JP2010168651A - High strength hot-rolled steel plate and manufacturing method therefor - Google Patents

High strength hot-rolled steel plate and manufacturing method therefor Download PDF

Info

Publication number
JP2010168651A
JP2010168651A JP2009289173A JP2009289173A JP2010168651A JP 2010168651 A JP2010168651 A JP 2010168651A JP 2009289173 A JP2009289173 A JP 2009289173A JP 2009289173 A JP2009289173 A JP 2009289173A JP 2010168651 A JP2010168651 A JP 2010168651A
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolling
rolled steel
strength hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009289173A
Other languages
Japanese (ja)
Inventor
Kazuaki Hakomori
一昭 箱守
Fuyuki Yoshida
冬樹 吉田
Yuji Kusumoto
雄二 楠本
Takao Kurahashi
隆郎 倉橋
Masahiko Oda
昌彦 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakayama Steel Works Ltd
Original Assignee
Nakayama Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakayama Steel Works Ltd filed Critical Nakayama Steel Works Ltd
Priority to JP2009289173A priority Critical patent/JP2010168651A/en
Publication of JP2010168651A publication Critical patent/JP2010168651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new low alloy having no anisotropy and having high strength, good workability, delayed fracture resistance and high speed pressure-fracture resistance, a high strength steel plate and a manufacturing method therefor. <P>SOLUTION: The high strength hot-rolled steel plate is obtained by being subjected to a finish-rolling in two-phase zones having temperature of ≥800°C and ≤Ae3. The steel plate has: ferritic structure having ≤10 μ grain diameter the ratio of which is 5-70%; retained austenitic structure having ≤2 μm grain diameter the ratio of which is 7-20%; and the balance bainitic structure. For example, it is desirable that the steel plate is composed of 0.14-0.30% C, 1.0-3.5% Si, 0.1-0.4% Mn, 0.5-3.0% Cr, 0.03-0.60% Mo and the balance Fe with inevitable impurities. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

請求項に係る発明は、高い引張り強度をもちながらも異方性がなく優れた加工性、遅れ破壊特性および高速圧壊特性を有する高強度熱延鋼板と、その製造方法に関するものである。   The present invention relates to a high-strength hot-rolled steel sheet having high workability, delayed fracture characteristics, and high-speed crushing characteristics while having high tensile strength, and a method for producing the same.

加工性の優れた高強度鋼板に対する最近の要請を、自動車の場合を例にして述べる。地球環境保全の観点から、自動車分野においてもCO2等の排ガス量を低減していくことが是非とも必要である。そのためには、自動車車体の一層の軽量化が不可欠になる。車体の軽量化を達成するためには、自動車に使用される鋼板の強度を高めて、板厚を薄くしていかなければならない。同時に、自動車においては、搭乗者の安全性を確保していかなければならない。このためにも、鋼板の強度を一層高めていくことが必要になる。   The recent demand for high-strength steel sheets with excellent workability will be described by taking the case of automobiles as an example. From the viewpoint of global environmental conservation, it is essential to reduce the amount of exhaust gas such as CO2 in the automobile field. For that purpose, further weight reduction of the automobile body becomes indispensable. In order to reduce the weight of the car body, it is necessary to increase the strength of steel plates used in automobiles and reduce the thickness. At the same time, passengers must ensure the safety of passengers. For this purpose, it is necessary to further increase the strength of the steel sheet.

強度を高めるための方法としては、固溶強化、析出強化、結晶粒微細化、低温変態組織利用による強化などが基本的な方法である。固溶強化や析出強化といった多量の合金添加を必要とする強化機構の適用だけでは、極めて高い強度を必要とする鋼板の製造は不可能である。また結晶粒微細化による強化機構を適用するにしても、強度の上昇はある程度図れても限界がある。低温変態組織利用による強化は600MPa超の鋼鈑を製造するには極めて有効な方法であるが、強度上昇に見合う延性の向上は期待できない。   Basic methods for increasing the strength include solid solution strengthening, precipitation strengthening, crystal grain refinement, and strengthening by using a low-temperature transformation structure. Only by applying a strengthening mechanism that requires a large amount of alloy addition such as solid solution strengthening or precipitation strengthening, it is impossible to produce a steel sheet that requires extremely high strength. Even if a strengthening mechanism by crystal grain refinement is applied, there is a limit even if the strength can be increased to some extent. Strengthening by using low-temperature transformation structure is an extremely effective method for producing steel plates of over 600MPa, but it cannot be expected to improve ductility to meet the increase in strength.

一般的に、鋼板の強度を高めると、延性は小さくなり加工性は低くなる。
高強度鋼板の延性を高める従来技術として、フェライトとマルテンサイト組織からなる複合組織(Dual Phase)鋼板、フェライト、ベイナイトと残留オーステナイト組織からなるTRIP(Transformation Induced Plasticity)鋼板とよばれているものがある。
複合組織鋼板は、フェライト中に硬質なマルテンサイトを微細に分散させるが、この硬質なマルテンサイトにより、変形時に大きな加工硬化を引き起こし、高い延性を鋼板にもたらすのである。
TRIP鋼板については特許文献1にその例が示されている。残留オーステナイトを含有するこの種の鋼板は、その量と変形に対する安定度に応じて、加工誘起変態に起因する極めて良好な延性と成形性を有するのである。
特許第4002315号公報
Generally, when the strength of a steel plate is increased, ductility is reduced and workability is reduced.
Conventional techniques for increasing the ductility of high-strength steel sheets include composite phase (Dual Phase) steel sheets composed of ferrite and martensite, and TRIP (Transformation Induced Plasticity) steel sheets composed of ferrite, bainite and retained austenite structures. .
In the composite steel sheet, hard martensite is finely dispersed in ferrite, and this hard martensite causes large work hardening at the time of deformation, and brings high ductility to the steel sheet.
An example of the TRIP steel sheet is shown in Patent Document 1. This type of steel sheet containing retained austenite has very good ductility and formability due to work-induced transformation, depending on its amount and stability to deformation.
Japanese Patent No. 4002315

さらに、鋼板の強度を980MPa以上に高めると、遅れ破壊の問題が発生する。遅れ破壊とは、部材の加工、組み立ての際には割れや破壊が発生せず、使用中に突如として割れが発生する現象のことである。
特許文献2に示す高強度鋼板は、ベイナイトや焼戻しマルテンサイトなどの硬質な低温変態相に対し、フェライトのような軟質相を極力低減し、かつ残留オーステナイトを4%以下に制限することで、良好な耐遅れ破壊特性を確立したものである。
特許第3247908号公報
Further, when the strength of the steel plate is increased to 980 MPa or more, the problem of delayed fracture occurs. Delayed fracture is a phenomenon in which cracks and breakage do not occur during the processing and assembly of members, but suddenly occur during use.
The high-strength steel sheet shown in Patent Document 2 is good by reducing the soft phase such as ferrite as much as possible to the hard low-temperature transformation phase such as bainite and tempered martensite and limiting the retained austenite to 4% or less. Has established a delayed fracture resistance.
Japanese Patent No. 3247908

自動車の衝突安全性の評価として曲げおよび軸方向の高速圧潰試験が行われ、吸収エネルギーが評価される。このエネルギーは一般に鋼板の引張強さの向上にしたがって増加するといわれている。このなかで、980MPa以下のフェライト、マルテンサイトの2相組織鋼板は強度にたいして吸収エネルギーが高く、かつ軸圧潰試験ではきれいなアコーデオン状に折りたたまれている。これは、軟質なフェライト相がクッション材になっているためと考えられている。下記の特許文献3・4には、フェライト、マルテンサイト等の複相組織鋼板についての軸圧潰試験が報告されている。
特開平9−111396公報 特開2008−231480公報
Bending and axial high-speed crush tests are performed as an evaluation of automobile crash safety, and the absorbed energy is evaluated. This energy is generally said to increase as the tensile strength of the steel sheet increases. Among them, ferrite and martensite duplex steel sheets of 980 MPa or less have high absorbed energy relative to strength and are folded into a clean accordion shape in the axial crush test. This is thought to be because the soft ferrite phase is a cushioning material. In Patent Documents 3 and 4 below, axial crush tests are reported on a multiphase steel sheet such as ferrite and martensite.
JP-A-9-111396 JP 2008-231480 A

複合組織鋼板では比較的低い合金添加量でも高い強度が得られ、同時に、加工硬化により良い均一伸び特性が得られる。
TRIP鋼板はさらに高い延性を示し、高深絞り性を有するものである。そのため複雑な形状で高い加工性を必要とし、高い強度が要求される部材への適用が指向されている。
特許文献1では圧延終了後の冷却過程で、オーステナイト中にフェライトの生成を促進するため、Ar3〜Ar1での緩冷却を行うか、もしくは圧延完了温度をAr3点近傍とし、その後350〜500℃の範囲まで冷却し、巻取ることで製造する。これらTRIP鋼板はフェライト母相中にマルテンサイトもしくは残留オーステナイト、ベイナイトが分散した組織を有し、優れた強度と伸び特性を有する。しかし、引張強度で800MPa程度しか得られず、さらに高い980MPa以上強度範囲の鋼板は遅れ破壊の観点から製造が困難である。
またA1点付近で冷却を一時停止した後、マルテンサイトや残留オーステナイト組織の安定化のため500℃以下まで冷却し、巻取る工程を必要とする。圧延終了後の冷却設備長を長くとる必要があり、設備コストが増大する。
圧延終了後途中に緩冷却を行わず、連続的に500℃以下まで冷却する方法においても、これまで検討している成分系では圧延終了温度をAr3点近傍とすれば、微細なフェライトの生成促進が可能となるが、Ar3点近傍で圧延をした熱延鋼板の材質特性は異方性が大きい問題がある。
In the composite structure steel plate, high strength can be obtained even with a relatively low alloy addition amount, and at the same time, good uniform elongation characteristics can be obtained by work hardening.
TRIP steel sheet exhibits higher ductility and has high deep drawability. Therefore, application to a member that requires high workability with a complicated shape and requires high strength is directed.
In Patent Document 1, in order to promote the formation of ferrite in the austenite during the cooling process after rolling is completed, slow cooling is performed with Ar3 to Ar1, or the rolling completion temperature is set to the vicinity of the Ar3 point, and then 350 to 500 ° C. Manufactured by cooling to range and winding. These TRIP steel sheets have a structure in which martensite, retained austenite and bainite are dispersed in the ferrite matrix, and have excellent strength and elongation characteristics. However, a tensile strength of only about 800 MPa can be obtained, and a steel sheet having a higher strength range of 980 MPa or more is difficult to manufacture from the viewpoint of delayed fracture.
Further, after cooling is temporarily stopped in the vicinity of the A1 point, a process of cooling to 500 ° C. or lower and winding up is necessary to stabilize the martensite and retained austenite structures. It is necessary to lengthen the cooling equipment length after the end of rolling, and the equipment cost increases.
Even in the method of continuously cooling to 500 ° C or less without performing slow cooling in the middle of the end of rolling, the formation of fine ferrite is promoted if the rolling end temperature is close to the Ar3 point in the component system that has been studied so far. However, there is a problem that the material properties of the hot-rolled steel sheet rolled in the vicinity of the Ar3 point have large anisotropy.

遅れ破壊の原因である鋼板中に固溶した水素は、結晶構造に起因し、残留オーステナイト中に優先的にトラップされる。特に加工の影響を受け、加工誘起変態したマルテンサイトとフェライトの界面が最も危険なトラップサイトとされる。
残留オーステナイト粒が粗大であればあるほど、残留オーステナイト粒の体積に比べ、加工誘起変態したマルテンサイトとフェライトの界面の面積比が減少し、トラップされる水素濃度が高濃度化し、遅れ破壊の危険性が高まる。さらにマルテンサイトと残留オーステナイトが隣接した状態(MA)で共存していれば、破壊の伝播が促進され、さらに危険性が高まるとされる。
特許文献2に記載した高強度鋼板は、この残留オーステナイト量を制約することにより、耐遅れ破壊性を向上させたものである。しかし、高い強度を有しつつ、優れた加工性を得るためには、残留オーステナイトの活用は有効であり、その制約を設けずとも、遅れ破壊に対して無害化することが望ましい。
Hydrogen dissolved in the steel sheet, which is the cause of delayed fracture, is preferentially trapped in the retained austenite due to the crystal structure. In particular, the interface between martensite and ferrite that has undergone processing-induced transformation is the most dangerous trap site due to the influence of processing.
The coarser the retained austenite grains, the smaller the ratio of the area of martensite-ferrite interface that has undergone work-induced transformation compared to the volume of retained austenite grains, the higher the concentration of trapped hydrogen, and the risk of delayed fracture Increases nature. Furthermore, if martensite and retained austenite coexist in an adjacent state (MA), the propagation of fracture is promoted and the risk is further increased.
The high-strength steel sheet described in Patent Document 2 has improved delayed fracture resistance by limiting the amount of retained austenite. However, in order to obtain excellent workability while having high strength, the utilization of retained austenite is effective, and it is desirable to make it harmless against delayed fracture without providing the restrictions.

前記の特許文献3・4には、高強度鋼板ではないものの、軸圧潰試験でフェライト、マルテンサイトの2相組織鋼板は強度にたいして比較上吸収エネルギーが高く、軟質なフェライト相がクッション材になってきれいなアコーデオン状に折りたたまれる事が報告されているが、980MPa以上の強度で安定してフェライト相を有する鋼鈑が望まれる。   In Patent Documents 3 and 4 described above, although not a high-strength steel sheet, in the axial crush test, a ferrite and martensite two-phase structure steel sheet has a relatively high absorption energy relative to strength, and a soft ferrite phase becomes a cushioning material. Although it has been reported that it is folded into a clean accordion shape, a steel plate having a ferrite phase stably at a strength of 980 MPa or more is desired.

そこで本願の発明者らは、合金元素を種々検討しホットストリップミル仕上圧延を高温のオーステナイトとフェライトの2相域で行い整粒フェライトを生成し、ROTでの複雑な冷却制御をおこなわないで、巻取り後にベイナイト変態をさせ、2μm以下の残留オーステナイト(7%以上20%以下)を微細分散させた複合組織を得ることで、異方性がなく高い強度と良好な加工性及び耐遅れ破壊特性および耐高速圧壊特性を併せもつ新しい低合金・高強度の鋼板およびその製法を開発したものである。   Therefore, the inventors of the present application have studied various alloy elements, and hot strip mill finish rolling is performed in the two-phase region of high-temperature austenite and ferrite to produce sized ferrite, and without performing complicated cooling control in ROT, After winding, bainite transformation is performed to obtain a composite structure in which retained austenite of 2 μm or less (7% or more and 20% or less) is finely dispersed, so there is no anisotropy, high strength, good workability, and delayed fracture resistance And a new low-alloy, high-strength steel sheet that has both high-speed crushing resistance and its manufacturing method.

鋭意研究を行った結果、発明者らは、高温の2相域での高圧下圧延条件を採用し、またさらに、これまでの高強度鋼板にはかならず用いられていた合金元素であるMnの添加量を制限し、強度元素として変態温度を高めるSiとMoおよび変態点降下の少ないCrを用い、その組成を制限することで、好ましい高強度鋼板が得られることを見出した。すなわち、適正な成分範囲を有するスラブを、熱間圧延の仕上圧延において、後段高ひずみ圧延を2相域の高温で終了し、適正な温度で巻取ることで、低合金組成で高い強度と優れた延性、耐遅れ破壊特性および耐高速圧壊特性を同時に付与することが出来きるのである。その詳細を以下に示す。   As a result of diligent research, the inventors adopted high-pressure rolling conditions in a high-temperature two-phase region, and added Mn, an alloying element that has always been used in high-strength steel sheets. It was found that preferable high-strength steel sheets can be obtained by limiting the amount and limiting the composition of Si and Mo, which increase the transformation temperature, and Cr with a low transformation point drop, as the strength elements. That is, a slab having an appropriate component range is obtained by finishing high-temperature rolling in the second phase in the finish rolling of hot rolling, and winding it at an appropriate temperature, thereby achieving high strength and excellent strength with a low alloy composition. It is possible to simultaneously impart ductility, delayed fracture resistance and high-speed crush resistance. Details are shown below.

請求項に記載した高強度熱延鋼板は、800℃以上Ae3温度以下の2相域で仕上圧延されていて、フェライト組織が粒径10μ以下でその比率(フェライト組織の体積比率)が5%以上70%以下であり、残留オーステナイト組織が粒径2μm以下でその比率(残留オーステナイト組織の体積比率)が7%以上20%以下であり、残部がベイナイト組織であることを特徴とする。
こうした組織性状を得ることにより、高強度で加工性が良く、且つ耐遅れ破壊特性および耐高速衝撃特性にも優れた鋼板を得ることが出来るのである。
ベイナイト組織で高い強度を得て、残留オーステナイトにより高い延性をもたせ、さらにフェライト組織が存在することで適度な加工性が得られる。マルテンサイト組織の比率を少なくすることと、残留オーステナイトの大きさを2μm以下で、効果的に微細に分散しているため、耐遅れ破壊性を得ることが出来るのである。また、キレツの伝播を遅らせ局部伸びを向上させる。
800℃以上Ae3温度以下の2相域で仕上圧延されているため、フェライトが回復して整粒になり、圧延方向および圧延直角方向の材質異方性が低減されている。したがって、この高強度熱延鋼板により、さらなる加工性の向上が図れる。
The high-strength hot-rolled steel sheet described in the claims is finish-rolled in a two-phase region of 800 ° C. or higher and Ae3 temperature or lower, and the ferrite structure has a grain size of 10 μm or less and the ratio (volume ratio of the ferrite structure) is 5% or more. The residual austenite structure has a particle size of 2 μm or less, the ratio (volume ratio of the retained austenite structure) is 7% or more and 20% or less, and the balance is a bainite structure.
By obtaining such structural properties, it is possible to obtain a steel sheet having high strength, good workability, and excellent delayed fracture resistance and high-speed impact resistance.
High strength is obtained with the bainite structure, high ductility is provided by the retained austenite, and moderate workability is obtained by the presence of the ferrite structure. Since the martensite structure ratio is reduced and the retained austenite is 2 μm or less and is effectively finely dispersed, delayed fracture resistance can be obtained. It also delays the propagation of cracks and improves local elongation.
Since it is finish-rolled in a two-phase region of 800 ° C. or higher and Ae3 temperature or lower, ferrite recovers and becomes sized, and material anisotropy in the rolling direction and the direction perpendicular to the rolling is reduced. Therefore, the workability can be further improved by this high-strength hot-rolled steel sheet.

請求項に記載した高強度熱延鋼板は、860℃以上Ae3温度以下の2相域で仕上圧延されていて、フェライト組織が粒径10μm以下でその比率が5%以上35%以下であり、残留オーステナイト組織が粒径2μm以下でその比率が7%以上20%以下であり、残部がベイナイト組織であるとともに、その成分範囲は、C:0.14〜0.30%、Si:1.0〜3.5%、Mn:0.1〜0.4%、Cr: 0.5〜3.0%、Mo: 0.03〜0.60%を含み、残部は鉄および不可避的不純物の組成とするのがよい。
また、上記温度の代わりに800℃以上860℃以下(望ましくは830〜860℃)の2相域で仕上圧延されていて、フェライト組織の比率が上記の代わりに35%以上70%以下(望ましくは40〜65%)であり、上記割合のCr、Moの代わりにCr: 0.5〜2.0%(望ましくは1.2〜1.8%)、Mo:0.03〜0.2%(望ましくは0.12〜0.18%)であるものも好ましい。
上記いずれについても、とくに、下記(1)式を満足するのが望ましく、またさらに、Ti: 0.02〜0.20%、Nb: 0.02〜0.10%、V:0.02〜0.20%、B:0.0001〜0.0030%のうち1種または2種を含有したものであるのが好ましい。
Ae3=919-266*C+38*Si-28*Mn-27*Ni-11*Cr+12*Mo≧890 ・・・(1)
こうした適切な種類と量の化学成分を含むこととすれば、上記の組織を有していて望ましい機械的性質を発揮する高強度鋼板とすることが容易である。合金元素については、フェライトを回復させるため高温2相域圧延を行ううえではAr3変態温度が高いことがのぞましいので、Ar3変態温度を高めるシリコンおよびモリブデンを主要元素とし、強度の不足を変態点降下の少ないクロムを用いた。またシリコンはベイナイト変態を促進させるのに有効な元素と言われている。(1)式を満足するようにすれば、安定した2相域圧延が可能になる。なお、各成分の作用については後述する。
The high-strength hot-rolled steel sheet described in the claims is finish-rolled in a two-phase region of 860 ° C. or higher and Ae 3 temperature or lower, the ferrite structure has a grain size of 10 μm or less, and the ratio is 5% or more and 35% or less. The austenite structure has a particle size of 2 μm or less, the ratio is 7% or more and 20% or less, the remainder is a bainite structure, and the component ranges are C: 0.14 to 0.30%, Si: 1.0 to 3.5%, Mn: 0.1 It is preferable to include -0.4%, Cr: 0.5-3.0%, Mo: 0.03-0.60%, with the balance being composed of iron and inevitable impurities.
Further, it is finish-rolled in a two-phase region of 800 ° C. or higher and 860 ° C. or lower (preferably 830 to 860 ° C.) instead of the above temperature, and the ferrite structure ratio is 35% or higher and 70% or lower (preferably 40% to 65%), and instead of Cr and Mo in the above ratio, Cr: 0.5-2.0% (preferably 1.2-1.8%), Mo: 0.03-0.2% (preferably 0.12-0.18%) preferable.
In any of the above cases, it is particularly desirable to satisfy the following formula (1). Further, Ti: 0.02 to 0.20%, Nb: 0.02 to 0.10%, V: 0.02 to 0.20%, B: 0.0001 to 0.0030% Of these, those containing one or two of them are preferred.
Ae3 = 919-266 * C + 38 * Si-28 * Mn-27 * Ni-11 * Cr + 12 * Mo ≧ 890 (1)
If such an appropriate kind and amount of chemical components are included, it is easy to obtain a high-strength steel sheet having the above-described structure and exhibiting desirable mechanical properties. As for alloying elements, it is desirable that the Ar3 transformation temperature is high when performing high-temperature two-phase rolling in order to recover ferrite, so silicon and molybdenum, which increase the Ar3 transformation temperature, are the main elements, and insufficient strength reduces the transformation point. Less chromium was used. Silicon is said to be an effective element for promoting the bainite transformation. If the formula (1) is satisfied, stable two-phase region rolling becomes possible. In addition, the effect | action of each component is mentioned later.

上記高強度熱延鋼板として、上記した組織を有するとともに、板厚が1.0mmから4.0mm、引張り強さTS(MPa)が980MPa以上で、TSと伸び値EL(%)との積TS×ELが20000(MPa・%)以上であるものも好ましい。
そのような鋼板は、上述の組織を有していて高い強度と良い伸び特性とを兼ね備えるものだからである。
The above high-strength hot-rolled steel sheet has the structure described above, has a thickness of 1.0 mm to 4.0 mm, a tensile strength TS (MPa) of 980 MPa or more, and the product of TS and elongation value EL (%) TS × EL Also preferred are those having an Mn of 20000 (MPa ·%) or more.
This is because such a steel sheet has the above-described structure and has both high strength and good elongation characteristics.

上記高強度熱延鋼板についての請求項の製造方法は、上記成分範囲で1200℃以上の鋼材(素材スラブ)を粗圧延した後、複数スタンドを有する熱間圧延機によって、仕上後段3スタンドの累積歪が0.45以上でかつ860℃以上Ae3温度以下(または、上記に合わせて800℃以上860℃以下)の2相域で最終仕上圧延を完了することを特徴とする。
また、さらに、仕上圧延の圧延完了後、2秒以上5秒以内放冷後、10℃/sec以上の冷却速度で冷却を開始し、Bs 以下Ms+50℃以上で巻き取ることとするのも好ましい。なお、Bsは(2)式、Msは(3)式で示す。
Bs=649-83*C-19*Si-26*Mn-30*Ni-21*Cr-29*Mo・・・・・・・・・・・・(2)
Ms=539-423*C-30.4*Mn-17.7*Ni-12.1*Cr-7.5*Mo・・・・・・・・・・・・(3)
この製造方法によれば、高温の2相域で圧延されるためフェライトは回復し整粒になり、圧延方向及び圧延直角方向の材質異方性が低減出来、さらなる加工性の向上が図れるのである。
また、この製法によれば、その温度管理が容易となる。発明者らの製造試験によると、後述のように、こうした条件によって上述の高強度鋼板を得ることができた。
The manufacturing method of the claim for the high-strength hot-rolled steel sheet is obtained by accumulating three stages after finishing by a hot rolling mill having a plurality of stands after roughly rolling a steel material (material slab) having a temperature of 1200 ° C. or higher in the above component range. The final finish rolling is completed in a two-phase region having a strain of 0.45 or more and 860 ° C. or more and Ae3 temperature or less (or 800 ° C. or more and 860 ° C. or less in accordance with the above).
In addition, after completion of finish rolling, after cooling for 2 seconds or more and 5 seconds or less, start cooling at a cooling rate of 10 ° C / sec or more and wind up at Bs or less and Ms + 50 ° C or more. preferable. Bs is expressed by equation (2), and Ms is expressed by equation (3).
Bs = 649-83 * C-19 * Si-26 * Mn-30 * Ni-21 * Cr-29 * Mo (2)
Ms = 539-423 * C-30.4 * Mn-17.7 * Ni-12.1 * Cr-7.5 * Mo (3)
According to this manufacturing method, since it is rolled in a high-temperature two-phase region, the ferrite recovers and becomes sized, material anisotropy in the rolling direction and the direction perpendicular to the rolling can be reduced, and workability can be further improved. .
Moreover, according to this manufacturing method, the temperature management becomes easy. According to the manufacturing test of the inventors, the above-described high-strength steel sheet could be obtained under these conditions as described later.

請求項に記載の高強度鋼板は、フェライト及びベイナイトに、残留オーステナイトが多量に微細に分散した状態で混在するため、互いに相反する特性である強度と加工特性を兼備した鋼板であり、耐遅れ破壊特性および耐高速圧潰特性にも優れた鋼板である。   The high-strength steel sheet according to the claim is a steel sheet that has both strength and processing characteristics, which are mutually contradictory properties, because ferrite and bainite are mixed in a state in which a large amount of retained austenite is finely dispersed. It is a steel plate with excellent properties and high-speed crush resistance.

請求項に記載した製造方法によれば、上記した高強度鋼板を円滑に製造することが出来る。   According to the manufacturing method described in the claims, the above-described high-strength steel plate can be manufactured smoothly.

以下、980MPa以上の引張り強度をもちながらも、優れた加工性、耐遅れ破壊特性および耐高速圧潰特性が必要とされる加工部品に使用される薄鋼板とその製造方法について、実施の形態を示す。
鋼板の成分系として、C:0.14〜0.30%、Si:1.0〜3.5%、Mn:0.1〜0.4%、Cr: 0.5〜3.0%、Mo: 0.03〜0.6%を含み、残部は鉄および不可避的不純物の組成である。とくに、下記の (1)式を満足し、さらに、Ti: 0.02〜0.20%、Nb: 0.02〜0.10%、V:0.02〜0.20%、B:0.0001〜0.0030%の4種のうちいずれか1種または2種を含有するものである。
なお、ここで述べる薄鋼板とは、板厚が1.0から4.0mmの鋼板のことである。製造する鋼板は、主として自動車、家電製品、電子機器製品、等の高い加工性と強度が必要な部品に使用することが出来る。その他、鋼管用の素材として適用が可能である。
Hereinafter, embodiments of a thin steel plate used for a processed part that requires excellent workability, delayed fracture resistance, and high-speed crush resistance while having a tensile strength of 980 MPa or more and a manufacturing method thereof will be described. .
As the component system of the steel plate, it contains C: 0.14-0.30%, Si: 1.0-3.5%, Mn: 0.1-0.4%, Cr: 0.5-3.0%, Mo: 0.03-0.6%, the balance being iron and inevitable impurities Of the composition. In particular, the following formula (1) is satisfied, and Ti: 0.02 to 0.20%, Nb: 0.02 to 0.10%, V: 0.02 to 0.20%, B: 0.0001 to 0.0030% Or it contains 2 types.
The thin steel plate described here is a steel plate having a thickness of 1.0 to 4.0 mm. The steel sheet to be produced can be used mainly for parts that require high workability and strength, such as automobiles, home appliances, and electronic equipment products. In addition, it can be applied as a material for steel pipes.

まず、鋼板の成分について述べる。
炭素(C)としては、0.14〜0.30%の範囲の量が必要である。炭素は残留オーステナイトを安定化させるために最も重要な元素で、0.14%未満では十分安定度が得られないので、0.14%以上の炭素量が必要である。一方、炭素量が0.30%以上になると、溶接部が硬化しすぎて溶接部から破断しやすくなる。これは、薄鋼板にとっては使用上の制約になるので、炭素量に上限を設けた。そして、0.14〜0.30%の炭素量であれば、本発明の主旨にそった複合組織が得られることを見出したものである。
First, the components of the steel sheet will be described.
As carbon (C), an amount in the range of 0.14 to 0.30% is required. Carbon is the most important element for stabilizing retained austenite. If it is less than 0.14%, sufficient stability cannot be obtained, so a carbon content of 0.14% or more is necessary. On the other hand, when the carbon content is 0.30% or more, the welded portion is excessively hardened and easily breaks from the welded portion. This is a limitation in use for thin steel plates, so an upper limit was set for the carbon content. And it has been found that a composite structure in accordance with the gist of the present invention can be obtained when the carbon content is 0.14 to 0.30%.

シリコン(Si)量は、1.0〜3.5%の範囲とする。シリコンは固溶強化による強度の向上効果も有する。さらに、Ae3を高めかつ残留オーステナイトの安定化のために活用する。シリコン量は、1.0%以上であれば、本発明の複合組織と材質特性が得られる。シリコン量は多いほど、Ae3を高め、残留オーステナイト量を増やすことができると同時に、その安定性を促す。しかし、3.5%以上のシリコン量になると、強度延性バランスの特性が飽和するので、シリコン量の上限を3.5%とする。   The amount of silicon (Si) is in the range of 1.0 to 3.5%. Silicon also has an effect of improving strength by solid solution strengthening. Furthermore, Ae3 is used to increase and stabilize retained austenite. If the amount of silicon is 1.0% or more, the composite structure and material characteristics of the present invention can be obtained. The greater the amount of silicon, the higher the Ae3 and the greater the amount of retained austenite, while at the same time promoting its stability. However, when the silicon content is 3.5% or more, the strength-ductility balance characteristic is saturated, so the upper limit of the silicon content is 3.5%.

クロム(Cr)量は、0.5〜3.0%の範囲とする。クロム量は(1)式に影響しAe3の低下が比較的少なく強度を高めることができる。0.5%未満になると、強度を満足することが出来ない。クロム量が3.0%を超えると、Ae3の低下が著しいので、その上限を3.0%とした。   The amount of chromium (Cr) is 0.5 to 3.0%. The amount of chromium affects the formula (1), and the strength of Ae3 is relatively small and the strength can be increased. If it is less than 0.5%, the strength cannot be satisfied. When the chromium content exceeds 3.0%, Ae3 is significantly decreased, so the upper limit was made 3.0%.

マンガン(Mn)量は0.1〜0.4%の範囲とする。マンガン量が0.1%未満になると、製鋼上での製造が困難になるので0.1%以上とする。 マンガン量を0.4%以上添加すると、Ae3を著しく低下しマルテンサイトが生成しやすくなり、本発明の目的とする組織が得られない。   Manganese (Mn) content is in the range of 0.1-0.4%. If the amount of manganese is less than 0.1%, it becomes difficult to manufacture on steel making, so 0.1% or more. If the manganese amount is added to 0.4% or more, Ae3 is remarkably lowered and martensite is easily generated, and the target structure of the present invention cannot be obtained.

モリブデン(Mo)は、Si同様にAe3を向上させ、鋼の強度を向上させることが出来るが、故意に添加を行えばコストの上昇を招くため、その範囲を0.03〜0.6%とした。   Molybdenum (Mo), like Si, can improve Ae3 and improve the strength of steel, but if added intentionally, it causes an increase in cost, so the range was made 0.03-0.6%.

チタン(Ti)は、熱延工程における結晶粒の微細化効果を有している。
フェライト粒や残留オーステナイト粒を微細に分散させるためにチタンは有効な元素である。チタン量は0.02%未満になると、再結晶や結晶粒成長を抑制する効果がなくなるので、添加する場合には0.02%以上とする。さらに0.20%よりも増えても作用効果はあまり増加しないのに加え、製鋼上での製造が困難になるので、その上限の量を0.20%とする。
Titanium (Ti) has an effect of refining crystal grains in the hot rolling process.
Titanium is an effective element for finely dispersing ferrite grains and residual austenite grains. If the amount of titanium is less than 0.02%, the effect of suppressing recrystallization and crystal grain growth is lost, so when added, the content is made 0.02% or more. Furthermore, even if the amount exceeds 0.20%, the effect does not increase so much, and it becomes difficult to manufacture on steel making, so the upper limit is made 0.20%.

ニオブ(Nb)にも、チタンと同様に、再結晶や結晶粒成長を抑制する効果がある。
フェライト粒や残留オーステナイト粒を微細に分散させるためにニオブは有効な元素である。ニオブ量は0.02%未満になると、再結晶や結晶粒成長を抑制する効果がなくなるので、添加する場合には0.02%以上とする。また、ニオブ量が0.10%よりも増えてもその作用効果はあまり増加しないので、その上限を0.10%とした。
Niobium (Nb) also has the effect of suppressing recrystallization and crystal grain growth, similar to titanium.
Niobium is an effective element for finely dispersing ferrite grains and residual austenite grains. If the amount of niobium is less than 0.02%, the effect of suppressing recrystallization and crystal grain growth is lost. Moreover, even if the amount of niobium increases beyond 0.10%, the effect does not increase so much, so the upper limit was made 0.10%.

バナジウム(V)にも、チタン、ニオブと同様に、再結晶や結晶粒成長を抑制する効果がある。フェライト粒や残留オーステナイト粒を微細に分散させるためにバナジウムは有効な元素である。バナジウム量は0.02%未満になると、再結晶や結晶粒成長を抑制する効果がなくなるので、添加する場合には0.02%以上とする。また、バナジウム量が0.20%よりも増えてもその作用効果はあまり増加しないので、その上限を0.20%とした。   Vanadium (V) also has the effect of suppressing recrystallization and crystal grain growth, like titanium and niobium. Vanadium is an effective element for finely dispersing ferrite grains and residual austenite grains. If the amount of vanadium is less than 0.02%, the effect of suppressing recrystallization and crystal grain growth is lost, so when added, the content is made 0.02% or more. Further, even if the amount of vanadium is increased from 0.20%, the effect is not so increased, so the upper limit is set to 0.20%.

ボロン(B)にも、チタン、ニオブと同様に、再結晶や結晶粒成長を抑制する効果がある。フェライト粒や残留オーステナイト粒を微細に分散させるためにボロンは有効な元素である。ボロン量は0.0001%未満になると、再結晶や結晶粒成長を抑制する効果がなくなるので、添加する場合には0.0001%以上とする。また、ボロン量が0.0030%よりも増えてもその作用効果はあまり増加しないので、その上限を0.0030%とした。   Boron (B) also has the effect of suppressing recrystallization and crystal grain growth, like titanium and niobium. Boron is an effective element for finely dispersing ferrite grains and residual austenite grains. When the boron content is less than 0.0001%, the effect of suppressing recrystallization and crystal grain growth is lost, so when added, the content is made 0.0001% or more. In addition, even if the boron content increases from 0.0030%, the effect does not increase so much, so the upper limit was made 0.0030%.

上記の基準成分に調整したスラブ(被圧延鋼材)は、再加熱してから熱間圧延をおこなうか、もしくは鋳造後直ちに熱間圧延をおこなうものとする。熱間圧延を施すにあたっては、粗圧延の後、複数スタンドを有する熱間圧延機によって、累積歪みが0.45以上になるように仕上圧延を行う。そのような高圧下率の圧延を行うためには、ワークロールの直径が600mm以下の小径ロールミル、またはワークロールの平均直径が600mm以下である異径ロールミルを少なくとも後段の複数スタンドに使用することが好ましい。圧延完了温度が低温になると扁平の結晶粒が回復せず整粒化しないので、圧延終了温度を860℃以上Ae3温度以下とする。
ここで「歪み」とは、各スタンド(各段)の入側での鋼板の厚さh0と出側での厚さh1の差を両者の平均厚さで除した
ε=(h0−h1)/{(h0+h1)/2}
をいい、「累積歪み」とは、後段3スタンドの各段での歪みを金属組織に対する影響の強さを考慮して加重積算したもので、最終段とその前段・前々段での歪みをそれぞれεn、εn-1、εn-2とするとき、
εc=εn+εn-1/2+εn-2/4
で表されるεcをいうものとする。仕上圧延機が6段の場合には、
εc=RED=F4/4+F5/2+F6
とも表すことができる。
The slab (steel material to be rolled) adjusted to the above-described reference component is either hot-rolled after reheating or hot-rolled immediately after casting. In performing hot rolling, after rough rolling, finish rolling is performed by a hot rolling mill having a plurality of stands so that the cumulative strain becomes 0.45 or more. In order to perform such high-pressure reduction, it is necessary to use a small-diameter roll mill having a work roll diameter of 600 mm or less or a different-diameter roll mill having an average work roll diameter of 600 mm or less for at least a plurality of subsequent stages. preferable. When the rolling completion temperature is low, the flat crystal grains are not recovered and the grain size is not adjusted, so the rolling finishing temperature is set to 860 ° C. or more and Ae 3 temperature or less.
Here, “strain” means the difference between the thickness h0 of the steel sheet at the entrance side of each stand (each stage) and the thickness h1 at the exit side divided by the average thickness of both ε = (h 0 −h 1 ) / {(h 0 + h 1 ) / 2}
“Cumulative strain” is a weighted integration of strain at each stage of the latter three stands, taking into account the strength of the influence on the metal structure, and the distortion at the last stage and its previous and previous stages. When ε n , ε n-1 and ε n-2 respectively,
ε c = ε n + ε n-1 / 2 + ε n-2 / 4
Ε c represented by If the finishing mill has 6 stages,
ε c = RED = F4 / 4 + F5 / 2 + F6
Can also be expressed.

圧延終了温度が860℃以上Ae3温度以下(二相域)で熱間圧延を完了し、圧延完了後2秒以上5秒以下放冷後、10℃/sec以上の冷却速度で冷却を開始し、巻取ることが必要である。
累積歪みが0.45以上になるように熱間圧延することによりオーステナイト粒の微細化を行い、高温仕上げと、その後の2秒以上の放冷過程で結晶粒中の転位密度を減少させることが必要である。この圧延方式により、転位密度の少ない等軸で微細な旧オーステナイト粒が得られ、その後の冷却過程で得られる組織を、方向性が少ない均一、微細な組織とすることが出来るのである。巻き取り温度はBs 以下,Ms+50℃以上の温度範囲にすることにより、フェライトとベイナイトの混在する組織になり、オーステナイトも残留する。この残留オーステナイトは2μm以下と極めて微細に分散させることが出来る。
ここで巻き取り温度をBs 以下,Ms+50℃以上としたが、Ms+50℃以下の温度範囲ではマルテンサイト組織が多く生成し、遅れ破壊がおこりやすい。またBs 以上の温度では組織が粗大化し高い強度が得られない。
Hot rolling is completed at a rolling end temperature of 860 ° C or higher and Ae3 temperature or lower (two-phase region). After the rolling is completed, it is allowed to cool for 2 seconds or more and 5 seconds or less, and then cooled at a cooling rate of 10 ° C / sec or more. It is necessary to wind up.
It is necessary to refine the austenite grains by hot rolling so that the cumulative strain becomes 0.45 or more, and to reduce the dislocation density in the grains by high-temperature finishing and the subsequent cooling process for 2 seconds or more. is there. By this rolling system, equiaxed and fine prior austenite grains with a low dislocation density can be obtained, and the structure obtained in the subsequent cooling process can be made into a uniform and fine structure with little directionality. When the coiling temperature is set to a temperature range of Bs or less and Ms + 50 ° C or more, a structure in which ferrite and bainite are mixed is formed, and austenite also remains. This retained austenite can be dispersed very finely at 2 μm or less.
Here, the coiling temperature is set to Bs or lower and Ms + 50 ° C. or higher. However, in the temperature range of Ms + 50 ° C. or lower, a lot of martensite structure is formed and delayed fracture is likely to occur. Further, when the temperature is higher than Bs, the structure becomes coarse and high strength cannot be obtained.

図1は、この発明の実施形態の製造プロセスにおける熱間圧延及び冷却での温度履歴の概念を示すもので、横軸は時間経過、縦軸は温度である。図の左方から、aの範囲は粗圧延工程、bは仕上圧延工程、cは巻取り工程をそれぞれ行っていることを示す。   FIG. 1 shows the concept of temperature history in hot rolling and cooling in the manufacturing process of the embodiment of the present invention, in which the horizontal axis represents time and the vertical axis represents temperature. From the left side of the figure, the range a indicates that a rough rolling process is performed, b indicates a finish rolling process, and c indicates a winding process.

図2では、EBSD法を用いて、体心立方構造のフェライトもしくはベイナイト相と面心立方構造のオーステナイト相を色分けした本発明鋼の組織断面を示した。(b)の白色(薄い色)で示した残留オーステナイト組織は2.0μm以下に微細かつ均一に分散していることが観察出来る。
ここで(a)は結晶方位差分布像(方位差15°以上を結晶粒界で識別)であり
(b)は結晶構造分布像(体心立方⇔面心立方)である。
FIG. 2 shows a cross section of the structure of the steel of the present invention in which the ferrite or bainite phase of the body-centered cubic structure and the austenite phase of the face-centered cubic structure are color-coded using the EBSD method. It can be observed that the retained austenite structure shown in white (light color) in (b) is finely and uniformly dispersed to 2.0 μm or less.
Here, (a) is a crystal orientation distribution image (identification of orientation difference of 15 ° or more is identified by a grain boundary), and (b) is a crystal structure distribution image (body-centered cubic face-centered cubic).

遅れ破壊試験法は、U曲げ連続チャージ法(参考文献:「鉄と鋼」vol83(1997) No11 P66)にもとづき実施した。すなわち、試験片寸法は板厚原板のまま、板幅30mm、板長さ100mmとし、端面は切断まま、クリアランス15%、曲げ内面側にバリを配置した。負荷応力を2000MPaとし、1N硫酸水溶液中で最大120分チャージした。割れ発生までの時間が120分以内のものを割れ発生とし、120分以上を割れなしとした。   The delayed fracture test method was performed based on the U-bending continuous charge method (reference: “Iron and Steel” vol 83 (1997) No11 P66). That is, the dimensions of the test piece were the original plate thickness, the plate width was 30 mm, the plate length was 100 mm, the end face was cut, the clearance was 15%, and the burrs were arranged on the bent inner surface side. The load stress was 2000 MPa, and the battery was charged in a 1N sulfuric acid aqueous solution for a maximum of 120 minutes. Cracks that occurred within 120 minutes were regarded as cracks, and 120 minutes or more were regarded as no cracks.

図3(a)は高速軸圧潰試験に用いた試験体の図面で70mm×70mmの角柱である。図3(b)は高速軸圧潰試験後の試験体の外観を示す。この図のように上部からきれいなアコーデオン状にたたまれたものを良好とし、折りたたまれず、さらに割れが発生したものを不良とした。
本発明は、以上の知見に基づき開発されたものである。
FIG. 3 (a) is a drawing of a specimen used in the high-speed axial crushing test, which is a 70 mm × 70 mm prism. FIG. 3B shows the appearance of the specimen after the high speed axial crushing test. As shown in this figure, a product that was folded into a clean accordion shape from the top was regarded as good, and a product that was not folded and cracked was regarded as defective.
The present invention has been developed based on the above findings.

以下に発明の実施例を説明する。
表1に示す化学成分を有する溶鋼を、連続鋳造法もしくは鍛造法によりスラブ(圧延素材)とした。続いてこれらのスラブを再加熱し、熱間圧延を行い、熱延鋼板とした。
Examples of the invention will be described below.
The molten steel having chemical components shown in Table 1 was used as a slab (rolled material) by a continuous casting method or a forging method. Subsequently, these slabs were reheated and hot-rolled to obtain hot-rolled steel sheets.

表1に示す鋼種A,B,C,D,E,F,N,O,P,Qは実施例の範囲(化学成分についての条件を満たす範囲)で、鋼種G,H.I.J,K,L,Mは比較例である。   Steel types A, B, C, D, E, F, N, O, P, and Q shown in Table 1 are within the scope of the examples (ranges that satisfy the conditions for chemical composition), and steel types G, HIJ, K, L, M is a comparative example.

鋼種A,B,C,D,E,F,N,O,P,Qは下記(1)式をも満足した実施例である。
Ae3=919-266*C+38*Si-28*Mn-27*Ni-11*Cr+12*Mo≧890 ・・・(1)
比較例の鋼種Gは(1)式の範囲内であるがマンガン(Mn)が本発明の範囲を外れるものである。鋼種Hは(1)式の範囲内であるがクロム(Cr)が本発明の範囲を外れるものである。鋼種Iおよび鋼種Jは珪素(Si)が低く、マンガン(Mn)が高く本発明の範囲を外れ、(1)式も発明の範囲を外れる。鋼種Kは(1)式が発明の範囲を外れる。鋼種Lおよび鋼種Mは炭素量(C)が低位で本発明の範囲をはずれる。
Steel types A, B, C, D, E, F, N, O, P, and Q are examples that satisfy the following formula (1).
Ae3 = 919-266 * C + 38 * Si-28 * Mn-27 * Ni-11 * Cr + 12 * Mo ≧ 890 (1)
Steel grade G of the comparative example is within the range of formula (1), but manganese (Mn) is outside the scope of the present invention. Steel type H is within the range of formula (1), but chromium (Cr) is outside the scope of the present invention. Steel type I and steel type J are low in silicon (Si), high in manganese (Mn), and out of the scope of the present invention, and equation (1) is also out of the scope of the invention. As for the steel type K, the formula (1) is out of the scope of the invention. Steel type L and steel type M have a low carbon content (C) and are out of the scope of the present invention.

表2に熱間圧延条件とその材料特性を示す。
Table 2 shows the hot rolling conditions and the material properties.

表2のNo.1〜3は本発明の範囲の化学成分をもつ鋼種Aを用いて、発明の範囲内で熱間圧延を行ったものである。高温での2相域圧延を行っているためフェライトが生成し、異方性が少なく引張強さ(TS)*伸び(El)も良好である。遅れ破壊特性も良好で、高速軸圧潰特性も良好であった。No.4は本発明の範囲の化学成分をもつ鋼種Aを用いたが、熱間圧延温度が高く、フェライトが生成しないため、高速軸圧潰特性が不良である比較例である。No.5は本発明の範囲の化学成分をもつ鋼種Aを用いたが、熱間圧延温度が低く、異方性が大きい比較例である。No.6は本発明の範囲の化学成分をもつ鋼種Aを用いたが、熱間圧延での圧延の累積歪みが少ないため結晶粒が大きく、遅れ破壊が発生した比較例である。
No.7は本発明の範囲の化学成分をもつ鋼種Bを用いて、発明の範囲内で熱間圧延を行ったものである。異方性が少なく引張強さ(TS)*伸び(El)も良好で,遅れ破壊特性も良好で、かつ高速軸圧潰特性も良好であった。No.8は本発明の範囲の化学成分をもつ鋼種Bを用いたが、巻取温度が低く、マルテンサイト組織が生成し、遅れ破壊が発生した比較例である。
No.9〜12は本発明の範囲の化学成分をもつ鋼種C,D,E,Fを用いて、発明の範囲内で熱間圧延を行ったものである。フェライトが生成し、異方性が少なく引張強さ(TS)*伸び(El)も良好である。遅れ破壊特性も良好で、高速軸圧潰特性も良好であった。
No.13〜20は本発明の成分範囲をはずれた比較例の鋼種Fを用いて、熱間圧延を行ったものである。No.13、14は比較例の鋼種G,Hを用いて発明の範囲内で熱間圧延をしたものであるが、マルテンサイト組織が生成し、遅れ破壊特性が発生した比較例である。
No.15〜17は比較例の鋼種I,J,Kを用いて熱間圧延したものであるが、Ae3変態点が低く、それ以上の圧延温度であったためフェライトが生成せず、高速軸圧潰特性が不良である比較例である。No.18比較例の鋼種Kを用いて熱間圧延したものであるが、熱間圧延温度が低く、異方性が大きい比較例である。
No.19、20は比較例の鋼種L,Mを用いて発明の範囲内で熱間圧延をしたものであるが、残留γの生成量が少なく、引張強さ(TS)*伸び(El)特性が低い比較例である。
No.21〜24は本発明の範囲の化学成分をもつ鋼種N,O,P,Qを用いて、発明の範囲内で熱間圧延を行ったものである。フェライトが生成し、異方性が少なく引張強さ(TS)*伸び(El)も良好である。遅れ破壊特性も良好で、高速軸圧潰特性も良好であった。
Nos. 1 to 3 in Table 2 are obtained by performing hot rolling within the scope of the invention using steel type A having chemical components within the scope of the present invention. Since two-phase rolling is performed at a high temperature, ferrite is generated, and there is little anisotropy, and tensile strength (TS) * elongation (El) is also good. Delayed fracture characteristics were also good, and high-speed axial crushing characteristics were also good. No. 4 is a comparative example in which steel type A having a chemical composition within the scope of the present invention was used, but the hot rolling temperature was high and no ferrite was formed, so the high speed axial crushing characteristics were poor. No. 5 used a steel type A having a chemical composition within the scope of the present invention, but is a comparative example having a low hot rolling temperature and a large anisotropy. No. 6 is a comparative example in which steel type A having a chemical composition within the range of the present invention was used, but because the cumulative strain of rolling in hot rolling was small, the crystal grains were large and delayed fracture occurred.
No. 7 was obtained by hot rolling within the scope of the invention using steel type B having a chemical composition within the scope of the present invention. There was little anisotropy, tensile strength (TS) * elongation (El) was good, delayed fracture property was good, and high-speed axial crushing property was also good. No. 8 was a comparative example in which steel type B having a chemical composition within the scope of the present invention was used, but the coiling temperature was low, a martensite structure was formed, and delayed fracture occurred.
Nos. 9 to 12 were obtained by hot rolling within the scope of the invention using steel types C, D, E, and F having chemical components within the scope of the present invention. Ferrite is formed, and there is little anisotropy, and tensile strength (TS) * elongation (El) is also good. Delayed fracture characteristics were also good, and high-speed axial crushing characteristics were also good.
Nos. 13 to 20 are hot-rolled using the steel type F of the comparative example that is out of the component range of the present invention. Nos. 13 and 14 were hot rolled within the scope of the invention using the steel types G and H of the comparative examples, but were comparative examples in which a martensitic structure was formed and delayed fracture characteristics were generated.
Nos. 15 to 17 were hot rolled using the steel types I, J, and K of the comparative example, but the Ae3 transformation point was low and the rolling temperature was higher than that, so ferrite did not form and high speed axial crushing occurred. This is a comparative example having poor characteristics. Although it was hot-rolled using the steel type K of No. 18 comparative example, it is a comparative example with a low hot rolling temperature and large anisotropy.
Nos. 19 and 20 were hot rolled within the scope of the invention using the steel types L and M of the comparative example, but the amount of residual γ produced was small, and the tensile strength (TS) * elongation (El) This is a comparative example with low characteristics.
Nos. 21 to 24 were obtained by performing hot rolling within the scope of the invention using steel types N, O, P, and Q having chemical components within the scope of the present invention. Ferrite is formed, and there is little anisotropy, and tensile strength (TS) * elongation (El) is also good. Delayed fracture characteristics were also good, and high-speed axial crushing characteristics were also good.

以下に発明の第2の実施例を示す。この例では、上記(発明を実施するための形態および実施例1)の例から Cr、Moの量を減少させた表3の化学成分を有する鋼種Rのスラブ(圧延素材)を材料(比較例ではなく実施例)とし、これを再加熱して熱間圧延を行い、熱延鋼板とした。
A second embodiment of the invention will be shown below. In this example, the slab (rolling material) of the steel type R having the chemical composition shown in Table 3 in which the amount of Cr and Mo is reduced from the above example (the mode for carrying out the invention and Example 1) is used as a material (comparative example). Example), and this was reheated and hot-rolled to obtain a hot-rolled steel sheet.

表4に、上記鋼種Rのスラブを材料として行った熱間圧延の条件と、それによって得た熱延鋼板の材料特性とを示す。熱間圧延の完了後、2秒以上5秒以下放冷したのち10℃/sec以上の冷却速度で冷却を開始し、Bs 以下,Ms+50℃以上で巻き取ることは、前記と同様である。
Table 4 shows the conditions of hot rolling using the slab of steel type R as a material and the material properties of the hot-rolled steel sheet obtained thereby. After completion of hot rolling, it is allowed to cool for 2 seconds or more and 5 seconds or less, then starts cooling at a cooling rate of 10 ° C / sec or more, and is wound at Bs or less and Ms + 50 ° C or more as described above. .

表4に示す2つの例(No.25、No.26)は、表2の実施例に比べて仕上温度のみを下げて圧延を行ったものだが、いずれの特性についても良好な結果が得られている。γ粒(残留オーステナイト)の再結晶を抑制するMoおよびCrの添加量を調整することにより、圧延温度を下げても、異方性の少ない高強度鋼板が得られたことになる。また、フェライト量が増えることでTS*Elバランスがさらに向上していることが確認される。
図4は、上記圧延材(実施例2)の断面組織を示す顕微鏡写真である。図2のものと同様な複相を呈している。
The two examples (No. 25 and No. 26) shown in Table 4 were produced by rolling only at the finishing temperature as compared with the examples in Table 2, but good results were obtained for both properties. ing. By adjusting the addition amount of Mo and Cr that suppresses recrystallization of γ grains (residual austenite), a high-strength steel sheet with little anisotropy was obtained even when the rolling temperature was lowered. It is also confirmed that the TS * El balance is further improved by increasing the amount of ferrite.
FIG. 4 is a photomicrograph showing the cross-sectional structure of the rolled material (Example 2). It exhibits a double phase similar to that of FIG.

この発明の実施形態の製造プロセスにおける熱間圧延及び冷却での温度履歴の概念を示す線図。The diagram which shows the concept of the temperature history in the hot rolling and cooling in the manufacturing process of embodiment of this invention. 成分及び圧延条件が本発明の範囲において製造した鋼板のEBSD法による断面組織写真。(b)の写真白色(薄い色)の部分が残留オーステナイト。 (a)は結晶方位差分布像、(b)は結晶構造分布像。The cross-sectional structure | tissue photograph by the EBSD method of the steel plate manufactured in the range of this invention for a component and rolling conditions. The white (light color) portion of (b) is the retained austenite. (A) is a crystal orientation distribution image, (b) is a crystal structure distribution image. 図3(a)は高速軸圧潰試験に用いた試験体の図面であり、図3(b)は高速軸圧潰試験後の試験体の外観を示す。FIG. 3 (a) is a drawing of the test body used in the high-speed axial crushing test, and FIG. 3 (b) shows the appearance of the test body after the high-speed axial crushing test. 実施例2の圧延材について示す断面組織写真である。(a)は光学顕微鏡組織、(b)は結晶方位差分布像、(c)は結晶構造分布像をそれぞれ示す。It is a cross-sectional structure | tissue photograph shown about the rolling material of Example 2. FIG. (A) is an optical microscope structure, (b) is a crystal orientation difference distribution image, and (c) is a crystal structure distribution image.

Claims (9)

800℃以上Ae3温度以下の2相域で仕上圧延されていて、フェライト組織が粒径10μm以下でその比率が5%以上70%以下であり、残留オーステナイト組織が粒径2μm以下でその比率が7%以上20%以下であり、残部がベイナイト組織であることを特徴とする高強度熱延鋼板。   Finished and rolled in a two-phase region of 800 ° C or more and Ae3 temperature or less, the ferrite structure has a grain size of 10 µm or less and the ratio is 5% or more and 70% or less, and the residual austenite structure has a grain size of 2 µm or less and the ratio is 7 A high-strength hot-rolled steel sheet characterized by having a bainite structure with a balance of not less than 20% and not more than 20%. 860℃以上Ae3温度以下の2相域で仕上圧延されていて、フェライト組織が粒径10μm以下でその比率が5%以上35%以下であり、残留オーステナイト組織が粒径2μm以下でその比率が7%以上20%以下であり、残部がベイナイト組織であること、
および、C:0.14〜0.30%、Si:1.0〜3.5%、Mn:0.1〜0.4%、Cr: 0.5〜3.0%、Mo:0.03〜0.6%を含み、残部は鉄および不可避的不純物の組成にてなること
を特徴とする請求項1に記載の高強度熱延鋼板。
Finished and rolled in a two-phase region of 860 ° C or more and Ae3 temperature or less, the ferrite structure has a grain size of 10µm or less and the ratio is 5% to 35%, the residual austenite structure is grain size of 2µm or less and the ratio is 7 % To 20%, the balance being a bainite structure,
And C: 0.14-0.30%, Si: 1.0-3.5%, Mn: 0.1-0.4%, Cr: 0.5-3.0%, Mo: 0.03-0.6%, with the balance being the composition of iron and inevitable impurities The high-strength hot-rolled steel sheet according to claim 1, wherein
成分範囲が(1)式を満足することを特徴とする請求項2に記載した高強度熱延鋼板。
Ae3=919-266*C+38*Si-28*Mn-27*Ni-11*Cr+12*Mo≧890 ・・・(1)
The high-strength hot-rolled steel sheet according to claim 2, wherein the component range satisfies the formula (1).
Ae3 = 919-266 * C + 38 * Si-28 * Mn-27 * Ni-11 * Cr + 12 * Mo ≧ 890 (1)
Ti: 0.02〜0.20%、Nb: 0.02〜0.10%、V:0.02〜0.20%、B:0.0001〜0.0030%のうち1種または2種をさらに含有した請求項2または3に記載した高強度熱延鋼板。   The high strength hot rolling according to claim 2 or 3, further comprising one or two of Ti: 0.02 to 0.20%, Nb: 0.02 to 0.10%, V: 0.02 to 0.20%, and B: 0.0001 to 0.0030%. steel sheet. 板厚が1.0mm以上4.0mm以下、引張り強さが980MPa以上であり、引張り強さと伸び値との積が20,000(MPa・%)以上であることを特徴とする請求項2〜4のいずれかに記載の高強度熱延鋼板。   The plate thickness is 1.0 mm or more and 4.0 mm or less, the tensile strength is 980 MPa or more, and the product of the tensile strength and the elongation value is 20,000 (MPa ·%) or more. The high-strength hot-rolled steel sheet described in 1. 上記温度の代わりに800℃以上860℃以下の2相域で仕上圧延されていて、フェライト組織の比率が上記の代わりに35%以上70%以下であること、
および、上記割合のCr、Moの代わりにCr: 0.5〜2.0%、Mo:0.03〜0.2%を含む
ことを特徴とする請求項2〜5のいずれかに記載した高強度熱延鋼板。
It is finish-rolled in a two-phase region of 800 ° C. or more and 860 ° C. or less instead of the above temperature, and the ferrite structure ratio is 35% or more and 70% or less instead of the above,
The high strength hot-rolled steel sheet according to any one of claims 2 to 5, wherein Cr: 0.5 to 2.0% and Mo: 0.03 to 0.2% are contained instead of Cr and Mo in the above ratio.
請求項2〜5のいずれかに記載した高強度熱延鋼板の製造方法であって、
上記成分範囲で1200℃以上の鋼材(素材スラブ)を粗圧延した後、複数スタンドを有する熱間圧延機によって、仕上後段3スタンドの累積歪が0.45以上で、かつ、860℃以上Ae3温度以下の2相域で、最終仕上圧延を完了することを特徴とする高強度熱延鋼板の製造方法。
A method for producing a high-strength hot-rolled steel sheet according to any one of claims 2 to 5,
After roughly rolling a steel material (material slab) of 1200 ° C or higher in the above-mentioned composition range, the cumulative strain of the final stage 3 stands is 0.45 or higher and 860 ° C or higher and Ae3 temperature or lower by a hot rolling mill having multiple stands. A method for producing a high-strength hot-rolled steel sheet, characterized in that final finishing rolling is completed in a two-phase region.
請求項6に記載した高強度熱延鋼板の製造方法であって、
上記成分範囲で1200℃以上の鋼材(素材スラブ)を粗圧延した後、複数スタンドを有する熱間圧延機によって、仕上後段3スタンドの累積歪が0.45以上で、かつ、800℃以上860℃以下の2相域で、最終仕上圧延を完了することを特徴とする高強度熱延鋼板の製造方法。
It is a manufacturing method of the high intensity | strength hot-rolled steel plate described in Claim 6,
After roughly rolling a steel material (raw material slab) of 1200 ° C or higher in the above component range, the cumulative strain of the final stage 3 stands is 0.45 or higher and 800 ° C or higher and 860 ° C or lower by a hot rolling mill having multiple stands. A method for producing a high-strength hot-rolled steel sheet, characterized in that final finishing rolling is completed in a two-phase region.
仕上圧延の圧延完了後、2秒以上5秒以内の放冷後、10℃/sec以上の冷却速度で冷却を開始し、Bs 以下Ms+50℃以上で巻き取ることを特徴とする請求項7または8に記載の高強度熱延鋼板の製造方法。なお、Bsは(2)式、Msは(3)式で示す。
Bs=649-83*C-19*Si-26*Mn-30*Ni-21*Cr-29*Mo・・・・・・・・・・・・(2)
Ms=539-423*C-30.4*Mn-17.7*Ni-12.1*Cr-7.5*Mo・・・・・・・・・・・・(3)
8. After completion of finish rolling, after cooling for 2 seconds to 5 seconds, cooling is started at a cooling rate of 10 ° C./sec or more, and winding is performed at Bs or less and Ms + 50 ° C. or more. Or the manufacturing method of the high intensity | strength hot-rolled steel plate of 8. Bs is expressed by equation (2), and Ms is expressed by equation (3).
Bs = 649-83 * C-19 * Si-26 * Mn-30 * Ni-21 * Cr-29 * Mo (2)
Ms = 539-423 * C-30.4 * Mn-17.7 * Ni-12.1 * Cr-7.5 * Mo (3)
JP2009289173A 2008-12-26 2009-12-21 High strength hot-rolled steel plate and manufacturing method therefor Pending JP2010168651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009289173A JP2010168651A (en) 2008-12-26 2009-12-21 High strength hot-rolled steel plate and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008333604 2008-12-26
JP2009289173A JP2010168651A (en) 2008-12-26 2009-12-21 High strength hot-rolled steel plate and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2010168651A true JP2010168651A (en) 2010-08-05

Family

ID=42701055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289173A Pending JP2010168651A (en) 2008-12-26 2009-12-21 High strength hot-rolled steel plate and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2010168651A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046816A (en) * 2010-08-30 2012-03-08 Nakayama Steel Works Ltd Hot-rolled steel sheet having high strength and high-workability and method for producing the same
WO2013047760A1 (en) 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot-dip galvanized steel sheet having excellent delayed fracture resistance, and method for producing same
WO2016132542A1 (en) * 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10752972B2 (en) 2015-02-25 2020-08-25 Nippon Steel Corporation Hot-rolled steel sheet
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
US11236412B2 (en) 2016-08-05 2022-02-01 Nippon Steel Corporation Steel sheet and plated steel sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046816A (en) * 2010-08-30 2012-03-08 Nakayama Steel Works Ltd Hot-rolled steel sheet having high strength and high-workability and method for producing the same
WO2013047760A1 (en) 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot-dip galvanized steel sheet having excellent delayed fracture resistance, and method for producing same
US8993120B2 (en) 2011-09-30 2015-03-31 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet having excellent delayed fracture resistance and manufacturing method thereof
WO2016132542A1 (en) * 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
JPWO2016132542A1 (en) * 2015-02-20 2017-10-05 新日鐵住金株式会社 Hot rolled steel sheet
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10752972B2 (en) 2015-02-25 2020-08-25 Nippon Steel Corporation Hot-rolled steel sheet
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
US11236412B2 (en) 2016-08-05 2022-02-01 Nippon Steel Corporation Steel sheet and plated steel sheet

Similar Documents

Publication Publication Date Title
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
KR102000854B1 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
JP5214905B2 (en) High strength hot rolled steel sheet and method for producing the same
JP4062118B2 (en) High-tensile hot-rolled steel sheet with excellent stretch characteristics and stretch flange characteristics and manufacturing method thereof
WO2013154071A1 (en) Steel sheet suitable as impact absorbing member, and method for manufacturing same
WO2011148490A1 (en) Steel sheet, and process for production thereof
JP5126399B2 (en) High-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
KR101159824B1 (en) High-strength steel sheet for can manufacturing and process for manufacturing the sheet
JP5339765B2 (en) High strength hot rolled steel sheet and method for producing the same
KR101624439B1 (en) High-strength steel sheet and method for producing the same
JP2010168651A (en) High strength hot-rolled steel plate and manufacturing method therefor
WO2014077294A1 (en) Automobile collision energy absorbing member and manufacturing method therefor
KR101986640B1 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
JP2007023339A (en) High tension hot-rolled steel sheet and its manufacturing method
JP2009024227A (en) Dual-phase steel sheet superior in formability, and manufacturing method therefor
JP3231204B2 (en) Composite structure steel sheet excellent in fatigue characteristics and method for producing the same
JP2000239791A (en) Superfine-grained hot rolled steel plate excellent in impact resistance
JP2009173959A (en) High-strength steel sheet and producing method therefor
JP2013216945A (en) Steel sheet and impact absorbing member
JP4854333B2 (en) High strength steel plate, unannealed high strength steel plate and method for producing them
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JPH1161327A (en) High strength automobile steel plate superior in collision safety and formability, and its manufacture
JP4980253B2 (en) High-strength hot-rolled steel sheet with excellent strength-ductility balance and punchability and method for producing the same
JP6098537B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof