JP2010166770A - Overcurrent relay device - Google Patents

Overcurrent relay device Download PDF

Info

Publication number
JP2010166770A
JP2010166770A JP2009008733A JP2009008733A JP2010166770A JP 2010166770 A JP2010166770 A JP 2010166770A JP 2009008733 A JP2009008733 A JP 2009008733A JP 2009008733 A JP2009008733 A JP 2009008733A JP 2010166770 A JP2010166770 A JP 2010166770A
Authority
JP
Japan
Prior art keywords
time
accident
operation time
relay device
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009008733A
Other languages
Japanese (ja)
Other versions
JP5289070B2 (en
Inventor
Shigeo Matsumoto
重穗 松本
Yoshiaki Date
義明 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009008733A priority Critical patent/JP5289070B2/en
Publication of JP2010166770A publication Critical patent/JP2010166770A/en
Application granted granted Critical
Publication of JP5289070B2 publication Critical patent/JP5289070B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an overcurrent relay device, capable of shortening an operation time limit and preventing the time for removing a short-circuit fault from changing, depending on the situation of the accident, when a short-circuit fault occurs within the range of a time limit element. <P>SOLUTION: The overcurrent relay device used for protecting a power transmission line in a power system from a short-circuit fault includes: operation time limit deciding means 12<SB>1</SB>-12<SB>3</SB>, 13<SB>1</SB>-13<SB>3</SB>, 14<SB>1</SB>-14<SB>3</SB>for obtaining the operation time limit of the overcurrent relay device, in accordance with the range designated time limit characteristic curve (a), based on the amplitude value of a fault current in three-phase short-circuit fault; and a fault situation determining means 15 for determining the fault is a three-phase short-circuit fault or a two-phase short-circuit failure based on the amplitude value of the fault current in a short-circuit failure. If the result of determination of the fault situation determining means 15 shows that this is a two-phase short-circuit fault, the operation time limit deciding means 12<SB>1</SB>-12<SB>3</SB>, 13<SB>1</SB>-13<SB>3</SB>, 14<SB>1</SB>-14<SB>3</SB>obtain the operation time limit of the overcurrent relay device, in accordance with the range designated time limit characteristic curve (a), based on a value obtained by dividing the amplitude value of the fault current in the short circuit fault by 3<SP>1/2</SP>/2. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、過電流継電装置に関し、特に、電力系統における送電線の短絡事故時の保護に用いられるのに好適な過電流継電装置に関する。   The present invention relates to an overcurrent relay device, and more particularly, to an overcurrent relay device suitable for use in protection in the event of a short circuit accident of a transmission line in an electric power system.

一般に、電力系統における送電線の短絡事故時の保護に用いられている過電流継電装置(OC)は、3相短絡事故時の事故電流の振幅値に基づいて過電流継電装置の動作時限を定める動作時限特性に従って求められた動作時限で動作する。そのため、次区間の過電流継電装置との協調を考慮した場合には、保護範囲が狭くなったり動作時限が長くなったりするケースがある。   In general, an overcurrent relay (OC) used for protection in the case of a power line short circuit accident in an electric power system is based on the amplitude value of the accident current at the time of a three-phase short circuit accident. The operation is performed in accordance with the operation time characteristic determined according to the operation time characteristic. For this reason, in consideration of cooperation with the overcurrent relay device in the next section, there are cases where the protection range becomes narrow or the operation time period becomes long.

たとえば、図8(a)に示すような電源1側に設置された第1の過電流継電装置(OC)1101と第1の過電流継電装置1101よりも後方(電源1の反対側)に設置された第2の過電流継電装置(OC)1102とが時限協調をとって送電線を保護する電力系統においては、限時要素の動作時限が最も短くなる最大事故電流(3相短絡事故時)で時限協調をとるために、第1および第2の過電流継電装置1101,1102の動作時限は同図(b)のグラフで示す動作時限特性曲線A,Bに従って決定される。
ここで、動作時限特性曲線A,Bは、第1および第2の過電流継電装置1101,1102の近傍で短絡事故が発生した場合には第1および第2の遮断器41,42を瞬時に遮断するとともに第1および第2の過電流継電装置1101,1102の限時要素動作範囲における必要な保護範囲を確保するために、瞬時要素動作範囲における定限時特性と限時要素動作範囲における普通反限時特性(強反限時特性では限時要素動作範囲における保護範囲が狭くなる。)との組合せによって規定される。
なお、このグラフの横軸は、電源1からの距離に対応する総合インピーダンス(合成インピーダンス)%Zとしている。
For example, the first overcurrent relay device (OC) 110 1 installed on the power source 1 side as shown in FIG. 8A and the rear side of the first overcurrent relay device 110 1 (opposite of the power source 1) In the electric power system in which the second overcurrent relay device (OC) 110 2 installed on the side) is time-coordinated to protect the transmission line, the maximum fault current (3 In order to achieve timed coordination in the case of a phase short circuit accident), the operating time limits of the first and second overcurrent relay devices 110 1 and 110 2 are in accordance with the operating time characteristic curves A and B shown in the graph of FIG. It is determined.
Here, the operating time characteristic curves A and B indicate that the first and second circuit breakers 4 1 and 2 when the short circuit accident occurs in the vicinity of the first and second overcurrent relay devices 110 1 and 110 2 , respectively. In order to instantaneously cut off 4 2 and to secure the necessary protection range in the time limit element operation range of the first and second overcurrent relay devices 110 1 and 110 2 , the fixed time characteristic and time limit in the instantaneous element operation range It is defined by the combination with the normal anti-time characteristic in the element operation range (in the strong anti-time characteristic, the protection range in the time element operation range is narrowed).
The horizontal axis of this graph is the total impedance (synthetic impedance)% Z corresponding to the distance from the power source 1.

したがって、第2の過電流継電装置1102よりも後方で3相短絡事故が発生して30Aの事故電流Iが送電線の各相に流れたとすると、図8(b)に白丸で示すように、事故点に近い第2の過電流継電装置1102は、第2の変流器32から入力される事故電流Iに基づいて動作時限特性曲線Bに従って瞬時に第2の遮断器42を遮断し、また、第2の過電流継電装置1102が動作しなかった場合には、第1の過電流継電装置1101が、第1の変流器31から入力される事故電流Iに基づいて動作時限特性曲線Aに従って動作時限(約0.6s)経過後に第1の遮断器41を遮断することにより、送電線の保護性能および保護信頼度を確保している。 Therefore, if a three-phase short circuit accident occurs behind the second overcurrent relay device 110 2 and a 30 A fault current I flows in each phase of the transmission line, a white circle is shown in FIG. 8B. In addition, the second overcurrent relay device 110 2 close to the fault point instantaneously follows the operating time characteristic curve B based on the fault current I input from the second current transformer 3 2. When the second overcurrent relay device 110 2 is not operated, the first overcurrent relay device 110 1 is input from the first current transformer 3 1. by blocking the first breaker 4 1 after operation timed (approximately 0.6 s) has elapsed in accordance with the operating time characteristics curve a on the basis of the fault current I, has secured protection performance and protection reliability of the transmission line.

しかし、第1の過電流継電装置1101は、普通反限時特性に従って動作するため、動作時限が長くなり、第1の遮断器41を遮断するのに時間がかかる。 However, since the first overcurrent relay device 110 1 operates according to the normal inverse time characteristic, the operation time becomes longer, and it takes time to break the first circuit breaker 4 1 .

また、同じ事故点で2相短絡事故が発生した場合には、事故電流Iが3相短絡事故時の事故電流(30A)の31/2/2倍=約0.866倍(約26A)に減少する(すなわち、図8(c)の横軸の総合インピーダンス%Zが見かけ上大きくなる)ので、第1および第2の過電流継電装置1101,1102は、3相短絡事故時で時限協調をとるために整定された動作時限特性曲線A,Bの同図(c)に白丸で示す点ではなく黒丸で示す点の動作時限で動作する。その結果、事故点に近い第2の過電流継電装置1102は約0.35sの動作時限後に第2の遮断器42を遮断し、また、第2の過電流継電装置1102が動作しなかった場合には、第1の過電流継電装置1101は、約1.1秒の動作時限後に第1の遮断器41を遮断するので、3相短絡事故時に比べて第1および第2の遮断器41,42を遮断するタイミングが遅れて、保護性能および保護信頼度を確保することができなくなる。
換言すると、2相短絡事故時には、第1および第2の過電流継電装置1101,1102は動作時限特性曲線A,Bではなくて同図(c)に一点鎖線で示す動作時限特性曲線A’,B’に基づいて動作することになるので、第1および第2の過電流継電装置1101,1102の瞬時要素動作範囲が短縮するとともに限時要素動作時限が伸張する。
If a two-phase short-circuit accident occurs at the same accident point, the accident current I is 3 1/2 / 2 times the accident current (30 A) at the time of the three-phase short-circuit accident = about 0.866 times (about 26 A) (That is, the total impedance% Z on the horizontal axis in FIG. 8C apparently increases), the first and second overcurrent relay devices 110 1 and 110 2 are in a three-phase short circuit accident. The operation time characteristic curves A and B set for time cooperation are operated at the operation time points indicated by the black circles instead of the white circles in FIG. As a result, the second overcurrent relay device 110 2 that is close to the accident point shuts off the second circuit breaker 4 2 after an operating time period of about 0.35 s, and the second overcurrent relay device 110 2 if not work, the first overcurrent relay device 110 1 initially prevents the first breaker 4 1 after operation timed about 1.1 seconds, compared to when the three-phase short-circuit fault first And the timing which interrupts | blocks the 2nd circuit breakers 4 1 and 4 2 is delayed, and it becomes impossible to secure the protection performance and the protection reliability.
In other words, at the time of a two-phase short-circuit accident, the first and second overcurrent relay devices 110 1 and 110 2 are not the operation time characteristic curves A and B, but the operation time characteristic curve shown by a one-dot chain line in FIG. Since the operation is based on A ′ and B ′, the instantaneous element operation range of the first and second overcurrent relay devices 110 1 and 110 2 is shortened and the time limit element operation time period is extended.

また、図9(a)に示すような電源1側に設置された短絡距離継電装置(DZ)210と短絡距離継電装置210よりも後方に設置された過電流継電装置(OC)220とが時限協調をとって送電線を保護する電力系統においては、限時要素の動作時限が最も短くなる最大事故電流(3相短絡事故時)で時限協調をとると、短絡距離継電装置210および過電流継電装置220の動作時限は同図(b)のグラフで示す動作時限特性曲線C,Dとなるように整定される。
そのため、2相短絡事故時には、上述したように過電流継電装置220は動作時限特性曲線Dではなくて同図(b)に一点鎖線で示す動作時限特性曲線D’に従って動作することになるので、短絡距離継電装置(DZ)210と過電流継電装置(OC)220との時限協調をとることができなくなる。
9A, the short-circuit distance relay device (DZ) 210 installed on the power source 1 side and the overcurrent relay device (OC) 220 installed behind the short-circuit distance relay device 210. In a power system that protects the transmission line with time cooperation, if the time cooperation is taken with the maximum fault current (at the time of a three-phase short-circuit fault) where the operation time of the time limit element is the shortest, the short-circuit distance relay device 210 and The operation time limit of the overcurrent relay device 220 is set so as to be the operation time characteristic curves C and D shown in the graph of FIG.
Therefore, at the time of a two-phase short-circuit accident, the overcurrent relay device 220 operates according to the operation time characteristic curve D ′ indicated by the one-dot chain line in FIG. In this case, it becomes impossible to achieve timed coordination between the short-circuit distance relay device (DZ) 210 and the overcurrent relay device (OC) 220.

そこで、2相短絡事故時においても時限協調をとることができるように、短絡距離継電装置210を同図(c)に一点鎖線で示す動作時限特性曲線C’に従って動作するようにしているが、短絡距離継電装置210の2段動作領域(この例では、動作時限が約0.3sの範囲)が狭くなり、かつ、短絡距離継電装置210は過電流継電装置220の不動作時の遠端保護を3段動作領域(この例では、動作時限が約0.8sの範囲)で行うことになるので、保護信頼度が低下する。   Therefore, the short-circuit distance relay device 210 is operated in accordance with the operation time characteristic curve C ′ indicated by a one-dot chain line in FIG. The two-stage operation region of the short-circuit distance relay device 210 (in this example, the range of operation time is about 0.3 s) is narrowed, and the short-circuit distance relay device 210 is not in operation of the overcurrent relay device 220. Since the far-end protection is performed in a three-stage operation region (in this example, the operation time limit is in a range of about 0.8 s), the protection reliability is lowered.

なお、下記の特許文献1には、保護協調を可能とする動作特性の設定を少ない労力で簡単かつ手早く行うために、過電流継電器へ、上位の過電流継電器が保護する負荷の回路電圧、限時要素の種別、設定電流タップ値、動作時限ダイヤル値、瞬時要素の動作電流値およびCT比を入力し、また、自己の過電流継電器が保護する負荷の回路電圧、負荷の種類、負荷容量、負荷の短絡容量をおよびCT比を入力して、これらの入力情報に基づき、論理演算回路が、上位の過電流継電器との保護協調を可能とする動作特性設定値(限時要素の種別、設定電流タップ値、動作時限ダイヤル値、瞬時要素の動作電流値)を求めて表示部に表示する過電流継電器および過電流保護システムが開示されている。
下記の特許文献2には、配電系統の運用形態の変更に伴う動作管理を含めた検討・見直し業務の煩雑さを解消するために、配電線母線から複数分岐した樹枝状配電線により各需要家に配電する樹枝状運用と樹枝状配電線を組み合わせるループ運用とを選択可能な配電系統で短絡が発生した時に過電流検出要素が配電線電流に基づき短絡した配電線を配電系統から切離す遮断信号(FCBトリップ信号)を各配電線引出口遮断器に出力する配電線短絡保護継電装置において、短絡保護継電器が、配電線樹枝状運用時に反限時特性を有する過電流検出要素と、配電線ループ運用時により強い反限時特性を有する過電流検出要素と、ループ運用状態に応じて過電流検出要素の出力を択一的に切替えるループ運用情報取り込み手段とを備えた配電線短絡保護継電装置が開示されている。
下記の特許文献3には、多段に渡る限時差整定において短絡領域における保護協調を容易に実現できるようにするために、電流入力部の電流値について瞬時要素判断部および限時要素判断部でそれぞれ動作の是非を判断し、この判断部からの信号に基づいて動作判断部にて動作特性切換手段の状態を兼ね合わせて動作時間特性を制御する過電流継電器が開示されている。
下記の特許文献4には、商用電源と並設される非常用発電機を備えた受変電設備に設けられる過電流保護継電器において整定値の変更を容易とし電源状態に対応した最適な保護環境が維持できるようにするために、過電流保護継電器に、外部からの電気信号などにより設定および変更が可能な商用電源給電時に用いる整定パターンおよび非常用発電機給電時に用いる整定パターンを内蔵し、受変電設備の電源状態が商用電源であるか非常用発電機であるかを判別する電源状態判別回路と、電源状態判別回路で判別された電源に応じて整定パターンを適正な整定パターンに切り替えて整定する切替スイッチとを設けた、整定パターン自動切替機能付過電流保護継電器が開示されている。
特開平7−322475号公報 特開2004−254369号公報 特開平8−205382号公報 特開平9−135527号公報
In addition, in Patent Document 1 below, in order to easily and quickly set an operation characteristic that enables protection coordination, a circuit voltage of a load that is protected by a higher-order overcurrent relay, a time limit is set. Enter the element type, set current tap value, operating time-dial value, instantaneous element operating current value and CT ratio, and load the circuit voltage, load type, load capacity, and load that the overcurrent relay protects. The short circuit capacity and CT ratio are input, and based on these input information, the logic operation circuit enables operation coordination with the host overcurrent relay (the type of time limit element, the set current tap) An overcurrent relay and an overcurrent protection system that obtain a value, an operating time dial value, and an instantaneous element operating current value) and display them on a display unit are disclosed.
In Patent Document 2 below, in order to eliminate the complexity of the review and review work including the operation management associated with the change in the operation mode of the distribution system, each customer uses a branch distribution line branched from the distribution line bus. When a short circuit occurs in a power distribution system that can be selected between a dendritic operation that distributes power to the loop and a loop operation that combines dendritic distribution lines, an overcurrent detection element disconnects the shorted distribution line from the distribution system based on the distribution line current In the distribution line short circuit protection relay device that outputs (FCB trip signal) to each distribution line outlet circuit breaker, the short circuit protection relay includes an overcurrent detection element having an inverse time limit characteristic during distribution line dendron operation, and a distribution line loop Short distribution line with overcurrent detection element with stronger inverse time characteristic during operation and loop operation information capture means to selectively switch the output of overcurrent detection element according to loop operation status Protective relay device is disclosed.
In Patent Document 3 below, the instantaneous element determination unit and the time limit element determination unit operate with respect to the current value of the current input unit in order to easily realize protection coordination in the short-circuit region in multi-stage time difference settling. An overcurrent relay is disclosed in which the operation time characteristic is controlled by the operation determination unit in combination with the state of the operation characteristic switching means based on the signal from the determination unit.
In Patent Document 4 below, there is an optimum protection environment corresponding to a power supply state that makes it easy to change a set value in an overcurrent protection relay provided in a power receiving / transforming facility provided with an emergency generator that is arranged in parallel with a commercial power supply. The overcurrent protection relay has a built-in settling pattern used when supplying commercial power that can be set and changed by an external electrical signal and a settling pattern used when feeding an emergency generator. A power supply state determination circuit that determines whether the power supply state of the facility is a commercial power supply or an emergency generator, and the settling pattern is switched to an appropriate settling pattern according to the power supply determined by the power supply state determination circuit. An overcurrent protection relay with a setting pattern automatic switching function provided with a changeover switch is disclosed.
JP-A-7-322475 JP 2004-254369 A JP-A-8-205382 JP-A-9-135527

上述したように、過電流継電装置においては、瞬時要素動作範囲における定限時特性と限時要素動作範囲における普通反限時特性との組合せにより規定された動作時限特性曲線に従って動作するように整定されているため、限時要素動作範囲で短絡事故が発生した場合には動作時限が指数関数的に長くなるという問題があるほか、3相短絡事故時の事故電流の大きさに基づいて整定された動作時限で動作するように整定されているため、2相短絡事故時には動作時限が遅くなって事故除去に時間を要するので、設備に悪影響を与えるという問題がある。   As described above, in the overcurrent relay device, the overcurrent relay device is set to operate in accordance with the operation time characteristic curve defined by the combination of the fixed time characteristic in the instantaneous element operation range and the normal inverse time characteristic in the time element operation range. Therefore, when a short circuit accident occurs in the time limit element operation range, there is a problem that the operation time period becomes exponentially longer, and the operation time period set based on the magnitude of the accident current at the time of the three-phase short circuit accident Therefore, there is a problem of adversely affecting the equipment because the operation time period is delayed in the case of a two-phase short circuit accident and it takes time to remove the accident.

本発明の目的は、限時要素動作範囲で短絡事故が発生した場合に動作時限を短縮することができるとともに事故様相(3相短絡事故および2相短絡事故)によって事故除去時間が変わらないようにすることができる過電流継電装置を提供することにある。   It is an object of the present invention to shorten the operation time when a short circuit accident occurs in the time limit element operation range and to prevent the accident removal time from being changed depending on the accident mode (three-phase short circuit accident and two-phase short circuit accident). An object of the present invention is to provide an overcurrent relay device capable of performing the above.

本発明の過電流継電装置は、電力系統における送電線の短絡事故時の保護に用いられる過電流継電装置であって、短絡事故時の事故電流の振幅値に基づいて前記過電流継電装置の動作時限を定める動作時限特性に従って前記過電流継電装置の動作時限を求める動作時限決定手段を具備し、前記動作時限特性が範囲指定動作時限特性とされており、前記範囲指定動作時限特性の瞬時要素動作範囲における動作時限特性が定限時特性により規定され、前記範囲指定動作時限特性の限時要素動作範囲における動作時限特性が、電源(1)からの総合インピーダンスによって動作時限が一定である第1の定限時特性、前記総合インピーダンスに比例して動作時限が増加する比例限時特性および前記総合インピーダンスによって動作時限が一定である第2の定限時特性の組合せにより規定されることを特徴とする。
本発明の過電流継電装置は、電力系統における送電線の短絡事故時の保護に用いられる過電流継電装置であって、短絡事故時の事故電流の振幅値に基づいて前記過電流継電装置の動作時限を定める動作時限特性に従って前記過電流継電装置の動作時限を求める動作時限決定手段を具備し、前記動作時限特性が比例動作時限特性とされており、前記比例動作時限特性の瞬時要素動作範囲における動作時限特性が定限時特性により規定され、前記比例動作時限特性の限時要素動作範囲における動作時限特性が、電源(1)からの総合インピーダンスに比例して動作時限が増加する比例限時特性により規定されることを特徴とする。
本発明の過電流継電装置は、電力系統における送電線の短絡事故時の保護に用いられる過電流継電装置であって、短絡事故時の事故電流の振幅値に基づいて前記過電流継電装置の動作時限を定める動作時限特性に従って前記過電流継電装置の動作時限を求める動作時限決定手段を具備し、前記動作時限特性が多段動作時限特性とされており、前記多段動作時限特性の瞬時要素動作範囲における動作時限特性が定限時特性により規定され、前記多段動作時限特性の限時要素動作範囲における動作時限特性が、複数の動作限時特性の組合せにより規定されることを特徴とする。
本発明の過電流継電装置は、電力系統における送電線の短絡事故時の保護に用いられる過電流継電装置(501,502)であって、3相短絡事故時の事故電流の振幅値または2相短絡事故時の事故電流の振幅値に基づいて前記過電流継電装置の動作時限を定める範囲指定動作時限特性、比例動作時限特性または多段動作時限特性に従って前記過電流継電装置の動作時限を求める動作時限決定手段(121〜123,131〜133,141〜143)と、3相短絡事故か2相短絡事故かを判定する事故様相判定手段(15)とを具備し、前記動作時限決定手段が、前記事故様相判定手段における判定結果に応じて2相短絡事故時の事故電流の振幅値を3相短絡事故時の事故電流の振幅値に換算してまたは3相短絡事故時の事故電流の振幅値を2相短絡事故時の事故電流の振幅値に換算して、該換算した事故電流の振幅値に基づいて前記範囲指定動作時限特性、前記比例動作時限特性または前記多段動作時限特性に従って前記過電流継電装置の動作時限を求めることを特徴とする。
ここで、前記範囲指定動作時限特性の瞬時要素動作範囲における動作時限特性が定限時特性により規定されるとともに、該範囲指定動作時限特性の限時要素動作範囲における動作時限特性が、電源(1)からの総合インピーダンスによって動作時限が一定である第1の定限時特性、前記総合インピーダンスに比例して動作時限が増加する比例限時特性および前記総合インピーダンスによって動作時限が一定である第2の定限時特性の組合せにより規定され、前記比例動作時限特性の瞬時要素動作範囲における動作時限特性が定限時特性により規定されるとともに、該比例動作時限特性の限時要素動作範囲における動作時限特性が、前記総合インピーダンスに比例して動作時限が増加する比例限時特性により規定され、前記多段動作時限特性の瞬時要素動作範囲における動作時限特性が定限時特性により規定されるとともに、該多段動作時限特性の限時要素動作範囲における動作時限特性が、複数の動作限時特性の組合せにより規定されてもよい。
前記動作時限決定手段が、2相短絡事故時の事故電流の振幅値を31/2/2で割ることにより、2相短絡事故時の事故電流の振幅値を3相短絡事故時の事故電流の振幅値に換算してもよい。
前記動作時限決定手段が、3相短絡事故時の事故電流の振幅値に31/2/2を掛けることにより、3相短絡事故時の事故電流の振幅値を2相短絡事故時の事故電流の振幅値に換算してもよい。
前記動作時限決定手段が、前記短絡事故時の事故電流の振幅値が整定限時タップ値以上であるか否かを判定する限時要素動作判定手段(121〜123)と、前記範囲指定動作時限特性、前記比例動作時限特性または前記多段動作時限特性に従って前記過電流継電装置の動作時限を求める時限処理手段(131〜133)とを備え、前記事故様相判定手段における判定結果が3相短絡事故である場合には、前記限時要素動作判定手段が、前記短絡事故時の事故電流の振幅値が整定限時タップ値以上であるか否かを判定し、また、前記時限処理手段が、前記限時要素動作判定手段から入力される前記事故電流の振幅値に基づいて前記範囲指定動作時限特性、前記比例動作時限特性または前記多段動作時限特性に従って前記過電流継電装置の動作時限を求め、前記事故様相判定手段における判定結果が2相短絡事故である場合には、前記限時要素動作判定手段が、前記短絡事故時の事故電流の振幅値が整定限時タップ値以上であるか否かを判定し、また、前記時限処理手段が、前記限時要素動作判定手段から入力される前記事故電流の振幅値に基づいて前記範囲指定動作時限特性、前記比例動作時限特性または前記多段動作時限特性に従って前記過電流継電装置の動作時限を求め、前記短絡事故時の事故電流の振幅値を31/2/2で割った値である事故電流の振幅換算値を算出し、該算出した事故電流の振幅換算値が前記整定限時タップ値以上であるか否かを判定し、また、前記限時要素動作判定手段から入力される前記事故電流の振幅換算値に基づいて前記範囲指定動作時限特性、前記比例動作時限特性または前記多段動作時限特性に従って前記過電流継電装置の動作時限を求めてもよい。
前記動作時限決定手段が、瞬時要素動作判定手段(141〜143)を備え、該瞬時要素動作判定手段が、前記事故様相判定手段における判定結果が3相短絡事故である場合には、前記短絡事故時の事故電流の振幅値が整定瞬時タップ値以上であるか否かを判定し、前記瞬時要素動作判定手段が、前記事故様相判定手段における判定結果が2相短絡事故である場合には、前記短絡事故時の事故電流の振幅値を31/2/2で割った値である事故電流の振幅換算値を算出し、該算出した事故電流の振幅換算値が前記整定瞬時タップ値以上であるか否かを判定してもよい。
前記事故様相判定手段が、前記短絡事故時に前記送電線の各相を流れる事故電流の振幅値がすべて所定の閾値よりも大きいときに3相短絡事故と判定し、それ以外のときには2相短絡事故と判定してもよい。
本発明の過電流継電装置は、電力系統における送電線の短絡事故時の保護に用いられる過電流継電装置(501,502)であって、前記送電線に設置された遮断器を遮断するためのトリップ信号を発生するためのトリップ信号発生回路(10)を具備し、該トリップ信号発生回路が、前記短絡事故時の事故電流から変換された事故電流データ(IR,IW,IB)の振幅値を求める振幅値演算部(111〜113)と、前記振幅値演算部から入力される前記事故電流データの振幅値に基づいて、事故様相が3相短絡事故であるか2相短絡事故であるかを判定する事故様相判定部(15)と、該事故様相判定部が「短絡事故が3相短絡事故である」と判定すると、前記事故電流データの振幅値が整定限時タップ値以上であるか否かを判定し、一方、該事故様相判定部が「短絡事故が2相短絡事故である」と判定すると、前記事故電流データの振幅値を31/2/2で割った値である事故電流データの振幅換算値を算出し、該算出した事故電流の振幅換算値が前記整定限時タップ値以上であるか否かを判定する限時要素動作判定部(121〜123)と、該限時要素動作判定部の出力信号に応じて、該限時要素動作判定部から入力される前記事故電流データの振幅値または前記事故電流の振幅換算値から、前記過電流継電装置の動作時限を定める範囲指定動作時限特性、比例動作時限特性または多段動作時限特性に従って動作時限を求め、該求めた動作時限の経過後に前記遮断器を遮断するための限時要素トリップ信号(T1R,T1W,T1B)を出力する時限処理部(131〜133)とを備えることを特徴とする。
ここで、前記トリップ信号発生回路が、前記遮断器を瞬時に遮断するための瞬時要素トリップ信号(T2R,T2W,T2B)を出力する瞬時要素動作判定部(141〜143)をさらに備え、該瞬時要素動作判定部が、前記事故様相判定部が「短絡事故が3相短絡事故である」と判定すると、前記事故電流データの振幅値が整定瞬時タップ値以上であるか否かを判定し、「前記事故電流データの振幅値が整定瞬時タップ値以上である」と判定すると前記瞬時要素トリップ信号を出力し、一方、前記事故様相判定部が「短絡事故が2相短絡事故である」と判定すると、前記事故電流データの振幅値を31/2/2で割った値である事故電流データの振幅換算値を算出し、該算出した事故電流の振幅換算値が前記整定瞬時タップ値以上であるか否かを判定し、「前記事故電流データの振幅換算値が整定瞬時タップ値以上である」と判定すると前記瞬時要素トリップ信号を出力してもよい。
前記短絡事故時の事故電流の振幅値に基づいて前記過電流継電装置の動作時限を定める動作時限特性の代わりに、3相短絡事故時のタップ倍率または2相短絡事故時のタップ倍率に基づいて前記過電流継電装置の動作時限を定める動作時限特性を使用し、前記動作時限決定手段が、前記事故様相判定手段における判定結果に応じて、3相短絡事故時の整定タップ値を2相短絡事故時の整定タップ値に換算してまたは2相短絡事故時の整定タップ値を3相短絡事故時の整定タップ値に換算して、短絡事故時の事故電流の振幅値を該換算した整定タップ値で割ってタップ倍率を算出し、該算出しタップ倍率に基づいて前記動作時限特性に従って前記過電流継電装置の動作時限を求めてもよい。
前記動作時限決定手段が、3相短絡事故時の整定タップ値に31/2/2を掛けることにより、3相短絡事故時の整定タップ値を2相短絡事故時の整定タップ値に換算してもよい。
前記動作時限決定手段が、2相短絡事故時の整定タップ値を31/2/2で割ることにより、2相短絡事故時の整定タップ値を3相短絡事故時の整定タップ値に換算してもよい。
The overcurrent relay device of the present invention is an overcurrent relay device used for protection in the event of a short circuit accident of a transmission line in an electric power system, and is based on the amplitude value of the accident current at the time of a short circuit accident. Comprising an operation time period determining means for determining an operation time period of the overcurrent relay device according to an operation time characteristic that determines an operation time period of the device, wherein the operation time characteristic is a range-designated operation time-characteristic, and the range-designated operation time-characteristic The operation time characteristic in the instantaneous element operation range is defined by the fixed time characteristic, and the operation time characteristic in the time element operation range of the range designation operation time characteristic is constant due to the total impedance from the power source (1). The fixed time characteristic, the proportional time characteristic in which the operation time period increases in proportion to the total impedance, and the operation time period is constant due to the total impedance. Characterized in that it is defined by a combination of Teikiri state characteristic of.
The overcurrent relay device of the present invention is an overcurrent relay device used for protection in the event of a short circuit accident of a transmission line in an electric power system, and is based on the amplitude value of the accident current at the time of a short circuit accident. An operation time period determining means for determining an operation time period of the overcurrent relay device according to an operation time characteristic that determines an operation time period of the device, wherein the operation time characteristic is a proportional operation time characteristic; The operation time characteristic in the element operation range is defined by the fixed time characteristic, and the operation time characteristic in the element operation range increases in proportion to the total impedance from the power source (1). It is defined by characteristics.
The overcurrent relay device of the present invention is an overcurrent relay device used for protection in the event of a short circuit accident of a transmission line in an electric power system, and is based on the amplitude value of the accident current at the time of a short circuit accident. Comprising an operation time period determining means for determining an operation time period of the overcurrent relay device according to an operation time characteristic that determines an operation time period of the device, wherein the operation time characteristic is a multistage operation time characteristic, The operation time characteristic in the element operation range is defined by a fixed time characteristic, and the operation time characteristic in the time element operation range of the multistage operation time characteristic is defined by a combination of a plurality of operation time characteristics.
The overcurrent relay device of the present invention is an overcurrent relay device (50 1 , 50 2 ) used for protection in the event of a short circuit accident of a transmission line in an electric power system, and the amplitude of the accident current at the time of a three-phase short circuit accident. Of the overcurrent relay according to a range-designated operation time characteristic, proportional operation time characteristic or multistage operation time characteristic that determines the operation time limit of the overcurrent relay device based on the value or the amplitude value of the fault current at the time of a two-phase short-circuit fault An operation time period determining means (12 1 to 12 3 , 13 1 to 13 3 , 14 1 to 14 3 ) for determining an operation time period, an accident mode determining means (15) for determining whether a three-phase short-circuit accident or a two-phase short-circuit accident; And the operation time determination means converts the amplitude value of the accident current at the time of the two-phase short-circuit accident into the amplitude value of the accident current at the time of the three-phase short-circuit accident according to the determination result in the accident aspect determination means, or Amplitude value of accident current at the time of three-phase short circuit accident Converted into the amplitude value of the accident current at the time of the two-phase short circuit accident, and based on the converted amplitude value of the accident current, the overcurrent relay is performed according to the range designation operation time characteristic, the proportional operation time characteristic, or the multistage operation time characteristic. The operation time limit of the electric device is obtained.
Here, the operation time characteristic in the instantaneous element operation range of the range designation operation time characteristic is defined by the fixed time characteristic, and the operation time characteristic in the time element operation range of the range designation operation time characteristic is obtained from the power source (1). The first fixed time characteristic in which the operation time is constant according to the total impedance, the proportional time characteristic in which the operation time increases in proportion to the total impedance, and the second fixed time characteristic in which the operation time is constant according to the total impedance. The operation time characteristic in the instantaneous element operation range of the proportional operation time characteristic is defined by the fixed time characteristic, and the operation time characteristic in the time element operation range of the proportional operation time characteristic is proportional to the total impedance. Stipulated by the proportional time characteristic in which the operation time increases, Together with the operation time characteristics are defined by Teikiri time characteristics in the elements operating range when operating time characteristics of the time limit elements operating range of the multi-stage operating time characteristics may be defined by a combination of a plurality of operation limit time characteristics.
The operation time determining means divides the amplitude value of the accident current at the time of the two-phase short-circuit accident by 3 1/2 / 2, and thereby the amplitude value of the accident current at the time of the two-phase short-circuit accident is calculated as the accident current at the time of the three-phase short-circuit accident. You may convert into the amplitude value of.
The operation time determining means multiplies the amplitude value of the accident current at the time of the three-phase short-circuit accident by 3 1/2 / 2, thereby obtaining the accident current value at the time of the two-phase short-circuit accident. You may convert into the amplitude value of.
The operation time determination means includes time limit element operation determination means (12 1 to 12 3 ) for determining whether or not the amplitude value of the accident current at the time of the short circuit accident is equal to or greater than a settling time limit tap value; Time processing means (13 1 to 13 3 ) for obtaining an operation time limit of the overcurrent relay device in accordance with a characteristic, the proportional operation time characteristic or the multi-stage operation time characteristic, and the determination result in the accident mode determination means is three-phase In the case of a short-circuit accident, the time-limit element operation determination means determines whether or not the amplitude value of the accident current at the time of the short-circuit accident is equal to or greater than a settling time limit tap value, and the time-limit processing means The operation of the overcurrent relay device according to the range-designated operation time characteristic, the proportional operation time characteristic or the multistage operation time characteristic based on the amplitude value of the fault current input from the time element operation determination means If the determination result in the accident mode determination means is a two-phase short-circuit accident, the time-limit element operation determination means determines that the fault current amplitude value in the short-circuit accident is equal to or greater than the settling time limit tap value. And the time processing means is based on the fault current amplitude value input from the time element operation determination means, the range-designated operation time characteristic, the proportional operation time characteristic, or the multistage operation time period. The operation time limit of the overcurrent relay device is obtained according to the characteristics, and the accident current amplitude converted value, which is a value obtained by dividing the amplitude value of the accident current at the time of the short circuit accident by 3 1/2 / 2, is calculated. It is determined whether or not an accident current amplitude conversion value is equal to or greater than the settling time limit tap value, and the range-designated operation time characteristic based on the accident current amplitude conversion value input from the time element operation determination means The above The operation time limit of the overcurrent relay device may be obtained according to the proportional operation time characteristic or the multistage operation time characteristic.
The operation time limit determining means includes instantaneous element operation determining means (14 1 to 14 3 ), and when the determination result in the accident aspect determining means is a three-phase short circuit accident, It is determined whether or not the amplitude value of the accident current at the time of the short-circuit accident is greater than or equal to the settling instantaneous tap value, and when the instantaneous element operation determination unit determines that the determination result in the accident mode determination unit is a two-phase short-circuit accident Accident current amplitude conversion value that is a value obtained by dividing the accident current amplitude value at the time of the short circuit accident by 3 1/2 / 2 is calculated, and the calculated accident current amplitude conversion value is equal to or greater than the settling instantaneous tap value. It may be determined whether or not.
The accident mode determination means determines that a three-phase short-circuit accident occurs when all of the amplitude values of the accident currents flowing through the phases of the transmission line are greater than a predetermined threshold at the time of the short-circuit accident, and a two-phase short-circuit accident otherwise. May be determined.
The overcurrent relay device of the present invention is an overcurrent relay device (50 1 , 50 2 ) used for protection in the event of a short circuit accident of a transmission line in an electric power system, and includes a circuit breaker installed on the transmission line. A trip signal generation circuit (10) for generating a trip signal for interrupting is provided, and the trip signal generation circuit converts fault current data (I R , I W , Based on the amplitude value of the fault current data inputted from the amplitude value calculation unit (11 1 to 11 3 ) for obtaining the amplitude value of I B ) and the amplitude value calculation unit, the accident mode is a three-phase short circuit accident If the accident mode determination unit (15) determines whether the short circuit accident is a three-phase short circuit accident, the amplitude value of the accident current data is settled. Determine if it is greater than or equal to the timed tap value, Write, wherein an accident appearance determining unit determines that "short-circuit failure is a two-phase short-circuit fault", the amplitude conversion value of the fault current data is a value obtained by dividing the amplitude value of the fault current data at 3 1/2 / 2 And a time limit element operation determination unit (12 1 to 12 3 ) for determining whether or not the calculated converted amplitude of the fault current is equal to or greater than the settling time limit tap value, and an output of the time limit element operation determination unit In accordance with a signal, a range-designated operation time limit characteristic that determines the operation time limit of the overcurrent relay device from the amplitude value of the fault current data input from the time limit element operation determination unit or the amplitude converted value of the fault current, proportional A time processing unit for obtaining an operation time according to the operation time characteristic or the multistage operation time characteristic and outputting a time element trip signal (T1 R , T1 W , T1 B ) for breaking the breaker after the determined operation time elapses (13 1 to 13 3 ).
Here, the trip signal generation circuit outputs an instantaneous element operation determination unit (14 1 to 14 3 ) for outputting an instantaneous element trip signal (T2 R , T2 W , T2 B ) for instantaneously breaking the circuit breaker. Further, if the instantaneous element operation determination unit determines that the accident aspect determination unit determines that “the short circuit accident is a three-phase short circuit accident”, whether or not the amplitude value of the accident current data is equal to or greater than a settling instantaneous tap value. And when it is determined that “the amplitude value of the accident current data is equal to or larger than the settling instantaneous tap value”, the instantaneous element trip signal is output. If it is determined that “there is”, an amplitude conversion value of the accident current data, which is a value obtained by dividing the amplitude value of the accident current data by 3 1/2 / 2, is calculated, and the calculated amplitude conversion value of the accident current is the settling instantaneous Whether it is greater than or equal to the tap value The determination may output the instantaneous element trip signal and determines that "the amplitude equivalent value of the fault current data is settling instantaneous tap value or more".
Based on the tap magnification at the time of a three-phase short-circuit accident or the tap magnification at the time of a two-phase short-circuit accident instead of the operation time-limit characteristic that determines the operation time limit of the overcurrent relay device based on the amplitude value of the accident current at the time of the short-circuit accident The operation time limit characteristic that determines the operation time limit of the overcurrent relay device is used, and the operation time determination means determines the two-phase settling tap value at the time of a three-phase short-circuit accident according to the determination result in the accident aspect determination means. Convert to the setting tap value at the time of short circuit accident or convert the setting tap value at the time of two phase short circuit accident to the setting tap value at the time of three phase short circuit accident and set the converted amplitude value of the accident current at the time of the short circuit accident The tap magnification may be calculated by dividing by the tap value, and the operation time limit of the overcurrent relay device may be obtained according to the operation time characteristic based on the calculated tap magnification.
The operating time determining means multiplies the setting tap value at the time of the three-phase short circuit accident by 3 1/2 / 2 to convert the setting tap value at the time of the three-phase short circuit accident into the setting tap value at the time of the two-phase short circuit accident. May be.
The operation time determining means divides the setting tap value at the time of the two-phase short-circuit accident by 3 1/2 / 2 to convert the setting tap value at the time of the two-phase short-circuit accident into the setting tap value at the time of the three-phase short-circuit accident. May be.

本発明の過電流継電装置は、以下に示す効果を奏する。
(1)動作時限特性を範囲指定動作時限特性、比例動作時限特性または多段動作時限特性とすることにより、普通反時限特性としたときに比べて限時要素動作範囲の動作時限を短くすることができるので、限時要素動作範囲で短絡事故が発生した場合の動作時限を短縮することができる。
(2)事故様相判定手段を具備することにより、事故様相に応じた動作時限で過電流継電装置を動作させることができるので、事故様相によって事故除去時間が変わらないようにすることができる。
(3)範囲指定動作時限特性と事故様相判定手段とを組み合わせることにより、過電流継電装置を短絡距離継電装置としても用いることができる。
(4)2相短絡事故時の動作時限の遅延を抑制することができるので、保護性能の向上を図ることができる。
(5)リレー協調をとり易くすることができるので、保護系統全体のリレー動作時間の短縮を図ることができる。
(5)他の過電流継電装置との時限協調が容易になるとともに、短絡距離継電装置との時限協調も容易になる。
The overcurrent relay device of the present invention has the following effects.
(1) By setting the operation time characteristics to range-specified operation time characteristics, proportional operation time characteristics, or multistage operation time characteristics, the operation time limit of the time limit element operation range can be shortened compared to the normal anti-time characteristics. Therefore, the operation time limit when a short circuit accident occurs in the time element operating range can be shortened.
(2) By providing the accident aspect determination means, the overcurrent relay device can be operated with an operation time period corresponding to the accident aspect, so that the accident removal time does not change depending on the accident aspect.
(3) The overcurrent relay device can be used as a short-circuit distance relay device by combining the range specifying operation time characteristic and the accident mode determination means.
(4) Since the delay of the operation time limit at the time of a two-phase short circuit accident can be suppressed, the protection performance can be improved.
(5) Since relay coordination can be facilitated, the relay operation time of the entire protection system can be shortened.
(5) Timed coordination with other overcurrent relay devices is facilitated, and timed coordination with short-circuit distance relay devices is facilitated.

上記の目的を、動作時限特性を範囲指定動作時限特性、比例動作時限特性または多段動作時限特性とすることにより、また、3相短絡事故時の事故電流の振幅値またはタップ倍率に基づいて過電流継電装置の動作時限を定める範囲指定動作時限特性、比例動作時限特性または多段動作時限特性を用いるが、事故様相判定手段における判定結果が2相短絡事故である場合には、短絡事故時の事故電流の振幅値を31/2/2で割った値またはタップ倍率に31/2/2を掛けた値に基づいて範囲指定動作時限特性、比例動作時限特性または多段動作時限特性に従って過電流継電装置の動作時限を求めることにより実現した。 For the above purpose, by setting the operation time characteristics to the range specified operation time characteristics, proportional operation time characteristics or multi-stage operation time characteristics, and overcurrent based on the amplitude value or tap magnification of the accident current at the time of three-phase short circuit accident Use range-designated operation time characteristics, proportional operation time characteristics, or multi-stage operation time characteristics to determine the operation time of the relay device. If the result of the accident mode determination means is a two-phase short-circuit accident, an accident at the time of a short-circuit accident Overcurrent according to the range specified operation time characteristic, proportional operation time characteristic or multistage operation time characteristic based on the value obtained by dividing the current amplitude value by 3 1/2 / 2 or the value obtained by multiplying the tap magnification by 3 1/2 / 2. This was achieved by determining the operating time limit of the relay device.

以下、本発明の過電流継電装置の実施例について、図面を参照して説明する。
本発明の一実施例による過電流継電装置(不図示)は、送電線の赤相、白相および青相にそれぞれ設置された各相遮断器(不図示)を遮断するためのトリップ信号を発生するためのトリップ信号発生回路として図1に示すトリップ信号発生回路10を具備することを特徴とする。
Embodiments of the overcurrent relay device of the present invention will be described below with reference to the drawings.
An overcurrent relay device (not shown) according to an embodiment of the present invention generates a trip signal for interrupting each phase breaker (not shown) installed in the red phase, white phase and blue phase of a transmission line. A trip signal generating circuit 10 shown in FIG. 1 is provided as a trip signal generating circuit for achieving the above.

トリップ信号発生回路10は、第1乃至第3の振幅値演算部111〜113と、第1乃至第3の限時要素動作判定部121〜123と、第1乃至第3の時限処理部131〜133と、第1乃至第3の瞬時要素動作判定部141〜143と、事故様相判定部15と、第1および第2の論理和回路161,162とを備える。 The trip signal generation circuit 10 includes first to third amplitude value calculation units 11 1 to 11 3 , first to third time limit element operation determination units 12 1 to 12 3, and first to third time limit processes. Units 13 1 to 13 3 , first to third instantaneous element operation determination units 14 1 to 14 3 , an accident aspect determination unit 15, and first and second OR circuits 16 1 and 16 2. .

第1乃至第3の振幅値演算部111〜113は、本実施例による過電流継電装置が具備する入力フィルタ(不図示)によって必要な帯域の周波数成分のみが抽出されたのちにアナログ/ディジタル変換部(不図示)によってアナログ電流からディジタル電流に変換された赤相事故電流データIR、白相事故電流データIWおよび青相事故電流データIBの振幅値をそれぞれ求める。 The first to third amplitude value calculators 11 1 to 11 3 perform analog processing after extracting only frequency components in a necessary band by an input filter (not shown) included in the overcurrent relay device according to this embodiment. / Amplitude values of red phase fault current data I R , white phase fault current data I W and blue phase fault current data I B converted from analog current to digital current by a digital conversion unit (not shown) are obtained.

第1乃至第3の限時要素動作判定部121〜123は、事故様相判定部15からハイレベルの事故様相判定結果信号(3相短絡事故発生を示す。)が入力されると、赤相、白相および青相事故電流データIR,IW,IBの振幅値が整定限時タップ値以上である否かを判定する。その結果、「赤相、白相および青相事故電流データIR,IW,IBの振幅値が整定限時タップ値以上である」と判定すると、第1乃至第3の限時要素動作判定部121〜123は、ハイレベルの出力信号と赤相、白相および青相事故電流データIR,IW,IBの振幅値とを第1乃至第3の時限処理部131〜133にそれぞれ出力する。
一方、第1乃至第3の限時要素動作判定部121〜123は、事故様相判定部15からロウレベルの事故様相判定結果信号(2相短絡事故発生を示す。)が入力されると、赤相、白相および青相事故電流データIR,IW,IBの振幅値を約0.866で割った値(以下、「振幅換算値」と称する。)を算出して、算出した赤相、白相および青相事故電流データIR,IW,IBの振幅換算値が整定限時タップ値以上であるか否かを判定する。その結果、「赤相、白相および青相事故電流データIR,IW,IBの振幅換算値が整定限時タップ値以上である」と判定すると、第1乃至第3の限時要素動作判定部121〜123は、ハイレベルの出力信号と赤相、白相および青相事故電流データIR,IW,IBの振幅換算値とを第1乃至第3の時限処理部131〜133にそれぞれ出力する。
When the first to third time-limit element operation determination units 12 1 to 12 3 receive a high-level accident mode determination result signal (indicating that a three-phase short-circuit accident has occurred) from the accident mode determination unit 15, the red phase Then, it is determined whether the amplitude values of the white phase and blue phase fault current data I R , I W , I B are equal to or greater than the settling time tap value. As a result, if it is determined that “the amplitude values of the red phase, white phase, and blue phase fault current data I R , I W , and I B are greater than or equal to the settling time limit tap value”, the first to third time element operation determining units 12 1 to 12 3 send the high level output signal and the amplitude values of the red, white and blue phase fault current data I R , I W and I B to the first to third time processing units 13 1 to 13 3 , respectively. Output each.
On the other hand, when the first to third time-limit element operation determination units 12 1 to 12 3 receive a low-level accident mode determination result signal (indicating the occurrence of a two-phase short-circuit fault) from the accident mode determination unit 15, A value obtained by dividing the amplitude value of the phase, white phase, and blue phase accident current data I R , I W , I B by about 0.866 (hereinafter referred to as “amplitude conversion value”) and calculating the calculated red phase Then, it is determined whether or not the amplitude converted values of the white phase and blue phase fault current data I R , I W , and I B are equal to or larger than the settling time tap value. As a result, if it is determined that “the amplitude converted values of the red, white, and blue phase fault current data I R , I W , and I B are equal to or larger than the settling time limit tap value”, the first to third time element operation determining units Reference numerals 12 1 to 12 3 denote high-level output signals and amplitude-converted values of red phase, white phase, and blue phase fault current data I R , I W , and I B as first to third time processing units 13 1 to 13, respectively. Output to 3 respectively.

第1乃至第3の時限処理部131〜133は、第1乃至第3の限時要素動作判定部121〜123からハイレベルの出力信号が入力されると、第1乃至第3の限時要素動作判定部121〜123から入力される赤相、白相および青相事故電流データIR,IW,IBの振幅値または振幅換算値を用いて範囲指定動作時限特性曲線aに従って動作時限を求め、求めた動作時限の経過後に各相遮断器を遮断するための第1乃至第3の限時要素トリップ信号T1R,T1W,T1Bをそれぞれ出力する。 The first to third time limit processing units 13 1 to 13 3 receive the high-level output signals from the first to third time limit element operation determination units 12 1 to 12 3 and receive the first to third time processing units. According to the range-designated operation time characteristic curve a using the amplitude value or the amplitude converted value of the red, white and blue phase fault current data I R , I W , I B input from the time element operation determination units 12 1 to 12 3. An operation time period is obtained, and first to third time element trip signals T1 R , T1 W , T1 B for breaking each phase breaker after the elapse of the obtained operation time period are output.

ここで、範囲指定動作時限特性曲線aは、以下に示す点で図8(b)に示した動作時限特性曲線Aと相違する。
(1)範囲指定動作時限特性曲線aの限時要素動作範囲における動作時限特性は、図2に示すように、総合インピーダンス%Zによって動作時限が一定である第1の定限時特性と、総合インピーダンス%Zに比例して動作時限が増加する比例限時特性と、総合インピーダンス%Zによって動作時限が一定である第2の定限時特性との組合せにより規定される。
(2)第1の定限時特性における動作時限は、動作時限特性曲線Aにおける動作時限よりも小さくされている。
(3)比例限時特性の比例係数は、協調点の時限とIT限界地点の時限との差を協調点の倍率とIT限界地点の倍率との差で割った値、または、協調点の時限とIT限界地点の時限との差を協調点の事故電流の振幅値とIT限界地点の事故電流の振幅値との差で割った値とする。
(4)第2の定限時特性における動作時限は、動作時限特性曲線Aにおける動作時限よりも小さくされている。
このような範囲指定動作時限特性曲線aを使用することにより、動作時限特性曲線Aを使用する場合に比べて、協調点を除いて過電流継電装置の動作時限を全体的に短縮することができる。
また、図8(b)に示した動作時限特性曲線Bの代わりに図2に示す範囲指定動作時限特性曲線bを使用することにより、次々区間において短絡事故が発生したときに次区間の過電流継電装置(たとえば図8(a)に示した第2の過電流継電装置1102)が図2に黒バツで示すように動作しなかった場合でも、電源側の過電流継電装置(たとえば図8(a)に示した第1の過電流継電装置1101)が図2に黒丸で示すように短い動作時限(約0.7s)で動作するので、送電線の保護信頼度を向上させることができる。
Here, the range specifying operation time characteristic curve a is different from the operation time characteristic curve A shown in FIG. 8B in the following points.
(1) As shown in FIG. 2, the operation time characteristic in the time element operation range of the range designation operation time characteristic curve a is the first time limit characteristic whose operation time is constant according to the total impedance% Z, and the total impedance%. It is defined by a combination of a proportional time characteristic in which the operation time period increases in proportion to Z and a second fixed time characteristic in which the operation time period is constant by the total impedance% Z.
(2) The operation time limit in the first fixed time characteristic is set to be smaller than the operation time limit in the operation time characteristic curve A.
(3) The proportional coefficient of the proportional time characteristic is a value obtained by dividing the difference between the time limit of the coordination point and the time limit of the IT limit point by the difference between the magnification of the cooperation point and the magnification of the IT limit point, or the time limit of the cooperation point The difference between the time limit at the IT limit point and the amplitude value of the accident current at the coordination point and the amplitude value of the accident current at the IT limit point is divided by the difference.
(4) The operation time limit in the second fixed time characteristic is made smaller than the operation time limit in the operation time characteristic curve A.
By using such a range specification operation time characteristic curve a, it is possible to shorten the operation time period of the overcurrent relay device as a whole, except for the coordination point, as compared to the case of using the operation time characteristic curve A. it can.
In addition, by using the range designation operation time characteristic curve b shown in FIG. 2 instead of the operation time characteristic curve B shown in FIG. Even when the relay device (for example, the second overcurrent relay device 110 2 shown in FIG. 8A) does not operate as shown by the black cross in FIG. 2, the overcurrent relay device ( For example, the first overcurrent relay device 110 1 ) shown in FIG. 8A operates in a short operation time period (about 0.7 s) as shown by a black circle in FIG. Can be improved.

第1乃至第3の瞬時要素動作判定部141〜143は、事故様相判定部15からハイレベルの事故様相判定結果信号(3相短絡事故発生を示す。)が入力されると、第1乃至第3の振幅値演算部111〜113から入力される赤相、白相および青相事故電流データIR,IW,IBの振幅値が整定瞬時タップ値以上であるか否かをそれぞれ判定する。その結果、「赤相、白相および青相事故電流データIR,IW,IBの振幅値が整定瞬時タップ値以上である」と判定すると、第1乃至第3の瞬時要素動作判定部141〜143は、各相遮断器を瞬時に遮断するための第1乃至第3の瞬時要素トリップ信号T2R,T2W,T2Bをそれぞれ出力する。
一方、第1乃至第3の瞬時要素動作判定部141〜14は、事故様相判定部15からロウレベルの事故様相判定結果信号(2相短絡事故発生を示す。)が入力されると、赤相、白相および青相事故電流データIR,IW,IBの振幅換算値(振幅値を約0.866で割った値)を算出して、算出した赤相、白相および青相事故電流データIR,IW,IBの振幅換算値が整定瞬時タップ値以上であるか否かをそれぞれ判定する。その結果、「赤相、白相および青相事故電流データIR,IW,IBの振幅換算値が整定瞬時タップ値以上である」と判定すると、第1乃至第3の瞬時要素動作判定部141〜143は、各相遮断器を瞬時に遮断するための第1乃至第3の瞬時要素トリップ信号T2R,T2W,T2Bをそれぞれ出力する。
The first to third instantaneous element motion determination units 14 1 to 14 3 receive the high-level accident mode determination result signal (indicating the occurrence of a three-phase short-circuit accident) from the accident mode determination unit 15 and receive the first. to third amplitude value calculating unit 11 1 to 11 3 red phase inputted from the white phase and Aosho fault current data I R, I W, whether the amplitude value of I B is settling instantaneous tap values higher Judge each one. As a result, if it is determined that “the amplitude values of the red, white, and blue phase fault current data I R , I W , and I B are equal to or greater than the settling instantaneous tap value”, the first to third instantaneous element operation determination units 14 1 to 14 3 respectively output first to third instantaneous element trip signals T2 R , T2 W , and T2 B for instantaneously interrupting each phase circuit breaker.
On the other hand, when the first to third instantaneous element motion determination units 14 1 to 14 receive a low-level accident mode determination result signal (indicating the occurrence of a two-phase short circuit accident) from the accident mode determination unit 15, the red phase , White phase and blue phase accident current data I R , I W , I B Amplitude conversion value (Amplitude value divided by about 0.866), and calculated red phase, white phase and blue phase accident current data It is determined whether or not the amplitude converted values of I R , I W , and I B are greater than or equal to the settling instantaneous tap value. As a result, if it is determined that “the amplitude converted values of the red, white, and blue phase fault current data I R , I W , and I B are greater than or equal to the settling instantaneous tap value”, the first to third instantaneous element operation determination units Reference numerals 14 1 to 14 3 respectively output first to third instantaneous element trip signals T2 R , T2 W , and T2 B for instantaneously interrupting each phase breaker.

事故様相判定部15は、第1乃至第3の振幅値演算部111〜113から入力される赤相、白相および青相事故電流データIR,IW,IBの振幅値に基づいて、事故様相が3相短絡事故であるか2相短絡事故であるかを判定する。その結果、「事故様相が3相短絡事故である」と判定すると、事故様相判定部15はハイレベルの事故様相判定結果信号を出力する。一方、「事故様相が2相短絡事故である」と判定すると、事故様相判定部15はロウレベルの事故様相判定結果信号を出力する。
このとき、事故様相判定部15は、赤相、白相および青相事故電流データIR,IW,IBの振幅値がすべて所定の閾値(整定限時タップ値でもよい。)よりも大きい場合に「事故様相が3相短絡事故である」と判定し、それ以外の場合には「事故様相が2相短絡事故である」と判定する。
Accident aspects determination unit 15, first to third amplitude value calculating unit 11 1 to 11 3 red phase inputted from the white phase and Aosho fault current data I R, I W, based on the amplitude value of I B Then, it is determined whether the accident aspect is a three-phase short-circuit accident or a two-phase short-circuit accident. As a result, when it is determined that “the accident aspect is a three-phase short-circuit accident”, the accident aspect determination unit 15 outputs a high-level accident aspect determination result signal. On the other hand, if it is determined that “the accident aspect is a two-phase short-circuit accident”, the accident aspect determination unit 15 outputs a low-level accident aspect determination result signal.
At this time, the accident aspect determination unit 15 determines that the amplitude values of the red-phase, white-phase, and blue-phase accident current data I R , I W , and I B are all greater than a predetermined threshold value (may be a settling time limit tap value). It is determined that “the accident aspect is a three-phase short-circuit accident”, and otherwise, it is determined that “the accident aspect is a two-phase short-circuit accident”.

第1の論理和回路161は、第1乃至第3の時限処理部131〜133から入力される第1乃至第3の限時要素トリップ信号T1R,T1W,T1Bの論理和をとることにより、各相遮断器を一括して動作時限経過後に遮断するための第1のトリップ信号T1を生成する。
第2の論理和回路162は、第1乃至第3の瞬時要素動作判定部141〜143から入力される第1乃至第3の瞬時要素トリップ信号T2R,T2W,T2Bの論理和をとることにより、各相遮断器を一括して瞬時に遮断するための第2のトリップ信号T2を生成する。
The first logical sum circuit 16 1 calculates the logical sum of the first to third time-limit element trip signals T1 R , T1 W , T1 B input from the first to third time-limit processing units 13 1 to 133. As a result, a first trip signal T1 is generated for shutting off the phase breakers at once after the operation time limit elapses.
The second OR circuit 16 2, first to third instantaneous element trip signal T2 R input from the first through third instantaneous element operation judging unit 14 1 to 14 3, T2 W, T2 logic B By taking the sum, a second trip signal T2 for instantaneously shutting off the phase breakers at once is generated.

次に、図8(a)に示した電力系統において短絡事故が発生したときの本実施例による過電流継電装置である第1および第2の過電流継電装置501,502の動作について、図3乃至図5を参照して説明する。 Next, the operation of the first and second overcurrent relay devices 50 1 and 50 2 that are the overcurrent relay devices according to the present embodiment when a short circuit accident occurs in the power system shown in FIG. Will be described with reference to FIGS.

まず、発生した短絡事故が3相短絡事故であった場合の第1および第2の過電流継電装置501,502の動作について、図4に示すフローチャートを参照して説明する。
図3(a)に示すように第2の過電流継電装置502よりも後方で3相短絡事故が発生すると、所定の閾値よりも大きな振幅値の事故電流Iが送電線の赤相、白相および青相にそれぞれ流れる。この事故電流Iは、第1および第2の変流器31,32(送電線の相ごとに設置されている。)を介して第1および第2の過電流継電装置501,502に入力され、入力フィルタによって必要な帯域の周波数成分のみが抽出され、さらにアナログ/ディジタル変換部によってアナログ電流からディジタル電流に変換されることにより、赤相、白相および青相事故電流データIR,IW,IBに変換される(ステップS11)。
First, the operation of the first and second overcurrent relay devices 50 1 and 50 2 when the short-circuit accident that has occurred is a three-phase short-circuit accident will be described with reference to the flowchart shown in FIG.
As shown in FIG. 3A, when a three-phase short circuit accident occurs behind the second overcurrent relay device 50 2, the fault current I having an amplitude value larger than a predetermined threshold is a red phase of the transmission line, It flows into the white phase and the blue phase, respectively. This fault current I is supplied to the first and second overcurrent relay devices 50 1 , 50 1 through the first and second current transformers 3 1 , 3 2 (installed for each phase of the transmission line). 50 2 , only the frequency component of the necessary band is extracted by the input filter, and further converted from the analog current to the digital current by the analog / digital conversion unit, whereby red phase, white phase and blue phase accident current data I Conversion into R , I W , and I B is performed (step S11).

第1および第2の過電流継電装置501,502では、トリップ信号発生回路10の第1乃至第3の振幅値演算部111〜113が、赤相、白相および青相事故電流データIR,IW,IBの振幅値をそれぞれ求める(ステップS12)。 In the first and second overcurrent relay devices 50 1 and 50 2 , the first to third amplitude value calculators 11 1 to 11 3 of the trip signal generation circuit 10 are connected to the red phase, white phase, and blue phase accident currents. The amplitude values of the data I R , I W , and I B are obtained (step S12).

また、事故要素判定部15は、第1乃至第3の振幅値演算部111〜113から入力される赤相、白相および青相事故電流データIR,IW,IBの振幅値がすべて所定の閾値よりも大きいため、「事故様相が3相短絡事故である」と判定してハイレベルの事故様相判定結果信号を出力する(ステップS13)。 Moreover, the accident element determination unit 15, first to third amplitude value calculating unit 11 1 to 11 3 red phase inputted from the white phase and Aosho fault current data I R, I W, the amplitude value of I B is Since all are larger than the predetermined threshold, it is determined that “the accident aspect is a three-phase short-circuit accident” and a high-level accident aspect determination result signal is output (step S13).

第2の過電流継電装置502では、第1乃至第3の瞬時要素動作判定部141〜143が、事故様相判定部15からハイレベルの事故様相判定結果信号(3相短絡事故発生を示す。)が入力されると、第1乃至第3の振幅値演算部111〜113から入力される赤相、白相および青相事故電流データIR,IW,IBの振幅値が整定瞬時タップ値以上であるか否かを判定する。その結果、たとえば赤相、白相および青相事故電流データIR,IW,IBの振幅値が30Aであると、赤相、白相および青相事故電流データIR,IW,IBの振幅値が整定瞬時タップ値以上である(図3(b)の白丸参照)ため、第1乃至第3の瞬時要素動作判定部141〜143は、第1乃至第3の瞬時要素トリップ信号T2R,T2W,T2Bをそれぞれ出力する(ステップS14)。
これにより、ハイレベルの第2のトリップ信号T2が第2の論理和回路162から第2の遮断器42(送電線の相ごとに設置されている。)に出力されて、第2の遮断器42が瞬時に遮断される。
In the second overcurrent relay device 50 2 , the first to third instantaneous element operation determination units 14 1 to 14 3 receive a high-level accident mode determination result signal from the accident mode determination unit 15 (a three-phase short-circuit accident occurs). are shown.) is input, first to third amplitude value calculating unit 11 1 to 11 3 red phase inputted from the white phase and Aosho fault current data I R, I W, the amplitude value of I B Is determined to be greater than or equal to the settling instantaneous tap value. As a result, for example, red phase, white phase and Aosho fault current data I R, I W, the amplitude value of I B is a 30A, red phase, white phase and Aosho fault current data I R, I W, the I B Since the amplitude value is equal to or larger than the settling instantaneous tap value (see the white circle in FIG. 3B), the first to third instantaneous element operation determination units 14 1 to 14 3 receive the first to third instantaneous element trip signals. T2 R , T2 W , and T2 B are output (step S14).
As a result, the high-level second trip signal T2 is output from the second OR circuit 16 2 to the second circuit breaker 4 2 (installed for each phase of the transmission line), and the second trip signal T2 is output. Circuit breaker 4 2 is shut off instantaneously.

また、第1の過電流継電装置501では、第1乃至第3の限時要素動作判定部121〜123が、事故様相判定部15からハイレベルの事故様相判定結果信号(3相短絡事故発生を示す。)が入力されると、第1乃至第3の振幅値演算部111〜113から入力される赤相、白相および青相事故電流データIR,IW,IBの振幅値が整定限時タップ値以上であるか否かを判定する。その結果、第1乃至第3の限時要素動作判定部121〜123は、「赤相、白相および青相事故電流データIR,IW,IBの振幅値が整定限時タップ値以上である」と判定して、ハイレベルの出力信号と赤相、白相および青相事故電流データIR,IW,IBの振幅値とを第1乃至第3の時限処理部131〜133にそれぞれ出力する(ステップS15)。 In the first overcurrent relay device 50 1 , the first to third time-limit element operation determination units 12 1 to 12 3 receive a high-level accident mode determination result signal (three-phase short circuit) from the accident mode determination unit 15. Is input), the red, white and blue phase accident current data I R , I W , I B input from the first to third amplitude value calculators 11 1 to 11 3 are input. It is determined whether the amplitude value is equal to or greater than the settling time tap value. As a result, the first to third time element operation determination units 12 1 to 12 3 indicate that “the amplitude values of the red phase, white phase, and blue phase fault current data I R , I W , I B are equal to or greater than the settling time limit tap value. The first to third time processing units 13 1 to 13 3 determine the high-level output signal and the red, white and blue phase fault current data I R , I W and I B as amplitude values. (Step S15).

第1乃至第3の時限処理部131〜133は、第1乃至第3の限時要素動作判定部121〜123からハイレベルの出力信号が入力されると、第1乃至第3の限時要素動作判定部121〜123から入力される赤相、白相および青相事故電流データIR,IW,IBの振幅値に基づいて図3(b)に示す範囲指定動作時限特性曲線aに従って求めた動作時限の経過後に、第1乃至第3の限時要素トリップ信号T1R,T1W,T1Bをそれぞれ出力する(ステップS16)。
これにより、ハイレベルの第1のトリップ信号T1が第1の論理和回路161から第1の遮断器41(送電線の相ごとに設置されている。)に出力されて、第1の遮断器41が動作時限経過後に遮断される。
The first to third time limit processing units 13 1 to 13 3 receive the high-level output signals from the first to third time limit element operation determination units 12 1 to 12 3 and receive the first to third time processing units. red phase input from time limit element operation judging unit 12 1 to 12 3, the white phase and Aosho fault current data I R, I W, I range designation operation time characteristics shown in FIG. 3 (b) based on the amplitude value of B After the operation time period determined according to the curve a has elapsed, the first to third time element trip signals T1 R , T1 W , T1 B are output (step S16).
Thus, a first trip signal T1 of a high level (which is installed on each phase of the transmission line.) The first OR circuit 16 1 first breaker 4 1 to be outputted, the first breaker 4 1 is interrupted after the operation timed lapse.

次に、発生した短絡事故が赤相と白相との間の2相短絡事故であった場合の第1および第2の過電流継電装置501,502の動作について、図5に示すフローチャートを参照して説明する。
第2の過電流継電装置502よりも後方で赤相と白相との2相短絡事故が発生すると、所定の閾値よりも大きな振幅値の事故電流Iが送電線の赤相および白相にそれぞれ流れる。送電線の赤相、白相および青相にそれぞれ流れる事故電流Iは、第1および第2の変流器31,32を介して第1および第2の過電流継電装置501,502に入力され、入力フィルタによって必要な帯域の周波数成分のみが抽出され、さらにアナログ/ディジタル変換部によってアナログ電流値からディジタル電流値に変換されることにより、赤相、白相および青相事故電流データIR,IW,IBに変換される(ステップS21)。
Next, the flowchart shown in FIG. 5 shows the operation of the first and second overcurrent relay devices 50 1 and 50 2 when the short-circuit accident that has occurred is a two-phase short-circuit accident between the red phase and the white phase. Will be described with reference to FIG.
When a two-phase short-circuit accident between the red phase and the white phase occurs behind the second overcurrent relay device 50 2 , the fault current I having an amplitude value larger than a predetermined threshold value is applied to the red phase and the white phase of the transmission line, respectively. Flowing. The fault currents I flowing in the red phase, white phase and blue phase of the transmission line are respectively supplied to the first and second overcurrent relay devices 50 1 and 50 via the first and second current transformers 3 1 and 3 2. 2 and only the frequency component of the required band is extracted by the input filter, and further converted from the analog current value to the digital current value by the analog / digital conversion unit, so that the red, white and blue phase accident current data Converted to I R , I W , I B (step S21).

第1および第2の過電流継電装置501,502では、トリップ信号発生回路10の第1乃至第3の振幅値演算部111〜113が、赤相、白相および青相事故電流データIR,IW,IBの振幅値をそれぞれ求める(ステップS22)。 In the first and second overcurrent relay devices 50 1 and 50 2 , the first to third amplitude value calculators 11 1 to 11 3 of the trip signal generation circuit 10 are connected to the red phase, white phase, and blue phase accident currents. The amplitude values of the data I R , I W , and I B are obtained (step S22).

また、事故要素判定部15は、第1乃至第3の振幅値演算部111〜113から入力される赤相、白相および青相事故電流データIR,IW,IBの振幅値のうち赤相および白相事故電流データIR,IWの振幅値のみが所定の閾値よりも大きいため、「事故様相が2相短絡事故である」と判定して、ロウレベルの事故様相判定結果信号を出力する(ステップS23)。 Moreover, the accident element determination unit 15, first to third amplitude value calculating unit 11 1 to 11 3 red phase inputted from the white phase and Aosho fault current data I R, I W, the amplitude value of I B Since only the amplitude values of the red and white phase accident current data I R and I W are larger than the predetermined threshold, it is determined that “the accident mode is a two-phase short-circuit fault” and the low-level accident mode determination result signal is Output (step S23).

第2の過電流継電装置502では、第1および第2の瞬時要素動作判定部141,142が、事故様相判定部15からロウレベルの事故様相判定結果信号(2相短絡事故発生を示す。)が入力されると、第1および第2の振幅値演算部111,112から入力される赤相および白相事故電流データIR,IWの振幅値を約0.866で割って赤相および白相事故電流データIR,IWの振幅換算値を算出し、算出した赤相および白相事故電流データIR,IWの振幅換算値が整定瞬時タップ値以上であるか否かを判定する。その結果、たとえば図3(b)に示すように赤相および白相事故電流データIR,IWの振幅値が26Aであっても、第1および第2の瞬時要素動作判定部141,142は、同図(b)に白矢印で示す26Aを約0.866で割って赤相および白相事故電流データIR,IWの振幅換算値=30Aを算出し、「赤相および白相事故電流データIR,IWの振幅換算値が整定瞬時タップ値以上である」と判定して、第1および第2の瞬時要素トリップ信号T2R,T2Wをそれぞれ出力する(ステップS24)。
これにより、ハイレベルの第2のトリップ信号T2が第2の論理和回路162から第2の遮断器42に出力されて、第2の遮断器42が瞬時に遮断される。
In the second overcurrent relay device 50 2 , the first and second instantaneous element operation determination units 14 1 , 14 2 receive a low-level accident mode determination result signal (a two-phase short-circuit accident occurrence) from the accident mode determination unit 15. Is input), the amplitude values of the red and white phase fault current data I R and I W input from the first and second amplitude value calculation units 11 1 and 11 2 are divided by about 0.866. red phase and Te Shirosho fault current data I R, calculates the amplitude corresponding value of I W, calculated red phase and Shirosho fault current data I R, whether amplitude corresponding value of I W is settling instantaneous tap values higher Determine. As a result, for example, as shown in FIG. 3B, even if the amplitude values of the red-phase and white-phase accident current data I R , I W are 26 A, the first and second instantaneous element operation determination units 14 1 , 14 2 is calculated by dividing 26A indicated by a white arrow in FIG. 2B by about 0.866 to calculate the amplitude conversion value = 30A of the red and white phase accident current data I R and I W , It is determined that the amplitude converted values of the current data I R and I W are equal to or larger than the settling instantaneous tap value, and the first and second instantaneous element trip signals T2 R and T2 W are output (step S24).
Thus, the second trip signal T2 of high level is output from the second OR circuit 16 2 in the second circuit breaker 4 2, the second circuit breaker 4 2 is cut off instantly.

また、第1の過電流継電装置501では、第1および第2の限時要素動作判定部121,122が、事故様相判定部15からロウレベルの事故様相判定結果信号(2相短絡事故発生を示す。)が入力されると、第1および第2の振幅値演算部111,112から入力される赤相および白相事故電流データIR,IWの振幅値を約0.866で割って赤相および白相事故電流データIR,IWの振幅換算値を算出し、算出した赤相および白相事故電流データIR,IWの振幅換算値が整定限時タップ値以上であるか否かを判定する。その結果、たとえば図3(b)に示すように赤相および白相事故電流データIR,IWの振幅値が26Aであっても、第1および第2の限時要素動作判定部121,122は、同図(b)に白矢印で示す26Aを約0.866で割って赤相および白相事故電流データIR,IWの振幅換算値=30Aを算出し、「赤相および白相事故電流データIR,IWの振幅換算値が整定限時タップ値以上である」と判定して、ハイレベルの出力信号を第1および第2の時限処理部131,132にそれぞれ出力する(ステップS25)。 Further, in the first overcurrent relay device 50 1 , the first and second time-limit element operation determination units 12 1 and 12 2 receive a low-level accident mode determination result signal (two-phase short circuit fault) from the accident mode determination unit 15. Is input), the amplitude values of the red and white phase fault current data I R and I W input from the first and second amplitude value calculation units 11 1 and 11 2 are set to about 0.866. divided by calculated amplitude converted value of the red phase and Shirosho fault current data I R, I W, calculated red phase and Shirosho fault current data I R, or amplitude corresponding value of I W is not less than the tap value when SeiJogen Determine whether or not. As a result, for example, as shown in FIG. 3B, even if the amplitude values of the red-phase and white-phase fault current data I R , I W are 26 A, the first and second time limit element operation determination units 12 1 , 12 2 is calculated by dividing 26A indicated by a white arrow in FIG. 2B by about 0.866 to calculate the amplitude conversion value = 30A of the red and white phase accident current data I R and I W , It is determined that the amplitude converted values of the current data I R and I W are equal to or larger than the settling time limit tap value, and a high level output signal is output to the first and second time processing units 13 1 and 13 2 , respectively ( Step S25).

第1および第2の時限処理部131,132は、第1および第2の限時要素動作判定部121,122からハイレベルの出力信号が入力されると、第1および第2の限時要素動作判定部121,122から入力される赤相および白相事故電流データIR,IWの振幅換算値に基づいて図3(b)に示す範囲指定動作時限特性曲線aに従って求めた動作時限の経過後に、第1および第2の限時要素トリップ信号T1R,T1Wをそれぞれ出力する(ステップS26)。
これにより、ハイレベルの第1のトリップ信号T1が第1の論理和回路161から第1の遮断器41に出力されて、第1の遮断器41が動作時限経過後に遮断される。
When the first and second time limit processing units 13 1 and 13 2 receive high level output signals from the first and second time limit element operation determination units 12 1 and 12 2 , the first and second time limit processing units 13 1 and 13 2 Based on the amplitude-converted values of the red-phase and white-phase fault current data I R , I W input from the time-limit element operation determination units 12 1 , 12 2 , it was obtained according to the range-designated operation time-limit characteristic curve a shown in FIG. After the elapse of the operation time period, the first and second time element trip signals T1 R and T1 W are output (step S26).
Thus, a first trip signal T1 of the high level is output from the first OR circuit 16 1 to the first breaker 4 1, the first breaker 4 1 is interrupted after the operation timed lapse.

なお、図9(a)に示した過電流継電装置220の代わりに本実施例による過電流継電装置を用いることにより、短絡距離継電装置の2段動作領域が狭くなることを防ぐことができるとともに、短絡距離継電装置が過電流継電装置の不動作時の遠端保護を3段動作領域で行うことを防ぐことができる。   Note that the use of the overcurrent relay device according to the present embodiment instead of the overcurrent relay device 220 shown in FIG. 9A prevents the two-stage operation region of the short-circuit distance relay device from being narrowed. In addition, it is possible to prevent the short-circuit distance relay device from performing far-end protection when the overcurrent relay device is not operating in the three-stage operation region.

以上の説明では、第1乃至第3の瞬時要素動作判定部141〜143および第1乃至第3の限時要素動作判定部121〜123は、2相短絡事故時の事故電流の振幅値を31/2/2で割ることにより2相短絡事故時の事故電流の振幅値を3相短絡事故時の事故電流の振幅値に換算したが、3相短絡事故時の事故電流の振幅値に31/2/2を掛けることにより3相短絡事故時の事故電流の振幅値を2相短絡事故時の事故電流の振幅値に換算してもよい。なお、この場合には、3相短絡事故時の事故電流の振幅値に基づいて過電流継電装置の動作時限を定める範囲指定動作時限特性曲線の代わりに、2相短絡事故時の事故電流の振幅値に基づいて過電流継電装置の動作時限を定める範囲指定動作時限特性曲線を使用する。 In the above description, the first to third instantaneous element operation determination units 14 1 to 14 3 and the first to third time limit element operation determination units 12 1 to 12 3 use the amplitude of the accident current at the time of the two-phase short circuit accident. By dividing the value by 3 1/2 / 2, the amplitude value of the accident current at the time of the two-phase short circuit accident was converted into the amplitude value of the accident current at the time of the three-phase short circuit accident. By multiplying the value by 3 1/2 / 2, the amplitude value of the accident current at the time of the three-phase short circuit accident may be converted into the amplitude value of the accident current at the time of the two-phase short circuit accident. In this case, instead of the range-specified operation time characteristic curve that determines the operation time limit of the overcurrent relay device based on the amplitude value of the accident current at the time of the three-phase short circuit accident, A range-designated operation time characteristic curve that determines the operation time limit of the overcurrent relay device based on the amplitude value is used.

また、第1乃至第3の時限処理部131〜133では範囲指定動作時限特性曲線aを使用して動作時限を求めたが、図6に示す比例動作時限特性曲線mまたは図7に示す多段動作時限特性曲線pを使用して動作時限を求めてもよい。 In the first to third time processing units 13 1 to 13 3 , the operation time limit is obtained by using the range designation operation time characteristic curve a. However, the proportional operation time characteristic curve m shown in FIG. 6 or FIG. The operation time limit may be obtained using the multistage operation time characteristic curve p.

ここで、比例動作時限特性曲線mは、以下に示す点で図8(b)に示した動作時限特性曲線Aと相違する。
(1)比例動作時限特性曲線mの限時要素動作範囲における動作時限特性は、図6に示すように、総合インピーダンス%Zに比例して動作時限が増加する比例限時特性により規定される。
(2)比例限時特性における動作時限は、協調点を除いて動作時限特性曲線Aにおける動作時限よりも小さくされている。
(3)比例係数は、協調点の時限とIT限界地点の時限との差を協調点の倍率とIT限界地点の倍率との差で割った値、または、協調点の時限とIT限界地点の時限との差を協調点の事故電流の振幅値とIT限界地点の事故電流の振幅値との差で割った値とする。
このような比例動作時限特性曲線mを使用することにより、動作時限特性曲線Aを使用する場合に比べて、協調点を除いて過電流継電装置の動作時限を全体的に短縮することができる。
また、図8(b)に示した動作時限特性曲線Bの代わりに図6に示す比例動作時限特性曲線nを使用することにより、次々区間において短絡事故が発生したときに次区間の過電流継電装置(たとえば図8(a)に示した第2の過電流継電装置1102)が図6に黒バツで示すように動作しなかった場合でも、電源側の過電流継電装置(たとえば図8(a)に示した第1の過電流継電装置1101)は図6に黒丸で示すように短い動作時限(約1.5s)で動作するので、送電線の保護信頼度を向上させることができる。
Here, the proportional operation time characteristic curve m is different from the operation time characteristic curve A shown in FIG. 8B in the following points.
(1) The operation time characteristic in the time element operating range of the proportional operation time characteristic curve m is defined by a proportional time characteristic in which the operation time increases in proportion to the total impedance% Z, as shown in FIG.
(2) The operation time period in the proportional time characteristic is set to be smaller than the operation time period in the operation time characteristic curve A except for the coordination point.
(3) The proportionality coefficient is a value obtained by dividing the difference between the time limit of the coordination point and the time limit of the IT limit point by the difference between the magnification of the coordination point and the magnification of the IT limit point, or the time limit of the coordination point and the IT limit point The difference from the time is divided by the difference between the fault current amplitude value at the coordination point and the fault current amplitude value at the IT limit point.
By using such a proportional operation time characteristic curve m, the operation time period of the overcurrent relay device can be shortened as a whole, except for the coordination point, as compared with the case where the operation time characteristic curve A is used. .
Further, by using the proportional operation time characteristic curve n shown in FIG. 6 in place of the operation time characteristic curve B shown in FIG. Even when the electric device (for example, the second overcurrent relay device 110 2 shown in FIG. 8A) does not operate as indicated by the black cross in FIG. 6, the overcurrent relay device on the power source side (for example, Since the first overcurrent relay device 110 1 ) shown in FIG. 8A operates in a short operation time (about 1.5 s) as shown by a black circle in FIG. 6, the protection reliability of the transmission line is improved. Can be made.

多段動作時限特性曲線pは、以下に示す点で図8(b)に示した動作時限特性曲線Aと相違する。
(1)多段動作時限特性曲線pの限時要素動作範囲における動作時限特性は、図7に示す強反限時特性と普通反限時特性との組合せのように、複数の動作限時特性の組合せにより規定される。
(2)後備保護継電装置(図8(b)の第2の過電流継電装置1102など)の瞬時要素動作範囲内では、多段動作時限特性曲線pの限時要素動作範囲における動作時限特性(図7に示す例では強反限時特性)は、動作時限が動作時限特性曲線A(図7に示す例では普通反限時特性)よりも小さくされている。
また、図8(b)に示した動作時限特性曲線Bの代わりに図7に示す多段動作時限特性曲線qを使用すると、限時要素動作範囲をすべてたとえば強反限時特性として規定した動作時限特性曲線を使用した場合に比べて限時要素動作範囲における必要な保護範囲を確保することができる。
The multistage operation time characteristic curve p is different from the operation time characteristic curve A shown in FIG.
(1) The operation time characteristic in the time element operation range of the multistage operation time characteristic curve p is defined by a combination of a plurality of operation time characteristics, such as the combination of the strong anti-time characteristic and the normal anti-time characteristic shown in FIG. The
(2) In the back-up protective relay device instantaneous elements operating range (FIG. 8 (b) second overcurrent relay device 110 2 etc.), the operation time characteristics of the time limit elements operating range of the multi-stage operation time characteristics curve p In the example shown in FIG. 7, the strong time limit characteristic is such that the operation time period is smaller than the operation time characteristic curve A (the normal time limit characteristic in the example shown in FIG. 7).
In addition, when the multistage operation time characteristic curve q shown in FIG. 7 is used instead of the operation time characteristic curve B shown in FIG. 8B, the operation time characteristic curve in which the time limit element operation range is all defined as, for example, a strong reaction time characteristic. The necessary protection range in the time limit element operation range can be ensured as compared with the case of using.

さらに、3相短絡事故時の事故電流の振幅値に基づいて過電流継電装置の動作時限を定める動作時限特性曲線を使用したが、タップ倍率に基づいて過電流継電装置の動作時限を定める動作時限特性曲線を使用する場合には、事故様相判定部15における判定結果に応じて、3相短絡事故時の整定タップ値を2相短絡事故時の整定タップ値に換算してまたは2相短絡事故時の整定タップ値を3相短絡事故時の整定タップ値に換算して、短絡事故時の事故電流の振幅値をこの換算した整定タップ値で割ってタップ倍率を算出し、この算出しタップ倍率に基づいて動作時限特性曲線に従って過電流継電装置の動作時限を求めてもよい。   Furthermore, although the operation time characteristic curve that determines the operation time limit of the overcurrent relay device based on the amplitude value of the accident current at the time of the three-phase short circuit accident is used, the operation time limit of the overcurrent relay device is determined based on the tap magnification. When using the operating time characteristic curve, the settling tap value at the time of the three-phase short-circuit accident is converted into the settling tap value at the time of the two-phase short-circuit accident or the two-phase short-circuit according to the determination result in the accident mode determination unit 15 The settling tap value at the time of the accident is converted into the settling tap value at the time of the three-phase short-circuit accident, and the tap current is calculated by dividing the amplitude value of the accident current at the time of the short-circuit accident by the converted settling tap value. The operation time limit of the overcurrent relay device may be obtained according to the operation time characteristic curve based on the magnification.

すなわち、3相短絡事故時のタップ倍率に基づいて過電流継電装置の動作時限を定める動作時限特性を使用する場合には、第1乃至第3の瞬時要素動作判定部141〜143は、事故様相判定部15からロウレベルの事故様相判定結果信号(2相短絡事故発生を示す。)が入力されると、赤相および白相事故電流データIR,IWの振幅換算値を算出する代わりに整定瞬時タップ値に31/2/2を掛けた整定瞬時タップ換算値を用いて、赤相および白相事故電流データIR,IWの振幅値を整定瞬時タップ換算値で割ってタップ倍率を算出し、算出しタップ倍率に基づいて動作時限特性曲線に従って第1および第2の瞬時要素トリップ信号T2R,T2Wをそれぞれ出力する。
同様に、第1乃至第3の限時要素動作判定部121〜123は、事故様相判定部15からロウレベルの事故様相判定結果信号(2相短絡事故発生を示す。)が入力されると、赤相および白相事故電流データIR,IWの振幅換算値を算出する代わりに整定限時タップ値に31/2/2を掛けた整定限時タップ換算値を用いて、赤相および白相事故電流データIR,IWの振幅値が整定限時タップ換算値以上であるか否かを判定し、赤相および白相事故電流データIR,IWの振幅値が整定限時タップ換算値以上である場合にハイレベルの出力信号を第1および第2の時限処理部131,132に出力する。このとき、第1および第2の時限処理部131,132は、第1および第2の限時要素動作判定部121,122から入力される赤相および白相事故電流データIR,IWの振幅値を第1および第2の限時要素動作判定部121,122から入力される整定限時タップ換算値で割ってタップ倍率を算出し、算出しタップ倍率に基づいて動作時限特性曲線から求めた動作時限の経過後に、第1および第2の限時要素トリップ信号T1R,T1Wをそれぞれ出力する。
That is, when using the operation time characteristic that determines the operation time limit of the overcurrent relay device based on the tap magnification at the time of the three-phase short-circuit accident, the first to third instantaneous element operation determination units 14 1 to 14 3 When a low-level accident mode determination result signal (indicating the occurrence of a two-phase short-circuit fault) is input from the accident mode determination unit 15, instead of calculating the amplitude-converted values of the red-phase and white-phase fault current data I R and I W Using the settling instantaneous tap converted value obtained by multiplying the settling instantaneous tap value by 3 1/2 / 2, the amplitude value of the red and white phase accident current data I R and I W is divided by the settling instantaneous tap converted value to obtain the tap magnification. And the first and second instantaneous element trip signals T2 R and T2 W are output according to the calculated time-dependent characteristic curve based on the tap magnification.
Similarly, the first to third time-limit element operation determination units 12 1 to 12 3 receive a low-level accident mode determination result signal (indicating the occurrence of a two-phase short circuit accident) from the accident mode determination unit 15. Instead of calculating the red-phase and white-phase accident current data I R and I W , the red-phase and white-phase accident currents are calculated using the settling time-tap converted value obtained by multiplying the settling time-tap value by 3 1/2 / 2. When it is determined whether the amplitude values of the data I R and I W are equal to or greater than the settling time tap conversion value, and the red and white phase fault current data I R and I W are greater than the settling time tap conversion value A high level output signal is output to the first and second time processing units 13 1 and 13 2 . At this time, the first and second time limit processing units 13 1 and 13 2 receive the red and white phase fault current data I R and I input from the first and second time limit element operation determination units 12 1 and 12 2. The tap magnification is calculated by dividing the amplitude value of W by the settled time limit tap conversion value input from the first and second time limit element motion determination units 12 1 and 12 2 , and the operation time characteristic curve is calculated based on the calculated tap magnification. After the elapse of the operation time period obtained from the above, the first and second time element trip signals T1 R and T1 W are output, respectively.

また、2相短絡事故時のタップ倍率に基づいて過電流継電装置の動作時限を定める動作時限特性を使用する場合には、第1乃至第3の瞬時要素動作判定部141〜143は、事故様相判定部15からハイレベルの事故様相判定結果信号(3相短絡事故発生を示す。)が入力されると、赤相、白相および青相事故電流データIR,IW,IBの振幅換算値を算出する代わりに整定瞬時タップ値を31/2/2で割った整定瞬時タップ換算値を用いて、赤相、白相および青相事故電流データIR,IW,IBの振幅値を整定瞬時タップ換算値で割ってタップ倍率を算出し、算出しタップ倍率に基づいて動作時限特性曲線に従って第1乃至第3の瞬時要素トリップ信号T2R,T2W,T2Bをそれぞれ出力する。
同様に、第1乃至第3の限時要素動作判定部121〜123は、事故様相判定部15からハイレベルの事故様相判定結果信号(3相短絡事故発生を示す。)が入力されると、赤相、白相および青事故電流データIR,IW,IBの振幅換算値を算出する代わりに整定限時タップ値を31/2/2で割った整定限時タップ換算値を用いて、赤相、白相および青相事故電流データIR,IW,IBの振幅値が整定限時タップ換算値以上であるか否かを判定し、赤相、白相および青相事故電流データIR,IW,IBの振幅値が整定限時タップ換算値以上である場合にハイレベルの出力信号を第1乃至第3の時限処理部131〜133に出力する。このとき、第1乃至第3の時限処理部131〜133は、第1乃至第3の限時要素動作判定部121〜123から入力される赤相、白相および青相事故電流データIR,IW,IBの振幅値を第1乃至第3の限時要素動作判定部121〜123から入力される整定限時タップ換算値で割ってタップ倍率を算出し、算出しタップ倍率に基づいて動作時限特性曲線から求めた動作時限の経過後に、第1乃至第3の限時要素トリップ信号T1R,T1W,T1Bをそれぞれ出力する。
In addition, when using the operation time characteristic that determines the operation time period of the overcurrent relay device based on the tap magnification at the time of the two-phase short circuit accident, the first to third instantaneous element operation determination units 14 1 to 14 3 are When a high-level accident mode determination result signal (indicating the occurrence of a three-phase short-circuit accident) is input from the accident mode determination unit 15, the red, white and blue phase accident current data I R , I W , I B using settling instantaneous tap converted value obtained by dividing the settling instantaneous tap values at 3 1/2 / 2 instead of calculating the amplitude conversion value, the red phase, the white phase and Aosho fault current data I R, I W, the I B The tap magnification is calculated by dividing the amplitude value by the settling instantaneous tap conversion value, and the first to third instantaneous element trip signals T2 R , T2 W , T2 B are output according to the operation time characteristic curve based on the calculated tap magnification. To do.
Similarly, when the first to third time-limit element operation determination units 12 1 to 12 3 receive a high-level accident mode determination result signal (indicating that a three-phase short circuit accident has occurred) from the accident mode determination unit 15. Instead of calculating the amplitude converted values of red phase, white phase and blue accident current data I R , I W , I B , use the settling time tap converted value obtained by dividing the settling time tap value by 3 1/2 / 2, It is determined whether the red, white, and blue phase fault current data I R , I W , and I B are greater than the settling time tap converted value, and the red, white, and blue phase fault current data I R , When the amplitude values of I W and I B are equal to or greater than the settling time tap conversion value, a high level output signal is output to the first to third time processing units 13 1 to 13 3 . At this time, the first to third time limit processing units 13 1 to 13 3 receive the red phase, white phase, and blue phase accident current data I input from the first to third time limit element operation determination units 12 1 to 12 3. R, I W, divided by SeiJogen tap converted value of the amplitude value is input from the first through third time limit element operation judging unit 12 1 to 12 3 I B calculates the tap factor, the calculated tap factor Based on the operation time characteristic curve obtained based on the operation time characteristic curve, the first to third time element trip signals T1 R , T1 W and T1 B are output.

さらにまた、トリップ信号発生回路10は、事故様相判定部15を備える代わりに、第1乃至第3の限時要素動作判定部121〜123が、第1乃至第3の限時要素動作判定部121〜123の出力信号がすべてハイレベルとなっている場合には「事故様相が3相短絡事故である」として上述した処理を行い、一方、第1乃至第3の限時要素動作判定部121〜123の出力信号のいずれか1つがロウレベルとなっている場合には「事故様相が2相短絡事故である」として上述した処理を行ってもよい。第1乃至第3の瞬時要素動作判定部141〜143についても同様である。 Furthermore, the trip signal generation circuit 10 includes the first to third time limit element operation determination units 12 1 to 12 3 instead of the accident aspect determination unit 15, and the first to third time limit element operation determination units 12. When all the output signals 1 to 12 3 are at a high level, the above-described processing is performed as “the accident aspect is a three-phase short-circuit accident”, while the first to third time-limit element operation determination units 12 are performed. When any one of the output signals 1 to 12 3 is at a low level, the above-described processing may be performed assuming that the accident aspect is a two-phase short-circuit accident. The same applies to the first to third instantaneous element motion determination units 14 1 to 14 3 .

さらにまた、トリップ信号発生回路10は事故様相判定部15を備えたが、事故様相判定部15はなくてもよい。この場合でも、第1乃至第3の時限処理部131〜133は、赤相、白相および青相事故電流データIR,IW,IBの振幅値に基づいて範囲指定動作時限特性a,b、比例動作時限特性m,nまたは多段動作時限特性p,qに従って過電流継電装置501,502の動作時限を求めることにより、従来の動作時限特性A,Bを使用する場合に比べて過電流継電装置501,502の動作時限を短縮することができる。 Furthermore, although the trip signal generation circuit 10 includes the accident aspect determination unit 15, the accident aspect determination unit 15 may be omitted. Even in this case, the first to third time processing units 13 1 to 13 3 perform the range designation operation time characteristic a based on the amplitude values of the red phase, white phase, and blue phase fault current data I R , I W , I B. , B, proportional operation time characteristics m, n or multistage operation time characteristics p, q, by determining the operation time of the overcurrent relay devices 50 1 , 50 2 , when using the conventional operation time characteristics A, B In comparison, the operation time limit of the overcurrent relay devices 50 1 and 50 2 can be shortened.

本発明の一実施例による過電流継電装置が具備するトリップ信号発生回路10の構成を示すブロック図である。1 is a block diagram illustrating a configuration of a trip signal generation circuit 10 included in an overcurrent relay device according to an embodiment of the present invention. 図1に示した第1乃至第3の時限処理部131〜133において使用される範囲指定動作時限特性曲線aについて説明するための図である。It is a diagram for explaining range designation operation time characteristics curve a used in the first to third timed processor 131-134 3 shown in FIG. 電力系統において送電線の短絡事故が発生したときの第1および第2の過電流継電装置501,502の動作を説明するための図である。It is a diagram for explaining the first and second overcurrent relay device 50 1, 50 2 of the operation when the short circuit in the transmission line occurs in the power system. 図3(a)に示した電力系統において3相短絡事故が発生したときの第1および第2の過電流継電装置501,502の動作を説明するためのフローチャートである。4 is a flowchart for explaining the operation of first and second overcurrent relay devices 50 1 and 50 2 when a three-phase short-circuit accident occurs in the power system shown in FIG. 図3(a)に示した電力系統において2相短絡事故が発生したときの第1および第2の過電流継電装置501,502の動作を説明するためのフローチャートである。4 is a flowchart for explaining the operation of the first and second overcurrent relay devices 50 1 and 50 2 when a two-phase short circuit accident occurs in the power system shown in FIG. 図2に示した範囲指定動作時限特性曲線aの代わりに使用することができる比例動作時限特性曲線mについて説明するための図である。It is a figure for demonstrating the proportional operation time characteristic curve m which can be used instead of the range designation | designated operation time characteristic curve a shown in FIG. 図2に示した範囲指定動作時限特性曲線aの代わりに使用することができる多段動作時限特性曲線pについて説明するための図である。It is a figure for demonstrating the multistage operation | movement time characteristic curve p which can be used instead of the range designation | designated operation | movement time characteristic curve a shown in FIG. 従来の過電流継電装置において2相短絡事故時に動作時限が遅くなることを説明するための図である。It is a figure for demonstrating that an operation time limit becomes late at the time of a two-phase short circuit accident in the conventional overcurrent relay apparatus. 従来の過電流継電装置において2相短絡事故時に動作時限が遅くなることを説明するための図である。It is a figure for demonstrating that an operation time limit becomes late at the time of a two-phase short circuit accident in the conventional overcurrent relay apparatus.

1 電源
1,32 第1および第2の変流器
1,42 第1および第2の遮断器
10 トリップ信号発生回路
111〜113 第1乃至第3の振幅値演算部
121〜123 第1乃至第3の限時要素動作判定部
131〜133 第1乃至第3の時限処理部
141〜143 第1乃至第3の瞬時要素動作判定部
15 事故様相判定部
161,162 第1および第2の論理和回路
1101,1102 第1および第2の過電流継電装置
210 短絡距離継電装置
220 過電流継電装置
A,B,A’,B’,C,D,C’,D’ 動作時限特性曲線
a,b 範囲指定動作時限特性曲線
m,n 比例動作時限特性曲線
p,q 多段動作時限特性曲線
I 事故電流
R,IW,IB 赤相、白相および青相事故電流データ
T1R,T1W,T1B 第1乃至第3の限時要素トリップ信号
T2R,T2W,T2B 第1乃至第3の瞬時要素トリップ信号
T1,T2 第1および第2のトリップ信号
S11〜S16,S21〜S26 ステップ
DESCRIPTION OF SYMBOLS 1 Power supply 3 1 , 3 2 1st and 2nd current transformer 4 1 , 4 2 1st and 2nd circuit breaker 10 Trip signal generation circuit 11 1-11 3 1st thru | or 3rd amplitude value calculating part 12 1 to 3 1st to 3rd time-limit element operation determination unit 13 1 to 1 3 1st to 3rd time processing unit 14 1 to 14 3 1st to 3rd instantaneous element operation determination unit 15 Accident aspect determination unit 16 1 , 16 2 First and second OR circuits 110 1 , 110 2 First and second overcurrent relay devices 210 Short-circuit distance relay device 220 Overcurrent relay devices A, B, A ′, B ', C, D, C', D 'Operation time characteristic curve a, b Range specification operation time characteristic curve m, n Proportional operation time characteristic curve p, q Multi-stage operation time characteristic curve I Fault current I R , I W , I B red phase, white phase and Aosho fault current data T1 R, T1 W, T1 B first through third time limiting element trip signal T2 R T2 W, T2 B first to third instantaneous element trip signals T1, T2 the first and second trip signal S11 to S16, S21 to S26 step

Claims (15)

電力系統における送電線の短絡事故時の保護に用いられる過電流継電装置であって、
短絡事故時の事故電流の振幅値に基づいて前記過電流継電装置の動作時限を定める動作時限特性に従って前記過電流継電装置の動作時限を求める動作時限決定手段を具備し、
前記動作時限特性が範囲指定動作時限特性とされており、
前記範囲指定動作時限特性の瞬時要素動作範囲における動作時限特性が定限時特性により規定され、
前記範囲指定動作時限特性の限時要素動作範囲における動作時限特性が、電源(1)からの総合インピーダンスによって動作時限が一定である第1の定限時特性、前記総合インピーダンスに比例して動作時限が増加する比例限時特性および前記総合インピーダンスによって動作時限が一定である第2の定限時特性の組合せにより規定される、
ことを特徴とする、過電流継電装置。
An overcurrent relay device used for protection in the event of a short circuit accident of a transmission line in an electric power system,
Comprising an operation time period determining means for determining an operation time period of the overcurrent relay device according to an operation time period characteristic that determines an operation time period of the overcurrent relay device based on an amplitude value of an accident current at the time of a short circuit accident;
The operation time characteristic is a range specification operation time characteristic,
The operation time characteristic in the instantaneous element operation range of the range specification operation time characteristic is defined by the fixed time characteristic,
The time limit element of the range specified operation time characteristic is the first time limit characteristic in which the operation time period is constant by the total impedance from the power source (1), and the operation time period increases in proportion to the total impedance. Defined by a combination of a proportional time-delay characteristic and a second time-delay characteristic whose operating time is constant by the total impedance,
An overcurrent relay device.
電力系統における送電線の短絡事故時の保護に用いられる過電流継電装置であって、
短絡事故時の事故電流の振幅値に基づいて前記過電流継電装置の動作時限を定める動作時限特性に従って前記過電流継電装置の動作時限を求める動作時限決定手段を具備し、
前記動作時限特性が比例動作時限特性とされており、
前記比例動作時限特性の瞬時要素動作範囲における動作時限特性が定限時特性により規定され、
前記比例動作時限特性の限時要素動作範囲における動作時限特性が、電源(1)からの総合インピーダンスに比例して動作時限が増加する比例限時特性により規定される、
ことを特徴とする、過電流継電装置。
An overcurrent relay device used for protection in the event of a short circuit accident of a transmission line in an electric power system,
Comprising an operation time period determining means for determining an operation time period of the overcurrent relay device according to an operation time period characteristic that determines an operation time period of the overcurrent relay device based on an amplitude value of an accident current at the time of a short circuit accident;
The operation time characteristic is a proportional operation time characteristic,
The operation time characteristic in the instantaneous element operation range of the proportional operation time characteristic is defined by the fixed time characteristic,
The operation time characteristic in the time element operation range of the proportional operation time characteristic is defined by a proportional time characteristic in which the operation time period increases in proportion to the total impedance from the power source (1).
An overcurrent relay device.
電力系統における送電線の短絡事故時の保護に用いられる過電流継電装置であって、
短絡事故時の事故電流の振幅値に基づいて前記過電流継電装置の動作時限を定める動作時限特性に従って前記過電流継電装置の動作時限を求める動作時限決定手段を具備し、
前記動作時限特性が多段動作時限特性とされており、
前記多段動作時限特性の瞬時要素動作範囲における動作時限特性が定限時特性により規定され、
前記多段動作時限特性の限時要素動作範囲における動作時限特性が、複数の動作限時特性の組合せにより規定される、
ことを特徴とする、過電流継電装置。
An overcurrent relay device used for protection in the event of a short circuit accident of a transmission line in an electric power system,
Comprising an operation time period determining means for determining an operation time period of the overcurrent relay device according to an operation time period characteristic that determines an operation time period of the overcurrent relay device based on an amplitude value of an accident current at the time of a short circuit accident;
The operation time characteristic is a multi-stage operation time characteristic,
The operation time characteristic in the instantaneous element operation range of the multi-stage operation time characteristic is defined by the fixed time characteristic,
The operation time characteristic in the time limit element operation range of the multistage operation time characteristic is defined by a combination of a plurality of operation time characteristics.
An overcurrent relay device.
電力系統における送電線の短絡事故時の保護に用いられる過電流継電装置(501,502)であって、
3相短絡事故時の事故電流の振幅値または2相短絡事故時の事故電流の振幅値に基づいて前記過電流継電装置の動作時限を定める範囲指定動作時限特性、比例動作時限特性または多段動作時限特性に従って前記過電流継電装置の動作時限を求める動作時限決定手段(121〜123,131〜133,141〜143)と、
3相短絡事故か2相短絡事故かを判定する事故様相判定手段(15)とを具備し、
前記動作時限決定手段が、前記事故様相判定手段における判定結果に応じて2相短絡事故時の事故電流の振幅値を3相短絡事故時の事故電流の振幅値に換算してまたは3相短絡事故時の事故電流の振幅値を2相短絡事故時の事故電流の振幅値に換算して、該換算した事故電流の振幅値に基づいて前記範囲指定動作時限特性、前記比例動作時限特性または前記多段動作時限特性に従って前記過電流継電装置の動作時限を求める、
ことを特徴とする、過電流継電装置。
An overcurrent relay device (50 1 , 50 2 ) used for protection in the event of a short circuit accident of a transmission line in an electric power system,
Range-specified operation time-limit characteristics, proportional operation time-limit characteristics, or multistage operation that determines the operation time limit of the overcurrent relay device based on the amplitude value of the accident current at the time of a three-phase short circuit accident or the amplitude value of the accident current at the time of a two-phase short circuit An operation time period determining means (12 1 to 12 3 , 13 1 to 13 3 , 14 1 to 14 3 ) for determining the operation time period of the overcurrent relay device according to the time characteristic;
An accident mode judging means (15) for judging whether a three-phase short-circuit accident or a two-phase short-circuit accident,
The operation time determining means converts the amplitude value of the accident current at the time of the two-phase short-circuit accident into the amplitude value of the accident current at the time of the three-phase short-circuit accident or the three-phase short-circuit accident according to the determination result in the accident aspect determination means The amplitude value of the accident current at the time is converted into the amplitude value of the accident current at the time of the two-phase short circuit accident, and the range-designated operation time characteristic, the proportional operation time characteristic, or the multi-stage based on the converted amplitude value of the accident current Obtain the operating time limit of the overcurrent relay device according to the operating time characteristics.
An overcurrent relay device.
前記範囲指定動作時限特性の瞬時要素動作範囲における動作時限特性が定限時特性により規定されるとともに、該範囲指定動作時限特性の限時要素動作範囲における動作時限特性が、電源(1)からの総合インピーダンスによって動作時限が一定である第1の定限時特性、前記総合インピーダンスに比例して動作時限が増加する比例限時特性および前記総合インピーダンスによって動作時限が一定である第2の定限時特性の組合せにより規定され、
前記比例動作時限特性の瞬時要素動作範囲における動作時限特性が定限時特性により規定されるとともに、該比例動作時限特性の限時要素動作範囲における動作時限特性が、前記総合インピーダンスに比例して動作時限が増加する比例限時特性により規定され、
前記多段動作時限特性の瞬時要素動作範囲における動作時限特性が定限時特性により規定されるとともに、該多段動作時限特性の限時要素動作範囲における動作時限特性が、複数の動作限時特性の組合せにより規定される、
ことを特徴とする、請求項4記載の過電流継電装置。
The operation time characteristic in the instantaneous element operation range of the range specification operation time characteristic is defined by the fixed time characteristic, and the operation time characteristic in the time element operation range of the range specification operation time characteristic is the total impedance from the power source (1). Stipulated by a combination of a first fixed time characteristic in which the operation time is constant, a proportional time characteristic in which the operation time increases in proportion to the total impedance, and a second fixed time characteristic in which the operation time is constant by the total impedance And
The operation time characteristic in the instantaneous element operation range of the proportional operation time characteristic is defined by the fixed time characteristic, and the operation time characteristic in the time element operation range of the proportional operation time characteristic is proportional to the total impedance. Defined by an increasing proportional time-delay characteristic,
The operation time characteristic in the instantaneous element operation range of the multi-stage operation time characteristic is defined by a fixed time characteristic, and the operation time characteristic in the time element operation range of the multi-stage operation time characteristic is defined by a combination of a plurality of operation time characteristics. The
The overcurrent relay device according to claim 4, wherein:
前記動作時限決定手段が、2相短絡事故時の事故電流の振幅値を31/2/2で割ることにより、2相短絡事故時の事故電流の振幅値を3相短絡事故時の事故電流の振幅値に換算することを特徴とする、請求項4または5記載の過電流継電装置。 The operation time determining means divides the amplitude value of the accident current at the time of the two-phase short-circuit accident by 3 1/2 / 2, and thereby the amplitude value of the accident current at the time of the two-phase short-circuit accident is calculated as the accident current at the time of the three-phase short-circuit accident. The overcurrent relay device according to claim 4, wherein the overcurrent relay device is converted into an amplitude value. 前記動作時限決定手段が、3相短絡事故時の事故電流の振幅値に31/2/2を掛けることにより、3相短絡事故時の事故電流の振幅値を2相短絡事故時の事故電流の振幅値に換算することを特徴とする、請求項4または5記載の過電流継電装置。 The operation time determining means multiplies the amplitude value of the accident current at the time of the three-phase short-circuit accident by 3 1/2 / 2, thereby obtaining the accident current value at the time of the two-phase short-circuit accident. The overcurrent relay device according to claim 4, wherein the overcurrent relay device is converted into an amplitude value. 前記動作時限決定手段が、
前記短絡事故時の事故電流の振幅値が整定限時タップ値以上であるか否かを判定する限時要素動作判定手段(121〜123)と、
前記範囲指定動作時限特性、前記比例動作時限特性または前記多段動作時限特性に従って前記過電流継電装置の動作時限を求める時限処理手段(131〜133)とを備え、
前記事故様相判定手段における判定結果が3相短絡事故である場合には、前記限時要素動作判定手段が、前記短絡事故時の事故電流の振幅値が整定限時タップ値以上であるか否かを判定し、また、前記時限処理手段が、前記限時要素動作判定手段から入力される前記事故電流の振幅値に基づいて前記範囲指定動作時限特性、前記比例動作時限特性または前記多段動作時限特性に従って前記過電流継電装置の動作時限を求め、
前記事故様相判定手段における判定結果が2相短絡事故である場合には、前記限時要素動作判定手段が、前記短絡事故時の事故電流の振幅値が整定限時タップ値以上であるか否かを判定し、また、前記時限処理手段が、前記限時要素動作判定手段から入力される前記事故電流の振幅値に基づいて前記範囲指定動作時限特性、前記比例動作時限特性または前記多段動作時限特性に従って前記過電流継電装置の動作時限を求め、前記短絡事故時の事故電流の振幅値を31/2/2で割った値である事故電流の振幅換算値を算出し、該算出した事故電流の振幅換算値が前記整定限時タップ値以上であるか否かを判定し、また、前記限時要素動作判定手段から入力される前記事故電流の振幅換算値に基づいて前記範囲指定動作時限特性、前記比例動作時限特性または前記多段動作時限特性に従って前記過電流継電装置の動作時限を求める、
ことを特徴とする、請求項5または6記載の過電流継電装置。
The operation time determination means is
An amplitude value is determined Delayed element operation judging unit to or greater than the tap value when SeiJogen (12 1 to 12 3) of the accident current when the short circuit,
A time processing means (13 1 to 13 3 ) for obtaining an operation time limit of the overcurrent relay device in accordance with the range specifying operation time characteristic, the proportional operation time characteristic or the multistage operation time characteristic;
When the determination result in the accident aspect determination means is a three-phase short-circuit accident, the time-limit element operation determination means determines whether or not the amplitude value of the accident current at the time of the short-circuit accident is greater than or equal to the settling time limit tap value. In addition, the time limit processing means may perform the overload according to the range-designated operation time characteristic, the proportional operation time characteristic, or the multistage operation time characteristic based on the amplitude value of the fault current input from the time element operation determination means. Find the operating time limit of the current relay,
When the determination result in the accident aspect determination means is a two-phase short-circuit accident, the time-limit element operation determination means determines whether or not the amplitude value of the accident current at the time of the short-circuit accident is greater than or equal to the settling time limit tap value. In addition, the time limit processing means may perform the overload according to the range-designated operation time characteristic, the proportional operation time characteristic, or the multistage operation time characteristic based on the amplitude value of the fault current input from the time element operation determination means. Obtain the operating time limit of the current relay device, calculate the converted value of the accident current, which is the value obtained by dividing the amplitude of the accident current at the time of the short-circuit accident by 3 1/2 / 2, and calculate the amplitude of the calculated accident current It is determined whether or not a converted value is greater than or equal to the settling time limit tap value, and the range designated operation time limit characteristic and the proportional operation based on the amplitude converted value of the fault current input from the time element operation determining means Time Request operation timed the overcurrent relay device in accordance with the characteristics or the multi-stage operation time characteristics,
The overcurrent relay device according to claim 5 or 6, characterized by the above.
前記動作時限決定手段が、瞬時要素動作判定手段(141〜143)を備え、
該瞬時要素動作判定手段が、前記事故様相判定手段における判定結果が3相短絡事故である場合には、前記短絡事故時の事故電流の振幅値が整定瞬時タップ値以上であるか否かを判定し、
前記瞬時要素動作判定手段が、前記事故様相判定手段における判定結果が2相短絡事故である場合には、前記短絡事故時の事故電流の振幅値を31/2/2で割った値である事故電流の振幅換算値を算出し、該算出した事故電流の振幅換算値が前記整定瞬時タップ値以上であるか否かを判定する、
ことを特徴とする、請求項8記載の過電流継電装置。
The operation timed determining means comprises a momentary element operation judging means (14 1 to 14 3),
The instantaneous element operation determining means determines whether the amplitude value of the accident current at the time of the short-circuit accident is equal to or larger than the settling instantaneous tap value when the determination result in the accident aspect determining means is a three-phase short-circuit accident. And
When the determination result in the accident aspect determination unit is a two-phase short circuit accident, the instantaneous element operation determination unit is a value obtained by dividing the amplitude value of the accident current at the time of the short circuit accident by 3 1/2 / 2. Amplitude conversion value of the accident current is calculated, and it is determined whether the calculated amplitude conversion value of the accident current is equal to or greater than the settling instantaneous tap value.
The overcurrent relay device according to claim 8, wherein:
前記事故様相判定手段が、前記短絡事故時に前記送電線の各相を流れる事故電流の振幅値がすべて所定の閾値よりも大きいときに3相短絡事故と判定し、それ以外のときには2相短絡事故と判定することを特徴とする、請求項4乃至9いずれかに記載の過電流継電装置。   The accident mode determination means determines that a three-phase short-circuit accident occurs when all of the amplitude values of the accident currents flowing through the phases of the transmission line are greater than a predetermined threshold at the time of the short-circuit accident, and a two-phase short-circuit accident otherwise. The overcurrent relay device according to claim 4, wherein the overcurrent relay device is determined. 電力系統における送電線の短絡事故時の保護に用いられる過電流継電装置(501,502)であって、
前記送電線に設置された遮断器を遮断するためのトリップ信号を発生するためのトリップ信号発生回路(10)を具備し、
該トリップ信号発生回路が、
前記短絡事故時の事故電流から変換された事故電流データ(IR,IW,IB)の振幅値を求める振幅値演算部(111〜113)と、
前記振幅値演算部から入力される前記事故電流データの振幅値に基づいて、事故様相が3相短絡事故であるか2相短絡事故であるかを判定する事故様相判定部(15)と、
該事故様相判定部が「短絡事故が3相短絡事故である」と判定すると、前記事故電流データの振幅値が整定限時タップ値以上であるか否かを判定し、一方、該事故様相判定部が「短絡事故が2相短絡事故である」と判定すると、前記事故電流データの振幅値を31/2/2で割った値である事故電流データの振幅換算値を算出し、該算出した事故電流の振幅換算値が前記整定限時タップ値以上であるか否かを判定する限時要素動作判定部(121〜123)と、
該限時要素動作判定部の出力信号に応じて、該限時要素動作判定部から入力される前記事故電流データの振幅値または前記事故電流の振幅換算値から、前記過電流継電装置の動作時限を定める範囲指定動作時限特性、比例動作時限特性または多段動作時限特性に従って動作時限を求め、該求めた動作時限の経過後に前記遮断器を遮断するための限時要素トリップ信号(T1R,T1W,T1B)を出力する時限処理部(131〜133)とを備える、
ことを特徴とする、過電流継電装置。
An overcurrent relay device (50 1 , 50 2 ) used for protection in the event of a short circuit accident of a transmission line in an electric power system,
A trip signal generating circuit (10) for generating a trip signal for interrupting a circuit breaker installed in the power transmission line;
The trip signal generation circuit
An amplitude value calculation unit (11 1 to 11 3 ) for obtaining an amplitude value of the fault current data (I R , I W , I B ) converted from the fault current at the time of the short-circuit fault;
An accident aspect determination unit (15) for determining whether the accident aspect is a three-phase short-circuit accident or a two-phase short-circuit accident based on the amplitude value of the accident current data input from the amplitude value calculation unit;
When the accident aspect determination unit determines that “the short circuit accident is a three-phase short circuit accident”, it determines whether or not the amplitude value of the accident current data is equal to or greater than the settling time tap value, while the accident aspect determination unit Determines that “the short-circuit accident is a two-phase short-circuit accident”, the amplitude conversion value of the accident current data, which is a value obtained by dividing the amplitude value of the accident current data by 3 1/2 / 2, is calculated. A time limit element operation determination unit (12 1 to 12 3 ) for determining whether or not an amplitude converted value of an accident current is equal to or greater than the settling time limit tap value;
In accordance with the output signal of the time element operation determination unit, the operation time limit of the overcurrent relay device is determined from the amplitude value of the fault current data input from the time element operation determination unit or the amplitude conversion value of the fault current. Time limit element trip signals (T1 R , T1 W , T1) for determining an operation time according to a specified range-specified operation time characteristic, proportional operation time characteristic or multistage operation time characteristic and breaking the breaker after the determined operation time elapses. B ) and a time processing unit (13 1 to 13 3 ) for outputting,
An overcurrent relay device.
前記トリップ信号発生回路が、前記遮断器を瞬時に遮断するための瞬時要素トリップ信号(T2R,T2W,T2B)を出力する瞬時要素動作判定部(141〜143)をさらに備え、
該瞬時要素動作判定部が、前記事故様相判定部が「短絡事故が3相短絡事故である」と判定すると、前記事故電流データの振幅値が整定瞬時タップ値以上であるか否かを判定し、「前記事故電流データの振幅値が整定瞬時タップ値以上である」と判定すると前記瞬時要素トリップ信号を出力し、一方、前記事故様相判定部が「短絡事故が2相短絡事故である」と判定すると、前記事故電流データの振幅値を31/2/2で割った値である事故電流データの振幅換算値を算出し、該算出した事故電流の振幅換算値が前記整定瞬時タップ値以上であるか否かを判定し、「前記事故電流データの振幅換算値が整定瞬時タップ値以上である」と判定すると前記瞬時要素トリップ信号を出力する、
ことを特徴とする、請求項11記載の過電流継電装置。
It said trip signal generating circuit further comprises a momentary element operation judging unit that outputs the instantaneous element trip signal for cutting off the circuit breaker instantaneously (T2 R, T2 W, T2 B) (14 1 ~14 3),
The instantaneous element operation determination unit determines whether or not the amplitude value of the accident current data is equal to or greater than a settling instantaneous tap value when the accident aspect determination unit determines that “the short circuit accident is a three-phase short circuit accident”. , When it is determined that “the amplitude value of the fault current data is equal to or greater than the settling instantaneous tap value”, the instantaneous element trip signal is output, while the accident mode determination unit indicates that “the short circuit accident is a two-phase short circuit accident”. When the determination is made, an amplitude conversion value of the accident current data, which is a value obtained by dividing the amplitude value of the accident current data by 3 1/2 / 2, is calculated, and the calculated amplitude conversion value of the accident current is not less than the settling instantaneous tap value. Whether or not, and when it is determined that "the converted amplitude value of the accident current data is equal to or greater than a settling instantaneous tap value", the instantaneous element trip signal is output.
The overcurrent relay device according to claim 11, wherein
前記短絡事故時の事故電流の振幅値に基づいて前記過電流継電装置の動作時限を定める動作時限特性の代わりに、3相短絡事故時のタップ倍率または2相短絡事故時のタップ倍率に基づいて前記過電流継電装置の動作時限を定める動作時限特性を使用し、
前記動作時限決定手段が、前記事故様相判定手段における判定結果に応じて、3相短絡事故時の整定タップ値を2相短絡事故時の整定タップ値に換算してまたは2相短絡事故時の整定タップ値を3相短絡事故時の整定タップ値に換算して、短絡事故時の事故電流の振幅値を該換算した整定タップ値で割ってタップ倍率を算出し、該算出しタップ倍率に基づいて前記動作時限特性に従って前記過電流継電装置の動作時限を求める、
ことを特徴とする、請求項1乃至12いずれかに記載の過電流継電装置。
Based on the tap magnification at the time of a three-phase short-circuit accident or the tap magnification at the time of a two-phase short-circuit accident instead of the operation time-limit characteristic that determines the operation time limit of the overcurrent relay device based on the amplitude value of the accident current at the time of the short-circuit accident Using the operation time characteristic that determines the operation time of the overcurrent relay device,
The operation time determination means converts the settling tap value at the time of the three-phase short-circuit accident into the set-up tap value at the time of the two-phase short-circuit accident or the settling at the time of the two-phase short-circuit accident according to the determination result in the accident aspect determination means. The tap value is converted into a setting tap value at the time of a three-phase short circuit accident, and the tap magnification is calculated by dividing the amplitude value of the accident current at the time of the short circuit accident by the converted setting tap value. Based on the calculated tap magnification Obtaining an operation time limit of the overcurrent relay device according to the operation time characteristic;
The overcurrent relay device according to any one of claims 1 to 12, wherein the overcurrent relay device is characterized.
前記動作時限決定手段が、3相短絡事故時の整定タップ値に31/2/2を掛けることにより、3相短絡事故時の整定タップ値を2相短絡事故時の整定タップ値に換算することを特徴とする、請求項13記載の過電流継電装置。 The operation time determining means multiplies the setting tap value at the time of the three-phase short circuit accident by 3 1/2 / 2, thereby converting the setting tap value at the time of the three-phase short circuit accident into the setting tap value at the time of the two-phase short circuit accident. The overcurrent relay device according to claim 13, wherein 前記動作時限決定手段が、2相短絡事故時の整定タップ値を31/2/2で割ることにより、2相短絡事故時の整定タップ値を3相短絡事故時の整定タップ値に換算することを特徴とする、請求項13記載の過電流継電装置。 The operation time determining means divides the setting tap value at the time of the two-phase short-circuit accident by 3 1/2 / 2 to convert the setting tap value at the time of the two-phase short-circuit accident into the setting tap value at the time of the three-phase short-circuit accident The overcurrent relay device according to claim 13, wherein
JP2009008733A 2009-01-19 2009-01-19 Overcurrent relay device Expired - Fee Related JP5289070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009008733A JP5289070B2 (en) 2009-01-19 2009-01-19 Overcurrent relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009008733A JP5289070B2 (en) 2009-01-19 2009-01-19 Overcurrent relay device

Publications (2)

Publication Number Publication Date
JP2010166770A true JP2010166770A (en) 2010-07-29
JP5289070B2 JP5289070B2 (en) 2013-09-11

Family

ID=42582489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009008733A Expired - Fee Related JP5289070B2 (en) 2009-01-19 2009-01-19 Overcurrent relay device

Country Status (1)

Country Link
JP (1) JP5289070B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8660861B2 (en) 2012-01-24 2014-02-25 Fmr Llc Allocation of financial incentives for employee wellness programs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255519A (en) * 1988-08-19 1990-02-23 Mitsubishi Electric Corp Circuit breaker
JPH08275373A (en) * 1995-03-31 1996-10-18 Kokusan Denki Co Ltd Overcurrent protector
JPH1042452A (en) * 1996-07-25 1998-02-13 Hitachi Ltd Circuit breaker
JP2008172916A (en) * 2007-01-11 2008-07-24 Chugoku Electric Power Co Inc:The Overcurrent relay device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255519A (en) * 1988-08-19 1990-02-23 Mitsubishi Electric Corp Circuit breaker
JPH08275373A (en) * 1995-03-31 1996-10-18 Kokusan Denki Co Ltd Overcurrent protector
JPH1042452A (en) * 1996-07-25 1998-02-13 Hitachi Ltd Circuit breaker
JP2008172916A (en) * 2007-01-11 2008-07-24 Chugoku Electric Power Co Inc:The Overcurrent relay device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8660861B2 (en) 2012-01-24 2014-02-25 Fmr Llc Allocation of financial incentives for employee wellness programs

Also Published As

Publication number Publication date
JP5289070B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5289070B2 (en) Overcurrent relay device
JP2008172916A (en) Overcurrent relay device
JP4262155B2 (en) Protective relay device for generator main circuit
JP2010166769A (en) Ground distance relay device
JP2009043455A (en) Limiter
JP2008160910A (en) Protective relay device
JP5289071B2 (en) Overcurrent relay device
JP5224783B2 (en) Distribution line ground fault protection system
Rana et al. Modified recloser settings for mitigating recloser-fuse miscoordination during distributed generation interconnections
JP2010211948A (en) Earth leakage breaker with protection against neutral line open-phase for single-phase three lines
JP4836663B2 (en) Loop system protection device and method
JP2018191453A (en) Operation controller and power generation facility
JP2011024338A (en) Superconducting application current limiter, superconducting application current limiting method, program, and recording medium
JP5300319B2 (en) Distance relay device
JP2010115079A (en) Short circuit protection relay system
JP2004254369A (en) Power line short circuit protection relay system
JP5574666B2 (en) Protective relay device
JP2009254036A (en) Ground fault protecting relay system
JP5371414B2 (en) Overcurrent relay with directional characteristics
JP2011078293A (en) Disconnection protective relay device
JP2008161012A (en) Overcurrent relay device
JP2011182547A (en) Bus protection relay system
KR100875139B1 (en) Protecting apparatus for eletric surge
JP2008136263A (en) Distance relay
JP2013146127A (en) Overload relay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Ref document number: 5289070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees