62 fixed to the carrier CA1 as described above. In the meshing clutch device 53 configured as described above, the sleeve 76 slides in the direction of the axis C so as to mesh with the differential case 64 and mesh with the clutch gear 60, thereby establishing the high speed side gear stage.
  • the low speed side gear stage is established by engaging with the clutch gear 62 while engaging with the differential case 64.
  • the path through which the driving force is transmitted to the differential case 64 via the carrier CA1 and the clutch gear 62 corresponds to the power transmission path that establishes the low-speed gear stage, and is driven to the differential case 64 via the sun gear S1 and the clutch gear 60.
  • the path through which the force is transmitted corresponds to a power transmission path that establishes the high speed side gear.
  • the differential case 64 functions as a clutch hub of the synchronous mesh clutch 72. Further, the meshing clutch device 53 is engaged and operated to shift the auxiliary transmission 46.
  • the differential lock device 54 is provided, for example, by spline fitting to the outer peripheral portion of the differential case 64 and, for example, by spline fitting to the differential case 64 so as not to be relatively rotatable about the axis C and to be relatively movable in the direction of the axis C.
  • the clutch gear 84 is disposed between the output gear 66 and the differential case 64 and is fixed to the first output gear 66.
  • the differential lock device 54 configured in this way, the differential of the center differential 52 is locked by engaging the clutch gear 84 while meshing with the differential case 64 by sliding the sleeve 82 in the axial center C direction. ing.
  • the differential case 64 functions as a clutch hub of the meshing clutch 74.
  • the mesh clutch device 53 and the differential lock device 54 are mounted on the vehicle 8 and driven by an electronic control device (not shown) that performs output control of the engine 12, shift control of the automatic transmission 14, and the like. Is engaged. That is, in the mesh clutch device 53, the first shift fork shaft 88 that protrudes in a direction parallel to the axis C corresponding to the output member of the shift actuator 86 is parallel to the axis C by driving the shift actuator 86. Through the first shift fork 90 fixed to the first shift fork shaft 88 so as to be engageable with the sleeve 76 in the direction of the axis C and relatively rotatable about the axis C. The sleeve 76 is actuated in the direction of the axis C.
  • the second shift fork shaft 92 protruding in a direction parallel to the axis C corresponding to the output member of the shift actuator 86 is driven in the direction parallel to the axis C by driving the shift actuator 86.
  • the sleeve is engaged via the second shift fork 94 fixed to the second shift fork shaft 92 so as to be engageable with the sleeve 82 in the direction of the axis C and relatively rotatable about the axis C. 82 is operated in the direction of the axis C.
  • FIG. 3 is a cross-sectional view schematically showing the inside of the transfer 22 shown in FIG.
  • FIG. 4 is an enlarged view of a portion IV in FIG.
  • the transfer 22 is provided with a center differential 52, an auxiliary transmission 46, a differential lock device 54, etc., but these devices are omitted in FIG.
  • the second output shaft 50 has one end protruding from the transfer case 42, which is the fixing member, toward the front propeller shaft 23, and the bearing 102 and the bearing 104 fitted to the transfer case 42. It is rotatably supported through A front wheel side companion flange 106 connected to the front propeller shaft 23 so as to be able to transmit power is spline-fitted to one end of the second output shaft 50 and fastened by a nut 108 so as not to drop off.
  • One end of the first output shaft 48 projects in the direction of the rear propeller shaft 24 from the transfer case 42, and can rotate about the axis C via a rear wheel side bearing 112 fitted to the transfer case 42. It is supported.
  • a rear wheel side companion flange 114 connected to the rear propeller shaft 24 so as to transmit power is spline-fitted to one end of the first output shaft 48 and fastened by a nut 116 so as not to drop off. By fastening the nut 116, the first output shaft 48, the rear wheel side companion flange 114, and the inner ring member of the rear wheel side bearing 112 are integrated.
  • the rear wheel side companion flange 114 is fixed by bolting via a rear propeller shaft 24 and a universal joint 118 arranged in series along the axis C.
  • the universal joint 118 is a joint for allowing the axis of the first output shaft 48 and the axis of the rear propeller shaft 24 to have a certain angle without being the same axis.
  • the rear wheel side bearing 112 is a rear wheel side output shaft bearing that rotatably supports the first output shaft 48 around the axis C with respect to the transfer case 42. As shown in FIG. It is fixed so as not to move relative to the transfer case 42 in the direction of the axis C.
  • the transfer case 42 is provided with a fitting hole 124 centered on the shaft center C, and the inner peripheral surface 126 of the fitting hole 124 has an annular inner periphery around the shaft center C.
  • a groove 128 is provided.
  • the rear wheel side bearing 112 is provided with an annular outer circumferential groove 132 opposed to the inner circumferential groove 128 in a state of being fitted into the fitting hole 124 on the outer circumferential surface 130 thereof.
  • the snap ring 120 is fitted over both the inner circumferential groove 128 and the outer circumferential groove 132, whereby the rear wheel side bearing 112. Is fixed in the direction of the axis C with respect to the transfer case 42.
  • the rear wheel side bearing 112 corresponds to the fitting member of the present invention.
  • the rear propeller shaft 24 has an inner cylinder member 24a connected to the rear wheel side companion flange 114 via a universal joint 118, and the inner cylinder member 24a is inserted inside by spline fitting or the like. And an outer cylinder member 24b coupled to the rear wheel differential gear device 26 so as to be capable of transmitting power.
  • the inner cylinder member 24a and the outer cylinder member 24b are mutually non-rotatable about the axis C and are It is connected so as to be relatively movable in the direction of the center C.
  • the rear propeller shaft 24 has a structure capable of transmitting the driving force from the transfer 22 to the rear wheel 30 and extending and contracting in the direction of the axis C.
  • FIG. 5 is a diagram showing a schematic shape of the snap ring 120 alone.
  • the snap ring 120 is generally called an ⁇ -type snap ring.
  • the snap ring 120 includes a ring-shaped ring portion 120a that is partially cut into the inner circumferential groove 128 of the transfer case 42 and the outer circumferential groove 132 of the rear wheel side bearing 112, and a diameter from the end of the ring portion 120a. And a pair of operation portions 120b protruding outward in the direction.
  • the snap ring 120 is, for example, a steel spring material as in a general snap ring, and has a rectangular cross section as a whole.
  • An operation hole 120c for deforming the ring portion 120a is provided at the distal ends of the pair of operation portions 120b so as to enlarge or reduce the diameter of the ring portion 120a.
  • the outer diameter of the ring portion 120a is larger than the inner diameter of the fitting hole 124 of the transfer case 42, and the inner diameter of the ring portion 120a is smaller than the outer diameter of the rear wheel side bearing 112. .
  • the pair of operation portions 120b are brought close to each other to make the outer diameter of the ring portion 120a smaller than the fitting hole 124 of the transfer case 42.
  • the snap ring 120 is inserted into the fitting hole 124 in which the rear wheel side bearing 112 is not yet fitted.
  • the operation portion 120 b is released and the snap ring 120 is fitted into the inner circumferential groove 128.
  • the pair of operation parts 120 b are separated from each other so that the inner diameter of the ring part 120 a is larger than the outer diameter of the rear wheel side bearing 112.
  • FIG. 6 is an AA arrow view of the transfer case 42 and the rear wheel side bearing 112 seen in the direction of arrow A in FIG.
  • members inside the rear wheel side bearing 112, for example, the first output shaft 48 are omitted.
  • the transfer case 42 is fitted with the snap ring 120 so that the pair of operation portions 120b of the snap ring 120 do not interfere with the transfer case 42 in a state where the snap ring 120 is fitted in the inner circumferential groove 128 thereof.
  • a notch 134 is provided in which a part around the joint hole 124 is notched.
  • the transfer case 42 is configured with a pair of opening end portions 136 that are opened in the circumferential direction with the inner circumferential groove 128 being cut off at both circumferential ends of the notch portion 134.
  • FIG. 7 is a view showing the inner peripheral groove 128 and the snap ring 120 of the transfer case 42 in one of the pair of open end portions 136 of the transfer case 42, that is, in the portion B shown in FIG.
  • the other of the pair of opening end portions 136 is the same as that of FIG. 7, and therefore, one of the pair of opening end portions 136 shown in FIG. 7 will be described below.
  • the thickness of the ring portion 120a of the snap ring 120 in the axial center C direction is basically the thickness tb, but the opening end portion 136 has a thickness smaller than the thickness tb. ta. That is, the thickness of the snap ring 120 in the direction of the axis C is thinner over the entire radial width of the opening end portion 136 than the other portions. Further, the thickness of the snap ring 120 in the direction of the axis C is smooth from the thickness tb to ta as shown by the hatched portion D in FIG. It is changing and thinning continuously.
  • the thickness ta of the ring portion 120a is continuously maintained as it is.
  • the wall thickness is 120b in the direction of the axis C.
  • the pressing force F TH in the direction of the axis C toward the inside of the transfer case 42 acts on the rear wheel side bearing 112.
  • the rear propeller shaft 24 has a structure that can be expanded and contracted, but the rear propeller shaft 24 is subjected to a displacement to shorten its length in the direction of the axis C, and at that time, the inner cylinder
  • the pressing force F TH is increased from the rear propeller shaft 24 via the rear wheel side companion flange 114. It acts on the rear wheel side bearing 112.
  • the snap ring 120 has a shape whose thickness changes as described above, in the above case, that is, the pressing force F TH is applied to the rear wheel side bearing 112.
  • the snap ring 120 is connected to the side surface 140 of the snap ring 120 facing each other with a gap CLR in the entire depth direction (arrow DP direction in FIG. 7) of the inner circumferential groove 128.
  • the thickness of the snap ring 120 in the axial center C direction is such that the side surface 140 receives the pressing force FTH with respect to the other portions of the pair of opening end portions 136. It is thinned away from the side wall surface 138 on the side.
  • the transfer case 42 is never receiving the pressing force F TH directly in the pair of open ends 136, would receive the pressing force F TH at a portion other than the pair of open end 136. Therefore, stress concentration on the base end of the side wall surface 138 in the pair of open end portions 136 shown as the corner CR in FIG. 7 is suppressed.
  • the gap CLR generated in the direction of the axis C between the side wall surface 138 and the side surface 140 at the pair of opening end portions 136 is, for example, to avoid stress concentration at the pair of opening end portions 136. It is desirable that the thickness of the snap ring 120 in the axial center C direction is determined so as to be equal to or greater than the circumferential width W1 set experimentally in advance.
  • FIG. 8 is a view for explaining another connecting structure of the snap ring 120 different from that corresponding to FIG. 7 in the portion B shown in FIG. 8 is a view showing one of the pair of open end portions 136 as in FIG. 7, and the other connecting structure is the same as in FIG.
  • the groove width Wd in the direction of the axis C of the inner circumferential groove 128 is equal to the inner circumferential groove 128 at the opening end portion 136 with respect to other portions. In the entire depth direction (arrow DP direction in FIG. 7). Further, the groove width Wd in the direction of the axis C of the inner peripheral groove 128 changes smoothly with respect to other portions at the opening end portion 136 and continuously increases. As described above, since the groove width Wd is wide at the opening end 136, the side wall surface 138 and the side surface 140 at the opening end 136 are similar to the connection structure of the snap ring 120 shown in FIG. A gap CLR in the axial center C direction can be generated between the two.
  • the snap ring 120 is connected to the side surface 140 of the snap ring 120 facing each other with a gap CLR in the entire depth direction (arrow DP direction in FIG. 7) of the inner circumferential groove 128.
  • the pressing force F TH does not directly act on the side wall surface 138 at the pair of opening end portions 136 due to the gap CLR. Therefore, stress concentration is relaxed at the open end 136, and the durability of the transfer case 42 can be improved. And the reliability of the connection structure of this snap ring 120 can be improved.
  • the connection structure of the snap ring 120 having the gap CLR is provided in at least one of the pair of opening end portions 136, the durability of the transfer case 42 can be improved as compared with a structure without the gap CLR.
  • the durability of the transfer case 42 is further improved, and the reliability of the connection structure of the snap ring 120 is improved. Can be improved.
  • an increase in the thickness around the inner peripheral groove 128 or an increase in the corner radius at the bottom of the inner peripheral groove 128 can be considered.
  • problems such as an increase in cost, an increase in mass, and interference with other parts inside the transfer 22 are likely to occur.
  • the connection structure of the snap ring 120 of this embodiment hardly causes such problems. It is advantageous.
  • the thickness of the snap ring 120 in the axial center C direction is the full width in the radial direction with respect to the other portions at the opening end 136. Since the snap ring 120 is formed so that the gap CLR is formed, the transfer case 42 does not need to be changed to generate the gap CLR. The durability of 42 can be improved. And since the shape change of the transfer case 42 is not required, the cost can be suppressed and the durability of the transfer case 42 can be improved.
  • the thickness of the axial center C direction of the snap ring 120 is, for example, It is thinned at one of the pair of open ends 136.
  • the thickness of the snap ring 120 in the direction of the axis C is from the thickness tb to ta as shown by the hatched portion D in FIG. Since it changes smoothly with respect to other parts and is continuously thinned, the snap ring 120 avoids or suppresses stress concentration due to a change in the thickness of the snap ring 120 and suppresses a decrease in durability. .
  • the groove width Wd in the direction of the axis C of the inner circumferential groove 128 is smaller than the inner width of the opening end portion 136 with respect to the other portions.
  • the circumferential direction of the circumferential groove 128 may be widened in the entire depth direction (arrow DP direction in FIG. 7), and if so, the gap CLR is formed in the shape of the inner circumferential groove 128 at the opening end 136. With this configuration, the durability of the transfer case 42 can be improved without requiring a change in the shape of the snap ring 120 for generating the gap CLR.
  • connection structure of the snap ring 120 which has the said clearance gap CLR in one of the said pair of opening edge parts 136, in that case, for example, the groove width Wd of the said inner peripheral groove
  • the groove width Wd in the direction of the axis C of the inner circumferential groove 128 is smoother than the other portions at the opening end 136. If this is done, the transfer case 42 can avoid or suppress stress concentration caused by the change in the groove width Wd at the opening end 136. Thus, a decrease in durability is suppressed.
  • the material of the transfer case 42 is not particularly limited.
  • the transfer case 42 is made of aluminum die cast.
  • the method for forming the snap ring 120 is not particularly limited.
  • the snap ring 120 is formed by punching.
  • the snap ring 120 has a pair of thin portions, the thin portions may be formed simultaneously with the punching process for punching the outer shape, or the thin portions may be formed in a process different from the punching process for the outer shape. Good.
  • the snap ring 120 may be formed by cutting.
  • the processing method of the inner peripheral groove 128 of the transfer case 42 is not particularly limited.
  • the inner peripheral groove 128 may be formed by a die-cast mold or formed by cutting. Also good.
  • one side surface 140 of the pair of side surfaces of the snap ring 120 orthogonal to the axis C forms a continuous curved surface, and the thickness of the snap ring 120 is the opening end.
  • the portion 136 is thinner than the other portions over the entire width in the radial direction, but both of the pair of side surfaces form a continuous curved surface, and the thickness of the snap ring 120 is the opening end thereof. In 136, it may be thin with respect to the other parts over the entire radial width. The same applies to the groove width Wd of the inner circumferential groove 128 shown in FIG.

Abstract

Provided is a coupling structure of a snap ring for a vehicle wherein the durability is enhanced by relaxing stress concentration on a snap ring fitting groove. As shown at E in Fig. 7, a coupling structure of a snap ring (120) has a gap entirely in the depth direction (direction of an arrow DP in Fig. 7) of an inner circumferential groove (128) between the side wall surface (138) thereof on the side receiving a thrust force FTH in the direction of the central axis (C)and the side surface (140) of the snap ring (120) facing the side wall surface (138) when the thrust force FTH acts on a bearing (112) on the rear wheel side at a pair of opening ends (136) of a transfer case (42) where the inner circumferential groove (128) is broken off so as to be opened in the circumferential direction. The gap is formed by reducing the thickness of the snap ring (120) or widening the lateral groove of the inner circumferential groove (128). Consequently, the thrust force FTH does not act directly on the side wall surface (138) at the opening end (136) because of the gap. Since stress concentration is relaxed at the opening end (136), durability of the transfer case (42) can be enhanced.

Description

車両用スナップリングの連結構造Connecting structure of snap ring for vehicle
 本発明は、車両用スナップリングの連結構造において、その信頼性を向上させる技術に関するものである。 The present invention relates to a technique for improving the reliability of a connecting structure of a vehicle snap ring.
 車体に固定された支持部材の嵌合穴に嵌め入れられたベアリングがその支持部材に対してスナップリングにより一軸方向に固定される車両用スナップリングの連結構造が、従来から知られている。例えば、特許文献1の図5、図6に開示された車両用スナップリングの連結構造がそれである。その特許文献1の車両用スナップリングの連結構造では、前記スナップリングは、全体として矩形断面であって、円環状のリング部と、そのリング部から径方向に突き出たそのリング部の直径を拡大もしくは縮小させるための一対の操作部とを備えている。また、前記嵌合穴の内周面には環状内周溝が設けられており、前記ベアリングの外周面にはその環状内周溝に相対向する環状外周溝が設けられている。そして、前記嵌合穴にベアリングが嵌合された状態で、前記スナップリングが前記環状内周溝及び環状外周溝の双方にわたって嵌め込まれることにより、前記支持部材に対して、前記ベアリングが一軸方向に移動しないように固定される。 2. Description of the Related Art Conventionally, a connecting structure of a vehicle snap ring in which a bearing fitted in a fitting hole of a support member fixed to a vehicle body is fixed to the support member in a uniaxial direction by a snap ring is known. For example, the connection structure of the snap ring for vehicles disclosed by FIG. 5, FIG. 6 of patent document 1 is it. In the connection structure of the vehicle snap ring disclosed in Patent Document 1, the snap ring has a rectangular cross section as a whole, and an annular ring portion and the diameter of the ring portion protruding in the radial direction from the ring portion are enlarged. Alternatively, a pair of operation units for reducing the size is provided. Further, an annular inner circumferential groove is provided on the inner circumferential surface of the fitting hole, and an annular outer circumferential groove facing the annular inner circumferential groove is provided on the outer circumferential surface of the bearing. Then, in a state where the bearing is fitted in the fitting hole, the snap ring is fitted over both the annular inner circumferential groove and the annular outer circumferential groove, so that the bearing is uniaxially arranged with respect to the support member. It is fixed so as not to move.
 また、前記スナップリングが前記支持部材に取り付けられた状態で、そのスナップリングの操作部がその支持部材と干渉しないように、前記嵌合穴周りの一部が切り欠かれており、その支持部材の切り欠かれた切欠部で前記環状内周溝が途切れて周方向に開口している。すなわち、前記支持部材には、その環状内周溝が周方向に開口した一対の開口端部が存在する。 In addition, in a state where the snap ring is attached to the support member, a part around the fitting hole is cut away so that the operation portion of the snap ring does not interfere with the support member. The annular inner circumferential groove is cut off at the cutout portion of the cutout and opens in the circumferential direction. That is, the support member has a pair of open end portions whose annular inner peripheral grooves are opened in the circumferential direction.
特開2005-207571号公報JP 2005-207571 A 特開2006-349162号公報JP 2006-349162 A 特開平9-220636号公報JP-A-9-220636
 ところで、前記ベアリングに対し、スラスト荷重が前記一軸方向に作用した場合を想定すると、前記支持部材では、前記環状内周溝のそのスラスト荷重に相対向する側の側壁面がそのスラスト荷重を受け止めることになる。その場合、前記支持部材の開口端部でその側壁面は途切れているので、その開口端部では、それ以外の部分と比較して応力集中が生じ易い。 By the way, assuming that a thrust load is applied to the bearing in the uniaxial direction, in the support member, the side wall surface of the annular inner circumferential groove facing the thrust load receives the thrust load. become. In that case, since the side wall surface is interrupted at the opening end portion of the support member, stress concentration tends to occur at the opening end portion as compared with other portions.
 しかし、前記スナップリングは、それの先端の一部で前記一軸方向の肉厚が薄くなっているものの、それは径方向の全幅に及ぶものではないので、前記特許文献1の車両用スナップリングの連結構造では、前記開口端部を含む前記側壁面の全体で前記スラスト荷重を受け止めることになる。そうなると、前記支持部材の開口端部で応力集中が発生し、その支持部材の耐久性が低下するおそれがあった。なお、このような課題は未公知のことである。 However, although the snap ring has a thin thickness in the uniaxial direction at a part of the tip of the snap ring, it does not reach the full width in the radial direction. In the structure, the thrust load is received by the entire side wall surface including the opening end. Then, stress concentration occurs at the opening end of the support member, and the durability of the support member may be reduced. Such a problem is not yet known.
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、前記開口端部での応力集中を緩和して耐久性を向上させた車両用スナップリングの連結構造を提供することにある。 The present invention has been made against the background of the above circumstances, and the object of the present invention is to provide a connecting structure for a vehicle snap ring that improves stress by reducing stress concentration at the opening end. It is to provide.
 前記目的を達成するための本発明の要旨とするところは、(a)一軸を中心とする嵌合穴とその嵌合穴の内周面にその一軸周りに設けられた内周溝とを有する固定部材に対して、その内周溝に相対向する外周溝を外周面に有しその嵌合穴に嵌入された嵌合部材を、前記内周溝および外周溝に嵌め込まれたスナップリングにより、前記一軸方向に固定する車両用スナップリングの連結構造であって、(b)前記固定部材の嵌合穴周りの一部が切り欠かれた切欠部で環状の前記内周溝が途切れて周方向に開口したその固定部材の一対の開口端部の少なくとも一方において、前記嵌合部材に対して前記一軸方向の押圧力が作用した場合に、その押圧力を受け止める側の前記内周溝の側壁面と、その側壁面に相対向する前記スナップリングの側面との間に、その内周溝の深さ方向全体にわたって隙間を有することにある。 In order to achieve the above object, the gist of the present invention includes (a) a fitting hole centered on one axis and an inner circumferential groove provided around the one axis on the inner circumferential surface of the fitting hole. With respect to the fixed member, the outer peripheral groove opposite to the inner peripheral groove is provided on the outer peripheral surface, and the fitting member inserted into the fitting hole is snapped into the inner peripheral groove and the outer peripheral groove, A vehicle snap ring coupling structure for fixing in the uniaxial direction, wherein (b) the annular inner circumferential groove is interrupted in a circumferential direction in which a part around the fitting hole of the fixing member is notched. In at least one of the pair of opening end portions of the fixing member opened in the case, when the pressing force in the uniaxial direction acts on the fitting member, the side wall surface of the inner peripheral groove on the side receiving the pressing force And the side surface of the snap ring facing the side wall surface During is to have a gap over the entire depth direction of the inner peripheral groove.
 このようにすれば、前記押圧力は、その押圧力を受け止める側の側壁面に対し、前記開口端部の少なくとも一方では、前記隙間により、直接には作用しないことになる。そのため、その開口端部では応力集中が緩和されて、前記固定部材の耐久性を向上させることができる。そして、この車両用スナップリングの連結構造の信頼性を向上させることができる。なお、前記一対の開口端部の両方において前記隙間を有することにより、更に、前記固定部材の耐久性を向上させ、前記車両用スナップリングの連結構造の信頼性を向上させることができる。 In this way, the pressing force does not act directly on the side wall surface on the side receiving the pressing force due to the gap on at least one of the opening end portions. Therefore, stress concentration is relaxed at the opening end portion, and the durability of the fixing member can be improved. And the reliability of the connection structure of this vehicle snap ring can be improved. In addition, by having the said clearance gap in both of a pair of said opening edge part, durability of the said fixing member can be improved further and the reliability of the connection structure of the said snap ring for vehicles can be improved.
 ここで、好適には、前記スナップリングの前記一軸方向の肉厚は、前記開口端部ではそれ以外の部分に対して薄い。このようにすれば、そのスナップリングの形状を前記隙間が生じるように構成することで、その隙間を生じさせるための前記固定部材の形状変更を要せずに、その固定部材の耐久性を向上させることができる。 Here, preferably, the thickness of the snap ring in the uniaxial direction is thinner than the other portions at the opening end. In this way, by configuring the snap ring so that the gap is generated, the durability of the fixing member is improved without requiring a change in the shape of the fixing member for generating the gap. Can be made.
 また、好適には、前記スナップリングの前記一軸方向の肉厚は、前記開口端部ではそれ以外の部分に対して連続的に薄くなっている。このようにすれば、そのスナップリングは、それの肉厚変化による応力集中が回避され乃至は抑えられて、耐久性低下が抑制される。 Also preferably, the thickness of the snap ring in the uniaxial direction is continuously thinner than the other portions at the opening end. In this way, the snap ring avoids or suppresses stress concentration due to a change in the thickness of the snap ring, thereby suppressing a decrease in durability.
 また、好適には、前記内周溝の前記一軸方向の溝幅は、その開口端部ではそれ以外の部分に対して広い。このようにすれば、その開口端部で内周溝の形状を前記隙間が生じるように構成することで、その隙間を生じさせるための前記スナップリングの形状変更を要せずに、その固定部材の耐久性を向上させることができる。なお、上記開口端部において、上記スナップリングの上記一軸方向の肉厚が薄くされることと、上記内周溝のその一軸方向の溝幅が広くされることとが、併せて実施されても差し支えない。 Also preferably, the groove width in the uniaxial direction of the inner circumferential groove is wider than the other portions at the opening end. If it does in this way, the shape of the inner peripheral groove is formed so that the gap is generated at the opening end thereof, and the fixing member is not required to change the shape of the snap ring for generating the gap. The durability of can be improved. Note that, at the opening end, the uniaxial thickness of the snap ring may be reduced and the uniaxial groove width of the inner circumferential groove may be increased. There is no problem.
 また、好適には、前記内周溝の前記一軸方向の溝幅は、前記開口端部ではそれ以外の部分に対して連続的に広くなっている。このようにすれば、その開口端部で前記固定部材は、上記溝幅の変化による応力集中が回避され乃至は抑えられて、耐久性低下が抑制される。 Also preferably, the groove width in the uniaxial direction of the inner circumferential groove is continuously wider than the other portions at the opening end. If it does in this way, the stress concentration by the change of the said groove | channel width | variety is avoided thru | or suppressed at the opening edge part, and durability fall is suppressed.
 また、好適には、(a)前記固定部材は、車両の駆動力を複数の駆動輪に配分するトランスファのケースであり、(b)前記嵌合部材は、前記固定部材に対してそのトランスファの出力軸を前記一軸周りに回転可能に支える出力軸ベアリングである。このようにすれば、その出力軸にかかる上記一軸方向の押圧力に対して、そのトランスファの耐久性を向上させることができる。 Preferably, (a) the fixing member is a transfer case that distributes the driving force of the vehicle to a plurality of driving wheels, and (b) the fitting member is connected to the fixing member. An output shaft bearing that rotatably supports the output shaft about the one axis. In this way, the durability of the transfer can be improved against the uniaxial pressing force applied to the output shaft.
本発明が好適に適用される車両の動力伝達装置を有する前置エンジン後輪駆動(FR)を基本とする前後輪駆動車両の構成を説明する骨子図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a skeleton diagram illustrating a configuration of a front and rear wheel drive vehicle based on a front engine rear wheel drive (FR) having a vehicle power transmission device to which the present invention is preferably applied. 図1の動力伝達装置が備えるトランスファの骨子図である。FIG. 2 is a schematic diagram of a transfer provided in the power transmission device of FIG. 1. 図2に示すトランスファの内部を簡略的に示した断面図である。It is sectional drawing which showed the inside of the transfer shown in FIG. 2 simply. 図3のIV部を拡大した図である。It is the figure which expanded the IV section of FIG. 図4に示されたトランスファの嵌合穴に対して後輪側軸受を軸心方向に固定するスナップリングの概略形状を単体の状態で示した図である。FIG. 5 is a diagram showing a schematic shape of a snap ring for fixing a rear wheel side bearing in the axial direction with respect to the fitting hole of the transfer shown in FIG. 4 in a single state. 図4にて矢印A方向にトランスファケースと後輪側軸受とを見たA-A矢視図である。FIG. 5 is an AA arrow view of the transfer case and the rear wheel side bearing as viewed in the direction of arrow A in FIG. 4. 図3のトランスファケースの一対の開口端部の一方において、すなわち、図6に示すB部において、トランスファケースの内周溝とスナップリングとを示した図である。FIG. 7 is a view showing an inner peripheral groove and a snap ring of the transfer case at one of a pair of opening end portions of the transfer case of FIG. 3, that is, at a portion B shown in FIG. 6. 図6に示すB部において、図7に相当するそれとは別の他のスナップリングの連結構造を説明するための図である。FIG. 8 is a view for explaining another snap ring connection structure different from that corresponding to FIG. 7 in the portion B shown in FIG. 6.
符号の説明Explanation of symbols
8:車両
20l、20r:前輪(駆動輪)
22:トランスファ
30l、30r:後輪(駆動輪)
42:トランスファケース(固定部材、ケース)
48:第1出力軸(出力軸)
112:後輪側軸受(嵌合部材、出力軸ベアリング)
120:スナップリング
124:嵌合穴
126:内周面
128:内周溝
130:外周面
132:外周溝
134:切欠部
136:開口端部
138:側壁面
140:側面
C:軸心(一軸)
TH:押圧力
8: Vehicle 20l, 20r: Front wheel (drive wheel)
22: Transfer 30l, 30r: Rear wheel (drive wheel)
42: Transfer case (fixing member, case)
48: First output shaft (output shaft)
112: Rear wheel side bearing (fitting member, output shaft bearing)
120: Snap ring 124: Fitting hole 126: Inner peripheral surface 128: Inner peripheral groove 130: Outer peripheral surface 132: Outer peripheral groove 134: Notch 136: Open end 138: Side wall surface 140: Side surface C: Axle (uniaxial)
F TH : Pressing force
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明が好適に適用される車両8の動力伝達装置10を有する前置エンジン後輪駆動(FR)を基本とする前後輪駆動車両の構成を説明する骨子図である。この図1において、車両8の駆動力源であるエンジン12により発生させられた駆動力(トルク)は、自動変速機14を介してトランスファ22に伝達される。トランスファ22に伝達された駆動力は、前輪駆動力伝達軸であるフロントプロペラシャフト23および後輪駆動力伝達軸であるリアプロペラシャフト24に分配される。そして、フロントプロペラシャフト23に伝達された駆動力は、前輪用差動歯車装置(フロントデフ)16、及び左右一対の前輪車軸18l、18rを介して左右1対の前輪20l、20rへ伝達される。一方、リアプロペラシャフト24に伝達された駆動力は、後輪用差動歯車装置26、及び左右1対の後輪車軸28l、28rを介して左右1対の後輪30l、30rへ伝達される。すなわち、トランスファ22は、車両8の駆動力を、複数の駆動輪すなわち前輪20及び後輪30のそれぞれに配分する。動力伝達装置10は、上記エンジン12と、自動変速機14と、そのエンジン12と自動変速機14との間に介装された図示しない動力伝達機構であるトルクコンバータ等と、トランスファ22と、フロントプロペラシャフト23と、前輪用差動歯車装置16と、前輪車軸18と、リアプロペラシャフト24と、後輪用差動歯車装置26と、後輪車軸28とを備えている。 FIG. 1 is a skeleton diagram illustrating the configuration of a front and rear wheel drive vehicle based on a front engine rear wheel drive (FR) having a power transmission device 10 for a vehicle 8 to which the present invention is preferably applied. In FIG. 1, the driving force (torque) generated by the engine 12 that is the driving force source of the vehicle 8 is transmitted to the transfer 22 via the automatic transmission 14. The driving force transmitted to the transfer 22 is distributed to a front propeller shaft 23 that is a front wheel driving force transmission shaft and a rear propeller shaft 24 that is a rear wheel driving force transmission shaft. The driving force transmitted to the front propeller shaft 23 is transmitted to a pair of left and right front wheels 20l and 20r via a front wheel differential gear device (front differential) 16 and a pair of left and right front wheel axles 18l and 18r. . On the other hand, the driving force transmitted to the rear propeller shaft 24 is transmitted to the left and right pair of rear wheels 30l and 30r via the rear wheel differential gear device 26 and the left and right pair of rear wheel axles 28l and 28r. . That is, the transfer 22 distributes the driving force of the vehicle 8 to each of a plurality of driving wheels, that is, the front wheels 20 and the rear wheels 30. The power transmission device 10 includes an engine 12, an automatic transmission 14, a torque converter that is a power transmission mechanism (not shown) interposed between the engine 12 and the automatic transmission 14, a transfer 22, a front A propeller shaft 23, a front wheel differential gear device 16, a front wheel axle 18, a rear propeller shaft 24, a rear wheel differential gear device 26, and a rear wheel axle 28 are provided.
 上記エンジン12は、例えば、気筒内噴射される燃料の燃焼によって駆動力を発生させるガソリンエンジン或いはディーゼルエンジン等の内燃機関である。また、上記自動変速機14は、例えば、上記エンジン12から入力される回転を所定の変速比γで減速或いは増速して出力する有段式の自動変速機(オートマチックトランスミッション)であり、前進変速段、後進変速段、及びニュートラルのうち何れかが選択的に成立させられ、それぞれの変速比γに応じた速度変換が成される。なお、この自動変速機14の入力軸は、図示しないトルクコンバータ等を介して上記エンジン12の出力軸に連結されている。 The engine 12 is, for example, an internal combustion engine such as a gasoline engine or a diesel engine that generates a driving force by combustion of fuel injected in a cylinder. The automatic transmission 14 is, for example, a stepped automatic transmission (automatic transmission) that outputs the rotation input from the engine 12 by decelerating or increasing the speed at a predetermined gear ratio γ. Any one of the first gear, the reverse gear, and the neutral is selectively established, and the speed conversion corresponding to each gear ratio γ is performed. The input shaft of the automatic transmission 14 is connected to the output shaft of the engine 12 via a torque converter (not shown).
 図2は、図1のトランスファ22の骨子図である。なお、この図2は、後述の入力軸56、第1出力軸48、第2出力軸50、第1シフトフォークシャフト88、および第2シフトフォークシャフト92のそれぞれの軸心を共通の平面内に示した展開図である。図2において、トランスファ22は、自動変速機14のトランスミッションケース40の車両後方側に連結された非回転部材としてのトランスファケース42を備えている。また、トランスファ22は、トランスファケース42内において、シングルピニオン型の遊星歯車装置44を主体に構成されている副変速機46と、軸心C(一軸)まわりの回転可能にトランスファケース42に支持されてリアプロペラシャフト24に連結された第1出力軸48、およびフロントプロペラシャフト23に連結された第2出力軸50に対して、それぞれの回転差を許容しつつ駆動力(トルク)を分配するセンターデフ(中央差動装置)52と、副変速機46からセンターデフ52に至る2つの動力伝達経路のどちらかが連結状態とされることにより低速側変速段または高速側変速段を択一的に成立させる噛合クラッチ装置53と、センターデフ52の上記回転差を許容する作動すなわち差動をロックするデフロック装置54とを共通の軸心C上に有している。このトランスファ22は、軸心Cまわりの回転可能にトランスファケース42に支持された入力軸56の回転を変速し且つ差動状態または直結状態で第1出力軸48および第2出力軸50からそれぞれ出力する。上記入力軸56は、自動変速機14の出力軸58にスプライン嵌合継手などを介して連結されており、エンジン12から自動変速機14を介して入力された駆動力(トルク)によって回転駆動させられるものである。なお、上記軸心Cは本発明の一軸に対応し、トランスファケース42は本発明の固定部材に対応し、第1出力軸48は本発明のトランスファの出力軸に対応する。 FIG. 2 is a skeleton diagram of the transfer 22 of FIG. In FIG. 2, the axes of the input shaft 56, the first output shaft 48, the second output shaft 50, the first shift fork shaft 88, and the second shift fork shaft 92, which will be described later, are in a common plane. It is the expanded view shown. In FIG. 2, the transfer 22 includes a transfer case 42 as a non-rotating member connected to the vehicle rear side of the transmission case 40 of the automatic transmission 14. In addition, the transfer 22 is supported in the transfer case 42 so as to be rotatable around an axis C (one axis) and an auxiliary transmission 46 mainly composed of a single pinion type planetary gear unit 44 in the transfer case 42. A center that distributes driving force (torque) to the first output shaft 48 connected to the rear propeller shaft 24 and the second output shaft 50 connected to the front propeller shaft 23 while allowing the respective rotational differences. The differential (central differential) 52 and either of the two power transmission paths from the sub-transmission 46 to the center differential 52 are connected to each other, so that the low speed side gear stage or the high speed side gear stage is selected. An engagement clutch device 53 to be established; an operation that allows the rotational difference of the center differential 52, that is, a differential lock device 54 that locks the differential; Have a common axis on the C. The transfer 22 shifts the rotation of the input shaft 56 supported by the transfer case 42 so as to be rotatable about the axis C, and outputs from the first output shaft 48 and the second output shaft 50 in a differential state or a direct connection state, respectively. To do. The input shaft 56 is connected to the output shaft 58 of the automatic transmission 14 via a spline fitting joint or the like, and is driven to rotate by a driving force (torque) input from the engine 12 via the automatic transmission 14. It is what The axis C corresponds to one axis of the present invention, the transfer case 42 corresponds to the fixing member of the present invention, and the first output shaft 48 corresponds to the output shaft of the transfer of the present invention.
 上記遊星歯車装置44は、入力軸56の外周面に対して軸心Cまわりの回転不能に連結されたサンギヤS1と、そのサンギヤS1に対して略同心に配置され、車体に対して固定された固定部材であるトランスファケース42に軸心Cまわりの回転不能に連結されたリングギヤR1と、これらサンギヤS1およびリングギヤR1に噛み合う複数のピニオンギヤP1を自転可能且つサンギヤS1まわりの公転可能に支持するキャリヤCA1とを有している。よって、サンギヤS1の回転速度は、入力軸56に対して等速であり、キャリヤCA1の回転速度は、入力軸56に対して減速される。また、サンギヤS1には、噛合クラッチ装置53のうち、高速側ギヤ段(高速側変速段)の成立に関与する同期噛合クラッチ72の非同期側部材としてのクラッチギヤ60が、サンギヤS1に対する軸心Cまわりの回転不能に固設されている。また、キャリヤCA1には、噛合クラッチ装置53のうち、低速側ギヤ段(低速側変速段)の成立に関与する後述の噛合クラッチ74の非同期側部材としてのクラッチギヤ62が、キャリヤCA1に対する軸心Cまわりの回転不能に固設されている。 The planetary gear unit 44 is disposed so as to be non-rotatable around the axis C with respect to the outer peripheral surface of the input shaft 56, and is disposed substantially concentrically with the sun gear S1 and fixed to the vehicle body. A carrier CA1 that supports a ring gear R1 that is non-rotatably connected around a shaft center C to a transfer case 42 that is a fixed member, and a sun gear S1 and a plurality of pinion gears P1 that mesh with the ring gear R1 and that can revolve around the sun gear S1. And have. Therefore, the rotational speed of the sun gear S1 is constant with respect to the input shaft 56, and the rotational speed of the carrier CA1 is decelerated with respect to the input shaft 56. Further, in the sun gear S1, a clutch gear 60 as an asynchronous member of the synchronous mesh clutch 72 that is involved in the establishment of the high speed gear stage (high speed gear stage) in the mesh clutch device 53 has an axis C relative to the sun gear S1. It is fixed so that it cannot rotate around. In addition, in the carrier CA1, a clutch gear 62 as an asynchronous member of a later-described meshing clutch 74, which is involved in the establishment of the low-speed gear stage (low-speed gear stage) in the meshing clutch device 53, has an axial center with respect to the carrier CA1. It is fixed so that it cannot rotate around C.
 上記センターデフ52は、よく知られた所謂トルセン式の差動歯車制限装置であって、軸心Cまわりの回転可能に第1出力軸に支持されたデフケース64と、そのデフケース64内において軸心Cまわりの回転不能に第1出力軸48に連結されたリングギヤR2と、そのリングギヤR2に対して略同心に配置され、第1出力軸48に対して軸心Cまわりの相対回転可能にその第1出力軸48の外周部に支持されたサンギヤS2と、これらサンギヤS2およびリングギヤR2に噛み合う複数のピニオンギヤP2を自転可能且つサンギヤS2まわりの公転可能に支持するとともに、デフケース64に連結されたキャリヤCA2とを有している。上記サンギヤS2は、そのサンギヤS2と同様に第1出力軸48に軸心Cまわりの回転可能に支持された第1出力ギヤ66に連結されている。その第1出力ギヤ66の回転は、第2出力軸50まわりの回転不能に第2出力軸50に連結された第2出力ギヤ68に対して、それら第1出力ギヤ66および第2出力ギヤ68の外周に巻き掛けられた伝達ベルト70を介して伝達されるようになっている。このようなセンターデフ52において、直進時には、遊星歯車装置44からデフケース64へ伝達されたトルクがリングギヤR2およびサンギヤS2を介してそれぞれ第1出力軸48および第2出力軸50へ伝達される。また、旋回時には、デフケース64からサンギヤS2へ入力されたトルクの一部がキャリヤCA2およびデフケース64を介してリングギヤR2へ伝達されるようになっており、直進時のトルク配分よりもリヤよりのトルク配分で第1出力軸48および第2出力軸50へそれぞれ伝達される。 The center differential 52 is a well-known Torsen-type differential gear limiting device, and includes a differential case 64 that is supported on the first output shaft so as to be rotatable around the axis C, and an axial center within the differential case 64. A ring gear R2 that is connected to the first output shaft 48 so as not to rotate about C, and is arranged substantially concentrically with respect to the ring gear R2, so that the first output shaft 48 can rotate relative to the first output shaft 48 about the axis C. A carrier CA2 that supports a sun gear S2 supported on the outer periphery of one output shaft 48 and a plurality of pinion gears P2 meshing with the sun gear S2 and the ring gear R2 so as to be capable of rotating and revolving around the sun gear S2, and connected to a differential case 64. And have. The sun gear S2 is connected to a first output gear 66 supported on the first output shaft 48 so as to be rotatable about the axis C, similarly to the sun gear S2. The first output gear 66 rotates with respect to the second output gear 68 connected to the second output shaft 50 so as not to rotate around the second output shaft 50. It is transmitted via a transmission belt 70 wound around the outer periphery of the belt. In such a center differential 52, when traveling straight, torque transmitted from the planetary gear unit 44 to the differential case 64 is transmitted to the first output shaft 48 and the second output shaft 50 via the ring gear R2 and the sun gear S2, respectively. Further, at the time of turning, a part of the torque inputted from the differential case 64 to the sun gear S2 is transmitted to the ring gear R2 via the carrier CA2 and the differential case 64, and the torque from the rear is more than the torque distribution at the time of straight traveling. The distribution is transmitted to the first output shaft 48 and the second output shaft 50, respectively.
 上記噛合クラッチ装置53は、高速側ギヤ段を成立させるための同期噛合クラッチ72と、低速側ギヤ段を成立させるための噛合クラッチ74とを有している。上記同期噛合クラッチ72は、よく知られた所謂シンクロ機構を備えるものであり、デフケース64に対して例えばスプライン嵌合されることにより軸心Cまわりの相対回転不能且つ軸心C方向の相対移動可能に設けられた円筒状のスリーブ76と、そのスリーブ76の内周面の内周歯に対して軸心Cまわりの相対回転不能且つ軸心C方向の相対移動可能に噛み合う外周歯を有し、遊星歯車装置44とデフケース64との間に配置されて前述のようにサンギヤS1に固設されたクラッチギヤ60と、スリーブ76およびクラッチギヤ60の回転が非同期状態である時にはそのスリーブ76のクラッチギヤ60方向への移動を阻止するシンクロナイザリング(同期リング)78とを有している。本実施例では、上記スリーブ76が後述のシフトアクチュエータ86によって軸心C方向へ移動させられるシフトリングに相当する。上記噛合クラッチ74は、上記シフトリングとしてのスリーブ76と、そのスリーブ76の外周部に設けられた外周歯80に対して軸心Cまわりの相対回転不能且つ軸心C方向の相対移動可能に噛み合う内周歯を有し、外周歯80に対するクラッチギヤ62とは反対側に配置されて前述のようにキャリヤCA1に固設されたクラッチギヤ62とを有している。このように構成された噛合クラッチ装置53においては、スリーブ76が軸心C方向に摺動することでデフケース64と噛み合いつつクラッチギヤ60と噛み合うことにより高速側ギヤ段が成立させられ、スリーブ76が軸心C方向に摺動することでデフケース64と噛み合いつつクラッチギヤ62と噛み合うことにより低速側ギヤ段が成立させられるようになっている。このとき、キャリヤCA1およびクラッチギヤ62を介してデフケース64へ駆動力が伝達される経路が低速側ギヤ段を成立させる動力伝達経路に相当し、サンギヤS1およびクラッチギヤ60を介してデフケース64へ駆動力が伝達される経路が高速側ギヤ段を成立させる動力伝達経路に相当する。なお、本実施例では、デフケース64は、同期噛合クラッチ72のクラッチハブとして機能している。また、噛合クラッチ装置53は、副変速機46を変速させるために係合作動させられるものである。 The meshing clutch device 53 has a synchronous meshing clutch 72 for establishing a high speed side gear stage and a meshing clutch 74 for establishing a low speed side gear stage. The synchronous mesh clutch 72 includes a well-known so-called synchro mechanism, and is relatively non-rotatable around the axis C and is relatively movable in the direction of the axis C by, for example, spline fitting to the differential case 64. A cylindrical sleeve 76 provided on the inner peripheral surface of the sleeve 76, and an outer peripheral tooth meshing with an inner peripheral tooth of the inner peripheral surface of the sleeve 76 so as not to rotate around the axis C and to move relative to the axis C. The clutch gear 60 disposed between the planetary gear unit 44 and the differential case 64 and fixed to the sun gear S1 as described above, and when the rotation of the sleeve 76 and the clutch gear 60 is asynchronous, the clutch gear of the sleeve 76 And a synchronizer ring (synchronization ring) 78 for preventing movement in the 60 direction. In this embodiment, the sleeve 76 corresponds to a shift ring that is moved in the direction of the axis C by a shift actuator 86 described later. The meshing clutch 74 meshes with a sleeve 76 as the shift ring and an outer peripheral tooth 80 provided on an outer peripheral portion of the sleeve 76 so as not to be rotatable about the axis C and to be relatively movable in the direction of the axis C. It has an inner peripheral tooth and is arranged on the opposite side of the outer peripheral tooth 80 from the clutch gear 62 and has the clutch gear 62 fixed to the carrier CA1 as described above. In the meshing clutch device 53 configured as described above, the sleeve 76 slides in the direction of the axis C so as to mesh with the differential case 64 and mesh with the clutch gear 60, thereby establishing the high speed side gear stage. By sliding in the direction of the axis C, the low speed side gear stage is established by engaging with the clutch gear 62 while engaging with the differential case 64. At this time, the path through which the driving force is transmitted to the differential case 64 via the carrier CA1 and the clutch gear 62 corresponds to the power transmission path that establishes the low-speed gear stage, and is driven to the differential case 64 via the sun gear S1 and the clutch gear 60. The path through which the force is transmitted corresponds to a power transmission path that establishes the high speed side gear. In the present embodiment, the differential case 64 functions as a clutch hub of the synchronous mesh clutch 72. Further, the meshing clutch device 53 is engaged and operated to shift the auxiliary transmission 46.
 上記デフロック装置54は、デフケース64の外周部に例えばスプライン嵌合されてデフケース64に対して例えばスプライン嵌合されることにより軸心Cまわりの相対回転不能且つ軸心C方向の相対移動可能に設けられた円筒状のスリーブ82と、そのスリーブ82の内周面の内周歯に対して軸心Cまわりの相対回転不能且つ軸心C方向の相対移動可能に噛み合う外周歯を有し、第1出力ギヤ66とデフケース64との間に配置されてその第1出力ギヤ66に固設されたクラッチギヤ84とを有している。このように構成されたデフロック装置54においては、スリーブ82が軸心C方向に摺動することでデフケース64と噛み合いつつクラッチギヤ84と噛み合うことにより、センターデフ52の差動をロックさせるようになっている。なお、本実施例では、デフケース64は、噛合クラッチ74のクラッチハブとして機能している。 The differential lock device 54 is provided, for example, by spline fitting to the outer peripheral portion of the differential case 64 and, for example, by spline fitting to the differential case 64 so as not to be relatively rotatable about the axis C and to be relatively movable in the direction of the axis C. A cylindrical sleeve 82, and an outer peripheral tooth that meshes with an inner peripheral tooth of the inner peripheral surface of the sleeve 82 so as not to be rotatable about the axis C and to be relatively movable in the direction of the axis C. The clutch gear 84 is disposed between the output gear 66 and the differential case 64 and is fixed to the first output gear 66. In the differential lock device 54 configured in this way, the differential of the center differential 52 is locked by engaging the clutch gear 84 while meshing with the differential case 64 by sliding the sleeve 82 in the axial center C direction. ing. In the present embodiment, the differential case 64 functions as a clutch hub of the meshing clutch 74.
 ここで、上記噛合クラッチ装置53およびデフロック装置54は、車両8に搭載されエンジン12の出力制御や自動変速機14の変速制御などを実施する電子制御装置(図示しない)によって駆動させられるシフトアクチュエータ86によって係合作動させられる。すなわち、上記噛合クラッチ装置53は、シフトアクチュエータ86の出力部材に相当して軸心Cに平行な方向へ突き出す第1シフトフォークシャフト88が、シフトアクチュエータ86の駆動によって上記軸心Cに平行な方向へ作動させられることにより、スリーブ76に対して軸心C方向の係合可能且つ軸心Cまわりの相対回転可能に第1シフトフォークシャフト88に固設された第1シフトフォーク90を介して、スリーブ76を軸心C方向へ作動させるようになっている。また、上記デフロック装置54は、シフトアクチュエータ86の出力部材に相当して軸心Cに平行な方向へ突き出す第2シフトフォークシャフト92が、シフトアクチュエータ86の駆動によって上記軸心Cに平行な方向へ作動させられることにより、スリーブ82に対して軸心C方向の係合可能且つ軸心Cまわりの相対回転可能に第2シフトフォークシャフト92に固設された第2シフトフォーク94を介して、スリーブ82を軸心C方向へ作動させるようになっている。 Here, the mesh clutch device 53 and the differential lock device 54 are mounted on the vehicle 8 and driven by an electronic control device (not shown) that performs output control of the engine 12, shift control of the automatic transmission 14, and the like. Is engaged. That is, in the mesh clutch device 53, the first shift fork shaft 88 that protrudes in a direction parallel to the axis C corresponding to the output member of the shift actuator 86 is parallel to the axis C by driving the shift actuator 86. Through the first shift fork 90 fixed to the first shift fork shaft 88 so as to be engageable with the sleeve 76 in the direction of the axis C and relatively rotatable about the axis C. The sleeve 76 is actuated in the direction of the axis C. In the differential lock device 54, the second shift fork shaft 92 protruding in a direction parallel to the axis C corresponding to the output member of the shift actuator 86 is driven in the direction parallel to the axis C by driving the shift actuator 86. By being actuated, the sleeve is engaged via the second shift fork 94 fixed to the second shift fork shaft 92 so as to be engageable with the sleeve 82 in the direction of the axis C and relatively rotatable about the axis C. 82 is operated in the direction of the axis C.
 図3は、図2に示すトランスファ22の内部を簡略的に示した断面図である。図4は、図3のIV部を拡大した図である。なお、トランスファ22内には、センターデフ52や副変速機46やデフロック装置54等が配設されているが、図3においてはそれらの装置が省略されて図示されている。 FIG. 3 is a cross-sectional view schematically showing the inside of the transfer 22 shown in FIG. FIG. 4 is an enlarged view of a portion IV in FIG. The transfer 22 is provided with a center differential 52, an auxiliary transmission 46, a differential lock device 54, etc., but these devices are omitted in FIG.
 図3に示すように、第2出力軸50は、その一端が、前記固定部材であるトランスファケース42からフロントプロペラシャフト23方向に突き出しており、トランスファケース42に嵌め着けられた軸受102および軸受104を介して回転可能に支持されている。また、第2出力軸50の一端には、フロントプロペラシャフト23に動力伝達可能に連結された前輪側コンパニオンフランジ106がスプライン嵌合され、ナット108によって脱落不能に締結されている。 As shown in FIG. 3, the second output shaft 50 has one end protruding from the transfer case 42, which is the fixing member, toward the front propeller shaft 23, and the bearing 102 and the bearing 104 fitted to the transfer case 42. It is rotatably supported through A front wheel side companion flange 106 connected to the front propeller shaft 23 so as to be able to transmit power is spline-fitted to one end of the second output shaft 50 and fastened by a nut 108 so as not to drop off.
 第1出力軸48は、その一端がトランスファケース42からリアプロペラシャフト24方向に突き出しており、トランスファケース42に対しそれに嵌め入れられた後輪側軸受112を介して軸心Cまわりに回転可能に支持されている。また、第1出力軸48の一端には、リアプロペラシャフト24に動力伝達可能に連結された後輪側コンパニオンフランジ114がスプライン嵌合され、ナット116によって脱落不能に締結されている。このナット116の締結により、第1出力軸48と後輪側コンパニオンフランジ114と後輪側軸受112の内輪部材とが一体とされている。後輪側コンパニオンフランジ114は、軸心Cに沿って直列に配設されたリアプロペラシャフト24と自在継手118を介してボルト止めにより固定されている。自在継手118は、第1出力軸48の軸心とリアプロペラシャフト24の軸心とが同一軸とならずにある程度の角度を有することを許容するための継手である。 One end of the first output shaft 48 projects in the direction of the rear propeller shaft 24 from the transfer case 42, and can rotate about the axis C via a rear wheel side bearing 112 fitted to the transfer case 42. It is supported. A rear wheel side companion flange 114 connected to the rear propeller shaft 24 so as to transmit power is spline-fitted to one end of the first output shaft 48 and fastened by a nut 116 so as not to drop off. By fastening the nut 116, the first output shaft 48, the rear wheel side companion flange 114, and the inner ring member of the rear wheel side bearing 112 are integrated. The rear wheel side companion flange 114 is fixed by bolting via a rear propeller shaft 24 and a universal joint 118 arranged in series along the axis C. The universal joint 118 is a joint for allowing the axis of the first output shaft 48 and the axis of the rear propeller shaft 24 to have a certain angle without being the same axis.
 後輪側軸受112は、トランスファケース42に対して第1出力軸48を軸心Cまわりに回転可能に支える後輪側の出力軸ベアリングであり、図4に示すように、スナップリング120によって、トランスファケース42に対して軸心C方向に相対移動不能に固定されている。詳細には、トランスファケース42には、軸心Cを中心とする嵌合穴124が設けられており、更に、その嵌合穴124の内周面126には軸心C周りに環状の内周溝128が設けられている。また、後輪側軸受112はそれの外周面130に、嵌合穴124へ嵌入された状態で上記内周溝128に相対向する環状の外周溝132を備えている。このような後輪側軸受112がトランスファケース42の嵌合穴124に嵌入された上で、スナップリング120が上記内周溝128および外周溝132の両方にわたって嵌め込まれることにより、後輪側軸受112は、トランスファケース42に対して軸心C方向に固定される。なお、後輪側軸受112は、本発明の嵌合部材に対応する。 The rear wheel side bearing 112 is a rear wheel side output shaft bearing that rotatably supports the first output shaft 48 around the axis C with respect to the transfer case 42. As shown in FIG. It is fixed so as not to move relative to the transfer case 42 in the direction of the axis C. Specifically, the transfer case 42 is provided with a fitting hole 124 centered on the shaft center C, and the inner peripheral surface 126 of the fitting hole 124 has an annular inner periphery around the shaft center C. A groove 128 is provided. Further, the rear wheel side bearing 112 is provided with an annular outer circumferential groove 132 opposed to the inner circumferential groove 128 in a state of being fitted into the fitting hole 124 on the outer circumferential surface 130 thereof. After such a rear wheel side bearing 112 is fitted into the fitting hole 124 of the transfer case 42, the snap ring 120 is fitted over both the inner circumferential groove 128 and the outer circumferential groove 132, whereby the rear wheel side bearing 112. Is fixed in the direction of the axis C with respect to the transfer case 42. The rear wheel side bearing 112 corresponds to the fitting member of the present invention.
 図3に示すように、リアプロペラシャフト24は、自在継手118を介して後輪側コンパニオンフランジ114に連結された内筒部材24aと、その内筒部材24aがスプライン嵌合などにより内側に挿入され後輪用差動歯車装置26に動力伝達可能に連結された外筒部材24bとを備えており、内筒部材24aと外筒部材24bとは相互に、軸心Cまわりに相対回転不能且つ軸心C方向に相対移動可能に連結されている。つまり、リアプロペラシャフト24は、トランスファ22からの駆動力を後輪30に伝達でき且つ軸心C方向に伸縮可能な構造となっている。 As shown in FIG. 3, the rear propeller shaft 24 has an inner cylinder member 24a connected to the rear wheel side companion flange 114 via a universal joint 118, and the inner cylinder member 24a is inserted inside by spline fitting or the like. And an outer cylinder member 24b coupled to the rear wheel differential gear device 26 so as to be capable of transmitting power. The inner cylinder member 24a and the outer cylinder member 24b are mutually non-rotatable about the axis C and are It is connected so as to be relatively movable in the direction of the center C. In other words, the rear propeller shaft 24 has a structure capable of transmitting the driving force from the transfer 22 to the rear wheel 30 and extending and contracting in the direction of the axis C.
 図5は、スナップリング120単体の概略形状を示した図である。スナップリング120は、一般にΩ型スナップリングと称されるものである。このスナップリング120は、トランスファケース42の内周溝128および後輪側軸受112の外周溝132に嵌め込まれる一部が途切れた円環形状のリング部120aと、そのリング部120aの端部から径方向外側に向けて突き出た一対の操作部120bとを備えている。そして、スナップリング120は、例えば、一般的なスナップリングと同様に鋼製のバネ材であり、全体として矩形断面を有している。一対の操作部120bの先端部には、それぞれ、リング部120aの直径を拡大もしくは縮小するようにそのリング部120aを変形させるための操作穴120cが設けられている。また、スナップリング120の自由状態で、リング部120aの外径はトランスファケース42の嵌合穴124の内径よりも大きく、且つ、リング部120aの内径は後輪側軸受112の外径よりも小さい。 FIG. 5 is a diagram showing a schematic shape of the snap ring 120 alone. The snap ring 120 is generally called an Ω-type snap ring. The snap ring 120 includes a ring-shaped ring portion 120a that is partially cut into the inner circumferential groove 128 of the transfer case 42 and the outer circumferential groove 132 of the rear wheel side bearing 112, and a diameter from the end of the ring portion 120a. And a pair of operation portions 120b protruding outward in the direction. The snap ring 120 is, for example, a steel spring material as in a general snap ring, and has a rectangular cross section as a whole. An operation hole 120c for deforming the ring portion 120a is provided at the distal ends of the pair of operation portions 120b so as to enlarge or reduce the diameter of the ring portion 120a. In the free state of the snap ring 120, the outer diameter of the ring portion 120a is larger than the inner diameter of the fitting hole 124 of the transfer case 42, and the inner diameter of the ring portion 120a is smaller than the outer diameter of the rear wheel side bearing 112. .
 スナップリング120のトランスファケース42への取付作業について説明する。先ず、一対の操作部120bを互いに近づけてリング部120aの外径をトランスファケース42の嵌合穴124よりも小さくする。その状態で、スナップリング120を、まだ後輪側軸受112が嵌入されていない嵌合穴124に挿入する。そして、操作部120bを解放して前記内周溝128にスナップリング120を嵌め入れる。次に、スナップリング120が内周溝128に嵌め込まれた状態で、一対の操作部120bを互いに引き離してリング部120aの内径を後輪側軸受112の外径よりも大きくする。その状態で、後輪側軸受112を嵌合穴124に嵌入し、その嵌入完了後に、操作部120bを解放する。このような取付作業の結果、スナップリング120は、トランスファケース42の内周溝128および後輪側軸受112の外周溝132の両方にわたって嵌め込まれることとなる。 The operation of attaching the snap ring 120 to the transfer case 42 will be described. First, the pair of operation portions 120b are brought close to each other to make the outer diameter of the ring portion 120a smaller than the fitting hole 124 of the transfer case 42. In this state, the snap ring 120 is inserted into the fitting hole 124 in which the rear wheel side bearing 112 is not yet fitted. Then, the operation portion 120 b is released and the snap ring 120 is fitted into the inner circumferential groove 128. Next, in a state where the snap ring 120 is fitted in the inner circumferential groove 128, the pair of operation parts 120 b are separated from each other so that the inner diameter of the ring part 120 a is larger than the outer diameter of the rear wheel side bearing 112. In this state, the rear wheel side bearing 112 is fitted into the fitting hole 124, and after the fitting is completed, the operation portion 120b is released. As a result of such attachment work, the snap ring 120 is fitted over both the inner peripheral groove 128 of the transfer case 42 and the outer peripheral groove 132 of the rear wheel side bearing 112.
 図6は、図4にて矢印A方向にトランスファケース42と後輪側軸受112とを見たA-A矢視図である。この図6では、後輪側軸受112よりも内側の部材、例えば第1出力軸48は省略して図示されている。 FIG. 6 is an AA arrow view of the transfer case 42 and the rear wheel side bearing 112 seen in the direction of arrow A in FIG. In FIG. 6, members inside the rear wheel side bearing 112, for example, the first output shaft 48 are omitted.
 図6に示すように、トランスファケース42は、それの内周溝128にスナップリング120が嵌め込まれた状態でそのスナップリング120の一対の操作部120bがトランスファケース42と干渉しないように、前記嵌合穴124周りの一部が切り欠かれた切欠部134を備えている。そのため、その切欠部134の周方向両端で内周溝128が途切れて周方向に開口した一対の開口端部136がトランスファケース42に構成されている。 As shown in FIG. 6, the transfer case 42 is fitted with the snap ring 120 so that the pair of operation portions 120b of the snap ring 120 do not interfere with the transfer case 42 in a state where the snap ring 120 is fitted in the inner circumferential groove 128 thereof. A notch 134 is provided in which a part around the joint hole 124 is notched. For this reason, the transfer case 42 is configured with a pair of opening end portions 136 that are opened in the circumferential direction with the inner circumferential groove 128 being cut off at both circumferential ends of the notch portion 134.
 図7は、トランスファケース42の一対の開口端部136の一方において、すなわち、図6に示すB部において、トランスファケース42の内周溝128とスナップリング120とを示した図である。本実施例では、上記一対の開口端部136の他方においても、図7と同様であるので、以下では、図7に表されたその一対の開口端部136の一方について説明する。 FIG. 7 is a view showing the inner peripheral groove 128 and the snap ring 120 of the transfer case 42 in one of the pair of open end portions 136 of the transfer case 42, that is, in the portion B shown in FIG. In the present embodiment, the other of the pair of opening end portions 136 is the same as that of FIG. 7, and therefore, one of the pair of opening end portions 136 shown in FIG. 7 will be described below.
 図7に示すように、スナップリング120のリング部120aの軸心C方向の肉厚は、基本的には肉厚tbであるが、上記開口端部136ではその肉厚tbよりも薄い肉厚taとなっている。すなわち、スナップリング120の軸心C方向の肉厚は、上記開口端部136ではそれ以外の部分に対して、径方向の全幅に渡って薄くなっている。更に、そのスナップリング120の軸心C方向の肉厚は、図7の斜線部Dに示すように、肉厚tbからtaへと、その開口端部136ではそれ以外の部分に対して滑らかに変化し連続的に薄くなっている。スナップリング120の操作部120bはトランスファケース42の内周溝128に接触しないので、その肉厚に関し特に制約は無いが、本実施例では、リング部120aの肉厚taが連続してそのまま操作部120bの軸心C方向の肉厚となっている。 As shown in FIG. 7, the thickness of the ring portion 120a of the snap ring 120 in the axial center C direction is basically the thickness tb, but the opening end portion 136 has a thickness smaller than the thickness tb. ta. That is, the thickness of the snap ring 120 in the direction of the axis C is thinner over the entire radial width of the opening end portion 136 than the other portions. Further, the thickness of the snap ring 120 in the direction of the axis C is smooth from the thickness tb to ta as shown by the hatched portion D in FIG. It is changing and thinning continuously. Since the operation portion 120b of the snap ring 120 does not contact the inner peripheral groove 128 of the transfer case 42, there is no particular limitation on the thickness thereof, but in this embodiment, the thickness ta of the ring portion 120a is continuously maintained as it is. The wall thickness is 120b in the direction of the axis C.
 ここで、トランスファケース42の内側に向けた軸心C方向の押圧力FTH(図3,図4参照)が、後輪側軸受112に対して作用した場合を想定する。例えば、図3に示すようにリアプロペラシャフト24は伸縮可能な構造であるが、リアプロペラシャフト24を軸心C方向にその長さを短縮しようとする変位が加わり、そのときに、その内筒部材24aと外筒部材24bとが相互に軸心C方向に滑らかに摺動しなかったような場合に、上記押圧力FTHが、リアプロペラシャフト24から後輪側コンパニオンフランジ114を介して、後輪側軸受112に対して作用する。 Here, it is assumed that the pressing force F TH (see FIGS. 3 and 4) in the direction of the axis C toward the inside of the transfer case 42 acts on the rear wheel side bearing 112. For example, as shown in FIG. 3, the rear propeller shaft 24 has a structure that can be expanded and contracted, but the rear propeller shaft 24 is subjected to a displacement to shorten its length in the direction of the axis C, and at that time, the inner cylinder When the member 24a and the outer cylinder member 24b do not slide smoothly in the direction of the axis C, the pressing force F TH is increased from the rear propeller shaft 24 via the rear wheel side companion flange 114. It acts on the rear wheel side bearing 112.
 本実施例のトランスファ22では、スナップリング120が上述したようにその肉厚が変化する形状であることから、上記のような場合、すなわち、上記押圧力FTHが後輪側軸受112に対して作用した場合に、前記一対の開口端部136の両方において、図7のE部に示すように、その押圧力FTHを受け止める側の前記内周溝128の側壁面138と、その側壁面138に相対向するスナップリング120の側面140との間に、前記内周溝128の深さ方向(図7の矢印DP方向)全体にわたって隙間CLRを有するスナップリング120の連結構造となっている。スナップリング120に着目して言えば、スナップリング120の軸心C方向の肉厚は、上記一対の開口端部136ではそれ以外の部分に対して、上記側面140が上記押圧力FTHを受け止める側の側壁面138から離れるようにして、薄くなっている。従って、トランスファケース42は、上記一対の開口端部136では直接に押圧力FTHを受け止めることはなく、その一対の開口端部136以外の部分でその押圧力FTHを受け止めることになる。そのため、図7に隅部CRとして示される上記一対の開口端部136における上記側壁面138の基端への応力集中が抑制される。 In the transfer 22 of the present embodiment, since the snap ring 120 has a shape whose thickness changes as described above, in the above case, that is, the pressing force F TH is applied to the rear wheel side bearing 112. When acting, as shown in part E of FIG. 7, the side wall surface 138 of the inner peripheral groove 128 on the side for receiving the pressing force FTH and the side wall surface 138 at both of the pair of opening end portions 136. The snap ring 120 is connected to the side surface 140 of the snap ring 120 facing each other with a gap CLR in the entire depth direction (arrow DP direction in FIG. 7) of the inner circumferential groove 128. Speaking of the snap ring 120, the thickness of the snap ring 120 in the axial center C direction is such that the side surface 140 receives the pressing force FTH with respect to the other portions of the pair of opening end portions 136. It is thinned away from the side wall surface 138 on the side. Thus, the transfer case 42 is never receiving the pressing force F TH directly in the pair of open ends 136, would receive the pressing force F TH at a portion other than the pair of open end 136. Therefore, stress concentration on the base end of the side wall surface 138 in the pair of open end portions 136 shown as the corner CR in FIG. 7 is suppressed.
 また、その一対の開口端部136における前記側壁面138と側面140との間の軸心C方向に生じる前記隙間CLRが、例えば、その一対の開口端部136での応力集中を回避するために予め実験的に設定された周方向の幅W1以上となるように、スナップリング120の軸心C方向の肉厚が定められることが望ましい。 Further, the gap CLR generated in the direction of the axis C between the side wall surface 138 and the side surface 140 at the pair of opening end portions 136 is, for example, to avoid stress concentration at the pair of opening end portions 136. It is desirable that the thickness of the snap ring 120 in the axial center C direction is determined so as to be equal to or greater than the circumferential width W1 set experimentally in advance.
 本実施例の前記スナップリング120の連結構造では、上記開口端部136において前記側壁面138と側面140との間に上記隙間CLRを生じさせるために、スナップリング120の軸心C方向の肉厚を変化させているが、それと併せて或いはそれに替えて、その隙間CLRを生じさせるために、トランスファケース42の内周溝128の軸心C方向の溝幅Wdを変化させてもよい。これについて図8を用いて説明する。図8は、図6に示すB部において、図7に相当するそれとは別の他のスナップリング120の連結構造を説明するための図である。そして、図8は、図7と同様に前記一対の開口端部136の一方を表した図であり、その他方の上記連結構造は図8と同様である。 In the connection structure of the snap ring 120 of the present embodiment, the thickness of the snap ring 120 in the axial center C direction in order to generate the gap CLR between the side wall surface 138 and the side surface 140 at the opening end 136. However, the groove width Wd in the direction of the axis C of the inner peripheral groove 128 of the transfer case 42 may be changed in order to generate the gap CLR in addition to or instead of this. This will be described with reference to FIG. FIG. 8 is a view for explaining another connecting structure of the snap ring 120 different from that corresponding to FIG. 7 in the portion B shown in FIG. 8 is a view showing one of the pair of open end portions 136 as in FIG. 7, and the other connecting structure is the same as in FIG.
 図8に示すスナップリング120の連結構造によれば、例えば、上記内周溝128の軸心C方向の溝幅Wdは、前記開口端部136ではそれ以外の部分に対して、内周溝128の深さ方向(図7の矢印DP方向)全体にわたって広くなっている。更に、その内周溝128の軸心C方向の溝幅Wdは、その開口端部136ではそれ以外の部分に対して滑らかに変化し連続的に広くなっている。このように、その溝幅Wdが開口端部136で広くなっていることにより、図7に示すスナップリング120の連結構造と同様に、上記開口端部136において前記側壁面138と前記側面140との間に軸心C方向の隙間CLRを生じさせることができる。 According to the coupling structure of the snap ring 120 shown in FIG. 8, for example, the groove width Wd in the direction of the axis C of the inner circumferential groove 128 is equal to the inner circumferential groove 128 at the opening end portion 136 with respect to other portions. In the entire depth direction (arrow DP direction in FIG. 7). Further, the groove width Wd in the direction of the axis C of the inner peripheral groove 128 changes smoothly with respect to other portions at the opening end portion 136 and continuously increases. As described above, since the groove width Wd is wide at the opening end 136, the side wall surface 138 and the side surface 140 at the opening end 136 are similar to the connection structure of the snap ring 120 shown in FIG. A gap CLR in the axial center C direction can be generated between the two.
 本実施例には次のような効果(A1)乃至(A6)がある。(A1)本実施例によれば、前記内周溝128が途切れて周方向に開口したトランスファケース42の一対の開口端部136において、軸心C方向の押圧力FTH(図3,図4参照)が後輪側軸受112に対して作用した場合に、図7のE部に示すように、その押圧力FTHを受け止める側の前記内周溝128の側壁面138と、その側壁面138に相対向するスナップリング120の側面140との間に、前記内周溝128の深さ方向(図7の矢印DP方向)全体にわたって隙間CLRを有するスナップリング120の連結構造となっている。従って、上記押圧力FTHは、上記側壁面138に対し、上記一対の開口端部136では、上記隙間CLRにより、直接には作用しないことになる。そのため、その開口端部136では応力集中が緩和されて、トランスファケース42の耐久性を向上させることができる。そして、このスナップリング120の連結構造の信頼性を向上させることができる。なお、上記一対の開口端部136の少なくとも一方において上記隙間CLRを有するスナップリング120の連結構造であれば、その隙間CLRが無い構造と比較して、トランスファケース42の耐久性を向上させることができるが、本実施例のように、上記一対の開口端部136の両方において上記隙間CLRを有することにより、更に、トランスファケース42の耐久性を向上させ、スナップリング120の連結構造の信頼性を向上させることができる。 This embodiment has the following effects (A1) to (A6). (A1) According to this embodiment, the pressing force F TH in the direction of the axis C (see FIGS. 3 and 4) at the pair of open end portions 136 of the transfer case 42 that is opened in the circumferential direction with the inner peripheral groove 128 being interrupted. 7) acts on the rear wheel side bearing 112, the side wall surface 138 of the inner circumferential groove 128 on the side receiving the pressing force FTH, and the side wall surface 138, as shown in part E of FIG. The snap ring 120 is connected to the side surface 140 of the snap ring 120 facing each other with a gap CLR in the entire depth direction (arrow DP direction in FIG. 7) of the inner circumferential groove 128. Therefore, the pressing force F TH does not directly act on the side wall surface 138 at the pair of opening end portions 136 due to the gap CLR. Therefore, stress concentration is relaxed at the open end 136, and the durability of the transfer case 42 can be improved. And the reliability of the connection structure of this snap ring 120 can be improved. In addition, if the connection structure of the snap ring 120 having the gap CLR is provided in at least one of the pair of opening end portions 136, the durability of the transfer case 42 can be improved as compared with a structure without the gap CLR. However, as in this embodiment, by having the gap CLR at both of the pair of opening ends 136, the durability of the transfer case 42 is further improved, and the reliability of the connection structure of the snap ring 120 is improved. Can be improved.
 また、トランスファケース42の耐久性を向上させる手段として、例えば、前記内周溝128まわりの肉厚増加、或いは、その内周溝128の底部の隅アールの拡大などが考えられるが、それらの耐久性向上手段ではコスト増加、質量増加、トランスファ22内部での他部品との干渉などの課題が生じ易いところ、本実施例のスナップリング120の連結構造は、それらの課題が殆ど生じないという点で有利である。 Further, as means for improving the durability of the transfer case 42, for example, an increase in the thickness around the inner peripheral groove 128 or an increase in the corner radius at the bottom of the inner peripheral groove 128 can be considered. In the performance improving means, problems such as an increase in cost, an increase in mass, and interference with other parts inside the transfer 22 are likely to occur. However, the connection structure of the snap ring 120 of this embodiment hardly causes such problems. It is advantageous.
 (A2)また、本実施例によれば、図7に示すように、スナップリング120の軸心C方向の肉厚は、前記開口端部136ではそれ以外の部分に対して、径方向の全幅に渡って薄くなっているので、そのスナップリング120の形状を前記隙間CLRが生じるように構成することで、その隙間CLRを生じさせるためのトランスファケース42の形状変更を要せずに、トランスファケース42の耐久性を向上させることができる。そして、トランスファケース42の形状変更を要しないという点から、コストを抑えて、トランスファケース42の耐久性の向上を図り得る。なお、前記一対の開口端部136の一方において上記隙間CLRを有するスナップリング120の連結構造とするのであれば、その場合には、例えば、スナップリング120の軸心C方向の肉厚は、その一対の開口端部136の一方において薄くされる。 (A2) Also, according to the present embodiment, as shown in FIG. 7, the thickness of the snap ring 120 in the axial center C direction is the full width in the radial direction with respect to the other portions at the opening end 136. Since the snap ring 120 is formed so that the gap CLR is formed, the transfer case 42 does not need to be changed to generate the gap CLR. The durability of 42 can be improved. And since the shape change of the transfer case 42 is not required, the cost can be suppressed and the durability of the transfer case 42 can be improved. In addition, if it is set as the connection structure of the snap ring 120 which has the said clearance gap CLR in one side of said pair of opening edge part 136, in that case, the thickness of the axial center C direction of the snap ring 120 is, for example, It is thinned at one of the pair of open ends 136.
 (A3)また、本実施例によれば、スナップリング120の軸心C方向の肉厚は、図7の斜線部Dに示すように、肉厚tbからtaへと、前記開口端部136ではそれ以外の部分に対して滑らかに変化し連続的に薄くなっているので、そのスナップリング120は、それの肉厚変化による応力集中が回避され乃至は抑えられて、耐久性低下が抑制される。 (A3) Further, according to the present embodiment, the thickness of the snap ring 120 in the direction of the axis C is from the thickness tb to ta as shown by the hatched portion D in FIG. Since it changes smoothly with respect to other parts and is continuously thinned, the snap ring 120 avoids or suppresses stress concentration due to a change in the thickness of the snap ring 120 and suppresses a decrease in durability. .
 (A4)また、本実施例によれば、図8に示すように、前記内周溝128の軸心C方向の溝幅Wdは、前記開口端部136ではそれ以外の部分に対して、内周溝128の深さ方向(図7の矢印DP方向)全体にわたって広くなっていてもよく、そのようにしたとすれば、上記開口端部136で内周溝128の形状を前記隙間CLRが生じるように構成することで、その隙間CLRを生じさせるためのスナップリング120の形状変更を要せずに、トランスファケース42の耐久性を向上させることができる。なお、前記一対の開口端部136の一方において上記隙間CLRを有するスナップリング120の連結構造とするのであれば、その場合には、例えば、上記内周溝128の軸心C方向の溝幅Wdは、その一対の開口端部136の一方において広くされる。 (A4) Further, according to the present embodiment, as shown in FIG. 8, the groove width Wd in the direction of the axis C of the inner circumferential groove 128 is smaller than the inner width of the opening end portion 136 with respect to the other portions. The circumferential direction of the circumferential groove 128 may be widened in the entire depth direction (arrow DP direction in FIG. 7), and if so, the gap CLR is formed in the shape of the inner circumferential groove 128 at the opening end 136. With this configuration, the durability of the transfer case 42 can be improved without requiring a change in the shape of the snap ring 120 for generating the gap CLR. In addition, if it is set as the connection structure of the snap ring 120 which has the said clearance gap CLR in one of the said pair of opening edge parts 136, in that case, for example, the groove width Wd of the said inner peripheral groove | channel 128 in the axial center C direction Is widened at one of the pair of open ends 136.
 (A5)また、本実施例によれば、図8に示すように、前記内周溝128の軸心C方向の溝幅Wdは、前記開口端部136ではそれ以外の部分に対して、滑らかに変化し連続的に広くなっていてもよく、そのようにしたとすれば、その開口端部136でトランスファケース42は、上記溝幅Wdの変化に起因した応力集中が回避され乃至は抑えられて、耐久性低下が抑制される。 (A5) Also, according to the present embodiment, as shown in FIG. 8, the groove width Wd in the direction of the axis C of the inner circumferential groove 128 is smoother than the other portions at the opening end 136. If this is done, the transfer case 42 can avoid or suppress stress concentration caused by the change in the groove width Wd at the opening end 136. Thus, a decrease in durability is suppressed.
 (A6)また、本実施例によれば、トランスファ22では、軸心C方向の押圧力FTHが後輪側軸受112に対して作用した場合に、トランスファケース42の一対の開口端部136の両方において、図7のE部に示すように、前記内周溝128の側壁面138と前記スナップリング120の側面140との間に前記隙間CLRを有する前記スナップリング120の連結構造となっているので、第1出力軸48にかかる上記押圧力FTHに対して、そのトランスファ22の耐久性を向上させることができる。 (A6) Also, according to this embodiment, in the transfer 22, when the pressing force F TH in the direction of the axis C acts on the rear wheel side bearing 112, the pair of open end portions 136 of the transfer case 42 In both cases, as shown in part E of FIG. 7, the snap ring 120 is connected with the gap CLR between the side wall surface 138 of the inner circumferential groove 128 and the side surface 140 of the snap ring 120. Therefore, the durability of the transfer 22 can be improved against the pressing force F TH applied to the first output shaft 48.
 以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。 As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention is implemented in the aspect which added various change and improvement based on the knowledge of those skilled in the art. Can do.
 例えば、前述の実施例において、トランスファケース42の材質は、特に限定されないが、例えば、トランスファケース42はアルミダイキャスト製である。 For example, in the above-described embodiment, the material of the transfer case 42 is not particularly limited. For example, the transfer case 42 is made of aluminum die cast.
 また、前述の実施例において、スナップリング120の成形方法は特に限定されないが、例えば、スナップリング120は、打抜き加工により成形される。また、スナップリング120は一対の薄肉部を有するが、外形を打ち抜く打抜き加工と同時にその薄肉部が形成されてもよいし、外形の打抜き加工とは別の工程でその薄肉部が形成されてもよい。また、スナップリング120は切削加工により成形されてもよい。 In the above-described embodiment, the method for forming the snap ring 120 is not particularly limited. For example, the snap ring 120 is formed by punching. Although the snap ring 120 has a pair of thin portions, the thin portions may be formed simultaneously with the punching process for punching the outer shape, or the thin portions may be formed in a process different from the punching process for the outer shape. Good. Further, the snap ring 120 may be formed by cutting.
 また、前述の実施例において、トランスファケース42の内周溝128の加工方法は特に限定されないが、例えば、内周溝128は、ダイキャスト型で成形されてもよいし、切削加工により成形されてもよい。 Further, in the above-described embodiment, the processing method of the inner peripheral groove 128 of the transfer case 42 is not particularly limited. For example, the inner peripheral groove 128 may be formed by a die-cast mold or formed by cutting. Also good.
 また、前述の実施例の図7において、軸心Cに直交するスナップリング120の一対の側面のうち一方の側面140が連続的な曲面を構成して、スナップリング120の肉厚が前記開口端部136でそれ以外の部分に対して径方向の全幅に渡って薄くなっているが、上記一対の側面の両方が連続的な曲面を構成して、スナップリング120の肉厚がその開口端部136でそれ以外の部分に対して径方向の全幅に渡って薄くなっていても差し支えない。また、図8に示す内周溝128の溝幅Wdについても同様である。 Further, in FIG. 7 of the above-described embodiment, one side surface 140 of the pair of side surfaces of the snap ring 120 orthogonal to the axis C forms a continuous curved surface, and the thickness of the snap ring 120 is the opening end. The portion 136 is thinner than the other portions over the entire width in the radial direction, but both of the pair of side surfaces form a continuous curved surface, and the thickness of the snap ring 120 is the opening end thereof. In 136, it may be thin with respect to the other parts over the entire radial width. The same applies to the groove width Wd of the inner circumferential groove 128 shown in FIG.

Claims (6)

  1.  一軸を中心とする嵌合穴と該嵌合穴の内周面に該一軸周りに設けられた内周溝とを有する固定部材に対して、該内周溝に相対向する外周溝を外周面に有し該嵌合穴に嵌入された嵌合部材を、前記内周溝および外周溝に嵌め込まれたスナップリングにより、前記一軸方向に固定する車両用スナップリングの連結構造であって、
     前記固定部材の嵌合穴周りの一部が切り欠かれた切欠部で環状の前記内周溝が途切れて周方向に開口した該固定部材の一対の開口端部の少なくとも一方において、前記嵌合部材に対して前記一軸方向の押圧力が作用した場合に、該押圧力を受け止める側の前記内周溝の側壁面と、該側壁面に相対向する前記スナップリングの側面との間に、該内周溝の深さ方向全体にわたって隙間を有する
     ことを特徴とする車両用スナップリングの連結構造。
    For a fixing member having a fitting hole centered on one axis and an inner circumferential groove provided around the one axis on the inner circumferential surface of the fitting hole, the outer circumferential groove facing the inner circumferential groove is arranged on the outer circumferential surface. A connecting structure of a vehicle snap ring for fixing a fitting member fitted in the fitting hole in the uniaxial direction by a snap ring fitted in the inner circumferential groove and the outer circumferential groove,
    In at least one of a pair of opening end portions of the fixing member, the annular inner circumferential groove is cut off at a notch portion in which a part around the fitting hole of the fixing member is cut out, and the fitting member is opened in the circumferential direction. When a pressing force in the uniaxial direction is applied to a member, between the side wall surface of the inner circumferential groove on the side receiving the pressing force and the side surface of the snap ring facing the side wall surface, A connecting structure for a vehicle snap ring, characterized in that a gap is provided over the entire depth direction of the inner circumferential groove.
  2.  前記スナップリングの前記一軸方向の肉厚は、前記開口端部ではそれ以外の部分に対して薄い
     ことを特徴とする請求項1に記載の車両用スナップリングの連結構造。
    The connecting structure for a snap ring for a vehicle according to claim 1, wherein a thickness of the snap ring in the uniaxial direction is thinner than other portions at the opening end.
  3.  前記スナップリングの前記一軸方向の肉厚は、前記開口端部ではそれ以外の部分に対して連続的に薄くなっている
     ことを特徴とする請求項2に記載の車両用スナップリングの連結構造。
    The connecting structure for a snap ring for a vehicle according to claim 2, wherein the thickness of the snap ring in the uniaxial direction is continuously thinner than the other portions at the opening end.
  4.  前記内周溝の前記一軸方向の溝幅は、該開口端部ではそれ以外の部分に対して広い
     ことを特徴とする請求項1乃至3の何れか1項に記載の車両用スナップリングの連結構造。
    4. The connection of the snap ring for a vehicle according to claim 1, wherein the groove width in the uniaxial direction of the inner peripheral groove is wider than the other portion at the opening end portion. Construction.
  5.  前記内周溝の前記一軸方向の溝幅は、前記開口端部ではそれ以外の部分に対して連続的に広くなっている
     ことを特徴とする請求項4に記載の車両用スナップリングの連結構造。
    5. The vehicular snap ring connection structure according to claim 4, wherein the groove width in the uniaxial direction of the inner circumferential groove is continuously wide at the opening end portion with respect to the other portions. .
  6.  前記固定部材は、車両の駆動力を複数の駆動輪に配分するトランスファのケースであり、
     前記嵌合部材は、前記固定部材に対して該トランスファの出力軸を前記一軸周りに回転可能に支える出力軸ベアリングである
     ことを特徴とする請求項1乃至5の何れか1項に記載の車両用スナップリングの連結構造。
    The fixing member is a transfer case that distributes the driving force of the vehicle to a plurality of driving wheels,
    The vehicle according to any one of claims 1 to 5, wherein the fitting member is an output shaft bearing that supports the output shaft of the transfer so as to be rotatable about the one axis with respect to the fixed member. Snap ring connection structure.
PCT/JP2009/055492 2009-02-24 2009-03-19 Coupling structure of snap ring for vehicle WO2010097969A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-041549 2009-02-24
JP2009041549A JP2010196765A (en) 2009-02-24 2009-02-24 Coupling structure of snap ring for vehicle

Publications (1)

Publication Number Publication Date
WO2010097969A1 true WO2010097969A1 (en) 2010-09-02

Family

ID=42665191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055492 WO2010097969A1 (en) 2009-02-24 2009-03-19 Coupling structure of snap ring for vehicle

Country Status (2)

Country Link
JP (1) JP2010196765A (en)
WO (1) WO2010097969A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021222430A1 (en) * 2020-04-28 2021-11-04 Koyo Bearings North America Llc Anti-rotation snap ring to prevent bearing creep

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6380092B2 (en) * 2014-12-26 2018-08-29 アイシン・エィ・ダブリュ株式会社 Automatic transmission
JP2017106527A (en) * 2015-12-09 2017-06-15 いすゞ自動車株式会社 Bearing fixing structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227011U (en) * 1988-08-09 1990-02-22
JP2005009554A (en) * 2003-06-18 2005-01-13 Fuji Univance Corp Transfer apparatus
JP2005207571A (en) * 2003-12-24 2005-08-04 Toyota Motor Corp Bearing lock structure
JP2006194348A (en) * 2005-01-13 2006-07-27 Piolax Inc Snap ring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227011U (en) * 1988-08-09 1990-02-22
JP2005009554A (en) * 2003-06-18 2005-01-13 Fuji Univance Corp Transfer apparatus
JP2005207571A (en) * 2003-12-24 2005-08-04 Toyota Motor Corp Bearing lock structure
JP2006194348A (en) * 2005-01-13 2006-07-27 Piolax Inc Snap ring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021222430A1 (en) * 2020-04-28 2021-11-04 Koyo Bearings North America Llc Anti-rotation snap ring to prevent bearing creep

Also Published As

Publication number Publication date
JP2010196765A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
US7272986B2 (en) Dual input automatic transaxle
US20160003337A1 (en) Drive device for a vehicle
EP3385559B1 (en) Assembly having a clutch collar and method of manufacture
US20130054104A1 (en) Drive system for four-wheel drive vehicle, four-wheel drive vehicle, and control method for four-wheel drive vehicle
US6837817B2 (en) Vehicle front and rear wheels drive system and clutch changeover method
JP2008089076A (en) Vehicular power transmission device
US4907473A (en) Differential mechanism of a four-wheel driving apparatus for vehicles
JP4442654B2 (en) Automatic transmission
WO2010097969A1 (en) Coupling structure of snap ring for vehicle
WO2011094223A1 (en) Gear assembly for motor vehicle
US11009079B2 (en) Vehicle drive apparatus
JP2010209949A (en) Control device for vehicular power transmission device
JP2004520559A (en) Locking ring type synchronization device
JP2008207575A (en) Vehicular propulsion shaft
US20150204438A1 (en) Transmission
EP4246013A1 (en) Transmission powertrain vehicle and method
JP6818983B2 (en) Automotive differential with low range device
EP3636960B1 (en) Vehicle transmission, powertrain and vehicle
JP2003106387A (en) Automatic transmission
CN212672366U (en) Vehicle drive device
JP4110280B2 (en) Automatic transmission
JP2008303962A (en) Automatic transmission
JP2016064722A (en) Transfer
JP4442656B2 (en) Automatic transmission
WO2018221007A1 (en) Meshing-type engagement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840816

Country of ref document: EP

Kind code of ref document: A1