JP2010167502A - Consumable electrode type arc welding equipment - Google Patents

Consumable electrode type arc welding equipment Download PDF

Info

Publication number
JP2010167502A
JP2010167502A JP2010111715A JP2010111715A JP2010167502A JP 2010167502 A JP2010167502 A JP 2010167502A JP 2010111715 A JP2010111715 A JP 2010111715A JP 2010111715 A JP2010111715 A JP 2010111715A JP 2010167502 A JP2010167502 A JP 2010167502A
Authority
JP
Japan
Prior art keywords
consumable electrode
physical quantity
arc
short
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010111715A
Other languages
Japanese (ja)
Other versions
JP5257403B2 (en
Inventor
Yoshiro Tanaka
義朗 田中
Atsuhiro Kawamoto
篤寛 川本
Yasushi Hamamoto
康司 濱本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010111715A priority Critical patent/JP5257403B2/en
Publication of JP2010167502A publication Critical patent/JP2010167502A/en
Application granted granted Critical
Publication of JP5257403B2 publication Critical patent/JP5257403B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems in the conventional spatter reducing method using a current rapid reducing means, in which arc interruption occurs in arc regeneration to cause the instability of the arc, incorrect bead, defective penetration or the like. <P>SOLUTION: A consumable electrode type arc welding equipment includes: a constriction detection means for detecting constriction in a consumable electrode wire occurring at the last period of a short circuit; and a physical quantity rapid reducing means for rapidly reducing the physical quantity of at least any of electric current, voltage and electric power to be fed to the consumable electrode wire when constriction is detected by the constriction detection mean till the prescribed physical quantity of at least any of the electric current, voltage, and electric power reaches a first prescribed value, thus the arc interruption in the arc regeneration, the instability of the arc, the incorrect bead and the defective penetration are prevented. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、消耗電極ワイヤを送給し、短絡とアーク発生を交互に発生させて溶接する消
耗電極式アーク溶接装置であって、短絡終期に生じる消耗電極ワイヤのくびれを検出した際に溶接電流を所定の短期間低減させることでスパッタの発生を抑制する消耗電極式アーク溶接装置に関するものである。
The present invention relates to a consumable electrode type arc welding apparatus that feeds consumable electrode wires and alternately generates short circuits and arcs and welds them, and detects a constriction of consumable electrode wires that occurs at the end of the short circuit. The present invention relates to a consumable electrode type arc welding apparatus that suppresses the generation of spatter by reducing a predetermined short period.

近年、スパッタ発生量、ビード外観、溶け込みといった溶接品質のさらなる高品位化が求められている。中でもスパッタの発生を低減することは、溶接品質が向上すると共に、治具へのスパッタ付着を防ぐことで保守性が向上し、作業環境の改善を実現できる。   In recent years, there has been a demand for higher quality of welding quality such as spatter generation amount, bead appearance, and penetration. In particular, reducing spatter generation improves welding quality and prevents spatter adhesion to the jig, thereby improving maintainability and realizing an improved work environment.

従来のスパッタ低減方法としては、短絡終期に消耗電極ワイヤ先端のくびれを検知して、短絡電流を所定の電流まで下げることにより、アーク再発生の時に発生するスパッタを低減するものが知られている(例えば、特許文献1、特許文献2参照)。   As a conventional spatter reduction method, a method is known in which the constriction at the tip of a consumable electrode wire is detected at the end of a short circuit, and the short circuit current is reduced to a predetermined current, thereby reducing spatter generated when an arc is regenerated. (For example, refer to Patent Document 1 and Patent Document 2).

図4を用いて、上記従来の方法について説明する。図4はくびれ検知によりスパッタ発生を低減している溶接電流波形とタイミングチャートを示しており、E1はくびれ検知が発生した時点、E5は短絡状態からアークが再発生した時点、E6はアーク状態から短絡が発生した時点、E10はE6発生から第3の所定期間T3が経過した時点、Is1は所定の電流値を示している。   The conventional method will be described with reference to FIG. FIG. 4 shows a welding current waveform and a timing chart in which the occurrence of spatter is reduced by detecting the constriction. E1 is the time when the constriction is detected, E5 is the time when the arc is regenerated from the short circuit state, and E6 is from the arc state. When a short circuit occurs, E10 indicates a time when a third predetermined period T3 has elapsed from the occurrence of E6, and Is1 indicates a predetermined current value.

E1の時点で短絡中に発生するワイヤ先端のくびれをくびれ検出手段により検知すると、物理量低減手段を用いて、所定の電流値Is1(例えば50A)まで電流を急峻に低減させる。なお、くびれ検出手段としては、例えば、溶接電圧の時間的変化量dV/dtが所定の値に達することを検知する方法が多く用いられている。   When the constriction detecting means detects the constriction of the wire tip that occurs during the short circuit at the time point E1, the physical quantity reducing means is used to sharply reduce the current to a predetermined current value Is1 (for example, 50 A). As the squeezing detection means, for example, a method of detecting that the temporal change amount dV / dt of the welding voltage reaches a predetermined value is often used.

電流を急激に低減させる物理量低減手段としては、溶接電源の直流出力にスイッチング素子を挿入し、このスイッチング素子に並列に抵抗を接続する方法が用いられており、電流を急峻に低減させる時は、スイッチング素子を遮断し、それ以外は導通して上記抵抗を短絡しておくものである。   As a physical quantity reducing means for sharply reducing the current, a method is used in which a switching element is inserted into the DC output of the welding power source and a resistor is connected in parallel to this switching element. When the current is sharply reduced, The switching element is cut off, and the others are turned on to short-circuit the resistor.

そして、E5でアーク再発生した後、電流を急峻に上昇させアーク制御に移行する。このように、アーク再発生時点E5での電流値を低く保持することで、アーク再発生時のスパッタの発生を抑制できる。   Then, after the arc is regenerated at E5, the current is sharply increased to shift to arc control. Thus, by keeping the current value at the arc re-occurrence point E5 low, the occurrence of spatter at the time of arc re-occurrence can be suppressed.

図4において、アーク中にE6で発生するワイヤの短絡を短絡検出手段により検出し、第3の所定時間T3の間、上記物理量低減手段を用いて電流を急峻にさげる。この第3の所定時間T3は短絡初期制御時間とよばれる数msの制御区間であり、これを設けることで、短絡初期の短絡を確実なものとし、不測な微小短絡を減少させ、溶滴の母材への移行を確実なものとし、アークを安定させ、スパッタの発生を抑制できる。   In FIG. 4, the short circuit of the wire generated at E6 during the arc is detected by the short circuit detecting means, and the current is sharply reduced using the physical quantity reducing means for the third predetermined time T3. This third predetermined time T3 is a control interval of several ms called short-circuit initial control time, and by providing this, short-circuit at the initial stage of short-circuit is ensured, unexpected micro-short circuit is reduced, The transition to the base material can be ensured, the arc can be stabilized, and the occurrence of spatter can be suppressed.

特開昭59−202171号公報JP 59-202171 A 特開平3−281063号公報JP-A-3-281063

しかし、従来の方法であれば、後述するように、くびれ検知の後、物理量低減手段で短絡電流を低減させた状態で、アークの再発生の時にアーク切れが発生するといった問題が
あった。
However, the conventional method has a problem that, as will be described later, after the constriction is detected, the short circuit current is reduced by the physical quantity reducing means, and an arc break occurs when the arc is regenerated.

また、アーク中に短絡を判定した図4中のE6の時点で電流を急峻に落とした際に、仮に微小短絡が発生してアークが発生したような時にはアークが保持できずアーク切れが発生するといった問題があった。   Further, when the current is sharply dropped at the time point E6 in FIG. 4 where the short circuit is determined during the arc, if the short circuit occurs and the arc is generated, the arc cannot be maintained and the arc breaks. There was a problem.

図5は従来技術においてアーク切れが発生した時点の溶接出力波形とタイミングチャートの例を示しており、E1はくびれ検知が発生した時点、E5は短絡状態からアークが再発生した時点、E11はアーク切れが発生した時点、Is1は所定の電流値を示している。   FIG. 5 shows an example of a welding output waveform and timing chart when arc break occurs in the prior art, E1 is when necking is detected, E5 is when arc is regenerated from a short-circuit state, and E11 is arc. At the time when the break occurs, Is1 indicates a predetermined current value.

図5において、短絡中にくびれ検知手段によりE1の時点でくびれを検知し、物理量低減手段を用いて、所定の電流値Is1(例えば50A)まで電流を急峻に低減させる。   In FIG. 5, the constriction detecting means detects the constriction at the time point E1 during the short circuit, and the current is sharply reduced to a predetermined current value Is1 (for example, 50 A) using the physical quantity reducing means.

なお、電流を急激に低減させる物理量低減手段として、溶接電源の直流出力にスイッチング素子を挿入し、このスイッチング素子に並列に抵抗を接続するものとすると、電流を急峻に低減させる時は、スイッチング素子を遮断(オフ状態)とし、それ以外は導通(オン状態)として上記抵抗を短絡する。   As a physical quantity reducing means for sharply reducing the current, if a switching element is inserted into the DC output of the welding power source and a resistor is connected in parallel to the switching element, the switching element is used to reduce the current sharply. Is turned off (off state), and otherwise the conduction (on state) is made to short-circuit the resistor.

E5でアーク再発生した後、上記スイッチング素子を導通状態(オン状態)とし、電流を急峻に上昇させ、アーク制御に移行する。このとき、IGBT等で構成されるスイッチング素子はターンオン時間に遅れが生じるため、アーク移行直後は上記抵抗による電力損失が発生し、アークを持続するために十分な電力をワイヤと母材との間に供給できない場合があり、その結果アーク切れが発生する。   After the arc is regenerated at E5, the switching element is turned on (on state), the current is increased sharply, and the process shifts to arc control. At this time, since a switching element composed of an IGBT or the like has a delay in turn-on time, a power loss due to the resistance occurs immediately after the arc transition, and sufficient power is supplied between the wire and the base material to sustain the arc. May not be able to be supplied, resulting in arc breakage.

アーク切れの問題が大きくなった背景として、近年リアクタレスによる溶接制御が一般的になり、これまでリアクタが持つ電流保持機能によりアークを保持していた効果が弱くなっていることや、くびれ検知等の性能が向上し、アーク再発生時の短絡電流を従来(100A等)に比べ低い値(30A等)まで落とし込むことが可能になっていることが挙げられる。   In recent years, reactor-less welding control has become common as a background to the problem of arc breakage, and the effect of holding an arc due to the current holding function of the reactor has been weakened. In other words, it is possible to reduce the short-circuit current when the arc is regenerated to a lower value (30 A or the like) than the conventional (100 A or the like).

そして、アーク切れが発生すると、アーク切れに伴う極端な母材への入熱不足は、アーク不安定、ビード不正、溶け込み不良の原因となり、さらなる溶接不安定を誘発する。   When arc breakage occurs, the insufficient heat input to the base metal due to arc breakage causes arc instability, bead fraud, and poor penetration, and induces further welding instability.

アーク切れを回避するためには、所定の電流値Is1を高く設定する(例えば100A)ことが有効であるが、結果として、アーク再生時の短絡電流を十分下げることが出来ず、スパッタ低減の性能を十分に発揮することができなくなる。   In order to avoid arc interruption, it is effective to set a predetermined current value Is1 high (for example, 100 A). However, as a result, the short-circuit current at the time of arc regeneration cannot be sufficiently reduced, and the spatter reduction performance. Cannot be fully utilized.

また、溶接経路中のリアクタのL値を大きくする方法が有効であり、これにより電流保持機能が向上し、アーク切れが発生しにくくなるが、リアクタの効果により電流の動きに制限が加わり、自由な電流波形を実現することが難しくなる。   In addition, a method of increasing the L value of the reactor in the welding path is effective, and this improves the current holding function and makes it difficult for arc breakage to occur. It becomes difficult to realize a simple current waveform.

また、出力急減の際に、所望する電流垂下度(例えば−5000A/ms)が得られず、所望する溶接制御性能が実現できなくなる。   Further, when the output is suddenly reduced, a desired current drooping degree (for example, −5000 A / ms) cannot be obtained, and a desired welding control performance cannot be realized.

このように、スパッタ低減の性能を確保するためアーク再生時の短絡電流を低く保持しつつ、アーク切れを防ぐことは非常に困難であった。   Thus, it was very difficult to prevent arc breakage while keeping the short-circuit current during arc regeneration low to ensure the spatter reduction performance.

本発明は、短絡から再アークの際に発生するアーク切れ及び微小短絡発生時に生じるアーク切れを防止し、溶接不安定、ビード不正や溶け込み不良を防ぐことができるアーク溶
接方法を提供することを目的とする。
An object of the present invention is to provide an arc welding method capable of preventing arc breakage occurring at the time of re-arcing from a short circuit and arc break occurring at the time of occurrence of a micro short circuit, and preventing unstable welding, improper bead and poor penetration. And

上記課題を解決するために、本発明の消耗電極式アーク溶接装置は、消耗電極ワイヤを送給し、短絡とアークを交互に発生させて溶接する消耗電極式アーク溶接装置であって、短絡とアークの状態を判別する短絡検出手段と、前記短絡検出手段でアークから短絡を検出した際に前記消耗電極ワイヤに供給する電流または電圧または電力のうち少なくとも1つの所定の供給物理量を第2の所定値に達する時点及び/または第2の所定期間経過させる時点まで急減する物理量急減手段とを備え、前記物理量急減手段は第2の所定値に達する時点及び/または第2の所定期間経過する時点までスイッチング素子を非導通とすることで前記供給物理量を急減し、第2の所定値に達する時点及び/または第2の所定期間経過する時点でスイッチング素子を導通とするものである。   In order to solve the above-mentioned problems, a consumable electrode arc welding apparatus according to the present invention is a consumable electrode arc welding apparatus that feeds a consumable electrode wire and welds by alternately generating a short circuit and an arc. A short-circuit detecting means for determining an arc state; and a second predetermined physical quantity of at least one of current, voltage or power supplied to the consumable electrode wire when the short-circuit detecting means detects a short circuit from the arc. A physical quantity rapid decrease means that rapidly decreases until reaching a value and / or when a second predetermined period elapses, the physical quantity rapid decrease means until a second predetermined value is reached and / or until a second predetermined period elapses The supply physical quantity is rapidly reduced by turning off the switching element, and when the second predetermined value is reached and / or when the second predetermined period elapses. It is an conduction.

以上のように、本発明の消耗電極式アーク溶接装置は、消耗電極ワイヤを送給し、短絡とアークを交互に発生させて溶接する消耗電極式アーク溶接装置であって、短絡とアークの状態を判別する短絡検出手段と、前記短絡検出手段でアークから短絡を検出した際に前記消耗電極ワイヤに供給する電流または電圧または電力のうち少なくとも1つの所定の供給物理量を第2の所定値に達する時点及び/または第2の所定期間経過させる時点まで急減する物理量急減手段とを備え、前記物理量急減手段は第2の所定値に達する時点及び/または第2の所定期間経過する時点までスイッチング素子を非導通とすることで前記供給物理量を急減し、第2の所定値に達する時点及び/または第2の所定期間経過する時点でスイッチング素子を導通とすることで、アーク切れを防ぎ、アーク不安定、ビード欠陥、スパッタ増加、溶け込み不良の発生等を防ぐことができ、生産効率や作業環境への悪影響を抑えることができる。   As described above, the consumable electrode arc welding apparatus of the present invention is a consumable electrode arc welding apparatus that feeds a consumable electrode wire and welds by alternately generating a short circuit and an arc. A short-circuit detecting means for determining the at least one predetermined supply physical quantity of current, voltage or power supplied to the consumable electrode wire when the short-circuit detection means detects a short-circuit from the arc, reaches a second predetermined value. A physical quantity suddenly decreasing means that rapidly decreases until a time point and / or a time point at which a second predetermined period elapses, wherein the physical quantity suddenly decreasing means turns on the switching element until a second predetermined value is reached and / or when a second predetermined time period elapses. The supply physical quantity is suddenly reduced by making the connection non-conductive, and the switching element is made conductive when the second predetermined value is reached and / or when the second predetermined period elapses. And in, preventing arc interruption, arc unstable, bead defect, a sputter increase, can be prevented penetration of failure or the like, it is possible to suppress an adverse effect on production efficiency and working environment.

本発明の実施の形態1における溶接出力波形とタイミングを示す図The figure which shows the welding output waveform and timing in Embodiment 1 of this invention. 本発明の実施の形態1における消耗電極式アーク溶接機のブロック図Block diagram of consumable electrode arc welder in Embodiment 1 of the present invention 本発明の実施の形態1における溶接出力波形とタイミングを示す図The figure which shows the welding output waveform and timing in Embodiment 1 of this invention. 従来技術の溶接出力波形とタイミングを示す図The figure which shows the welding output waveform and timing of the prior art 従来技術のアーク切れが発生した時点の溶接出力波形とタイミングを示す図The figure which shows the welding output waveform and timing at the time of the arc break of a prior art occurring

(実施の形態1)
以下、本発明の一実施の形態について図面を用いて説明する。
(Embodiment 1)
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は本実施の形態における溶接出力波形とタイミングチャートを示す図であり、図2は、本実施の形態における消耗電極式アーク溶接機のブロック図であり、図3は本実施の形態における溶接出力波形とタイミングチャートを示す図である。   FIG. 1 is a diagram showing a welding output waveform and a timing chart in the present embodiment, FIG. 2 is a block diagram of a consumable electrode type arc welder in the present embodiment, and FIG. 3 is a welding in the present embodiment. It is a figure which shows an output waveform and a timing chart.

図1、図3において、E1はくびれ検知が発生した時点、E2はE1から後述する所定の時間T1が経過した時点、E3は出力電流が後述するスイッチング素子6の切り替え基準となるI1に達した時点、E4は出力電流が後述する再アークを待つ電流Is1に達した時点、E5は短絡状態からアークが再発生した時点、E6はアーク状態から短絡が発生した時点、E8はE6が発生してから所定の時間T2が経過した時点、E7は出力電流が後述するスイッチング素子6の切り替え基準となるI2に達した時点、E9は出力電流が
短絡初期電流Is2に達した時点、E10はE6から所定の時間T3が経過した時点、T1は第1の所定期間、T2は第2の所定期間、T3は第3の所定期間、I1は第1の所定電流値、I2は第2の所定電流値、Is1は所定の電流値、Is2は所定の電流値を示す。
In FIGS. 1 and 3, E1 is the time when necking detection occurs, E2 is the time when a predetermined time T1 to be described later elapses from E1, and E3 has reached I1 as the switching reference of the switching element 6 to be described later E4 is the time when the output current reaches the current Is1 waiting for re-arc, which will be described later, E5 is the time when the arc is regenerated from the short circuit state, E6 is the time when the short circuit occurs from the arc state, E8 is the time when E6 is generated E7 is a time when the output current reaches I2, which is a switching reference of the switching element 6 described later, E9 is a time when the output current reaches the short-circuit initial current Is2, and E10 is a predetermined time from E6. , T1 is a first predetermined period, T2 is a second predetermined period, T3 is a third predetermined period, I1 is a first predetermined current value, and I2 is a second predetermined current. , Is1 predetermined current value, Is2 represents a predetermined current value.

なお、上記したI1、Is1、I2、Is2、T1、T2、T3は、例えば、時間などから決められるものである。   The above-mentioned I1, Is1, I2, Is2, T1, T2, and T3 are determined based on time, for example.

また、図2において、1は1次整流部、2は平滑コンデンサ、3は第1のスイッチング素子、4はトランス、5は2次整流部、6は第2のスイッチング素子、7は抵抗部、8はリアクタ、9は設定部、10は電圧検出部、11は電流検出部、12はアーク短絡判定部、13はくびれ検知部、15は第1の駆動部、16は溶接出力制御部、17は第2の駆動部、18は急減信号発生部、20は母材、21は溶接用のトーチ、22は溶接用のワイヤを示す。   In FIG. 2, 1 is a primary rectifier, 2 is a smoothing capacitor, 3 is a first switching element, 4 is a transformer, 5 is a secondary rectifier, 6 is a second switching element, 7 is a resistor, 8 is a reactor, 9 is a setting unit, 10 is a voltage detection unit, 11 is a current detection unit, 12 is an arc short-circuit determination unit, 13 is a constriction detection unit, 15 is a first drive unit, 16 is a welding output control unit, 17 Is a second drive unit, 18 is a sudden decrease signal generation unit, 20 is a base material, 21 is a torch for welding, and 22 is a wire for welding.

以上のように構成された消耗電極式アーク溶接装置について、その動作を説明する。   The operation of the consumable electrode type arc welding apparatus configured as described above will be described.

図2において、商用電源入力(200V)はダイオード等で構成される1次整流部1と電解コンデンサ等で構成される平滑コンデンサ2とにより直流電圧に変換され、第1の駆動部15によりPWM(Pulse Wide Modulation)動作やフェーズシフト動作にて駆動されるIGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal−Oxide Semiconductor Field Effect Transistor)等で構成される第1のスイッチング素子3のインバータ駆動によりトランス4を介して溶接に適した高周波交流に変換され、ダイオード等で構成される2次整流部5にて整流され、駆動部17により駆動されIGBT等で構成される第2のスイッチング素子6と、第2スイッチンス素子6に並列に接続される抵抗部7を介し、リアクタ8により出力平滑化され、トーチ21内部の給電チップから消耗電極であるワイヤ22に給電され、ワイヤ22先端と母材20との間にアークを発生させる。   In FIG. 2, the commercial power input (200 V) is converted into a DC voltage by a primary rectifier 1 composed of a diode or the like and a smoothing capacitor 2 composed of an electrolytic capacitor or the like, and PWM ( The first switching element 4 is driven by an inverter of a first switching element 3 including an IGBT (Insulated Gate Bipolar Transistor), a MOSFET (Metal-Oxide Semiconductor Field Transistor), and the like driven by a pulse wide modulation (Pulse Wide Modulation) operation or a phase shift operation. Is converted into high-frequency alternating current suitable for welding, rectified by the secondary rectification unit 5 configured by a diode or the like, driven by the drive unit 17 and configured by a second switch configured by an IGBT or the like. The output is smoothed by the reactor 8 via the switching element 6 and the resistance unit 7 connected in parallel to the second switch element 6, and is supplied to the wire 22 that is a consumable electrode from the power supply chip inside the torch 21. An arc is generated between the tip and the base material 20.

くびれ検出手段であるくびれ検出部13は、電圧検出部10からの電圧検出信号を入力とし、電圧微分値を算出し、設定部9にて設定される検出レベル(例えば0.5V/ms)に達した場合、くびれを検知したとしてくびれ信号を出力する。   The squeezing detection unit 13, which is a squeezing detection unit, receives the voltage detection signal from the voltage detection unit 10, calculates a voltage differential value, and sets the detection level (for example, 0.5 V / ms) set by the setting unit 9. If it reaches, a constriction signal is output as a constriction is detected.

なお、図1のE1の時点でくびれ検知が発生し、くびれ検出部13から出力されるくびれ信号がHighレベルとなる。くびれ検出部13からのくびれ信号をうけ、CPU(Central Processing Unit)等で構成される急減信号発生部18は急減信号を駆動部17に出力する。駆動部17は、急減信号発生部18からの急減信号がLOWレベルの間、第2のスイッチング素子6を遮断(オフ状態)するよう動作し、その結果、溶接電流は抵抗部7を介してアーク給電され、同時にCPU等で構成される溶接出力制御部16が第1の駆動部15を介して第1のスイッチング素子3で構成されるインバータを制御し、溶接電流を所定の電流値I1(例えば100A)まで低減させる。   In addition, the squeezing detection occurs at the time point E1 in FIG. 1, and the squeezing signal output from the squeezing detection unit 13 becomes a high level. Upon receiving the squeezing signal from the squeezing detection unit 13, a sudden decrease signal generation unit 18 constituted by a CPU (Central Processing Unit) or the like outputs a sudden decrease signal to the drive unit 17. The drive unit 17 operates so as to cut off (turn off) the second switching element 6 while the sudden decrease signal from the sudden decrease signal generation unit 18 is at the LOW level. As a result, the welding current is arced through the resistance unit 7. The welding output control unit 16 that is supplied with power and at the same time configured by a CPU or the like controls the inverter configured by the first switching element 3 via the first driving unit 15, and converts the welding current to a predetermined current value I1 (for example, 100A).

そして、CT(Current Transformer)等で構成される電流検出部
11により検出される溶接電流出力が設定部9にて設定される第1の所定値I1に達した時点E3にて、急減信号発生部18は急減信号の出力を停止し、第2の駆動部17は第2のスイッチング素子6を導通状態にし、電流値は所定の電流Is1(例えば50A)まで低減する。
Then, at the time point E3 when the welding current output detected by the current detection unit 11 constituted by CT (Current Transformer) or the like reaches the first predetermined value I1 set by the setting unit 9, the sudden decrease signal generation unit 18 stops the output of the sudden decrease signal, the second drive unit 17 brings the second switching element 6 into a conducting state, and the current value is reduced to a predetermined current Is1 (for example, 50 A).

なお、第1の所定値I1は、固定値(例えば100A)でもよく、くびれ検出手段にお
いてくびれを検出した時点での溶接電流の関数(例えば、300Aで検出した場合は、100Aに設定)でもよく、送給する消耗電極ワイヤのワイヤ径、ワイヤ種類、ワイヤ突出長、供給するシールドガス、および溶接電流の設定電流域の少なくとも1つから求める関数でもよく、溶接電圧の時間的変化の割合の大きさ(例えば、くびれを検出した時点のdV/dt値が1V/msの場合は、100Aに設定)から求めてもよく、今回の短絡の溶接電流の積算値(例えば、くびれを検出した時点までの溶接電流積算値が、300A・sの場合は100Aに設定)から求めてもよい。
The first predetermined value I1 may be a fixed value (for example, 100A), or a function of a welding current at the time when the necking is detected by the necking detecting means (for example, set to 100A when detected at 300A). It may be a function obtained from at least one of the wire diameter of the consumable electrode wire to be fed, the wire type, the wire protrusion length, the shield gas to be supplied, and the set current region of the welding current, and the ratio of the temporal change of the welding voltage is large. (For example, if the dV / dt value at the time of detecting the constriction is 1 V / ms, it is set to 100 A), and the integrated value of the welding current of the current short circuit (for example, until the time of detecting the constriction) If the integrated welding current value is 300 A · s, it may be determined from 100 A).

また、急減信号発生部18が、急減信号の出力を停止し、第2の駆動部17が第2のスイッチング素子6を導通状態にする時点は、図3に示すように、くびれ検知した時点E1から、急減信号発生部18が時間をカウントし、設定部9により設定される第1の所定時間T1が経過する時点E2までとしてもよい。
あるいは、図1に示す溶接電流出力が第1の所定値I1に達した時点E3または図3に示すくびれ検知した時点E1から第1の所定時間T1が経過する時点E2のどちらか一方が発生した時点としてもよい。
Also, the point in time when the sudden decrease signal generator 18 stops outputting the sudden decrease signal and the second drive unit 17 brings the second switching element 6 into the conducting state is the point in time E1 when the constriction is detected as shown in FIG. From this time, the sudden decrease signal generator 18 may count the time until the time point E2 when the first predetermined time T1 set by the setting unit 9 elapses.
Alternatively, either the time point E3 when the welding current output shown in FIG. 1 reaches the first predetermined value I1 or the time point E2 when the first predetermined time T1 elapses from the time point E1 when the constriction is detected shown in FIG. 3 occurs. It may be a point in time.

あるいは、溶接電流出力が第1の所定値I1に達した点E3及び、くびれ検知した時点から第1の所定時間T1が経過する時点E2の両方が発生した時点としてもよい。   Or it is good also as a point in time when both the point E3 when the welding current output reached the first predetermined value I1 and the point E2 when the first predetermined time T1 elapses from the point when the constriction is detected.

また、第1の所定時間T1は、固定値(例えば50us)でもよく、くびれ検出手段においてくびれを検出した時点での溶接電流の関数(例えば、300Aで検出した場合は、50usに設定)でもよく、送給する消耗電極ワイヤのワイヤ径、ワイヤ種類、ワイヤ突出長、供給するシールドガス、および溶接電流の設定電流の少なくとも1つから求める関数でもよく、溶接電圧の時間的変化の割合の大きさ(例えば、くびれを検出した時点のdV/dt値が1V/msの場合は、50usに設定)から求めてもよく、今回の短絡の溶接電流の積算値(例えばくびれを検出した時点までの溶接電流積算値が300A・sの場合は50usに設定)から求めてもよい。   The first predetermined time T1 may be a fixed value (for example, 50 us), or a function of the welding current at the time when the constriction is detected by the constriction detecting means (for example, set to 50 us when detected at 300 A). It may be a function obtained from at least one of the wire diameter of the consumable electrode wire to be fed, the wire type, the wire protrusion length, the shield gas to be supplied, and the setting current of the welding current, and the magnitude of the rate of change of the welding voltage with time (For example, if the dV / dt value at the time of detecting the constriction is 1 V / ms, the value may be set to 50 us). If the integrated current value is 300 A · s, it may be obtained from 50 us).

なお、図2において、第2のスイッチング素子6が導通すると、溶接電流は、抵抗部7を介さず、第2のスイッチング素子6を介してアーク給電される。   In FIG. 2, when the second switching element 6 is conducted, the welding current is arc-fed through the second switching element 6 without passing through the resistance portion 7.

また、図1において、出力電流がIs1に達したE4の時点ではアーク再生しておらず、この場合は、アークが再生するまで溶接出力Is1に電流制御する。
CPU等で構成されるアーク短絡判定部12は、電圧検出部10からの電圧検出信号を入力とし、短絡判定中に設定部9にて設定される検出レベル(例えば、15V)に達した場合、AS(Arc Short)信号をアーク判定(Highレベル)とする。
In FIG. 1, arc regeneration is not performed at the time point E4 when the output current reaches Is1, and in this case, the current is controlled to the welding output Is1 until the arc is regenerated.
The arc short circuit determination unit 12 configured by a CPU or the like receives the voltage detection signal from the voltage detection unit 10 and reaches a detection level (for example, 15 V) set by the setting unit 9 during the short circuit determination. The AS (Arc Short) signal is set to arc determination (High level).

図1において、短絡状態からアークが再発生した時点E5にて、AS信号はアーク(Highレベル)判定となり、溶接出力制御部16は所定のアーク制御に移行する。アーク短絡判定部12は、アーク判定中に設定部9にて設定される検出レベル(例えば、10V)に達した場合、AS信号を短絡判定(Lowレベル)とする。   In FIG. 1, at the time E5 when the arc is regenerated from the short-circuit state, the AS signal becomes an arc (High level) determination, and the welding output control unit 16 shifts to predetermined arc control. The arc short circuit determination unit 12 sets the AS signal as a short circuit determination (Low level) when the detection level (for example, 10 V) set by the setting unit 9 is reached during the arc determination.

短絡が発生した時点E6にて、AS信号は短絡判定となり、急減信号発生部18は急減信号を出力し、駆動部17は、第2のスイッチング素子6を遮断(オフ状態)する。これにより、溶接電流は抵抗部7を介してアーク給電され、同時にCPU等で構成される溶接出力制御部16は所定の短絡初期制御に移行し、第1の駆動部15を介して第1のスイッチング素子3で構成されるインバータを制御し、溶接電流を所定の電流値I2(例えば50A)まで低減させる。   At the time point E6 when the short circuit occurs, the AS signal is determined as a short circuit, the sudden decrease signal generation unit 18 outputs a sudden decrease signal, and the drive unit 17 shuts off the second switching element 6 (OFF state). As a result, the welding current is arc-fed through the resistance unit 7, and at the same time, the welding output control unit 16 configured by a CPU or the like shifts to a predetermined short-circuit initial control, and the first driving unit 15 performs the first operation. The inverter constituted by the switching element 3 is controlled to reduce the welding current to a predetermined current value I2 (for example, 50 A).

電流検出部11にて検出される溶接電流出力が設定部9にて設定される第2の所定電流
値I2に達した点E8にて、急減信号発生部18は、急減信号の出力を停止し、第2の駆動部17は第2のスイッチング素子6を導通状態にする。これは、短絡時にアークが発生してしまった場合、第2のスイッチング素子6を導通状態にしておかないと、抵抗部7により母材20とワイヤ22との間に供給される電圧が低くなり、アーク切れとなってしまうことを防ぐためである。
At the point E8 when the welding current output detected by the current detection unit 11 reaches the second predetermined current value I2 set by the setting unit 9, the sudden decrease signal generation unit 18 stops outputting the rapid decrease signal. The second drive unit 17 brings the second switching element 6 into a conductive state. This is because the voltage supplied between the base material 20 and the wire 22 by the resistance portion 7 is lowered unless the second switching element 6 is in a conductive state when an arc is generated during a short circuit. This is to prevent arc breakage.

なお、第2の所定電流値I2は、固定値(例えば75A)でもよく、アーク短絡判定部12が短絡を検出した時点での溶接電流の関数(例えば、150Aで検出した場合は、75Aに設定)でもよく、送給する消耗電極ワイヤ22のワイヤ径、ワイヤ種類、ワイヤ突出長、供給するシールドガス、および溶接電流の設定電流域の少なくとも1つから求める関数でもよい。   The second predetermined current value I2 may be a fixed value (for example, 75A), and is set to 75A when the arc short-circuit determining unit 12 detects a short circuit (for example, when detected at 150A). Or a function obtained from at least one of the wire diameter of the consumable electrode wire 22 to be fed, the wire type, the wire protrusion length, the shield gas to be supplied, and the set current region of the welding current.

また、急減信号発生部18が、急減信号の出力を停止し、第2の駆動部17が第2のスイッチング素子6を導通状態にする時点は、図3に示すように、短絡を検知した時点E6から、急減信号発生部18が時間のカウントを開始し、設定部9により設定される第2の所定時間T2が経過したE7までの間でもよく、図1に示すように溶接電流出力が第2の所定電流値I2に達した点E8あるいは図3に示すように短絡を検知した時点E6から第2の所定時間T2が経過するE7のどちらか一方が発生した時点でもよく、溶接電流出力が第2の所定電流値I2に達した点E8及びくびれ検知した時点から第2の所定時間T2が経過するE7の両方が発生した時点でもよい。   Also, when the sudden decrease signal generator 18 stops outputting the sudden decrease signal and the second drive unit 17 puts the second switching element 6 into the conductive state, as shown in FIG. It may be from E6 to E7 when the sudden decrease signal generation unit 18 starts counting time and the second predetermined time T2 set by the setting unit 9 has elapsed. As shown in FIG. 2 or a point E8 at which a predetermined current value I2 of 2 is reached or a point E8 when a second predetermined time T2 elapses from a point E6 when a short circuit is detected as shown in FIG. It may be the time when both the point E8 at which the second predetermined current value I2 is reached and E7 at which the second predetermined time T2 has elapsed from the time when the constriction is detected.

なお、第2の所定時間T2は、固定値(例えば200us)でもよく、アーク短絡判定部12が短絡を検出した時点での溶接電流の関数(例えば、150Aで検出した場合は、200usに設定)でもよく、送給する消耗電極ワイヤのワイヤ径、ワイヤ種類、ワイヤ突出長、供給するシールドガス、および溶接電流の設定電流域の少なくとも1つから求める関数でもよい。   The second predetermined time T2 may be a fixed value (for example, 200 us), or a function of the welding current at the time when the arc short-circuit determining unit 12 detects a short circuit (for example, set to 200 us when detected at 150 A). Alternatively, it may be a function obtained from at least one of the wire diameter of the consumable electrode wire to be fed, the wire type, the wire protrusion length, the shield gas to be supplied, and the set current region of the welding current.

そして、第2のスイッチング素子6が導通すると、溶接電流は、抵抗部7を介さず、第2のスイッチング素子6を介してアーク給電される。通常溶接中、第2のスイッチング素子は導通状態となる。出力電流がIs2に達した後も、第3の所定時間T3期間中は、溶接出力Is2に電流制御する。第3の所定時間T3経過後のE10にて、溶接制御部16は所定の短絡開放制御に移行し、所定の短絡電流を出力し、短絡の開放を促進する。   When the second switching element 6 is conducted, the welding current is arc-fed through the second switching element 6 without passing through the resistance portion 7. During normal welding, the second switching element becomes conductive. Even after the output current reaches Is2, the current is controlled to the welding output Is2 during the third predetermined time T3. At E10 after the elapse of the third predetermined time T3, the welding control unit 16 shifts to a predetermined short circuit opening control, outputs a predetermined short circuit current, and promotes the opening of the short circuit.

以上のように、第2のスイッチング素子6を導通させるE2、E3のタイミングをアークが発生した時点E5よりも早くすることで、第2のスイッチング素子6のターンオン時間の遅れ分を吸収し、アークが再発生する時点E5では第2のスイッチンス素子6が完全に導通状態となり、アークを持続するための十分な電力の供給が可能となり、アーク再生時のアーク切れの発生を防ぐ。   As described above, the delay of the turn-on time of the second switching element 6 is absorbed by making the timing of E2 and E3 for conducting the second switching element 6 earlier than the time point E5 when the arc is generated. At the time point E5 when the re-occurrence occurs, the second switch element 6 is completely turned on, and sufficient electric power for sustaining the arc can be supplied, thereby preventing the occurrence of an arc break during arc regeneration.

なお、第2のスイッチング素子6を導通させるE2、E3のタイミングの基準となる第1の所定期間および第1の所定電流I1は実験などにより決められるものである。
また、短絡初期中に微小短絡が発生するような場合でも、あらかじめ第2のスイッチング素子6を導通させておくことで、再アークの発生の際の電力の供給が妨げられず、アーク切れを防ぐことができる。
It should be noted that the first predetermined period and the first predetermined current I1, which serve as a reference for the timings of E2 and E3 for conducting the second switching element 6, are determined by experiments or the like.
Even in the case where a micro short circuit occurs during the initial stage of the short circuit, by supplying the second switching element 6 in advance, the supply of power at the time of re-arcing is not hindered and arc breakage is prevented. be able to.

上記のようにアーク切れの発生を防ぐことで、アーク不安定、ビード欠陥、スパッタ増加、溶け込み不良の発生等を最小限に抑えることができ、生産効率や作業環境への悪影響を抑えることができる
なお、本実施の形態の消耗電極式アーク溶接装置では、CTを用いて電流を検出し、所定の電流になった時点で第1のスイッチング素子6の導通、非導通を切り替える例を示し
たが、電圧検出手段を用いて電圧を検出し、所定の電圧になった時点で第1のスイッチング素子6の導通、非導通を切り替えるようにしても良いし、電力計測手段を用いて電力を検出し、所定の電力になった時点で第1のスイッチング素子6の導通、非導通を切り替えるようにしても良い。
By preventing arc breaks as described above, arc instability, bead defects, increased spatter, poor penetration, etc. can be minimized, and adverse effects on production efficiency and work environment can be suppressed. In the consumable electrode arc welding apparatus according to the present embodiment, an example is shown in which current is detected using CT, and the first switching element 6 is switched between conduction and non-conduction when the current reaches a predetermined current. The voltage detection means may be used to detect the voltage, and when the voltage reaches a predetermined voltage, the first switching element 6 may be switched between conduction and non-conduction, or the power measurement means may be used to detect the power. The first switching element 6 may be switched between conduction and non-conduction when the predetermined power is reached.

本発明の消耗電極式アーク溶接方法は、アーク切れの発生を防ぎ、アーク不安定、ビード欠陥、スパッタ増加、溶け込み不良の発生等を最小限に抑えることができ、生産効率や作業環境への悪影響を抑えることが可能であり、スイッチング素子と抵抗で構成されるような電流急減回路を用いたスパッタ低減手法を用いたアーク溶接手法に有用であり、消耗電極式アーク溶接施工をおこなう自動車、造船、橋梁といったスパッタの発生を問題としている業界で広く利用可能性がある。   The consumable electrode type arc welding method of the present invention can prevent the occurrence of arc breakage and minimize the occurrence of arc instability, bead defects, increased spatter, poor penetration, etc., and adversely affects production efficiency and work environment. This is useful for arc welding techniques using spatter reduction techniques using a current steepening circuit composed of switching elements and resistors, and is used for automobiles, shipbuilding, It can be widely used in industries where spatter generation such as bridges is a problem.

E1 くびれ検知が発生した点
E2 E1発生からT1が経過した点
E3 出力電流がI1に達した点
E4 出力電流がIs1に達した点
E5 短絡状態からアークが再発生した点
E6 短絡が発生した点
E7 E6発生からT2が経過した点
E8 出力電流がI2に達した点
E9 出力電流がIs2に達した点
E10 E6発生からT3が経過した点
E11 アーク切れが発生した点
T1 第1の所定期間
T2 第2の所定期間
T3 第3の所定期間
I1 第1の所定値
I2 第2の所定値
Is1 所定の電流値
Is2 所定の電流値
1 1次整流部
2 平滑コンデンサ
3 第1のスイッチング素子
4 トランス
5 2次整流部
6 第2のスイッチング素子
7 抵抗部
8 リアクタ
9 設定部
10 電圧検出部
11 電流検出部
12 アーク短絡判定部
13 くびれ検知部
15 第1の駆動部
16 溶接出力制御部
17 第2の駆動部
18 急減信号発生部
20 母材
21 トーチ
22 ワイヤ
E1 Neck detection point E2 E1 point T1 has elapsed E3 Output current has reached I1 E4 Output current has reached Is1 E5 Arc has been regenerated from a short-circuit point E6 Short-circuit point has occurred E7 Point E2 at which T2 has elapsed since generation of E6 Point E8 at which output current has reached I2 Point E10 at which output current has reached Is2 Point E10 at which T3 has elapsed since generation of E6 Point 11 at which arc break has occurred T1 First predetermined period T2 Second predetermined period T3 Third predetermined period I1 First predetermined value I2 Second predetermined value Is1 Predetermined current value Is2 Predetermined current value 1 Primary rectifier 2 Smoothing capacitor 3 First switching element 4 Transformer 5 Secondary rectification unit 6 Second switching element 7 Resistance unit 8 Reactor 9 Setting unit 10 Voltage detection unit 11 Current detection unit 12 Arc short-circuit determination unit 13 Constriction detection unit 15 First Turning part 16 welding output control unit 17 the second driving unit 18 rapidly decreases signal generator 20 preforms 21 Torch 22 Wire

Claims (6)

消耗電極ワイヤを送給し、短絡とアークを交互に発生させて溶接する消耗電極式アーク溶接装置であって、短絡とアークの状態を判別する短絡検出手段と、前記短絡検出手段でアークから短絡を検出した際に前記消耗電極ワイヤに供給する電流または電圧または電力のうち少なくとも1つの所定の供給物理量を低減する物理量低減手段とを備え、前記物理量低減手段は溶接出力に直列に挿入された第2のスイッチング素子と前記2のスイッチング素子に並列に接続された抵抗とからなり、前記物理量低減手段は第2の所定値に達する時点まで前記第2のスイッチング素子を非導通とすることで前記供給物理量を低減し、前記第2の所定値に達する時点で前記第2のスイッチング素子を導通とし、溶接出力制御部が第1のスイッチング素子で構成されるインバータを制御して前記第2の所定値よりも低い第4の所定値に前記供給物理量を低減する消耗電極式アーク溶接装置。 A consumable electrode type arc welding apparatus that feeds consumable electrode wires and welds by alternately generating short circuits and arcs, and short-circuit detecting means for distinguishing between short-circuit and arc states, and short-circuiting from the arc by the short-circuit detecting means A physical quantity reducing means for reducing at least one predetermined supply physical quantity of current, voltage or power supplied to the consumable electrode wire when the consumable electrode wire is detected, and the physical quantity reducing means is inserted in series with the welding output. 2 and a resistor connected in parallel to the second switching element, and the physical quantity reducing means keeps the second switching element nonconductive until reaching a second predetermined value. When the physical quantity is reduced and the second predetermined value is reached, the second switching element is turned on, and the welding output control unit is configured by the first switching element. Consumable electrode type arc welding device to control the inverter to reduce the supply physical quantity to said fourth predetermined value lower than the second predetermined value being. 消耗電極ワイヤを送給し、短絡とアークを交互に発生させて溶接する消耗電極式アーク溶接装置であって、短絡とアークの状態を判別する短絡検出手段と、前記短絡検出手段でアークから短絡を検出した際に前記消耗電極ワイヤに供給する電流または電圧または電力のうち少なくとも1つの所定の供給物理量を低減する物理量低減手段とを備え、前記物理量低減手段は溶接出力に直列に挿入された第2のスイッチング素子と前記2のスイッチング素子に並列に接続された抵抗とからなり、前記物理量低減手段は第2の所定期間経過する時点まで前記第2のスイッチング素子を非導通とすることで前記供給物理量を低減し、前記第2の所定期間経過する時点で前記第2のスイッチング素子を導通とし、溶接出力制御部が第1のスイッチング素子で構成されるインバータを制御して前記第2の所定期間経過する時点の供給物理量よりも低い所定量に供給物理量を低減する消耗電極式アーク溶接装置。 A consumable electrode type arc welding apparatus that feeds consumable electrode wires and welds by alternately generating short circuits and arcs, and short-circuit detecting means for distinguishing between short-circuit and arc states, and short-circuiting from the arc by the short-circuit detecting means A physical quantity reducing means for reducing at least one predetermined supply physical quantity of current, voltage or power supplied to the consumable electrode wire when the consumable electrode wire is detected, and the physical quantity reducing means is inserted in series with the welding output. 2 and a resistor connected in parallel to the second switching element, and the physical quantity reducing means keeps the second switching element non-conductive until a second predetermined period elapses. The physical quantity is reduced, and when the second predetermined period elapses, the second switching element is turned on, and the welding output control unit has the first switching element. Consumable electrode type arc welding device to reduce the supply physical quantity lower predetermined amount than the supply physical quantity at the time of controlling the inverter composed elapsed the second predetermined period. 消耗電極ワイヤを送給し、短絡とアークを交互に発生させて溶接する消耗電極式アーク溶接装置であって、短絡とアークの状態を判別する短絡検出手段と、前記短絡検出手段でアークから短絡を検出した際に前記消耗電極ワイヤに供給する電流または電圧または電力のうち少なくとも1つの所定の供給物理量を低減する物理量低減手段とを備え、前記物理量低減手段は溶接出力に直列に挿入された第2のスイッチング素子と前記2のスイッチング素子に並列に接続された抵抗とからなり、前記物理量低減手段は第2の所定値に達する時点まであるいは第2の所定期間経過する時点までのいずれか早い方の時点まで前記第2のスイッチング素子を非導通とすることで前記供給物理量を低減し、前記いずれか早い方の時点で前記第2のスイッチング素子を導通とし、溶接出力制御部が第1のスイッチング素
子で構成されるインバータを制御して前記いずれか早い方の時点の供給物理量よりも低い所定量に供給物理量を低減する消耗電極式アーク溶接装置。
A consumable electrode type arc welding apparatus that feeds consumable electrode wires and welds by alternately generating short circuits and arcs, and short-circuit detecting means for distinguishing between short-circuit and arc states, and short-circuiting from the arc by the short-circuit detecting means A physical quantity reducing means for reducing at least one predetermined supply physical quantity of current, voltage or power supplied to the consumable electrode wire when the consumable electrode wire is detected, and the physical quantity reducing means is inserted in series with the welding output. 2 switching elements and a resistor connected in parallel to the 2 switching elements, and the physical quantity reducing means until the second predetermined value is reached or until the second predetermined period elapses, whichever comes first The supply physical quantity is reduced by disabling the second switching element until the point of time, and the second switching element is reduced at the earlier point of time. Consumable electrode arc welding in which the element is made conductive and the welding output control unit controls the inverter constituted by the first switching element to reduce the supply physical quantity to a predetermined quantity lower than the supply physical quantity at the earlier time point. apparatus.
消耗電極ワイヤを送給し、短絡とアークを交互に発生させて溶接する消耗電極式アーク溶接装置であって、短絡とアークの状態を判別する短絡検出手段と、前記短絡検出手段でアークから短絡を検出した際に前記消耗電極ワイヤに供給する電流または電圧または電力のうち少なくとも1つの所定の供給物理量を低減する物理量低減手段とを備え、前記物理量低減手段は溶接出力に直列に挿入された第2のスイッチング素子と前記2のスイッチング素子に並列に接続された抵抗とからなり、前記物理量低減手段は第2の所定値に達する時点まであるいは第2の所定期間経過する時点までのいずれか遅い方の時点まで前記第2のスイッチング素子を非導通とすることで前記供給物理量を低減し、前記いずれか遅い方の時点で前記第2のスイッチング素子を導通とし、溶接出力制御部が第1のスイッチング素子で構成されるインバータを制御して前記いずれか遅い方の時点の供給物理量よりも低い所定量に供給物理量を低減する消耗電極式アーク溶接装置。 A consumable electrode type arc welding apparatus that feeds consumable electrode wires and welds by alternately generating short circuits and arcs, and short-circuit detecting means for distinguishing between short-circuit and arc states, and short-circuiting from the arc by the short-circuit detecting means A physical quantity reducing means for reducing at least one predetermined supply physical quantity of current, voltage or power supplied to the consumable electrode wire when the consumable electrode wire is detected, and the physical quantity reducing means is inserted in series with the welding output. 2 switching elements and a resistor connected in parallel to the 2 switching elements, and the physical quantity reducing means is later until a second predetermined value is reached or until a second predetermined period elapses. The supply physical quantity is reduced by disabling the second switching element until the point of time, and the second switching element is reduced at the later point of time. Consumable electrode arc welding in which the element is made conductive and the welding output control unit controls the inverter constituted by the first switching element to reduce the supply physical quantity to a predetermined quantity lower than the supply physical quantity at the later time point. apparatus. 第2の所定値は、短絡検出手段でアークから短絡を検出した時の溶接電流と溶接電圧のいずれかに基づいて、あるいは、送給する消耗電極ワイヤのワイヤ径、ワイヤ種類、ワイヤ突出長、供給するシールドガスの少なくとも1つに基づいて決められる請求項1、3、4のいずれかに記載の消耗電極式アーク溶接装置。 The second predetermined value is based on either the welding current or the welding voltage when a short circuit is detected from the arc by the short circuit detecting means, or the wire diameter, wire type, wire protrusion length of the consumable electrode wire to be fed, The consumable electrode type arc welding apparatus according to claim 1, wherein the consumable electrode type arc welding apparatus is determined based on at least one of shielding gas to be supplied. 第2の所定期間は、短絡検出手段でアークから短絡を検出した時の溶接電流と溶接電圧のいずれかに基づいて、あるいは、送給する消耗電極ワイヤのワイヤ径、ワイヤ種類、ワイヤ突出長、供給するシールドガスの少なくとも1つに基づいて決められる請求項2、3、4のいずれかに記載の消耗電極式アーク溶接装置。 The second predetermined period is based on either the welding current or the welding voltage when a short circuit is detected from the arc by the short circuit detection means, or the wire diameter, wire type, wire protrusion length of the consumable electrode wire to be fed, 5. The consumable electrode type arc welding apparatus according to claim 2, wherein the consumable electrode type arc welding apparatus is determined based on at least one of shielding gas to be supplied.
JP2010111715A 2010-05-14 2010-05-14 Consumable electrode arc welding equipment Expired - Fee Related JP5257403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111715A JP5257403B2 (en) 2010-05-14 2010-05-14 Consumable electrode arc welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111715A JP5257403B2 (en) 2010-05-14 2010-05-14 Consumable electrode arc welding equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004310505A Division JP4661164B2 (en) 2004-10-26 2004-10-26 Consumable electrode arc welding equipment

Publications (2)

Publication Number Publication Date
JP2010167502A true JP2010167502A (en) 2010-08-05
JP5257403B2 JP5257403B2 (en) 2013-08-07

Family

ID=42700118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111715A Expired - Fee Related JP5257403B2 (en) 2010-05-14 2010-05-14 Consumable electrode arc welding equipment

Country Status (1)

Country Link
JP (1) JP5257403B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237153A (en) * 2013-06-07 2014-12-18 株式会社安川電機 Arc-welding apparatus, arc-welding system, and arc-welding method
CN110679076A (en) * 2017-05-29 2020-01-10 松下知识产权经营株式会社 Power supply device for arc machining and method for controlling power supply device for arc machining

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206159A (en) * 1983-05-04 1984-11-21 Shinko Electric Co Ltd Method and device for controlling welding power source
JPH01170582A (en) * 1987-12-25 1989-07-05 Kobe Steel Ltd Welding power source
JPH02137672A (en) * 1988-11-18 1990-05-25 Matsushita Electric Ind Co Ltd Consumable electrode arc welding equipment
JPH10180443A (en) * 1996-12-26 1998-07-07 Matsushita Electric Ind Co Ltd Welding voltage detecting method and arc welding machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206159A (en) * 1983-05-04 1984-11-21 Shinko Electric Co Ltd Method and device for controlling welding power source
JPH01170582A (en) * 1987-12-25 1989-07-05 Kobe Steel Ltd Welding power source
JPH02137672A (en) * 1988-11-18 1990-05-25 Matsushita Electric Ind Co Ltd Consumable electrode arc welding equipment
JPH10180443A (en) * 1996-12-26 1998-07-07 Matsushita Electric Ind Co Ltd Welding voltage detecting method and arc welding machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237153A (en) * 2013-06-07 2014-12-18 株式会社安川電機 Arc-welding apparatus, arc-welding system, and arc-welding method
US10493551B2 (en) 2013-06-07 2019-12-03 Kabushiki Kaisha Yaskawa Denki Arc welding apparatus, arc welding system, and arc welding method
CN110679076A (en) * 2017-05-29 2020-01-10 松下知识产权经营株式会社 Power supply device for arc machining and method for controlling power supply device for arc machining
CN110679076B (en) * 2017-05-29 2021-03-26 松下知识产权经营株式会社 Power supply device for arc machining and method for controlling power supply device for arc machining

Also Published As

Publication number Publication date
JP5257403B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP3844004B1 (en) Pulse arc welding control method and pulse arc welding apparatus
US8592720B2 (en) Polarity switching method in consumable electrode AC pulse arc welding
JP5370089B2 (en) Arc welding method and arc welding apparatus
JP4739874B2 (en) Constriction detection control method for consumable electrode arc welding
JP4957519B2 (en) Arc welding method and arc welding apparatus
JP2006021227A (en) Method for controlling arc welding and arc welding apparatus
JP5257403B2 (en) Consumable electrode arc welding equipment
JP4661164B2 (en) Consumable electrode arc welding equipment
JP6421321B2 (en) Arc welding control method and arc welding apparatus
WO2015011882A1 (en) Welding device
CN104339068A (en) Method for controlling neck detection for welding power supply
JP2014034031A (en) Consumable electrode arc-weld controlling method
JP6307341B2 (en) Welding power supply device and control method for welding power supply device
JP3951931B2 (en) Welding control method and consumable electrode type pulse arc welding apparatus
JP5375389B2 (en) Welding apparatus and welding method
US20230283200A1 (en) Variable pwm frequency responsive to power increase event in welding system
US20220055136A1 (en) Arc welding method and arc welding device
JP5598568B2 (en) Welding apparatus and welding method
JP2009269088A (en) Consumable electrode type ac arc welding power unit
JP2016107316A (en) Arc-welding device, power supply device for arc-welding and method for controlling power supply device for arc-welding
JP2016022507A (en) Pulse arc weldment control method
JP2019089083A (en) Arc start control method for ac tig welding
CN102574235B (en) Alternating current tig welding method
US20180264575A1 (en) Short circuit welding using self-shielded electrode
JP2014110710A (en) Welding power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5257403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees