JP2010163647A - Method for correcting meandering of slab in heating furnace - Google Patents

Method for correcting meandering of slab in heating furnace Download PDF

Info

Publication number
JP2010163647A
JP2010163647A JP2009005874A JP2009005874A JP2010163647A JP 2010163647 A JP2010163647 A JP 2010163647A JP 2009005874 A JP2009005874 A JP 2009005874A JP 2009005874 A JP2009005874 A JP 2009005874A JP 2010163647 A JP2010163647 A JP 2010163647A
Authority
JP
Japan
Prior art keywords
slab
meandering
eccentric wheel
heating furnace
eccentric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009005874A
Other languages
Japanese (ja)
Other versions
JP5267144B2 (en
Inventor
Mitsuru Tanaka
充 田中
Koji Hanyu
浩二 羽生
Takashi Furukawa
隆 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009005874A priority Critical patent/JP5267144B2/en
Publication of JP2010163647A publication Critical patent/JP2010163647A/en
Application granted granted Critical
Publication of JP5267144B2 publication Critical patent/JP5267144B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for correcting a meandering of a slab in a heating furnace by which the meandering of the slab can easily be corrected in a short period of time. <P>SOLUTION: In the method for correcting the meandering of the slab when the slab 12 is conveyed in the walking-beam type heating furnace 15, the difference between the upper surface height positions of respective eccentric wheels 45, 46 constituting an eccentric wheel group 47 causing the meandering of the slab 12, is obtained by actual measurement for every eccentric wheel group 47, and the meandering locus of the slab 12 is simulated based on the difference. When the measuring locus is in the out of the allowable range, the upper surface height positions of the eccentric wheels 45, 46 constituting at least one eccentric wheel group 47 are corrected. Then a process, in which the meandering locus of the slab 12 is simulated again by again obtaining the upper surface height positions of the respective eccentric wheels 45, 46 according to the corrected upper surface height positions, are repeatedly performed until the meandering locus of the slab 12 becomes the allowable range. Thus, the upper surface height positions of the eccentric wheels 45, 46 are adjusted based on the simulated result. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ウォーキングビーム型の加熱炉内を搬送されるスラブの蛇行を修正する方法に関する。 The present invention relates to a method for correcting meandering of a slab conveyed in a walking beam type heating furnace.

従来、スラブを加熱する炉として、ウォーキングビーム型の加熱炉が使用されている。この加熱炉は、複数の可動ビームと固定ビームを、その長手方向を加熱炉の炉内長手方向に配置し、しかも炉内幅方向に間隔を有して並べて配置したものであり、加熱炉の炉外幅方向に配置された複数の偏心輪(偏芯輪ともいう)からなる偏心輪群を、各可動ビームの炉外長手方向に所定間隔で複数設けたものである。これにより、各偏心輪を同期駆動することで、各可動ビームが、上昇、前進、下降、及び後退する動作を繰返して、加熱炉内のスラブを炉内長手方向に搬送できる。
このような加熱炉でスラブを搬送する場合、スラブが蛇行して、例えば、スラブが固定ビーム又は可動ビームから落下したり、また加熱炉の炉壁に接触して炉壁を損傷させる恐れがあり、製品の生産性の低下を招いたり、また設備的に被害が大きくなる可能性があった。
そこで、加熱炉内のスラブの蛇行状況を確認する方法として、加熱炉内を直接ビデオ撮影し、加熱炉内のスラブ蛇行状況を確認する技術が開示されている(例えば、特許文献1参照)。
Conventionally, a walking beam type heating furnace is used as a furnace for heating a slab. In this heating furnace, a plurality of movable beams and fixed beams are arranged in the longitudinal direction in the furnace longitudinal direction of the heating furnace, and arranged side by side with an interval in the furnace width direction. A plurality of eccentric rings, each composed of a plurality of eccentric rings (also referred to as eccentric rings) arranged in the width direction outside the furnace, are provided at predetermined intervals in the longitudinal direction outside the furnace of each movable beam. Thereby, by driving each eccentric wheel synchronously, each movable beam repeats the operation of ascending, advancing, descending, and retreating so that the slab in the heating furnace can be conveyed in the longitudinal direction of the furnace.
When a slab is transported in such a heating furnace, the slab may meander, for example, the slab may fall from a fixed beam or a movable beam, or may contact the furnace wall of the heating furnace and damage the furnace wall. There was a possibility that the productivity of the product would be lowered and the damage to the equipment would be increased.
Therefore, as a method for confirming the meandering state of the slab in the heating furnace, a technique for directly photographing the inside of the heating furnace and confirming the meandering state of the slab in the heating furnace is disclosed (for example, see Patent Document 1).

特開2007−254789号公報JP 2007-254789 A

しかしながら、加熱炉内でのスラブの蛇行状況が分かったとしても、各可動ビームをどのように調整すれば、加熱炉内でのスラブの蛇行状況がどのように変わるかを、定量的に予測することができず、正確なスラブの蛇行修正が困難であった。 However, even if the meandering situation of the slab in the heating furnace is known, how to adjust each movable beam will quantitatively predict how the meandering situation of the slab will change in the heating furnace. It was difficult to correct the meandering of the slab accurately.

本発明はかかる事情に鑑みてなされたもので、スラブの蛇行修正を短時間で容易に実施できる加熱炉内のスラブ蛇行修正方法を提供することを目的とする。 This invention is made | formed in view of this situation, and it aims at providing the slab meandering correction method in a heating furnace which can implement the slab meandering correction easily in a short time.

上記の課題を解決するためになされた本発明の要旨は、以下の通りである。
(1)スラブを加熱するウォーキングビーム型の加熱炉の炉内幅方向に間隔を有して並べて配置された複数の可動ビームに設けられ、前記加熱炉の炉外幅方向に配置された複数の偏心輪からなる偏心輪群を、前記各可動ビームの炉外長手方向に所定間隔で複数設け、前記各偏心輪を同期駆動することにより、前記各可動ビームが、上昇、前進、下降、及び後退する動作を繰返して、前記加熱炉内の前記スラブを炉内長手方向に搬送するに際し、発生する前記スラブの蛇行を修正する方法であって、
前記スラブの蛇行原因となる前記偏心輪群を構成する前記各偏心輪の上面高さ位置の差を、前記偏心輪群ごとに実測して求め、該差を基にして前記加熱炉内における前記スラブの蛇行軌跡をシミュレーションし、該スラブの蛇行軌跡が予め設定した許容範囲外であれば、少なくとも1箇所の前記偏心輪群を構成する前記偏心輪の上面高さ位置を修正し、その修正した上面高さ位置に応じた前記各偏心輪の上面高さ位置の差を再度求め、該差を基に前記スラブの蛇行軌跡をシミュレーションし直す工程を、前記スラブの蛇行軌跡が前記許容範囲内になるまで繰返し行い、該シミュレーション結果に基づいて、前記偏心輪の上面高さ位置を調整することを特徴とする加熱炉内のスラブ蛇行修正方法。
The gist of the present invention made to solve the above problems is as follows.
(1) A plurality of movable beams provided in a plurality of movable beams arranged side by side in the furnace width direction of the walking beam type heating furnace for heating the slab, and arranged in the width direction outside the furnace of the heating furnace. By providing a plurality of eccentric rings composed of eccentric rings at a predetermined interval in the longitudinal direction outside the furnace of each movable beam, each movable beam is lifted, moved forward, lowered, and moved backward by synchronously driving each eccentric wheel. A method of correcting the meandering of the slab that occurs when the slab in the heating furnace is conveyed in the longitudinal direction of the furnace by repeating the operation of
The difference in the upper surface height position of each eccentric wheel constituting the eccentric wheel group that causes the meandering of the slab is obtained by actual measurement for each eccentric wheel group, and the difference in the heating furnace is determined based on the difference. If the meandering locus of the slab is simulated, and if the meandering locus of the slab is outside the preset allowable range, the height position of the upper surface of the eccentric wheel constituting at least one eccentric wheel group is corrected and corrected. The step of re-determining the difference in the upper surface height position of each eccentric wheel according to the upper surface height position, and re-simulating the meandering locus of the slab based on the difference, the meandering locus of the slab is within the allowable range. The method of correcting the slab meandering in the heating furnace is characterized in that it is repeatedly performed until the upper surface height position of the eccentric ring is adjusted based on the simulation result.

(2)前記偏心輪群を構成する前記各偏心輪の上面高さ位置の差は、前記各可動ビームの上昇途中で該可動ビームが前記スラブの下面と接触した際の前記各偏心輪の上面高さ位置Aと、該可動ビームの降下途中で該可動ビームが前記スラブの下面より離れた際の前記各偏心輪の上面高さ位置Bを各々測定し、この測定値を基にして求めることを特徴とする(1)記載の加熱炉内のスラブ蛇行修正方法。 (2) The difference in the upper surface height position of each eccentric wheel constituting the eccentric wheel group is the upper surface of each eccentric wheel when the movable beam comes into contact with the lower surface of the slab during the ascent of each movable beam. Measure the height position A and the upper surface height position B of each eccentric wheel when the movable beam is separated from the lower surface of the slab during the descent of the movable beam, and obtain them based on the measured values. The slab meandering correction method in a heating furnace as described in (1) characterized by these.

(3)前記可動ビームの前記スラブの下面への接触、及び該可動ビームの前記スラブの下面からの離脱は、前記各偏心輪の予め設定した回転角度位置、又は前記可動ビームに設けた前記スラブの荷重検出器の検出情報を基にして検知することを特徴とする(1)又は(2)記載の加熱炉内のスラブ蛇行修正方法。
ここで、各偏心輪の予め設定した回転角度位置とは、例えば、(a)可動ビームの上昇途中でこの可動ビームがスラブの下面と接触した際の各偏心輪の上面高さ位置と、可動ビームの降下途中でこの可動ビームがスラブの下面から離れた際の各偏心輪の上面高さ位置での角度位置、(b)可動ビームがスラブの下面と接触する又は離れるタイミングに近いタイミング(近傍のタイミング)での角度位置である。
また、荷重検出器には、ロードセル等を使用でき、これを用いて可動ビームがスラブの下面に接触した検出情報(即ち、荷重負荷が発生)、又はスラブの下面から離れた検出情報(即ち、荷重負荷が無い)を基にして、各偏心輪の上面高さ位置の差を求めることもできる。
(3) The contact of the movable beam with the lower surface of the slab and the separation of the movable beam from the lower surface of the slab are the rotation angle positions of the eccentric wheels set in advance or the slab provided on the movable beam. The slab meandering correction method in a heating furnace according to (1) or (2), wherein detection is performed based on detection information of the load detector.
Here, the preset rotation angle position of each eccentric wheel is, for example, (a) the upper surface height position of each eccentric wheel when this movable beam comes into contact with the lower surface of the slab during the ascent of the movable beam, and the movable Angular position at the upper surface height position of each eccentric wheel when this movable beam leaves the lower surface of the slab during beam descent, (b) Timing close to the timing at which the movable beam contacts or separates from the lower surface of the slab Angle position).
In addition, a load cell or the like can be used for the load detector, and using this, detection information that the movable beam has contacted the lower surface of the slab (that is, a load is generated), or detection information that is separated from the lower surface of the slab (that is, The difference in the upper surface height position of each eccentric ring can also be obtained based on (no load applied).

(4)修正した前記偏心輪の上面高さ位置に基づく該偏心輪の上面高さ位置の調整は、該偏心輪の位相を調整して行うことを特徴とする(1)〜(3)記載の加熱炉内のスラブ蛇行修正方法。
(5)前記偏心輪群を構成する前記偏心輪の上面高さ位置の修正は、前記スラブの蛇行軌跡をシミュレーションした際に、該スラブの蛇行量が最も大きくなった前記偏心輪群の上流側で、しかも前記スラブを最も大きく蛇行させる前記偏心輪群を構成する前記偏心輪に対して行うことを特徴とする(1)〜(4)記載の加熱炉内のスラブ蛇行修正方法。
(6)前記各偏心輪群を構成する前記各偏心輪の上面高さ位置の差を、前記各可動ビームが設けられ、その下面が前記各偏心輪に接触する昇降フレームの炉幅方向の片側に設けたレーザー変位計により測定することを特徴とする(1)〜(5)記載の加熱炉内のスラブ蛇行修正方法。
(4) The adjustment of the top surface height position of the eccentric wheel based on the corrected top surface height position of the eccentric wheel is performed by adjusting the phase of the eccentric wheel (1) to (3) To correct the slab meandering in the furnace.
(5) The correction of the upper surface height position of the eccentric wheel group constituting the eccentric wheel group is based on the upstream side of the eccentric wheel group in which the meandering amount of the slab becomes the largest when the meandering locus of the slab is simulated. In addition, the slab meandering correction method in a heating furnace according to any one of (1) to (4), wherein the slab meandering is performed on the eccentric wheel constituting the eccentric wheel group that causes the slab to meander most greatly.
(6) One side in the furnace width direction of the elevating frame in which each movable beam is provided, and the lower surface thereof contacts each eccentric wheel, with respect to the difference in the upper surface height position of each eccentric wheel constituting each eccentric wheel group The slab meandering correction method in the heating furnace according to any one of (1) to (5), characterized in that the measurement is performed by a laser displacement meter provided in the slab.

本発明に係る加熱炉内のスラブ蛇行修正方法は、スラブの蛇行原因となる偏心輪群を構成する各偏心輪の上面高さ位置の差を、偏心輪群ごとに実測して求めるので、この差から、可動ビームの傾き状況を推測でき、各偏心輪群の設置箇所ごとにスラブのずれ量を求めることができる。これにより、隣り合う偏心輪群間で、例えば、上記したずれ量を積算して、加熱炉内におけるスラブの蛇行軌跡をシミュレーションできるので、加熱炉内のスラブの搬送状況を直接確認することなく、スラブの蛇行状況を予測できる。
ここで、スラブの蛇行軌跡が許容範囲外であれば、少なくとも1箇所の偏心輪群を構成する偏心輪の上面高さ位置を修正し、その修正した上面高さ位置に応じた新たに求め直した各偏心輪の上面高さ位置の差を基に、スラブの蛇行軌跡を再度シミュレーションし直す工程を、スラブの蛇行軌跡が許容範囲内になるまで繰返し行うので、スラブの正確な蛇行修正を容易に実施できる。
Since the slab meandering correction method in the heating furnace according to the present invention is obtained by actually measuring the difference in the upper surface height position of each eccentric wheel constituting the eccentric wheel group that causes the slab meandering for each eccentric wheel group. From the difference, the inclination state of the movable beam can be estimated, and the amount of slab displacement can be obtained for each location where each eccentric wheel group is installed. Thereby, between the adjacent eccentric wheel groups, for example, the amount of deviation described above can be integrated, and the slab meandering trajectory in the heating furnace can be simulated, so without directly confirming the state of conveyance of the slab in the heating furnace, Predict the slab meandering situation.
If the meandering trajectory of the slab is outside the allowable range, the upper surface height position of the eccentric wheel constituting at least one eccentric wheel group is corrected, and a new calculation is newly performed according to the corrected upper surface height position. The process of re-simulating the slab meandering trajectory is repeated until the slab meandering trajectory is within the allowable range based on the difference in the height of the top surface of each eccentric wheel. Can be implemented.

また、偏心輪群を構成する各偏心輪の上面高さ位置の差を、各可動ビームの上昇途中でこの可動ビームがスラブの下面と接触した際の各偏心輪の上面高さ位置Aと、可動ビームの降下途中でこの可動ビームがスラブの下面より離れた際の各偏心輪の上面高さ位置Bを各々測定し、この測定値を基にして求める場合、スラブの蛇行原因となる各偏心輪の上面高さ位置の差を正確に求めることができる。
なお、可動ビームのスラブの下面への接触とスラブの下面からの離脱を、各偏心輪の予め設定した回転角度位置、又は可動ビームに設けたスラブの荷重検出器の検出情報を基にして検知する場合、スラブの蛇行原因となる各偏心輪の上面高さ位置の差を、容易に検知できる。
Further, the difference in the upper surface height position of each eccentric wheel constituting the eccentric ring group is determined by calculating the upper surface height position A of each eccentric wheel when this movable beam comes into contact with the lower surface of the slab in the course of ascending each movable beam, When the movable beam is separated from the lower surface of the slab during the descent of the movable beam, the upper surface height position B of each eccentric wheel is measured, and when it is obtained based on this measurement value, each eccentricity that causes the meandering of the slab. It is possible to accurately obtain the difference in the height position of the upper surface of the ring.
In addition, the contact of the movable beam to the lower surface of the slab and the separation from the lower surface of the slab are detected based on the preset rotation angle position of each eccentric wheel or the detection information of the load detector of the slab provided on the movable beam. In this case, it is possible to easily detect the difference in the upper surface height position of each eccentric ring that causes the slab to meander.

そして、修正した偏心輪の上面高さ位置に基づく偏心輪の上面高さ位置の調整を、偏心輪の位相を調整して行う場合、スラブの蛇行修正を容易にできる。
また、偏心輪群を構成する偏心輪の上面高さ位置の修正を、スラブの蛇行軌跡をシミュレーションした際に、スラブの蛇行量が最も大きくなった偏心輪群の上流側で、しかもスラブを最も大きく蛇行させる偏心輪群を構成する偏心輪に対して行う場合、偏心輪の上面高さ位置の修正を行う効果が大きくなる箇所でスラブの蛇行修正を行うので、修正効果が顕著に現れ、短時間での修正が可能となる。
更に、各偏心輪群を構成する各偏心輪の上面高さ位置の差を、各可動ビームが設けられ、その下面が各偏心輪に接触する昇降フレームの炉幅方向の片側に設けたレーザー変位計により測定する場合、簡単な構成で、高精度の測定を容易にできる。
Then, when the adjustment of the top surface height position of the eccentric wheel based on the corrected top surface height position of the eccentric wheel is performed by adjusting the phase of the eccentric wheel, the meandering correction of the slab can be facilitated.
In addition, when correcting the upper surface height position of the eccentric rings constituting the eccentric ring group, when the slab meandering trajectory was simulated, the slab was the most upstream on the upstream side of the eccentric ring group where the slab meandering amount was the largest. When performing on an eccentric wheel that makes up a large meandering group, the slab meandering correction is performed at a location where the effect of correcting the upper surface height position of the eccentric ring is large, so that the correction effect appears prominently and shortened. Correction in time is possible.
Furthermore, the difference in the upper surface height position of each eccentric wheel constituting each eccentric wheel group is determined by laser displacement provided on one side in the furnace width direction of the lifting frame where each movable beam is provided and its lower surface contacts each eccentric wheel. When measuring with a meter, high-precision measurement can be easily performed with a simple configuration.

本発明の一実施の形態に係る加熱炉内のスラブ蛇行修正方法を適用するウォーキングビーム型の加熱設備の正断面図である。It is a front sectional view of the walking beam type heating equipment to which the method for correcting slab meandering in a heating furnace according to an embodiment of the present invention is applied. 同ウォーキングビーム型の加熱設備の側断面図である。It is a sectional side view of the walking beam type heating equipment. (A)、(B)はそれぞれ同ウォーキングビーム型の加熱設備の可動ビームの駆動機構の平面図、側面図である。(A), (B) is the top view and side view of the drive mechanism of the movable beam of the same walking beam type heating equipment, respectively. (A)、(B)はそれぞれ同駆動機構の部分拡大図、同駆動機構のギヤカップリング部分の部分拡大図である。(A), (B) is the elements on larger scale of the drive mechanism, respectively, and the elements on larger scale of the gear coupling part of the same drive mechanism. (A)〜(D)はスラブの蛇行の発生過程を示す説明図である。(A)-(D) are explanatory drawings which show the generation | occurrence | production process of a slab meander. スラブの蛇行軌跡のシミュレーション内容の説明図である。It is explanatory drawing of the simulation content of the meandering locus | trajectory of a slab. 修正前のスラブの蛇行軌跡のシミュレーション結果を示す説明図である。It is explanatory drawing which shows the simulation result of the meandering locus | trajectory of the slab before correction. 修正後のスラブの蛇行軌跡のシミュレーション結果を示す説明図である。It is explanatory drawing which shows the simulation result of the meandering locus | trajectory of the slab after correction.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明の一実施の形態に係る加熱炉内のスラブ蛇行修正方法を適用するウォーキングビーム型の加熱設備10について説明した後、本発明の一実施の形態に係る加熱炉内のスラブ蛇行修正方法について説明する。
図1、図2に示すように、ウォーキングビーム型の加熱設備(以下、単に加熱設備ともいう)10は、耐火物11が内張りされ、スラブ12を搬入する搬入口13と、加熱されたスラブ12を搬出する搬出口14が設けられた加熱炉(即ち、加熱炉本体)15を有している。このスラブ12の加熱は、加熱炉15内に配置されたバーナ(図示しない)により行われる。
なお、加熱炉15の長手方向は、スラブ12の搬送方向と一致し、加熱炉15の幅方向は、スラブ12の搬送方向に直交する方向と一致している。また、スラブ12は、その長手方向を加熱炉15の幅方向に向けて搬入される。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, the walking beam type heating equipment 10 to which the method for correcting the slab meander in the heating furnace according to the embodiment of the present invention is described, and then the slab meander correction in the heating furnace according to the embodiment of the present invention is described. A method will be described.
As shown in FIGS. 1 and 2, a walking beam type heating facility (hereinafter also simply referred to as a heating facility) 10 includes a refractory 11 lined, a carry-in port 13 for carrying a slab 12, and a heated slab 12. It has the heating furnace (namely, heating furnace main body) 15 provided with the carrying-out port 14 which carries out unloading. The slab 12 is heated by a burner (not shown) disposed in the heating furnace 15.
The longitudinal direction of the heating furnace 15 coincides with the conveyance direction of the slab 12, and the width direction of the heating furnace 15 coincides with the direction orthogonal to the conveyance direction of the slab 12. Further, the slab 12 is carried in such a manner that its longitudinal direction is directed to the width direction of the heating furnace 15.

加熱炉15内には、スラブ12を載置して支持する複数(ここでは、2つ)の固定ビーム16、17が、その長手方向を炉内長手方向に合わせて(スラブ12の搬送方向に沿って)、しかも炉内幅方向に間隔を有して平行に並べて立設されている。なお、固定ビーム16、17は、加熱炉15の炉内長手方向に沿って配置される長尺の固定載置部18と、この固定載置部18を支持する複数の固定支持部19とを有している。
この固定ビーム16、17の間には、スラブ12を載置する複数(ここでは、2つ)の可動ビーム20、21が、固定ビーム16、17とは間隔を有して平行に並べて配置されている。この可動ビーム20、21も、加熱炉15の炉内長手方向に沿って配置される長尺の可動載置部22と、この可動載置部22を支持する複数の可動支持部23とを有している。
各可動ビーム20、21の各可動支持部23の下部は、加熱炉15の下部に形成された貫通孔24を介して、加熱炉15の下方(炉外)の空洞部25内に配置された昇降フレーム26の幅方向両側に立設している。
In the heating furnace 15, a plurality of (in this case, two) fixed beams 16 and 17 for mounting and supporting the slab 12 are aligned in the longitudinal direction of the furnace (in the conveying direction of the slab 12). ) And in parallel with a gap in the width direction of the furnace. The fixed beams 16 and 17 include a long fixed mounting portion 18 arranged along the longitudinal direction of the furnace 15 and a plurality of fixed support portions 19 that support the fixed mounting portion 18. Have.
Between the fixed beams 16 and 17, a plurality of (here, two) movable beams 20 and 21 on which the slab 12 is placed are arranged in parallel with a distance from the fixed beams 16 and 17. ing. The movable beams 20 and 21 also have a long movable mounting portion 22 arranged along the longitudinal direction of the furnace 15 and a plurality of movable support portions 23 that support the movable mounting portion 22. is doing.
The lower part of each movable support portion 23 of each movable beam 20, 21 is disposed in a cavity 25 below (outside the furnace) of the heating furnace 15 through a through hole 24 formed in the lower part of the heating furnace 15. The lift frame 26 is erected on both sides in the width direction.

昇降フレーム26は、加熱炉10の炉外長手方向に渡って一体構造となっており、空洞部25内に配置された複数の駆動機構(カム機構)27により昇降する。
図1〜図4に示すように、各駆動機構27は、駆動モータ28からの動力を、動力伝達軸29を介して昇降フレーム26へ送る動力伝達ギヤ30、31を有している。この動力伝達ギヤ30、31の両側には、中間軸32、33が軸心(軸芯ともいう)を合わせて配置され、この中間軸32、33と、ピニオン34、35が取付けられた回転軸36、37とが、その軸心を合わせ、ギヤカップリング38、39を介して取付け固定されている。なお、図4(A)、(B)に示すように、ギヤカップリング38、39は、中間軸32、33側にギヤが設けられ、回転軸36、37側にはボスのみが設けられ、複数のボルト40で固定する構成となっている。
The elevating frame 26 has an integral structure over the longitudinal direction outside the furnace of the heating furnace 10, and is moved up and down by a plurality of drive mechanisms (cam mechanisms) 27 arranged in the cavity 25.
As shown in FIGS. 1 to 4, each drive mechanism 27 includes power transmission gears 30 and 31 that send power from the drive motor 28 to the lifting frame 26 via a power transmission shaft 29. Intermediate shafts 32 and 33 are arranged on both sides of the power transmission gears 30 and 31 with their axis centers (also referred to as shaft cores) aligned, and the rotation shafts to which the intermediate shafts 32 and 33 and pinions 34 and 35 are attached. 36 and 37 are attached and fixed via gear couplings 38 and 39 with their axes aligned. As shown in FIGS. 4A and 4B, the gear couplings 38 and 39 are provided with gears on the intermediate shafts 32 and 33 side and provided with only bosses on the rotary shafts 36 and 37 side. It is configured to be fixed with a plurality of bolts 40.

各ピニオン34、35には、それぞれ大ギヤ41、42が螺合し、この大ギヤ41、42が取付けられた回転軸43、44に、偏心輪45、46が取付けられている。なお、回転軸43、44は、その軸心を、偏心輪45、46の回転中心からずらして取付けている。
この各偏心輪45、46には、昇降フレーム26の炉幅方向両側の下面が接触している。
各偏心輪45、46は、加熱炉15の下方の炉外幅方向両側に、間隔を有して配置されており、この偏心輪45、46で構成される偏心輪群47を、各可動ビーム20、21の長手方向に所定間隔(例えば、5〜10m程度)で複数設けている。
これにより、各可動ビーム20、21には、昇降フレーム26を介して複数の偏心輪45、46が設けられるため、駆動モータ28からの動力で、各偏心輪45、46を同期駆動させて昇降フレーム26を昇降できると共に、シリンダー48により前後進できる。従って、各可動ビーム20、21が、上昇、前進、下降、及び後退する動作を繰返すので、スラブ12を固定ビーム16、17と可動ビーム20、21に交互に載せて、加熱炉15の搬出口14まで搬送できる。
Large gears 41 and 42 are screwed into the pinions 34 and 35, respectively, and eccentric wheels 45 and 46 are attached to rotary shafts 43 and 44 to which the large gears 41 and 42 are attached. The rotation shafts 43 and 44 are attached with their shaft centers shifted from the rotation centers of the eccentric wheels 45 and 46.
The eccentric wheels 45 and 46 are in contact with the lower surfaces of both sides of the elevating frame 26 in the furnace width direction.
The eccentric wheels 45 and 46 are arranged at intervals on both sides in the outside width direction of the furnace below the heating furnace 15, and the eccentric wheel group 47 constituted by the eccentric wheels 45 and 46 is connected to each movable beam. A plurality are provided at predetermined intervals (for example, about 5 to 10 m) in the longitudinal direction of 20 and 21.
As a result, each of the movable beams 20 and 21 is provided with a plurality of eccentric wheels 45 and 46 via the lifting frame 26, so that the eccentric wheels 45 and 46 are driven in synchronization by the power from the drive motor 28. The frame 26 can be moved up and down and moved forward and backward by a cylinder 48. Accordingly, each movable beam 20, 21 repeats the operation of ascending, advancing, descending, and retreating. Therefore, the slab 12 is alternately placed on the fixed beams 16, 17 and the movable beams 20, 21, and the carry-out port of the heating furnace 15 14 can be transported.

続いて、本発明の一実施の形態に係る加熱炉内のスラブ蛇行修正方法について、ウォーキングビーム型の加熱設備10を参照しながら説明する。
各偏心輪45、46を同期駆動することにより、各可動ビーム20、21が、上昇、前進、下降、及び後退する動作を繰返す。
このとき、各偏心輪群47を構成する偏心輪45、46の上面高さ位置が、常に同じレベルであれば、各可動ビーム20、21はスラブの下面に対して直角に接触するため、2つの固定ビーム16、17の炉内幅方向の中心位置(以下、固定ビーム中心ともいう)と、可動ビーム20、21の炉内幅方向の中心位置(以下、可動ビーム中心ともいう)とが常に一致する。従って、スラブは、蛇行することなく加熱炉15内を搬送される。
Next, a slab meandering correction method in a heating furnace according to an embodiment of the present invention will be described with reference to a walking beam type heating facility 10.
By driving each eccentric wheel 45 and 46 synchronously, each movable beam 20 and 21 repeats the operation | movement which raises, advances, descends, and retracts.
At this time, if the upper surface height positions of the eccentric wheels 45 and 46 constituting each eccentric wheel group 47 are always at the same level, the movable beams 20 and 21 are in contact with the lower surface of the slab at a right angle. The center position in the furnace width direction of the two fixed beams 16 and 17 (hereinafter also referred to as the fixed beam center) and the center position in the furnace width direction of the movable beams 20 and 21 (hereinafter also referred to as the movable beam center) are always present. Match. Therefore, the slab is conveyed in the heating furnace 15 without meandering.

しかし、現実的には、加熱設備10の使用に伴って、各偏心輪群47を構成する偏心輪45、46の上面高さ位置が異なるレベルになる。この原因としては、例えば、偏心輪45、46の摩耗や、2つの偏心輪45、46の位相のずれがある。
このように、各偏心輪45、46の上面高さ位置が異なるレベルになった場合、2つの可動ビーム20、21の炉内幅方向の中心位置と、2つの固定ビーム16、17の炉内幅方向の中心位置とがずれて、スラブが蛇行しながら加熱炉15内を搬送される。この現象について、図5(A)〜(D)を参照しながら説明する。なお、図5(A)〜(D)では、説明の便宜上、2つの可動ビーム20、21の間に2つの固定ビーム16、17を配置しているが、発生する現象は同じである。
各可動ビーム20、21の上昇途中(例えば、各偏心輪45、46の回転角度90度)で、各可動ビーム20、21がスラブの下面と接触した際、図5(A)に示すように、各可動ビーム20、21がスラブ12の下面に対して傾斜して接触する。この場合、一方の可動ビーム20は固定ビーム中心から離れる側へ、また他方の可動ビーム21は固定ビーム中心に近づく側へ、即ちスラブの下面に本来接触する場所(即ち、可動ビーム20、21が垂直に上昇して、スラブの下面と直角に接触する場所)から炉内幅方向の一方側へ、ΔC1だけ炉内幅方向にずれて接触する。
However, in reality, as the heating equipment 10 is used, the upper surface height positions of the eccentric wheels 45 and 46 constituting each eccentric wheel group 47 become different levels. The cause of this is, for example, wear of the eccentric rings 45 and 46 and a phase shift between the two eccentric rings 45 and 46.
Thus, when the upper surface height position of each eccentric wheel 45 and 46 becomes a different level, the center position of the two movable beams 20 and 21 in the in-furnace width direction and the two fixed beams 16 and 17 in the furnace The center position in the width direction is shifted, and the slab is conveyed in the heating furnace 15 while meandering. This phenomenon will be described with reference to FIGS. 5A to 5D, two fixed beams 16 and 17 are arranged between the two movable beams 20 and 21 for the sake of convenience of explanation, but the phenomenon that occurs is the same.
When each movable beam 20, 21 comes into contact with the lower surface of the slab during the ascending of each movable beam 20, 21 (for example, the rotation angle of each eccentric wheel 45, 46 is 90 degrees), as shown in FIG. The movable beams 20 and 21 are in contact with the lower surface of the slab 12 while being inclined. In this case, one movable beam 20 moves away from the fixed beam center, and the other movable beam 21 moves closer to the fixed beam center, that is, a place where the movable beam 20 is originally in contact with the lower surface of the slab (that is, the movable beams 20, 21 are From the place where the slab rises vertically and contacts the lower surface of the slab at a right angle from one side in the inner width direction of the furnace, it is shifted by ΔC1 in the inner width direction.

そして、各可動ビーム20、21にスラブを載置した状態で、スラブを最も上昇させた場合(例えば、各偏心輪45、46の回転角度180度)、各偏心輪45、46の上面高さ位置が同じレベルであれば、図5(B)に示すように、固定ビーム中心と可動ビーム中心とが一致する。しかし、図5(A)に示したように、各可動ビーム20、21が、スラブの下面に炉内幅方向の一方側へΔC1だけ炉内幅方向にずれて接触しているため、スラブは炉内幅方向の他方側へずれる。
次に、各可動ビーム20、21の降下途中(例えば、各偏心輪45、46の回転角度270度)で、各可動ビーム20、21がスラブの下面から離れる直前では、図5(C)に示すように、各可動ビーム20、21がスラブ12の下面に対して傾斜して接触している。この場合、一方の可動ビーム20は固定ビーム中心に近づく側へ、また他方の可動ビーム21は固定ビーム中心から離れる側へ、即ちスラブの下面に本来接触する場所から炉内幅方向の他方側へ、ΔC2だけ炉内幅方向にずれて接触する。
Then, when the slab is raised most with the slabs placed on the movable beams 20 and 21 (for example, the rotation angle of the eccentric wheels 45 and 46 is 180 degrees), the height of the upper surfaces of the eccentric wheels 45 and 46 is increased. If the position is the same level, as shown in FIG. 5B, the fixed beam center coincides with the movable beam center. However, as shown in FIG. 5 (A), each movable beam 20, 21 is in contact with the lower surface of the slab while being displaced in the furnace width direction by ΔC1 to one side in the furnace width direction. Shift to the other side in the furnace width direction.
Next, immediately before the movable beams 20 and 21 are separated from the lower surface of the slab during the lowering of the movable beams 20 and 21 (for example, the rotation angle 270 degrees of the eccentric wheels 45 and 46), FIG. As shown, the movable beams 20 and 21 are in contact with the lower surface of the slab 12 in an inclined manner. In this case, one movable beam 20 is closer to the center of the fixed beam, and the other movable beam 21 is away from the center of the fixed beam, that is, from the position where it originally contacts the lower surface of the slab to the other side in the furnace width direction. , ΔC2 is shifted in the width direction in the furnace and contacts.

そして、スラブは、固定ビーム中心と可動ビーム中心とがずれた状態で、図5(D)に示すように、各可動ビーム20、21から各固定ビーム16、17に載せ替えられ、各可動ビーム20、21が最下端位置(例えば、各偏心輪45、46の回転角度360度)まで下降する。
以上に示した操作が繰返されることで、各偏心輪45、46の上面高さ位置のずれに起因したスラブの蛇行が発生する。
そこで、このずれを以下に示す方法で求め、スラブの蛇行軌跡をシミュレーションする。
まず、偏心輪群47ごとに、偏心輪群47を構成する各偏心輪45、46の上面高さ位置の差を求める。この差を求めるに際しては、図1に示すように、可動ビーム20、21の昇降フレーム26の炉幅方向の偏心輪45側(片側)に設けたレーザー墨出器(レーザー変位計の一例)49を使用する。なお、レーザー墨出器49は、一方側の偏心輪45の直上(偏心輪45の上面位置から上方へ10cmまでの範囲内)の昇降フレーム26に取付けられ、他方側の偏心輪46の直上の昇降フレーム26に取付けられた目盛り(図示しない)を読むことで、各偏心輪45、46の上面高さ位置の差が得られる。
Then, as shown in FIG. 5D, the slab is transferred from the movable beams 20 and 21 to the fixed beams 16 and 17 in a state where the fixed beam center and the movable beam center are shifted from each other. 20 and 21 are lowered to the lowermost position (for example, the rotation angle 360 degrees of the eccentric wheels 45 and 46).
By repeating the operations described above, slab meandering due to the displacement of the height positions of the upper surfaces of the eccentric wheels 45 and 46 occurs.
Therefore, this deviation is obtained by the following method, and the meandering locus of the slab is simulated.
First, for each eccentric ring group 47, the difference in the upper surface height position of each of the eccentric rings 45 and 46 constituting the eccentric ring group 47 is obtained. In obtaining this difference, as shown in FIG. 1, a laser marking device (an example of a laser displacement meter) 49 provided on the eccentric wheel 45 side (one side) of the movable frame 20, 21 on the lifting frame 26 in the furnace width direction. Is used. The laser marking device 49 is attached to the elevating frame 26 directly above the eccentric wheel 45 on one side (within a range of 10 cm upward from the position of the upper surface of the eccentric wheel 45), and directly above the eccentric wheel 46 on the other side. By reading a scale (not shown) attached to the elevating frame 26, the difference in the upper surface height position of each eccentric wheel 45, 46 is obtained.

次に、レーザー墨出器49により、スラブの蛇行原因となる各可動ビーム20、21の上昇途中で、可動ビーム20、21がスラブの下面と接触した際、即ち図5(A)に示す状態での各偏心輪45、46の上面高さ位置Aの差σ1を求める。なお、この差σ1は、必ずしも可動ビーム20、21がスラブの下面と接触した位置で求めるのではなく、偏心輪の回転角度位置を予め設定した値(可動ビームがスラブの下面と接触するタイミングに近いタイミングでの角度位置)、例えば、90度に設定し、偏心輪がこの回転角度位置まで回転したことを検知して求めてもよい。また、差σ1を、ロードセル(荷重検出器の一例)を用い、可動ビームがスラブの下面に接触したことを検出して求めることもできる。
なお、この差σ1は、各偏心輪45、46の上面高さ位置Aを、それぞれ測定して求めてもよい。
Next, when the movable beams 20 and 21 come into contact with the lower surface of the slab while the movable beams 20 and 21 causing the meandering of the slab are raised by the laser marking device 49, that is, the state shown in FIG. The difference σ1 of the upper surface height position A of each eccentric wheel 45, 46 is obtained. The difference σ1 is not necessarily obtained at the position where the movable beams 20 and 21 are in contact with the lower surface of the slab, but is a value set in advance for the rotational angle position of the eccentric wheel (at the timing when the movable beam contacts the lower surface of the slab. (An angular position at a close timing), for example, 90 degrees may be set, and it may be obtained by detecting that the eccentric wheel has rotated to this rotational angle position. The difference σ1 can also be obtained by detecting that the movable beam has contacted the lower surface of the slab using a load cell (an example of a load detector).
The difference σ1 may be obtained by measuring the upper surface height position A of each eccentric wheel 45, 46, respectively.

図5(A)に示すように、実測して各偏心輪45、46の上面高さ位置Aでの差σ1が分かれば、各偏心輪45、46の上面高さ位置Aを同一レベルと仮定した場合の各偏心輪45、46の上面高さ位置を結ぶ直線L1と、各偏心輪45、46の上面高さ位置Aで差σ1が発生した際の各偏心輪45、46の上面高さ位置を結ぶ直線L2とのなす角α1度が得られる。このとき、可動ビーム20も、垂直状態の可動ビーム20に対して、上記なす角α1度で傾斜することとなるため、相似関係により、ずれる量(以下、単にずれ量とも称す)ΔC1が(1)式から得られる。
ΔC1=H÷L×σ1 ・・・(1)
ここで、Hは偏心輪45の上面位置からスラブの下面位置までの高さ(mm)、Lは左右の偏心輪45、46間の距離(mm)である。
As shown in FIG. 5 (A), if the difference σ1 at the upper surface height position A of each eccentric wheel 45, 46 is known by actual measurement, the upper surface height position A of each eccentric wheel 45, 46 is assumed to be the same level. The upper surface height of each eccentric wheel 45, 46 when a difference σ1 occurs between the straight line L1 connecting the upper surface height position of each eccentric wheel 45, 46 and the upper surface height position A of each eccentric wheel 45, 46. An angle α1 degree formed by the straight line L2 connecting the positions is obtained. At this time, the movable beam 20 is also inclined with respect to the movable beam 20 in the vertical state at the angle α1 degree, and therefore, the shift amount (hereinafter also simply referred to as a shift amount) ΔC1 is (1) due to the similarity. ).
ΔC1 = H ÷ L × σ1 (1)
Here, H is the height (mm) from the upper surface position of the eccentric wheel 45 to the lower surface position of the slab, and L is the distance (mm) between the left and right eccentric wheels 45, 46.

同様に、レーザー墨出器49により、可動ビーム20、21の降下途中で、可動ビーム20、21がスラブの下面から離れた際、即ち図5(C)に示す状態での各偏心輪45、46の上面高さ位置Bの差σ2を、実測して求める。この差σ2も、上記した差σ1と同様の方法で求めることができる。なお、差σ2は、各偏心輪45、46の上面高さ位置Bを、それぞれ測定して求めてもよい。
この差σ2が分かることで、上記した差σ1と同様の考え方により、ずれ量ΔC2が(2)式から得られる。
ΔC2=H÷L×σ2 ・・・(2)
従って、各偏心輪45、46が1回転(1サイクル)して発生する全ずれ量ΔCは、ずれ量ΔC1とずれ量ΔC2との和となる(以上、ずれ量演算工程)。
Similarly, when the movable beams 20 and 21 are separated from the lower surface of the slab during the lowering of the movable beams 20 and 21 by the laser marking device 49, each eccentric wheel 45 in the state shown in FIG. The difference σ2 of the upper surface height position B of 46 is obtained by actual measurement. This difference σ2 can also be obtained by the same method as the above-described difference σ1. The difference σ2 may be obtained by measuring the upper surface height position B of each eccentric wheel 45, 46, respectively.
By knowing this difference σ2, the shift amount ΔC2 can be obtained from the equation (2) based on the same idea as the difference σ1 described above.
ΔC2 = H ÷ L × σ2 (2)
Accordingly, the total deviation amount ΔC generated by one rotation (one cycle) of each eccentric wheel 45, 46 is the sum of the deviation amount ΔC1 and the deviation amount ΔC2 (the deviation amount calculation step).

この全ずれ量ΔCを、全偏心輪群47についてそれぞれ求め、この差を基にして加熱炉15内におけるスラブの蛇行軌跡をシミュレーションする。
このシミュレーションの方法としては、図6に示すように、まず、隣り合う偏心輪群の上流側に位置する偏心輪群(即ち、#1偏心輪)での全ずれ量ΔCと、下流側に位置する偏心輪群(即ち、#2偏心輪)での全ずれ量ΔCを基に、偏心輪群間の複数のポイントごとのずれ量を、線形補間にて算出する(図6中の棒グラフ)。なお、各ポイントは、スラブの蛇行軌跡が明確に分かるように、例えば、偏心輪群間の距離を5〜30等分した位置とするのがよい。
次に、各ポイントでのスラブのずれ量を累積し、偏心輪群間の蛇行軌跡を求める(図6中の◆を結んだ線)。
これにより、加熱炉15のスラブ12の搬入口13から搬出口14まで、スラブの蛇行軌跡をシミュレーションできる。
そして、得られたスラブの蛇行軌跡が、予め設定した許容範囲内か否かを判定する。
ここで、許容範囲とは、例えば、スラブが可動ビーム20、21から落下することなく、しかも加熱炉15の炉壁に接触しない範囲を意味する(以上、蛇行軌跡推測工程)。
The total deviation amount ΔC is obtained for each of the eccentric groups 47, and the slab meandering locus in the heating furnace 15 is simulated based on this difference.
As shown in FIG. 6, the simulation method is as follows. First, the total deviation amount ΔC in the eccentric ring group positioned upstream of the adjacent eccentric ring group (that is, the # 1 eccentric ring), and the downstream position. Based on the total deviation amount ΔC in the eccentric ring group (that is, # 2 eccentric ring), the deviation amount for each of a plurality of points between the eccentric ring groups is calculated by linear interpolation (bar graph in FIG. 6). In addition, each point is good to set it as the position which divided | segmented the distance between eccentric ring groups into 5-30 parts so that the meandering locus | trajectory of a slab can be understood clearly.
Next, the amount of displacement of the slab at each point is accumulated to obtain a meandering locus between the eccentric ring groups (a line connecting ◆ in FIG. 6).
Thereby, the meandering locus of the slab can be simulated from the carry-in port 13 to the carry-out port 14 of the slab 12 of the heating furnace 15.
Then, it is determined whether or not the obtained meandering locus of the slab is within a preset allowable range.
Here, the allowable range means, for example, a range in which the slab does not fall from the movable beams 20 and 21 and does not contact the furnace wall of the heating furnace 15 (the meandering trajectory estimation process).

従って、スラブの蛇行軌跡が許容範囲外であれば、少なくとも1箇所の偏心輪群47を構成する偏心輪45、46の上面高さ位置A、Bを求めた後、再度スラブの蛇行軌跡をシミュレーションし直す。
ここで、各偏心輪45、46の上面高さ位置A、Bを修正する偏心輪群47は、シミュレーションしたスラブ12の蛇行軌跡上において、スラブ12の蛇行量が最も大きくなった偏心輪群47の上流側で、しかもスラブ12を最も大きく蛇行させる全ずれ量ΔCが発生する偏心輪群47が好ましい。このとき、修正する偏心輪群47は、1箇所でもよく、また複数箇所(2〜5箇所程度)でもよいが、上記したスラブ12の全ずれ量ΔCを最も大きくする偏心輪群47が最も好ましく、多くとも、全ずれ量ΔCが次に大きい偏心輪群47まで含めるのがよい。これは、修正する偏心輪群47が多くなれば、スラブ12の搬送経路が複雑に変化する可能性があり、以降の蛇行量を修正する際のシミュレーションが難しくなり、蛇行軌跡が許容範囲内に収まるまでに長時間を要するためである。
Therefore, if the meandering locus of the slab is out of the allowable range, the upper surface height positions A and B of the eccentric rings 45 and 46 constituting at least one eccentric ring group 47 are obtained, and then the meandering locus of the slab is simulated again. Try again.
Here, the eccentric wheel group 47 for correcting the upper surface height positions A and B of the eccentric wheels 45 and 46 is the eccentric wheel group 47 in which the amount of meandering of the slab 12 is the largest on the simulated meandering locus of the slab 12. An eccentric ring group 47 in which a total displacement amount ΔC that causes the slab 12 to meander most greatly is preferable. At this time, the eccentric ring group 47 to be corrected may be one place or a plurality of places (about 2 to 5 places), but the eccentric ring group 47 that maximizes the total displacement amount ΔC of the slab 12 is most preferable. At most, it is preferable to include the eccentric wheel group 47 having the next largest total deviation amount ΔC. This is because if the number of eccentric wheel groups 47 to be corrected increases, the conveyance path of the slab 12 may change in a complicated manner, and subsequent simulation of correcting the meandering amount becomes difficult, and the meandering locus is within an allowable range. This is because it takes a long time to settle.

偏心輪群47を構成する各偏心輪45、46の上面高さ位置A、Bの修正方法としては、例えば、偏心輪45又は偏心輪46の位相を調整する方法や、ピニオン34(又はピニオン35)と大ギヤ41(又は大ギヤ42)との噛み合わせをずらす方法がある。
以上の操作を、スラブの蛇行軌跡が許容範囲内になるまで繰返し行う(以上、蛇行軌跡修正工程)。
その結果、スラブの蛇行軌跡が許容範囲内になれば、この修正情報、即ちシミュレーション結果に基づいて、偏心輪群47を構成する偏心輪45、46の上面高さ位置A、Bを、実際に調整して、スラブの搬送を行う。なお、上記したずれ量演算工程、蛇行軌跡推測工程、及び蛇行軌跡修正工程の各工程は、コンピュータ(演算手段)への入力情報に基づき、プログラムにより算出される。
従って、各偏心輪群47を構成する各偏心輪45、46のレベル差と、スラブの蛇行状況との関係性を定量化でき、どの偏心輪群47の偏心輪45、46の上面高さ位置A、Bをどのように修正すれば、スラブがどのように蛇行するかといったことが定量的に把握できるようになり、最適な改善方法を導ける。
As a method of correcting the upper surface height positions A and B of the eccentric wheels 45 and 46 constituting the eccentric wheel group 47, for example, a method of adjusting the phase of the eccentric wheel 45 or the eccentric wheel 46, the pinion 34 (or the pinion 35), and the like. ) And the large gear 41 (or the large gear 42).
The above operation is repeated until the slab meandering trajectory is within the allowable range (the meandering trajectory correcting step).
As a result, if the meandering trajectory of the slab is within the allowable range, the upper surface height positions A and B of the eccentric rings 45 and 46 constituting the eccentric ring group 47 are actually determined based on this correction information, that is, the simulation result. Adjust and carry the slab. Each of the above-described deviation amount calculating step, meandering locus estimating step, and meandering locus correcting step is calculated by a program based on information input to a computer (calculation means).
Accordingly, it is possible to quantify the relationship between the level difference between the eccentric wheels 45 and 46 constituting each eccentric wheel group 47 and the meandering state of the slab, and the position of the upper surface height of the eccentric wheels 45 and 46 of which eccentric wheel group 47 If A and B are corrected, it becomes possible to quantitatively grasp how the slab meanders, and an optimal improvement method can be derived.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、6つの偏心輪群(図7、図8に示す四角で囲んだ斜線部)が、上流側から下流側へかけて、ストローク番号5、20、35、50、65、80にそれぞれ設置された加熱炉を使用して、スラブの蛇行修正を行った結果について説明する。なお、ストロークとは、各偏心輪の1回転を意味しており、1ストロークあたりのスラブの搬送距離は600mm程度である。また、偏心輪の上面位置からスラブの下面位置までの高さHは5765(mm)、左右の偏心輪間の距離Lは3200(mm)である。
Next, examples carried out for confirming the effects of the present invention will be described.
Here, six eccentric ring groups (shaded portions surrounded by squares shown in FIGS. 7 and 8) are installed at stroke numbers 5, 20, 35, 50, 65, and 80 from the upstream side to the downstream side, respectively. The result of correcting the meandering of the slab using the heated furnace will be described. The stroke means one rotation of each eccentric wheel, and the slab conveyance distance per stroke is about 600 mm. The height H from the upper surface position of the eccentric wheel to the lower surface position of the slab is 5765 (mm), and the distance L between the left and right eccentric wheels is 3200 (mm).

まず、各可動ビームの上昇途中で、可動ビームがスラブの下面と接触した際の偏心輪群ごとの各偏心輪の上面高さ位置Aの差σ1をレーザー墨出器49で求めた結果、加熱炉の上流側から下流側へかけて、0mm、−2mm、1.5mm、−0.5mm、0.5mm、及び−2mmであった。
また、可動ビームの降下途中で、可動ビームがスラブの下面から離れた際の偏心輪群ごとの各偏心輪の上面高さ位置Bの差σ2をレーザー墨出器49で求めた結果、加熱炉の上流側から下流側へかけて、−1mm、−0.5mm、3mm、0.5mm、−0.5mm、及び−2mmであった。
First, as a result of obtaining the difference σ1 of the upper surface height position A of each eccentric wheel for each eccentric wheel group when the movable beam comes into contact with the lower surface of the slab during the ascending of each movable beam, From the upstream side to the downstream side of the furnace, they were 0 mm, -2 mm, 1.5 mm, -0.5 mm, 0.5 mm, and -2 mm.
Further, as a result of obtaining the difference σ2 of the upper surface height position B of each eccentric wheel for each eccentric wheel group when the movable beam is separated from the lower surface of the slab during the descent of the movable beam, From the upstream side to the downstream side, they were −1 mm, −0.5 mm, 3 mm, 0.5 mm, −0.5 mm, and −2 mm.

この結果に基づき、各偏心輪群ごとに、ずれ量ΔC1とずれ量ΔC2を求めた。なお、ずれ量ΔC1は、可動ビームがスラブ下面に接触した際の角度、即ち各偏心輪の回転角度90度のときの値であり、またずれ量ΔC2は、可動ビームがスラブ下面から離脱した際の角度、即ち各偏心輪の回転角度270度のときの値である。
ここで、ずれ量ΔC1は、加熱炉の上流側から下流側へかけて、0mm、−3.60mm、2.70mm、−0.90mm、0.90mm、及び−3.60mmであった。
また、ずれ量ΔC2は、加熱炉の上流側から下流側へかけて、1.80mm、0.90mm、−5.40mm、−0.90mm、0.90mm、及び3.60mmであった。
このずれ量ΔC1とずれ量ΔC2から、全ずれ量ΔC(即ち、ずれ量ΔC1とずれ量ΔC2の和)を求めた結果、加熱炉の上流側から下流側へかけて、1.80mm、−2.70mm、−2.70mm、−1.80mm、1.80mm、及び0mmであった。
Based on this result, a deviation amount ΔC1 and a deviation amount ΔC2 were determined for each eccentric wheel group. The shift amount ΔC1 is a value when the movable beam contacts the lower surface of the slab, that is, a value when the rotation angle of each eccentric wheel is 90 degrees, and the shift amount ΔC2 is a value when the movable beam leaves the lower surface of the slab. , That is, the value when the rotation angle of each eccentric wheel is 270 degrees.
Here, the shift amount ΔC1 was 0 mm, −3.60 mm, 2.70 mm, −0.90 mm, 0.90 mm, and −3.60 mm from the upstream side to the downstream side of the heating furnace.
Moreover, deviation | shift amount (DELTA) C2 was 1.80 mm, 0.90 mm, -5.40 mm, -0.90 mm, 0.90 mm, and 3.60 mm from the upstream side of the heating furnace to the downstream side.
As a result of obtaining the total deviation amount ΔC (that is, the sum of the deviation amount ΔC1 and the deviation amount ΔC2) from the deviation amount ΔC1 and the deviation amount ΔC2, 1.80 mm, −2 from the upstream side to the downstream side of the heating furnace. .70 mm, -2.70 mm, -1.80 mm, 1.80 mm, and 0 mm.

次に、求めた全ずれ量ΔCを基にして、スラブの蛇行軌跡をシミュレーションした結果を、図7に示す。
図7から明らかなように、スラブが大きく蛇行し、その蛇行軌跡が予め設定した許容範囲(例えば、±40mm)外となっていることが分かった。
そこで、以下の手順を行う。
1)図7から、スラブの蛇行量が最も大きい場所(即ち、ストローク番号57:蛇行量73mm程度)を求める。
2)上記した1)の結果に基づき、図7から蛇行量が最も大きい場所の上流側(即ち、ストローク番号:1〜56)の偏心輪で、かつずれ量ΔCが最も大きい偏心輪を判定する。
Next, FIG. 7 shows the result of simulating the meandering locus of the slab based on the obtained total deviation amount ΔC.
As is clear from FIG. 7, it was found that the slab meanders greatly and the meandering locus is outside a preset allowable range (for example, ± 40 mm).
Therefore, the following procedure is performed.
1) From FIG. 7, the place where the meandering amount of the slab is the largest (that is, stroke number 57: meandering amount of about 73 mm) is obtained.
2) Based on the result of 1) described above, from FIG. 7, an eccentric wheel on the upstream side (ie, stroke number: 1 to 56) where the meandering amount is the largest and which has the largest deviation amount ΔC is determined. .

3)上記ずれ量の最も大きい偏心輪のずれ量の修正量ΔC0を決定する。
なお、この修正量は、ステップ制御で、全ずれ量ΔCの値に関わらず一定でもよく、また全ずれ量ΔCの値に対応した値(例えば、全ずれ量ΔCの50%程度)でもよい。
4)全ずれ量ΔCからずれ量の修正量ΔC0を減算して残存ΔC1を求める。
5)全ずれ量ΔCを、上記した手順4)で求めた残存ΔC1に変更して、再度シミュレーションを行う。
6)スラブの蛇行軌跡が許容範囲内になるまで、上記した手順1)〜5)を繰返し行う。
3) A correction amount ΔC0 of the deviation amount of the eccentric wheel having the largest deviation amount is determined.
The correction amount may be constant regardless of the value of the total deviation amount ΔC in step control, or may be a value corresponding to the value of the total deviation amount ΔC (for example, about 50% of the total deviation amount ΔC).
4) Subtract the deviation correction amount ΔC0 from the total deviation amount ΔC to obtain the remaining ΔC1.
5) The total deviation amount ΔC is changed to the remaining ΔC1 obtained in the above procedure 4), and the simulation is performed again.
6) Repeat the above steps 1) to 5) until the slab meandering trajectory is within the allowable range.

7)許容範囲内になった段階における全ずれ量ΔCを基にして、表1からギヤ(ギヤ歯、ボルト取付け孔)の修正量を求め、これを基にして、実際のギヤの調節を行って、偏心輪の上面高さ位置を調整する。
なお、表1は、ギヤ(ギヤ歯、ボルト取付け孔)の修正量と変化するずれ量ΔC0の関係を、予め実機で求めた換算表であり、H2に対応する部分を除いてA1〜K5は数値を省略している。なお、ギヤ歯の逆転39以下かつ正転11以上、ボルト取付け孔の逆転8以下かつ正転6以上についても、それぞれ数値があるが、ここでは省略する。
7) Based on the total deviation amount ΔC when it is within the allowable range, find the correction amount of the gear (gear teeth, bolt mounting holes) from Table 1, and adjust the actual gear based on this. Adjust the height of the top surface of the eccentric ring.
Table 1 is a conversion table in which the relationship between the correction amount of the gear (gear teeth, bolt mounting hole) and the changing deviation amount ΔC0 is obtained in advance with an actual machine. Numerical values are omitted. In addition, although there are numerical values for the reverse rotation of the gear teeth 39 or less and the forward rotation 11 or more, and the reverse rotation 8 or less and the forward rotation 6 or more of the bolt mounting hole, there are numerical values, but they are omitted here.

Figure 2010163647
Figure 2010163647

ここで、クラッチのギヤ(ギヤ歯、ボルト取付け孔)を調整する方法について、偏心輪45又は偏心輪46の位相の調整方法を用いて、具体的に説明する。
ギヤカップリング38(ギヤカップリング39)には、その軸心を中心として等角度に、14個のボルト取付け孔が設けられている。また、中間軸32(中間軸33)には、その軸心を中心として等角度に、50枚のギヤ歯が設けられている。このため、ボルト取付け孔は、ギヤカップリング38に25.71度(=360度/14)の角度で設けられ、ギヤ歯は、中間軸32に7.20度(=360度/50)の角度で設けられている。
ここで、例えば、偏心輪45と偏心輪46の間に、1.02度の位相のずれが発生したとすると、図4(B)に示すように、中間軸32を正転(又は逆転)方向にギヤ歯7枚分(回転角度:7.20×7=50.40度)回し、ボルト取付け孔を逆転(又は正転)方向に2個(回転角度:25.71×2=51.42度)回すという修正を行う。
従って、1.02度(=51.42−50.40)の位相のずれをなくすことができる。
このときの変化するずれ量の修正量ΔC0は、2.70となる。
Here, a method for adjusting the gears (gear teeth, bolt mounting holes) of the clutch will be specifically described using a method for adjusting the phase of the eccentric wheel 45 or the eccentric wheel 46.
The gear coupling 38 (gear coupling 39) is provided with fourteen bolt mounting holes at an equal angle with the axis as the center. Further, the intermediate shaft 32 (intermediate shaft 33) is provided with 50 gear teeth at an equal angle around the axis. Therefore, the bolt mounting hole is provided in the gear coupling 38 at an angle of 25.71 degrees (= 360 degrees / 14), and the gear teeth are 7.20 degrees (= 360 degrees / 50) in the intermediate shaft 32. It is provided at an angle.
Here, for example, if a phase shift of 1.02 degrees occurs between the eccentric ring 45 and the eccentric ring 46, the intermediate shaft 32 is rotated forward (or reverse) as shown in FIG. 4B. Turn seven gear teeth in the direction (rotation angle: 7.20 × 7 = 50.40 degrees) and rotate the bolt mounting holes in the reverse (or forward) direction two (rotation angle: 25.71 × 2 = 51. 42 degrees).
Accordingly, a phase shift of 1.02 degrees (= 51.42-50.40) can be eliminated.
The correction amount ΔC0 of the shift amount that changes at this time is 2.70.

これにより、修正対象となる偏心輪群の各偏心輪の上面高さ位置を修正し、偏心輪群ごとの各偏心輪の上面高さ位置Aを再度レーザー墨出器49で実測した結果、各偏心輪の上面高さ位置の差σ1が、加熱炉の上流側から下流側へかけて、0mm、1mm、3mm、0.5mm、1mm、及び−1.5mmとなった。
また、偏心輪群ごとの各偏心輪の上面高さ位置Bを再度、上記と同様にレーザー墨出器49で実測した結果、各偏心輪の上面高さ位置の差σ2が、加熱炉の上流側から下流側へかけて、0.5mm、1mm、3mm、1mm、0mm、及び−1mmとなった。
As a result, the top surface height position of each eccentric wheel of the eccentric wheel group to be corrected is corrected, and the top surface height position A of each eccentric wheel group for each eccentric wheel group is again measured by the laser ink extractor 49. The difference σ1 in the upper surface height position of the eccentric ring was 0 mm, 1 mm, 3 mm, 0.5 mm, 1 mm, and −1.5 mm from the upstream side to the downstream side of the heating furnace.
Further, as a result of measuring the upper surface height position B of each eccentric wheel for each eccentric wheel group again with the laser marking device 49 in the same manner as described above, the difference σ2 in the upper surface height position of each eccentric wheel is It became 0.5 mm, 1 mm, 3 mm, 1 mm, 0 mm, and -1 mm from the side to the downstream side.

この結果に基づき、各偏心輪群ごとに、再度ずれ量ΔC1(90度でのずれ量)とずれ量ΔC2(270度でのずれ量)を求めた。
ずれ量ΔC1は、加熱炉の上流側から下流側へかけて、0mm、1.80mm、5.40mm、0.90mm、1.80mm、及び−2.70mmであった。
また、ずれ量ΔC2は、加熱炉の上流側から下流側へかけて、−0.90mm、−1.80mm、−5.40mm、−1.80mm、0mm、及び1.80mmであった。
このずれ量ΔC1とずれ量ΔC2から、全ずれ量ΔCを求めた結果、加熱炉の上流側から下流側へかけて、−0.90mm、0mm、0mm、−0.90mm、1.80mm、及び−0.90mmであった。
Based on this result, a deviation amount ΔC1 (a deviation amount at 90 degrees) and a deviation amount ΔC2 (a deviation amount at 270 degrees) were obtained again for each eccentric wheel group.
The shift amount ΔC1 was 0 mm, 1.80 mm, 5.40 mm, 0.90 mm, 1.80 mm, and −2.70 mm from the upstream side to the downstream side of the heating furnace.
Moreover, deviation | shift amount (DELTA) C2 was -0.90mm, -1.80mm, -5.40mm, -1.80mm, 0mm, and 1.80mm from the upstream of the heating furnace to the downstream.
As a result of obtaining the total shift amount ΔC from the shift amount ΔC1 and the shift amount ΔC2, from the upstream side to the downstream side of the heating furnace, −0.90 mm, 0 mm, 0 mm, −0.90 mm, 1.80 mm, and -0.90 mm.

次に、求めた全ずれ量ΔCを基にして、スラブの蛇行軌跡をシミュレーションした結果を、図8に示す。
図8から明らかなように、スラブの蛇行量が大幅に低減され、その蛇行軌跡が許容範囲内となっていることが分かった。
更に、スラブを搬送し、その搬送軌跡を測定器で測定したところ、スラブは、許容範囲内を大きく外れることなく搬送できた。
以上のことから、加熱炉内のスラブの搬送状況を確認することなく、スラブの蛇行状況の予測と正確な蛇行修正を短時間で容易に実施できることを確認できた。
Next, FIG. 8 shows the result of simulating the meandering trajectory of the slab based on the obtained total deviation amount ΔC.
As is apparent from FIG. 8, it was found that the amount of meandering of the slab was greatly reduced and the meandering locus was within the allowable range.
Furthermore, when the slab was transported and the transport trajectory was measured with a measuring instrument, the slab could be transported without greatly deviating from the allowable range.
From the above, it was confirmed that prediction of the slab meandering state and correct meandering correction could be easily performed in a short time without confirming the state of slab conveyance in the heating furnace.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の加熱炉内のスラブ蛇行修正方法を構成する場合も本発明の権利範囲に含まれる。
例えば、駆動機構の構成は、偏心輪を使用して、複数の可動ビームを、上昇、前進、下降、及び後退する動作を繰返すことができれば、前記した構成に限定されるものではない。
また、前記実施の形態においては、加熱炉の炉内を正面視した場合に、その幅方向において、可動ビームの両側に固定ビームを配置した場合について説明したが、固定ビームの両側に可動ビームを配置してもよい。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the slab meandering correction method in the heating furnace of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the present invention.
For example, the configuration of the drive mechanism is not limited to the above-described configuration as long as the operation of ascending, advancing, descending, and retreating a plurality of movable beams can be repeated using an eccentric wheel.
In the above embodiment, the case where the fixed beam is arranged on both sides of the movable beam in the width direction when the inside of the furnace is viewed from the front is described. However, the movable beam is arranged on both sides of the fixed beam. You may arrange.

そして、前記実施の形態においては、1つの偏心輪群を構成する偏心輪の数を、2個とした場合について説明したが、加熱炉の規模に応じて3個以上(例えば、4個)としてもよい。この場合、例えば、昇降フレームの炉幅方向の片側に設けたレーザ変位計により、他の昇降フレームの高さ位置をそれぞれ測定することで、偏心輪の上面高さ位置を測定できる。
更に、前記実施の形態においては、偏心輪群を構成する各偏心輪の上面高さ位置の差を求めるに際し、レーザー墨出器を用いた場合について説明したが、これに限定されるものではない。例えば、昇降フレームの炉幅方向両側に、それぞれレーザー距離計を取付け、床面からの距離を測定してもよく、またメジャー等を用いて実測してもよい。
And in the said embodiment, although the case where the number of the eccentric rings which comprise one eccentric ring group was two was demonstrated, according to the scale of a heating furnace, it is set as three or more (for example, four pieces). Also good. In this case, for example, the height position of the upper surface of the eccentric wheel can be measured by measuring the height positions of the other lifting frames with a laser displacement meter provided on one side of the lifting frame in the furnace width direction.
Furthermore, in the above-described embodiment, the case where the laser inking device is used to determine the difference in the upper surface height position of each eccentric wheel constituting the eccentric wheel group has been described. However, the present invention is not limited to this. . For example, laser distance meters may be attached to both sides of the lifting frame in the furnace width direction to measure the distance from the floor surface, or may be measured using a measure or the like.

10:ウォーキングビーム型の加熱設備、11:耐火物、12:スラブ、13:搬入口、14:搬出口、15:加熱炉、16、17:固定ビーム、18:固定載置部、19:固定支持部、20、21:可動ビーム、22:可動載置部、23:可動支持部、24:貫通孔、25:空洞部、26:昇降フレーム、27:駆動機構、28:駆動モータ、29:動力伝達軸、30、31:動力伝達ギヤ、32、33:中間軸、34、35:ピニオン、36、37:回転軸、38、39:ギヤカップリング、40:ボルト、41、42:大ギヤ、43、44:回転軸、45、46:偏心輪、47:偏心輪群、48:シリンダー、49:レーザー墨出器(レーザー変位計) 10: walking beam type heating equipment, 11: refractory material, 12: slab, 13: carry-in port, 14: carry-out port, 15: heating furnace, 16, 17: fixed beam, 18: fixed mounting part, 19: fixed Support part, 20, 21: Movable beam, 22: Movable mounting part, 23: Movable support part, 24: Through hole, 25: Cavity part, 26: Lifting frame, 27: Drive mechanism, 28: Drive motor, 29: Power transmission shaft, 30, 31: Power transmission gear, 32, 33: Intermediate shaft, 34, 35: Pinion, 36, 37: Rotating shaft, 38, 39: Gear coupling, 40: Bolt, 41, 42: Large gear 43, 44: Rotating shaft, 45, 46: Eccentric ring, 47: Eccentric ring group, 48: Cylinder, 49: Laser marking device (laser displacement meter)

Claims (6)

スラブを加熱するウォーキングビーム型の加熱炉の炉内幅方向に間隔を有して並べて配置された複数の可動ビームに設けられ、前記加熱炉の炉外幅方向に配置された複数の偏心輪からなる偏心輪群を、前記各可動ビームの炉外長手方向に所定間隔で複数設け、前記各偏心輪を同期駆動することにより、前記各可動ビームが、上昇、前進、下降、及び後退する動作を繰返して、前記加熱炉内の前記スラブを炉内長手方向に搬送するに際し、発生する前記スラブの蛇行を修正する方法であって、
前記スラブの蛇行原因となる前記偏心輪群を構成する前記各偏心輪の上面高さ位置の差を、前記偏心輪群ごとに実測して求め、該差を基にして前記加熱炉内における前記スラブの蛇行軌跡をシミュレーションし、該スラブの蛇行軌跡が予め設定した許容範囲外であれば、少なくとも1箇所の前記偏心輪群を構成する前記偏心輪の上面高さ位置を修正し、その修正した上面高さ位置に応じた前記各偏心輪の上面高さ位置の差を再度求め、該差を基に前記スラブの蛇行軌跡をシミュレーションし直す工程を、前記スラブの蛇行軌跡が前記許容範囲内になるまで繰返し行い、該シミュレーション結果に基づいて、前記偏心輪の上面高さ位置を調整することを特徴とする加熱炉内のスラブ蛇行修正方法。
Provided on a plurality of movable beams arranged side by side in the furnace width direction of the walking beam type heating furnace that heats the slab, and from a plurality of eccentric wheels arranged in the width direction outside the furnace of the heating furnace A plurality of eccentric rings are provided at a predetermined interval in the longitudinal direction of the movable beam, and the movable beams are moved upward, forward, downward, and backward by synchronously driving the eccentric wheels. Repetitively, a method of correcting the meandering of the slab generated when the slab in the heating furnace is conveyed in the longitudinal direction of the furnace,
The difference in the upper surface height position of each eccentric wheel constituting the eccentric wheel group that causes the meandering of the slab is obtained by actual measurement for each eccentric wheel group, and the difference in the heating furnace is determined based on the difference. If the meandering locus of the slab is simulated, and if the meandering locus of the slab is outside the preset allowable range, the height position of the upper surface of the eccentric wheel constituting at least one eccentric wheel group is corrected and corrected. The step of re-determining the difference in the upper surface height position of each eccentric wheel according to the upper surface height position, and re-simulating the meandering locus of the slab based on the difference, the meandering locus of the slab is within the allowable range. The method of correcting the slab meandering in the heating furnace is characterized in that it is repeatedly performed until the upper surface height position of the eccentric ring is adjusted based on the simulation result.
請求項1記載の加熱炉内のスラブ蛇行修正方法において、前記偏心輪群を構成する前記各偏心輪の上面高さ位置の差は、前記各可動ビームの上昇途中で該可動ビームが前記スラブの下面と接触した際の前記各偏心輪の上面高さ位置Aと、該可動ビームの降下途中で該可動ビームが前記スラブの下面より離れた際の前記各偏心輪の上面高さ位置Bを各々測定し、この測定値を基にして求めることを特徴とする加熱炉内のスラブ蛇行修正方法。 2. The method for correcting slab meandering in a heating furnace according to claim 1, wherein the difference in the upper surface height position of each of the eccentric rings constituting the eccentric ring group is that the movable beam is in the middle of the ascent of the movable beam. The upper surface height position A of each eccentric wheel when contacting the lower surface, and the upper surface height position B of each eccentric wheel when the movable beam is separated from the lower surface of the slab while the movable beam is descending, respectively. A method for correcting meandering of a slab in a heating furnace, characterized in that it is measured and obtained based on the measured value. 請求項1及び2のいずれか1項に記載の加熱炉内のスラブ蛇行修正方法において、前記可動ビームの前記スラブの下面への接触、及び該可動ビームの前記スラブの下面からの離脱は、前記各偏心輪の予め設定した回転角度位置、又は前記可動ビームに設けた前記スラブの荷重検出器の検出情報を基にして検知することを特徴とする加熱炉内のスラブ蛇行修正方法。 The slab meandering correction method in a heating furnace according to any one of claims 1 and 2, wherein the movable beam is brought into contact with the lower surface of the slab and the movable beam is detached from the lower surface of the slab. A method for correcting meandering of a slab in a heating furnace, wherein detection is performed based on a preset rotation angle position of each eccentric wheel or detection information of a load detector of the slab provided on the movable beam. 請求項1〜3のいずれか1項に記載の加熱炉内のスラブ蛇行修正方法において、修正した前記偏心輪の上面高さ位置に基づく該偏心輪の上面高さ位置の調整は、該偏心輪の位相を調整して行うことを特徴とする加熱炉内のスラブ蛇行修正方法。 The slab meandering correction method in a heating furnace according to any one of claims 1 to 3, wherein the adjustment of the upper surface height position of the eccentric wheel based on the corrected upper surface height position of the eccentric wheel is performed by the eccentric wheel. The method for correcting the slab meandering in the heating furnace is characterized by adjusting the phase of the slab. 請求項1〜4のいずれか1項に記載の加熱炉内のスラブ蛇行修正方法において、前記偏心輪群を構成する前記偏心輪の上面高さ位置の修正は、前記スラブの蛇行軌跡をシミュレーションした際に、該スラブの蛇行量が最も大きくなった前記偏心輪群の上流側で、しかも前記スラブを最も大きく蛇行させる前記偏心輪群を構成する前記偏心輪に対して行うことを特徴とする加熱炉内のスラブ蛇行修正方法。 The slab meandering correction method in the heating furnace according to any one of claims 1 to 4, wherein the correction of the upper surface height position of the eccentric wheel constituting the eccentric wheel group simulates the meandering locus of the slab. In this case, the heating is performed on the eccentric wheel constituting the eccentric wheel group that is upstream of the eccentric wheel group in which the amount of meandering of the slab becomes the largest and that causes the slab to meander most greatly. How to correct slab meandering in the furnace. 請求項1〜5のいずれか1項に記載の加熱炉内のスラブ蛇行修正方法において、前記各偏心輪群を構成する前記各偏心輪の上面高さ位置の差を、前記各可動ビームが設けられ、その下面が前記各偏心輪に接触する昇降フレームの炉幅方向の片側に設けたレーザー変位計により測定することを特徴とする加熱炉内のスラブ蛇行修正方法。 The slab meandering correction method in a heating furnace according to any one of claims 1 to 5, wherein each movable beam provides a difference in an upper surface height position of each eccentric wheel constituting each eccentric wheel group. A method for correcting meandering of a slab in a heating furnace, characterized in that the measurement is performed by a laser displacement meter provided on one side in the furnace width direction of an elevating frame whose lower surface is in contact with each eccentric wheel.
JP2009005874A 2009-01-14 2009-01-14 Correction method of slab meander in heating furnace Expired - Fee Related JP5267144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009005874A JP5267144B2 (en) 2009-01-14 2009-01-14 Correction method of slab meander in heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009005874A JP5267144B2 (en) 2009-01-14 2009-01-14 Correction method of slab meander in heating furnace

Publications (2)

Publication Number Publication Date
JP2010163647A true JP2010163647A (en) 2010-07-29
JP5267144B2 JP5267144B2 (en) 2013-08-21

Family

ID=42580039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009005874A Expired - Fee Related JP5267144B2 (en) 2009-01-14 2009-01-14 Correction method of slab meander in heating furnace

Country Status (1)

Country Link
JP (1) JP5267144B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109420815A (en) * 2017-08-25 2019-03-05 张跃 A kind of furnace interior system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875749U (en) * 1981-11-17 1983-05-21 住友金属工業株式会社 Beam drive device for walking beam furnace
JPS60161157U (en) * 1984-04-02 1985-10-26 住友金属工業株式会社 Meandering detection device for walking beam heating furnace
JPH03166314A (en) * 1989-11-25 1991-07-18 Sumitomo Metal Ind Ltd Method for detecting position of material to be heated in continuous heating furnace
JPH1180830A (en) * 1997-09-08 1999-03-26 Toshiba Corp Device for controlling carrying of beam in walking beam type steel material heating furnace and recording medium
JP2001181732A (en) * 1999-12-24 2001-07-03 Sumitomo Metal Ind Ltd Instrument for measuring meandering rate at carrying in furnace and device for detecting abnormality in carrying

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875749U (en) * 1981-11-17 1983-05-21 住友金属工業株式会社 Beam drive device for walking beam furnace
JPS60161157U (en) * 1984-04-02 1985-10-26 住友金属工業株式会社 Meandering detection device for walking beam heating furnace
JPH03166314A (en) * 1989-11-25 1991-07-18 Sumitomo Metal Ind Ltd Method for detecting position of material to be heated in continuous heating furnace
JPH1180830A (en) * 1997-09-08 1999-03-26 Toshiba Corp Device for controlling carrying of beam in walking beam type steel material heating furnace and recording medium
JP2001181732A (en) * 1999-12-24 2001-07-03 Sumitomo Metal Ind Ltd Instrument for measuring meandering rate at carrying in furnace and device for detecting abnormality in carrying

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109420815A (en) * 2017-08-25 2019-03-05 张跃 A kind of furnace interior system

Also Published As

Publication number Publication date
JP5267144B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
FI122500B (en) Method and apparatus for measuring and aligning a rotating cylindrical device
CN106246186B (en) A kind of shaft excavation machine is oriented to control and method of adjustment
CN109226351B (en) Full-automatic H-shaped steel horizontal straightening machine
JP5267144B2 (en) Correction method of slab meander in heating furnace
CN104973420B (en) Board carrying machine people drive device and the board carrying method using the device
CN106104201A (en) The marking inspection method of tire-mold and device
CN202033093U (en) Billet on-line weighing device
EP0250340B1 (en) Method of individually marking pre-baked anodes for the electrolytic production of aluminium
CN104174703B (en) A kind of cut deal glacing flatness on-line measuring device
CN107008785A (en) Automobile longitudinal girder bending production equipment
RU2376089C2 (en) Installation method of machine devices in manufacturing line of production
CN103486853B (en) Method for mounting stepping device of stepping-beam-type heating furnace
CN207197407U (en) A kind of tool for being used to measure the borehole accuracy of X Ray drilling machines
JP2010202965A (en) Method for controlling position of material to be heated in walking beam type heating furnace
CN105223785B (en) The method for improving wafer product alignment precision
CN103072834B (en) Three-axis adjusting device for spacing paper taking machine and adjusting method thereof
JP5343337B2 (en) Steel material charging equipment for heating furnace
JP2018031052A (en) Walking-beam type furnace, and phase difference measuring method and phase difference correction method of eccentric ring
CN106643387B (en) Device and method for measuring gear center line and key groove center line on gear shaft
KR20130009555A (en) Apparatus of aligning substrate supporter and substrate processing system comprising the same, and method of aligning substrate supporter
KR101919233B1 (en) Apparatus and method for inspecting rotor
Damerow et al. A self-correcting approach for the bending of metal parts
KR101701571B1 (en) Reform equipmen of forged parts
CN102768012B (en) Method and device for correcting coordinate positions of multiple image sensors
JP2019141898A (en) Method for preventing failure due to cavity-region positional deviation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R151 Written notification of patent or utility model registration

Ref document number: 5267144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees