JP2010163663A - Air-open-type cvd apparatus, and method for manufacturing metal oxide film - Google Patents
Air-open-type cvd apparatus, and method for manufacturing metal oxide film Download PDFInfo
- Publication number
- JP2010163663A JP2010163663A JP2009007629A JP2009007629A JP2010163663A JP 2010163663 A JP2010163663 A JP 2010163663A JP 2009007629 A JP2009007629 A JP 2009007629A JP 2009007629 A JP2009007629 A JP 2009007629A JP 2010163663 A JP2010163663 A JP 2010163663A
- Authority
- JP
- Japan
- Prior art keywords
- base material
- metal oxide
- film
- gas
- oxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、各種基材表面、例えば幅あるいは径の狭い、深さのある細溝状、細筒状等の微小部分の内面に金属酸化物膜を形成するための大気開放型CVD装置および金属酸化物膜の製造方法に関する。 The present invention relates to an atmospheric open type CVD apparatus and a metal for forming a metal oxide film on the inner surface of various substrate surfaces, for example, narrow grooves or narrow cylindrical grooves having a narrow width or a small depth. The present invention relates to a method for manufacturing an oxide film.
基材表面に金属酸化物薄膜を形成する方法として、例えば、ゾルゲル法、真空蒸着法、CVD法、PVD法、溶射法等が知られている。これらのうち、大気開放型CVD法は、大型設備を必要とせず、長尺状の基材にも連続的に金属酸化物膜を形成することができるという特徴がある。大気開放型CVD法は、キャリアガス供給源、原料気化器、ノズル、これらを接続する配管、基材を載置して加熱する基材加熱装置等からなるCVD装置により、気化させた原料をキャリアガスとともに、加熱された基材表面にノズルから吹き付け、基材表面で空気中の酸素と混合ガスを反応させて基材表面に酸化物膜を堆積させる。 Known methods for forming a metal oxide thin film on the surface of a substrate include, for example, a sol-gel method, a vacuum deposition method, a CVD method, a PVD method, and a thermal spraying method. Among these, the atmospheric open type CVD method is characterized in that a metal oxide film can be continuously formed on a long substrate without requiring a large facility. The open-air CVD method uses a carrier gas supply source, a raw material vaporizer, a nozzle, a pipe connecting them, a base material heating device for mounting and heating a base material, and the like to carrier the vaporized raw material. Along with the gas, a nozzle is sprayed onto the heated substrate surface, and oxygen in the air and the mixed gas are reacted on the substrate surface to deposit an oxide film on the substrate surface.
例えば特許文献1には、従来の大気開放型CVD装置の一例が示されており、加熱された基材の表面にノズルのガス噴出部分から混合ガスを吹き付けることで、基材表面に金属酸化物膜を形成している。 For example, Patent Document 1 shows an example of a conventional atmospheric open type CVD apparatus. By spraying a mixed gas from a gas ejection portion of a nozzle onto the surface of a heated substrate, a metal oxide is applied to the surface of the substrate. A film is formed.
特許文献1に記載された従来の大気開放型CVD装置は、ノズルの混合ガス噴出部分の形状が、スリット形状あるいは細孔を設けた所謂平面的な形状であり、幅または径の狭い細溝や細管、あるいは深さのある細溝や細筒といった微小部分の内面に成膜しようとすると、吹き付けられた原料混合ガスが基材の形状や気流の影響により、微小部分の内面に上手く送入されず、基材内面への緻密な成膜が困難であるという問題があった。 In the conventional atmospheric open type CVD apparatus described in Patent Document 1, the shape of the mixed gas ejection portion of the nozzle is a so-called planar shape provided with a slit shape or pores, and a narrow groove having a narrow width or diameter or When trying to form a film on the inner surface of a minute part such as a narrow tube, or a deep groove or tube with a depth, the sprayed raw material mixed gas is successfully fed into the inner surface of the minute part due to the influence of the shape of the substrate and air flow. However, there was a problem that it was difficult to form a dense film on the inner surface of the substrate.
さらに、このような微小部分の内面へ成膜する場合、ガス噴出部分から放たれた原料の大半が基材で反応、堆積することなく排気されてしまい、供給する混合ガスの数%程度しか反応に使用することができない。そのため、原料のロスが大きく、基材表面に金属酸化物膜を堆積できたとしてもその成膜速度は遅く、基材上に緻密な金属酸化物膜を効率的かつ低コストで形成することが困難であった。 Furthermore, when forming a film on the inner surface of such a minute part, most of the raw material released from the gas ejection part is exhausted without reacting and depositing on the base material, and only a few percent of the supplied mixed gas reacts. Can not be used. Therefore, even if the loss of raw materials is large and a metal oxide film can be deposited on the surface of the substrate, the film formation rate is slow, and a dense metal oxide film can be formed on the substrate efficiently and at low cost. It was difficult.
本発明は、かかる事情に鑑みてなされたものであり、大気開放型CVD法により、幅または径の狭い細溝状や細筒状、あるいは深さのある細溝状や細筒状といった微小部分の内面に緻密で、かつ効率的な金属酸化物膜を形成できる大気開放型CVD装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and a minute portion such as a narrow groove or narrow cylinder having a narrow width or a diameter, or a narrow groove or narrow cylinder having a depth is formed by an atmospheric open CVD method. It is an object of the present invention to provide an atmospheric open type CVD apparatus capable of forming a dense and efficient metal oxide film on the inner surface of the substrate.
上記目的を達成するため、本発明に係る大気開放型CVD装置は、気化させた金属酸化物膜の原料とキャリアガスの混合ガスを、大気開放下に加熱した基材に吹き付けてその基材内面に金属酸化物膜を形成する大気開放型CVD装置であって、前記基材が細溝状あるいは細筒状であり、前記混合ガスを供給するための成膜ノズルのガス噴出部に、前記基材の内面を成膜するため前記基材方向へ伸びるとともに前記細溝状あるいは細筒状部分よりも細い所定長の管状部材が設置されていることを特徴とする。
このように、ノズルのガス噴出部分を成膜する基材の径よりも細い管状部材とすることで、基材となる細溝状あるいは細筒状の内面に強制的に原料混合ガスを送入でき、緻密な成膜が可能となる。
In order to achieve the above object, an atmospheric open type CVD apparatus according to the present invention sprays a mixed gas of a vaporized metal oxide film raw material and a carrier gas onto a heated substrate under the open atmosphere, and the inner surface of the substrate. An atmospheric open type CVD apparatus for forming a metal oxide film on the substrate, wherein the substrate is in the form of a narrow groove or a narrow cylinder, and the base is provided in a gas ejection part of a film forming nozzle for supplying the mixed gas In order to form a film on the inner surface of the material, a tubular member having a predetermined length extending in the direction of the base material and narrower than the narrow groove shape or the narrow cylindrical portion is provided.
In this way, by making the gas ejection part of the nozzle a tubular member that is thinner than the diameter of the substrate on which the film is formed, the raw material mixed gas is forcibly fed into the inner surface of the narrow groove or tube that becomes the substrate. And dense film formation is possible.
本発明の大気開放型CVD装置は、例えば、前記管状部材が前記成膜ノズルのガス噴出部に複数本設置されていることを特徴とする。また、例えば、成膜の際、前記基材と前記管状部材とを所定間隔離間させるか、あるいは前記管状部材の先端部が前記基材の細溝状あるいは細筒状部分の底部に接触しない深さだけ前記管状部材の一部を前記細溝状あるいは細筒状部分に挿入することを特徴とする。 The atmospheric open type CVD apparatus of the present invention is characterized in that, for example, a plurality of the tubular members are installed in a gas ejection portion of the film forming nozzle. In addition, for example, during film formation, the base member and the tubular member are spaced apart from each other by a predetermined distance, or the tip of the tubular member is not deeply contacted with the bottom of the narrow groove portion or the thin tubular portion of the base member. Accordingly, a part of the tubular member is inserted into the narrow groove or narrow tubular part.
本発明の金属酸化物膜の製造方法は、気化させた金属酸化物膜の原料とキャリアガスの混合ガスを、大気開放下に加熱した基材に吹き付けてその基材内面に金属酸化物膜を形成する金属酸化物膜の製造方法であって、前記基材が細溝状あるいは細筒状であり、混合ガスを供給するための成膜ノズルのガス噴出部に、前記基材の内面を成膜するため前記基材方向へ伸びるとともに前記細溝状あるいは細筒状部分よりも細い所定長の複数の管状部材を設置し、前記管状部材より前記混合ガスを吹き付けることで、前記細溝状あるいは細筒状の基材の内面に成膜することを特徴とする。 The method for producing a metal oxide film according to the present invention is such that a gas mixture of a vaporized metal oxide film and a carrier gas is sprayed onto a heated substrate under the open atmosphere to form a metal oxide film on the inner surface of the substrate. A method of manufacturing a metal oxide film to be formed, wherein the base material has a narrow groove shape or a thin cylindrical shape, and an inner surface of the base material is formed in a gas ejection portion of a film forming nozzle for supplying a mixed gas. In order to form a film, a plurality of tubular members that extend in the direction of the base material and have a predetermined length that is narrower than the narrow groove or narrow tubular portion are installed, and the mixed gas is blown from the tubular member, whereby the narrow groove or It is characterized by forming a film on the inner surface of a thin cylindrical substrate.
本発明によれば、大気開放型CVD装置のノズルのガス噴出部となる部分を、成膜する細溝状あるいは細筒状の径よりも細い管とすることで、幅または径の狭い細溝状や細筒状、あるいは深さのある細溝状や細筒状といった微小部分の内面に原料混合ガスを強制送入でき、基材内部で原料混合ガスが循環し、緻密な金属酸化物膜を形成することができる。さらに循環し、基材外部へ出ようとする原料混合ガスでその基材の縁の部分も成膜可能となる。また、成膜対象各々に向けて成膜するため原料のロスが少なくできるので効率が良く、かつ低コストで酸化物膜を形成できる。また、大気開放型CVD法を使用することで、大型設備を必要としないため、連続的に実用に耐える金属酸化物膜を形成することが可能となり、実用的価値が極めて高い成膜装置を提供できる。 According to the present invention, a narrow groove having a narrow width or diameter can be obtained by forming a portion that becomes a gas ejection portion of a nozzle of an atmospheric open type CVD apparatus into a tube that is thinner than the diameter of a narrow groove or a thin tube to form a film. The raw material mixed gas can be forcibly fed into the inner surface of a minute part such as a narrow or deep cylindrical shape, or a deep groove shape or a thin cylindrical shape, and the raw material mixed gas circulates inside the base material, resulting in a dense metal oxide film Can be formed. Further, the edge portion of the base material can be formed by the raw material mixed gas that circulates and goes out of the base material. Further, since film formation is performed for each film formation target, loss of raw materials can be reduced, so that an oxide film can be formed efficiently and at low cost. In addition, the use of the open-air CVD method eliminates the need for large-scale equipment, so it is possible to continuously form a metal oxide film that can withstand practical use, and provides a film forming apparatus with extremely high practical value. it can.
以下、図面を参照して本発明を実施するための最良の形態を詳細に説明する。図1は、本発明の実施の形態例に係る大気開放型化学気相析出(CVD)装置(以下、単にCVD装置ともいう。)の概略構成を模式的に示している。また、図2は、図1のCVD装置のノズル部分を拡大して模式的に示している。図1および図2に示すように本実施の形態例に係るCVD装置は、ガス供給部1、ガス流量計2、原料気化部4、酸素ガス供給部6、酸素ガス流量計11、ノズル7、ノズルフード部13、これらを接続する配管3a〜3c、多孔板8、多孔板8より伸びる例えば細管等からなる管状部材12、管状部材12の下部に載置された基材10、基材10を加熱するためのヒーター9aを配した加熱装置9を備える。なお、基材10は、幅または径の狭い細溝状や細筒状、あるいは深さのある細溝状や細筒状といった微小部分を有する。 The best mode for carrying out the present invention will be described below in detail with reference to the drawings. FIG. 1 schematically shows a schematic configuration of an atmospheric open type chemical vapor deposition (CVD) apparatus (hereinafter also simply referred to as a CVD apparatus) according to an embodiment of the present invention. FIG. 2 schematically shows an enlarged nozzle portion of the CVD apparatus of FIG. As shown in FIGS. 1 and 2, the CVD apparatus according to this embodiment includes a gas supply unit 1, a gas flow meter 2, a raw material vaporization unit 4, an oxygen gas supply unit 6, an oxygen gas flow meter 11, a nozzle 7, Nozzle hood portion 13, pipes 3 a to 3 c connecting them, perforated plate 8, tubular member 12 made of, for example, a thin tube extending from perforated plate 8, base material 10 placed under the tubular member 12, and base material 10 A heating device 9 provided with a heater 9a for heating is provided. The substrate 10 has a minute portion such as a narrow groove or narrow cylinder having a narrow width or diameter, or a narrow groove or narrow cylinder having a depth.
本実施の形態例に係るCVD装置のガス供給部1は、例えば窒素ガスボンベ等のキャリアガス供給源であり、このキャリアガス(例えば、乾燥窒素ガス)は、その供給量がガス流量計2で計数されながら、ヒーターH1で加熱された配管3aを介して、原料気化部4へ供給される。原料気化部4内には金属酸化物の原料5が載置されており、原料気化部4全体をヒーターH2で加熱している。原料5は、原料気化部4内で、例えば60〜300℃程度に加熱気化され、気化した金属酸化物の原料は、例えば毎分0.5〜30.0リットル程度の流量のキャリアガスとともに混合ガス供給管3bへ送られる。なお、この混合ガス供給管3bもヒーターH3で加熱されている。 The gas supply unit 1 of the CVD apparatus according to the present embodiment is a carrier gas supply source such as a nitrogen gas cylinder, for example. while it is, via a pipe 3a, which is heated by the heater H 1, is supplied to the raw material vaporizing unit 4. A metal oxide raw material 5 is placed in the raw material vaporization section 4, and the entire raw material vaporization section 4 is heated by a heater H 2 . The raw material 5 is heated and vaporized to, for example, about 60 to 300 ° C. in the raw material vaporization unit 4, and the vaporized metal oxide raw material is mixed with a carrier gas having a flow rate of about 0.5 to 30.0 liters per minute, for example. It is sent to the gas supply pipe 3b. Note that this mixed gas supply pipe 3b is also heated by the heater H 3.
一方、酸素ガス供給部6からは、その供給量が酸素ガス流量計11で計数されながら、ヒーターH3で加熱された配管3cを介して酸素ガスが供給される。この配管3cと混合ガス供給管3bとがその下流側で接続されているので、原料気化部4で気化させた金属酸化物の原料とキャリアガスとの混合ガス中に酸素ガスが供給される。そして、金属酸化物の原料と、キャリアガスの混合ガスと、酸素ガスとが混合した原料混合ガスがノズル7内に供給される。なお、酸素ガスと原料混合ガスの割合は、任意に選択することができるが、酸素ガスを原料混合ガスに対し、最低でも1%混合することが好ましい。 On the other hand, from the oxygen gas supply section 6, while the supply amount is counted by the oxygen gas flowmeter 11, the oxygen gas is supplied through the pipe 3c which is heated by the heater H 3. Since this pipe 3c and the mixed gas supply pipe 3b are connected on the downstream side, oxygen gas is supplied into the mixed gas of the metal oxide raw material vaporized by the raw material vaporization section 4 and the carrier gas. Then, a raw material mixed gas obtained by mixing a metal oxide raw material, a carrier gas mixed gas, and oxygen gas is supplied into the nozzle 7. The ratio of the oxygen gas and the raw material mixed gas can be arbitrarily selected, but it is preferable to mix the oxygen gas with the raw material mixed gas at least 1%.
このように金属酸化物の原料とキャリアガスの混合ガスと酸素ガスとの混合による原料混合ガスがノズル7内に供給されることで、ヒーター9aを配した加熱装置9で加熱された基材10の内面に、ノズルフード部13に設置された多孔板8に設けられた管状部材12を通じて、この原料混合ガスが吹き付けられる。その結果、空気中の酸素と混合ガスが反応して基材10の内面に金属酸化物膜が堆積する。なお、ガス供給部1あるいは酸素ガス供給部6につながる配管には、必要に応じて除湿器を連結してもよい。 Thus, the base material 10 heated with the heating apparatus 9 which provided the heater 9a is supplied by the raw material mixed gas by mixing the raw material mixed gas of metal oxide, carrier gas, and oxygen gas in the nozzle 7. This raw material mixed gas is sprayed through the tubular member 12 provided on the perforated plate 8 installed in the nozzle hood 13 on the inner surface of the nozzle hood 13. As a result, oxygen in the air and the mixed gas react to deposit a metal oxide film on the inner surface of the substrate 10. In addition, you may connect a dehumidifier to the piping connected to the gas supply part 1 or the oxygen gas supply part 6 as needed.
図3は、図2のノズル部分をさらに拡大して示す図であり、後述する実施例1〜4に対応させて模式的に示している。図3(a)に示すように多孔板8より伸びる管状部材12の径D1は、基材(カップ部材)10の径φよりも細く作られている。基材10の径より細くすることで、基材10内に管状部材12の一部を挿入することが可能となり、原料混合ガスを強制的に送入できるからである。なお、管状部材12の径は基材10の径より細ければ特に限定しないが、放たれた原料混合ガスが基材内部で循環した後、外部へ排出されやすい程度の径であることが好ましい。 FIG. 3 is an enlarged view of the nozzle portion of FIG. 2, schematically showing corresponding to Examples 1 to 4 described later. As shown in FIG. 3A, the diameter D <b> 1 of the tubular member 12 extending from the porous plate 8 is made smaller than the diameter φ of the base material (cup member) 10. It is because it becomes possible to insert a part of tubular member 12 in the base material 10 by making it thinner than the diameter of the base material 10, and to forcibly feed the raw material mixed gas. The diameter of the tubular member 12 is not particularly limited as long as it is smaller than the diameter of the base material 10. However, it is preferable that the diameter is such that the released raw material mixed gas is easily discharged to the outside after being circulated inside the base material. .
さらに、管状部材12と基材10との離間距離および挿入深さも特に限定しない。つまり、図3(d)に示すように管状部材12が基材10から離間していても、あるいは図3(c)に示すように管状部材12の先端部が基材10の上面部(カップ縁部)と一致する位置にあっても、あるいは図3(a)および図3(b)に示すように管状部材12を基材10の内部に挿入して成膜を行ってもよい。このとき挿入深さは限定しないが、挿入時、管状部材12の先端部が基材10の底部に接触しない程度であることが好ましい。管状部材12を接触させてしまうと管状部材12内にガスの逆流が生じるためである。また、離間距離は成膜時のガス流量で調節が可能である。 Further, the distance between the tubular member 12 and the substrate 10 and the insertion depth are not particularly limited. That is, even if the tubular member 12 is separated from the base material 10 as shown in FIG. 3 (d), or as shown in FIG. Alternatively, the film may be formed by inserting the tubular member 12 into the substrate 10 as shown in FIGS. 3 (a) and 3 (b). At this time, the insertion depth is not limited, but it is preferable that the distal end portion of the tubular member 12 is not in contact with the bottom portion of the base material 10 during insertion. This is because if the tubular member 12 is brought into contact, a reverse flow of gas occurs in the tubular member 12. The separation distance can be adjusted by the gas flow rate during film formation.
さらには、管状部材12の形状についても特に限定はしない。本実施の形態例では円筒状の細管を使用しているが、これに限定されず、例えば楕円または三角形や多角形の管や、それらにテーパーをつけた管でもよい。また、基材10内に管状部材12の一部を挿入して成膜する場合に限り、管状部材12の基材10に挿入される部分に横穴を空けることで、基材内面の側面部に効率よく成膜することも可能である。 Furthermore, the shape of the tubular member 12 is not particularly limited. In this embodiment, a cylindrical thin tube is used. However, the present invention is not limited to this. For example, an elliptical, triangular, or polygonal tube, or a tube with a taper on them may be used. Further, only when a part of the tubular member 12 is inserted into the base material 10 to form a film, a side hole is made in the portion of the tubular member 12 to be inserted into the base material 10 so that the side surface portion of the inner surface of the base material is formed. It is also possible to form a film efficiently.
また、基材10内に管状部材12の一部を挿入して成膜する場合、管状部材12を挿入したまま成膜を行ってもよいし、あるいはノズル7を少しずつ上昇させながら成膜を行ってもよい。あるいは、ノズル7を固定し、基材10側を少しずつ下降させてもよいし、ノズル7と基材10の双方を可動させてもよい。 When a film is formed by inserting a part of the tubular member 12 into the base material 10, the film may be formed with the tubular member 12 inserted, or the film may be formed while the nozzle 7 is raised little by little. You may go. Alternatively, the nozzle 7 may be fixed and the substrate 10 side may be lowered little by little, or both the nozzle 7 and the substrate 10 may be moved.
ノズルフード部13、多孔板8、管状部材12の材質や厚み等については、加熱によりゆがみが発生しない程度のものであれば、例えばステンレス鋼を使用する等、特に限定しない。 The material, thickness, and the like of the nozzle hood 13, the porous plate 8, and the tubular member 12 are not particularly limited as long as they do not cause distortion by heating, for example, stainless steel is used.
また、多孔板8に配置される管状部材12は単数あるいは複数のいずれであっても特に限定しないが、複数本を設置して成膜する場合、一度に大量の基材内面に成膜が可能である。また、多孔板8に対する管状部材12の配置も特に限定しない。しかしながら、ノズルフード13内の気流差等で膜質に差が生じないよう均等に配置する方がより好ましい。 The number of tubular members 12 arranged on the perforated plate 8 is not particularly limited, but it is possible to form a film on a large amount of the inner surface of the substrate at a time when a plurality of tubular members 12 are installed. It is. Further, the arrangement of the tubular member 12 with respect to the porous plate 8 is not particularly limited. However, it is more preferable to arrange them evenly so as not to cause a difference in film quality due to an air flow difference in the nozzle hood 13 or the like.
本実施の形態例に係るCVD装置において、大気開放型CVD法により酸化物膜を形成する基材に制限はなく、混合ガスを吹き付ける際の加熱に耐えられる材料であれば、通常のCVD法に用いられる基材、例えば金属、金属酸化物、ガラス、陶磁器、セラミックス、プラスチック等を使用することができる。また、基材の種類は、用途等に応じて選択されるが、好ましい基材としては、プラスチック、ステンレス鋼や鉄等の導電性材料、酸化亜鉛や酸化チタン等の誘電体多結晶、あるいは単結晶材料、Si半導体材料等がある。 In the CVD apparatus according to the present embodiment, there is no limitation on the base material on which the oxide film is formed by the open-air CVD method, and any ordinary CVD method can be used as long as the material can withstand the heating when the mixed gas is sprayed. The base material used, for example, a metal, a metal oxide, glass, ceramics, ceramics, plastics, etc. can be used. The type of base material is selected according to the use, etc., but preferable base materials include plastics, conductive materials such as stainless steel and iron, dielectric polycrystals such as zinc oxide and titanium oxide, or single materials. There are crystal materials, Si semiconductor materials, and the like.
また、基材に形成する酸化物に特に制限はないが、好ましい酸化物としては、酸化チタン、酸化亜鉛、酸化マグネシウム、酸化イットリウム、サファイア、Sn:In2O3(ITO:Indium Tin Oxide)等の金属酸化物が挙げられる。この金属酸化物を構成する原料としては、それを揮発させて大気中に放出した際に、大気中の酸素あるいは水分等と反応して金属酸化物を形成するものであれば特に限定されない。例えば、各種金属のアルキル化合物、アルケニル化合物、フェニルあるいはアルキルフェニル化合物、アルコキシド化合物、ジ−ピバロイルメタン化合物、ハロゲン化合物、アセチルアセトネート化合物、EDTA化合物等が挙げられる。これらのうち、安全性等の観点からジ−ピバロイルメタン化合物が好ましい。 The oxide formed on the substrate is not particularly limited, but preferred oxides include titanium oxide, zinc oxide, magnesium oxide, yttrium oxide, sapphire, Sn: In 2 O 3 (ITO: Indium Tin Oxide), and the like. These metal oxides can be mentioned. The raw material constituting the metal oxide is not particularly limited as long as it can form a metal oxide by reacting with oxygen or moisture in the air when it is volatilized and released into the air. Examples thereof include various metal alkyl compounds, alkenyl compounds, phenyl or alkylphenyl compounds, alkoxide compounds, di-pivaloylmethane compounds, halogen compounds, acetylacetonate compounds, EDTA compounds, and the like. Of these, di-pivaloylmethane compounds are preferred from the viewpoint of safety and the like.
上述したキャリアガスとしては、加熱下で使用する原料化合物と反応する媒体でなければ、特に限定されない。例えば、上述した窒素ガス以外にも、アルゴンガス等の不活性ガス、炭酸ガス、有機フッ素系ガスあるいはヘキサン、ヘプタン等の有機物等を使用できる。なお、安全性、経済性の面からは不活性ガスが好ましく、中でも窒素ガスが経済性の面より最も好ましい。また、酸素ガス供給部6から供給される酸素ガスは、酸素単体を使用しても、あるいは酸素を窒素ガス、アルゴンガス等の不活性ガスと混合して供給してもよい。さらには、酸素ガスとともに、あるいは酸素ガスに代えてオゾンを使用することも可能である。この場合、酸素ガスと不活性ガスの混合割合は、容量比で10:90〜100:0(通常は、20:80、あるいは100:0)とすることが好ましい。 The carrier gas described above is not particularly limited as long as it is not a medium that reacts with the raw material compound used under heating. For example, in addition to the nitrogen gas described above, an inert gas such as an argon gas, a carbon dioxide gas, an organic fluorine-based gas, or an organic substance such as hexane or heptane can be used. In view of safety and economy, inert gas is preferable, and nitrogen gas is most preferable from the viewpoint of economy. The oxygen gas supplied from the oxygen gas supply unit 6 may be oxygen alone or may be supplied by mixing oxygen with an inert gas such as nitrogen gas or argon gas. Furthermore, ozone can be used together with oxygen gas or in place of oxygen gas. In this case, the mixing ratio of the oxygen gas and the inert gas is preferably 10:90 to 100: 0 (usually 20:80 or 100: 0) in volume ratio.
以上の説明のとおり、大気開放型CVD装置のノズルのガス噴出部分を基材の穴径よりも細い管とすることで、幅または径の狭い細溝状や細筒状、あるいは深さのある細溝状や細筒状といった微小部分の内面に原料混合ガスを強制送入することが可能となるため、基材上に緻密で、かつ効率的な金属酸化物膜を形成することができる。 As described above, by making the gas ejection portion of the nozzle of the atmospheric open type CVD apparatus a tube thinner than the hole diameter of the base material, it has a narrow groove shape or narrow cylindrical shape or a depth having a narrow width or diameter. Since the raw material mixed gas can be forcibly fed into the inner surface of a minute portion such as a narrow groove shape or a narrow cylindrical shape, a dense and efficient metal oxide film can be formed on the substrate.
また、ノズルに配された多孔板に管状部材を複数本設置することで、一度に大量の基材の成膜が可能となるため成膜効率を向上することができる。さらに、成膜対象各々に向けて成膜するため、原料のロスが少なく低コストで膜形成ができる。さらには、大気開放型CVD法を使用することにより、大型設備を必要としないため、連続的に実用に耐える金属酸化物膜を形成することが可能となり、実用的価値が極めて高くなる。 In addition, by installing a plurality of tubular members on the perforated plate arranged in the nozzle, it becomes possible to form a large amount of substrate at a time, so that the film formation efficiency can be improved. Furthermore, since the film is formed for each film formation target, the film can be formed at low cost with little loss of raw materials. Furthermore, since large-sized equipment is not required by using the open-air CVD method, it is possible to continuously form a metal oxide film that can withstand practical use, and the practical value is extremely high.
ここでは、図3に示すように基材10と管状部材12の間隔を振り分け、図1および図2に示したCVD装置を使用して成膜実験を行った。なお、これらの実施例では、多孔板8の材質をステンレス鋼とし、その厚みtを10mmとした。同様に管状部材12の材質もステンレス鋼とし、その外径D1を1.6mm、内径D2を1.0mmとした。また、基材10としてφ2.6mm、深さdが5mmのアルミ基材を準備した。さらに、これらの実施例では、原料としてY(DPM)3(トリス(ジピバロイルメタナト)イットリウム:tris(dipivaloylmethanato)yttrium(純度99.6%))を用いた。成膜条件としては、N2キャリアガスのガス流量を10リットル/min、O2ガス流量を1リットル/min、Y(DPM)3の気化温度を220℃、基板の加熱温度を500℃、成膜時間を20分に設定した。 Here, as shown in FIG. 3, the space | interval of the base material 10 and the tubular member 12 was distributed, and the film-forming experiment was conducted using the CVD apparatus shown in FIG. 1 and FIG. In these examples, the porous plate 8 is made of stainless steel and the thickness t is 10 mm. Similarly, the material of the tubular member 12 is also stainless steel, the outer diameter D1 is 1.6 mm, and the inner diameter D2 is 1.0 mm. Moreover, the base material 10 prepared an aluminum base material having a diameter of 2.6 mm and a depth d of 5 mm. Furthermore, in these examples, Y (DPM) 3 (tris (dipivaloylmethanato) yttrium (purity 99.6%)) was used as a raw material. The film forming conditions are as follows: N 2 carrier gas flow rate is 10 liters / min, O 2 gas flow rate is 1 liter / min, Y (DPM) 3 vaporization temperature is 220 ° C., substrate heating temperature is 500 ° C. The membrane time was set to 20 minutes.
図4は、本実施例において形成された膜の膜厚測定方法等を説明するための図であり、表1は成膜結果を示している。本実施例では、図4(a)に示すように、所定厚のアルミ基材からなる分離可能な模擬形状部材40a,40bに貫通孔41を設け、その側面部Aと底面部Bに膜厚測定用のSiカットウエハを配して、管状部材42より貫通孔(カップ)41へ原料ガスを送入した。図4(b)は、上記の側面部Aと底面部Bに形成された金属酸化物膜43を模式的に示しており、形成された金属酸化物膜43のうち側面部Aの膜については、切断線a1−a2に沿って縦方向に切断し、その破断面45の上部、中部、下部の3箇所につき膜厚を測定した。また、底面部Bについては、形成された金属酸化物膜43の底面部分を切断線b1−b2に沿って水平方向に切断し、その破断面47の中心部、周縁内部、周縁外部の3箇所の膜厚を測定した。 FIG. 4 is a diagram for explaining a film thickness measurement method and the like of the film formed in this example, and Table 1 shows the film formation result. In this embodiment, as shown in FIG. 4A, through holes 41 are provided in separable simulated shape members 40a and 40b made of an aluminum base material having a predetermined thickness, and the film thickness is formed on the side surface portion A and the bottom surface portion B. A Si cut wafer for measurement was arranged, and the raw material gas was fed from the tubular member 42 to the through hole (cup) 41. FIG. 4B schematically shows the metal oxide film 43 formed on the side surface portion A and the bottom surface portion B, and the film on the side surface portion A of the formed metal oxide film 43 is shown. Then, the film was cut along the cutting line a1-a2 in the vertical direction, and the film thickness was measured at the upper, middle and lower portions of the fracture surface 45. Further, for the bottom surface portion B, the bottom surface portion of the formed metal oxide film 43 is horizontally cut along the cutting line b1-b2, and the center portion of the fracture surface 47, the inside of the periphery, and the three locations outside the periphery. The film thickness of was measured.
実施例1の成膜条件は、管状部材と基材とについて、図3(a)に示すように管状部材を基材カップの内部に挿入(挿入距離S1=4mm)して成膜した。また、実施例2は、図3(b)に示すように管状部材を基材カップの内部に距離S2=2.5mm挿入して成膜した。一方、実施例3は、図3(c)に示すように、管状部材の先端部がカップ縁部と一致する位置(管状部材−カップ間距離S3=0mm)で成膜した例であり、実施例4は、図3(d)に示すように管状部材の先端を基材から離間させた状態(管状部材−カップ間距離S4=2mm)で成膜した例である。図5〜図8は、管状部材−カップ間距離を上記4つの水準で振った実施例1〜4における成膜後の金属酸化物膜の状態を走査型電子顕微鏡(SEM)で観察した結果を示している。 The film formation conditions of Example 1 were as follows: the tubular member and the base material were formed by inserting the tubular member into the base material cup (insertion distance S1 = 4 mm) as shown in FIG. In Example 2, as shown in FIG. 3B, the tubular member was formed by inserting a distance S2 = 2.5 mm into the base cup. On the other hand, Example 3 is an example in which film formation was performed at a position where the tip of the tubular member coincides with the cup edge (distance between tubular member and cup S3 = 0 mm) as shown in FIG. In Example 4, as shown in FIG. 3D, the film was formed in a state where the tip of the tubular member was separated from the substrate (distance between tubular member and cup S4 = 2 mm). 5 to 8 show the results of observing the state of the metal oxide film after film formation in Examples 1 to 4 in which the distance between the tubular member and the cup was varied at the above four levels with a scanning electron microscope (SEM). Show.
比較例として、上記実施例と同様の成膜条件とし、上述した引用文献に見られるノズルの形状を用いたスリット状ノズルを比較例1に、多孔穴状ノズルを比較例2に適用して実施例の結果と比較した。その結果を表1に示すとともに、比較例1の成膜後の写真を図9に示す。具体的には、所定厚のアルミ基板にφ2.6mmの貫通穴を空けてなる模擬形状基板をSiウエハ上に設置し、従来の大気開放型CVD装置で成膜を行った。なお、表1中の符号“−”は、成膜されなかったことを指している。 As a comparative example, the same film forming conditions as in the above example were applied, and a slit-like nozzle using the nozzle shape found in the above cited reference was applied to Comparative Example 1 and a porous hole nozzle was applied to Comparative Example 2. Compared with the results of the examples. The results are shown in Table 1, and a photograph after film formation in Comparative Example 1 is shown in FIG. Specifically, a simulated shape substrate having a φ2.6 mm through hole formed in an aluminum substrate having a predetermined thickness was placed on a Si wafer, and film formation was performed using a conventional atmospheric open type CVD apparatus. Note that the symbol “-” in Table 1 indicates that no film was formed.
実施例における成膜結果として、表1から分かるようにカップ内部まで管状部材を挿入して成膜した方が側面における膜厚が厚い傾向にある。また、実施例と比較例とを対比すると、表1に示す比較例1および比較例2の方法では、深さ方向において約1mm程度のところまでしか成膜されず、底面には全く成膜されなかった。比較例1の成膜状態は、図9に示すように成膜部91と未成膜部93とを有することが分かる。よって、従来の方法では、基材内面への成膜は不可能であることが判明したが、これは気流等の影響により、吹き付けられた原料混合ガスが送入されなかったためである。これに対して実施例では、基材の底部まで成膜されていることが分かる。これは、実施例においてガス噴出部分である管状部材が基材内へ強制的に送入され、さらに基材内部で原料混合ガスが循環しているためである。 As can be seen from Table 1, as a result of film formation in the example, the film thickness on the side surface tends to be thicker when the tubular member is inserted into the cup. Further, when comparing the example and the comparative example, in the method of Comparative Example 1 and Comparative Example 2 shown in Table 1, the film is formed only up to about 1 mm in the depth direction, and is completely formed on the bottom surface. There wasn't. It can be seen that the film formation state of Comparative Example 1 has a film forming part 91 and a non-film forming part 93 as shown in FIG. Therefore, it has been found that the conventional method cannot form a film on the inner surface of the base material because the sprayed raw material mixed gas was not fed in due to the influence of an air flow or the like. On the other hand, in the Example, it turns out that it forms into a film to the bottom part of a base material. This is because the tubular member which is the gas ejection portion in the embodiment is forcibly fed into the base material, and the raw material mixed gas is circulated inside the base material.
図10は、従来の成膜技術との対比における本願発明の成膜方法を模式的に示している。図10(a)は従来の内面成膜の様子を示しており、ノズル101から供給された原料混合ガス103が、加熱装置109上に載置した基材105の内部に送入されずに外部へ回り込んでいることが分かる。これに対して、図10(b)に示す本願発明の成膜方法では、管状部材110から供給された原料混合ガス113が、加熱装置109上に置いた基材105の内部の隅々にまで達し、原料混合ガスが基材内部で循環していることが分かる。 FIG. 10 schematically shows the film forming method of the present invention in comparison with the conventional film forming technique. FIG. 10A shows a state of conventional inner surface film formation, in which the raw material mixed gas 103 supplied from the nozzle 101 is not fed into the inside of the base material 105 placed on the heating device 109 but outside. It turns out that it is going around. On the other hand, in the film forming method of the present invention shown in FIG. 10B, the raw material mixed gas 113 supplied from the tubular member 110 reaches every corner inside the base material 105 placed on the heating device 109. It can be seen that the raw material mixed gas is circulating inside the base material.
本発明は、大気開放型化学気相析出(CVD)装置を使用し、冷陰極蛍光管(CCFL)等に使用されるカップ電極といった基材の内面に金属酸化物膜を成膜することにより、寿命の向上等を目的とし、テレビやモニタといった液晶ディスプレイ等に利用できる。 The present invention uses an open-air chemical vapor deposition (CVD) apparatus, and forms a metal oxide film on the inner surface of a substrate such as a cup electrode used for a cold cathode fluorescent tube (CCFL) or the like, It can be used for liquid crystal displays such as televisions and monitors for the purpose of improving the service life.
1 ガス供給部
2 ガス流量計
3a〜3c 配管
4 原料気化部
5 原料
6 酸素ガス供給部
7 ノズル
8 多孔板
9 加熱装置
9a,H1〜H3 ヒーター
10 基材
11 酸素ガス流量計
12,42 管状部材
13 ノズルフード部
40a,40b 模擬形状部材
41 貫通孔
43 金属酸化物膜
45,47 破断面
First gas supply unit 2 gas flowmeter 3a~3c pipe 4 material vaporizing unit 5 material 6 oxygen gas supply unit 7 nozzle 8 perforated plate 9 heating device 9a, H 1 to H 3 Heater 10 Substrate 11 the oxygen gas flowmeter 12, 42 Tubular member 13 Nozzle hood part 40a, 40b Simulated shape member 41 Through hole 43 Metal oxide film 45, 47 Broken surface
Claims (4)
前記基材が細溝状あるいは細筒状であり、前記混合ガスを供給するための成膜ノズルのガス噴出部に、前記基材の内面を成膜するため前記基材方向へ伸びるとともに前記細溝状あるいは細筒状部分よりも細い所定長の管状部材が設置されていることを特徴とする大気開放型CVD装置。 An atmosphere open type CVD apparatus for forming a metal oxide film on an inner surface of a base material by spraying a gas mixture of a vaporized metal oxide film and a carrier gas onto the base material heated under the atmosphere,
The base material has a narrow groove shape or a thin cylindrical shape, and extends in the direction of the base material to form the inner surface of the base material at the gas ejection portion of the film formation nozzle for supplying the mixed gas, and the fine An atmospheric open type CVD apparatus, wherein a tubular member having a predetermined length that is thinner than a groove-like or narrow tubular part is installed.
前記基材が細溝状あるいは細筒状であり、混合ガスを供給するための成膜ノズルのガス噴出部に、前記基材の内面を成膜するため前記基材方向へ伸びるとともに前記細溝状あるいは細筒状部分よりも細い所定長の複数の管状部材を設置し、前記管状部材より前記混合ガスを吹き付けることで、前記細溝状あるいは細筒状の基材の内面に成膜することを特徴とする金属酸化物膜の製造方法。 A method for producing a metal oxide film, wherein a gas mixture of a raw material of a metal oxide film and a carrier gas is sprayed on a heated base material in the open air to form a metal oxide film on the inner surface of the base material. ,
The base material has a narrow groove shape or a narrow cylindrical shape, and extends in the base material direction to form the inner surface of the base material at a gas ejection portion of a film forming nozzle for supplying a mixed gas, and the narrow groove A plurality of tubular members having a predetermined length that is thinner than the cylindrical or narrow cylindrical portion, and spraying the mixed gas from the tubular member to form a film on the inner surface of the narrow groove or narrow cylindrical substrate A method for producing a metal oxide film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009007629A JP5394079B2 (en) | 2009-01-16 | 2009-01-16 | Open-air CVD apparatus and metal oxide film manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009007629A JP5394079B2 (en) | 2009-01-16 | 2009-01-16 | Open-air CVD apparatus and metal oxide film manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010163663A true JP2010163663A (en) | 2010-07-29 |
JP5394079B2 JP5394079B2 (en) | 2014-01-22 |
Family
ID=42580053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009007629A Expired - Fee Related JP5394079B2 (en) | 2009-01-16 | 2009-01-16 | Open-air CVD apparatus and metal oxide film manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5394079B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110046835A1 (en) * | 2008-04-14 | 2011-02-24 | Toyota Jidosha Kabushiki Kaisha | Vehicle travel control system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5120785A (en) * | 1974-08-14 | 1976-02-19 | Hitachi Ltd | Cvd makunokeiseihoho |
JPS5751153A (en) * | 1980-08-22 | 1982-03-25 | Westinghouse Electric Corp | Formation of transparent electroconductive film |
JPH05259092A (en) * | 1992-03-13 | 1993-10-08 | Mitsubishi Electric Corp | Thin film forming device |
JP2007239083A (en) * | 2006-03-13 | 2007-09-20 | Nagaoka Univ Of Technology | Method for forming film of metal oxide on surface of substrate, and nozzle of air-open-type cvd apparatus used in the method |
JP2008274374A (en) * | 2007-05-02 | 2008-11-13 | Seiko Epson Corp | Film deposition system and film deposition method |
-
2009
- 2009-01-16 JP JP2009007629A patent/JP5394079B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5120785A (en) * | 1974-08-14 | 1976-02-19 | Hitachi Ltd | Cvd makunokeiseihoho |
JPS5751153A (en) * | 1980-08-22 | 1982-03-25 | Westinghouse Electric Corp | Formation of transparent electroconductive film |
JPH05259092A (en) * | 1992-03-13 | 1993-10-08 | Mitsubishi Electric Corp | Thin film forming device |
JP2007239083A (en) * | 2006-03-13 | 2007-09-20 | Nagaoka Univ Of Technology | Method for forming film of metal oxide on surface of substrate, and nozzle of air-open-type cvd apparatus used in the method |
JP2008274374A (en) * | 2007-05-02 | 2008-11-13 | Seiko Epson Corp | Film deposition system and film deposition method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110046835A1 (en) * | 2008-04-14 | 2011-02-24 | Toyota Jidosha Kabushiki Kaisha | Vehicle travel control system |
US9067583B2 (en) * | 2008-04-14 | 2015-06-30 | Toyota Jidosha Kabushiki Kaisha | Vehicle travel control system |
Also Published As
Publication number | Publication date |
---|---|
JP5394079B2 (en) | 2014-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201840892A (en) | Multi-layer plasma resistant coating by atomic layer deposition | |
US9514932B2 (en) | Flowable carbon for semiconductor processing | |
TW201111050A (en) | Gas distribution showerhead and method of cleaning | |
JP6425850B1 (en) | Solid material container and solid material product in which solid material container is filled with solid material | |
CN101076614A (en) | Protective coating on a substrate and method of making thereof | |
TWI577820B (en) | Means for improving MOCVD reaction method and improvement method thereof | |
KR20080098387A (en) | Methods of depositing ruthenium film and memory medium readable by computer | |
JP2007277719A (en) | Process and device which prevent carbon monoxide poisoning in peripheral edge of substrate in thin-film deposition system | |
JP2009087910A (en) | Vapor deposition apparatus and film forming method | |
KR20080025675A (en) | Protective film structure of metal member, metal component employing protective film structure, and equipment for producing semiconductor or flat-plate display employing protective film structure | |
KR102245106B1 (en) | Diffusion bonded plasma resisted chemical vapor deposition (cvd) chamber heater | |
US20090260572A1 (en) | Chemical vapor deposition apparatus | |
JP4644359B2 (en) | Deposition method | |
KR100212906B1 (en) | Process for producing oxide films and chemical deposition apparatus therefor | |
US20200370174A1 (en) | Substrate support cover for high-temperature corrosive environment | |
JP5394079B2 (en) | Open-air CVD apparatus and metal oxide film manufacturing method | |
JP2007239083A (en) | Method for forming film of metal oxide on surface of substrate, and nozzle of air-open-type cvd apparatus used in the method | |
KR102179974B1 (en) | Apparatus and method for forming a nitride coating layer | |
US11885022B2 (en) | Method of forming a film on a substrate by chemical vapor deposition | |
US20240023204A1 (en) | Coated conductor for heater embedded in ceramic | |
JP2005298874A (en) | Cvd raw material, vaporization feed method, and film deposition method | |
JP2010225751A (en) | Device for growing atomic layer | |
JP2009016281A (en) | Field-emission type electron emission device | |
JP5245365B2 (en) | Rare earth hydroxide coating and method for forming rare earth oxide coating | |
EP2902534A1 (en) | Metal coated crucible for sapphire single crystal growth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130618 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130814 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130924 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131016 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |