JP2010163028A - Vehicle capable of traveling with charged power, and charging system for the same - Google Patents

Vehicle capable of traveling with charged power, and charging system for the same Download PDF

Info

Publication number
JP2010163028A
JP2010163028A JP2009006499A JP2009006499A JP2010163028A JP 2010163028 A JP2010163028 A JP 2010163028A JP 2009006499 A JP2009006499 A JP 2009006499A JP 2009006499 A JP2009006499 A JP 2009006499A JP 2010163028 A JP2010163028 A JP 2010163028A
Authority
JP
Japan
Prior art keywords
power
power supply
charging
unit
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009006499A
Other languages
Japanese (ja)
Other versions
JP2010163028A5 (en
Inventor
Masahide Tanaka
雅英 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2009006499A priority Critical patent/JP2010163028A/en
Priority to EP09713602A priority patent/EP2246957A4/en
Priority to PCT/JP2009/052760 priority patent/WO2009104634A1/en
Priority to CN2009801054364A priority patent/CN101953050A/en
Priority to US12/867,163 priority patent/US8548659B2/en
Publication of JP2010163028A publication Critical patent/JP2010163028A/en
Publication of JP2010163028A5 publication Critical patent/JP2010163028A5/ja
Priority to US13/956,458 priority patent/US8725338B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent charging from being started as long as a midnight power contract supposing charging at home has been made, even when a charging cable integrated with an oil supply pipe is connected unless an emergency charging operation is performed, when the connection of the oil supply pipe is detected at a service station. <P>SOLUTION: The connection of a charging cable is interlocked with the time monitor of midnight charging. When a cable connected for midnight charging is maintained in a connected state, without being removed in the next morning, a vehicle is prevented from starting. A plurality of charging levels for switching motor traveling to engine traveling can be selected in a plug-in hybrid car. At simultaneous power supply and fuel supply, oil supply is inhibited so that ignition by spark, or the like, can be prevented, when a charging cable is damaged. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、充電電力により走行可能な車両およびその充電システムに関する。   The present invention relates to a vehicle capable of traveling with charging power and a charging system thereof.

近年、環境対策として二酸化炭素の排出を低減する観点および経済性の観点から電気自動車やハイブリッド車両が注目されている。さらに、エネルギー源としてガソリンだけでなく充電電力を併用するプラグインハイブリッド車両についても関心が高まっている。   In recent years, electric vehicles and hybrid vehicles have attracted attention as environmental measures from the viewpoint of reducing carbon dioxide emissions and from the viewpoint of economy. Furthermore, there is a growing interest in plug-in hybrid vehicles that use not only gasoline but also charging power as an energy source.

特開2008−189121号公報JP 2008-189121 A 特表2008−537528号公報Special table 2008-537528

しかしながら、充電環境の整備等の問題もあって充電電力により走行可能な車両の普及のためには、なお多くの問題点が残されている。   However, many problems still remain for the spread of vehicles that can run on charging power due to problems such as maintenance of the charging environment.

本発明の課題は、上記に鑑み、充電電力により走行可能な車両およびその充電システムの実用面の改善について種々の提案を行うことにある。   In view of the above, an object of the present invention is to make various proposals for improving the practical aspects of a vehicle that can be driven by charging power and its charging system.

上記課題を解決するため、本発明は、給油を受ける燃料タンクと、電力線から電力供給を受ける電力蓄積部と、燃料タンクへの給油準備状態を検出する給油準備検出部と、電力蓄積部への電力供給準備状態を検出する電力供給準備検出部と、給油準備検出部が給油準備状態を検出しているか否かによって電力供給準備検出部が電力供給準備状態を検出したときの電力蓄積部への電力供給状況を異ならしめる制御部とを有することを特徴とする充電電力により走行可能な車両を提供する。電力供給状況を異ならしめる一例は、給油準備検出部が給油準備状態を検出しているとき、電力供給準備検出部が電力供給準備状態を検出しても電力蓄積部への電力供給を行わないよう制御することである。このような特徴は、例えば車両が家庭での充電を前提とする深夜電力料金契約など所定の電力供給契約締結状態にあるときはサービススタンド等で電力供給準備検出部が電力供給準備状態を検出しても電力蓄積部への電力供給を行わないようにして高価な電力供給を受けないようにする場合等に有用である。電力供給状況を異ならしめる例は、上記に限られるものではない。なお、緊急の場合、サービススタンド等において操作部の操作に応じ給油準備検出部が給油準備状態を検出しているときでも電力供給準備検出部が電力供給準備状態を検出したときに電力蓄積部への電力供給を許可することもできるよう構成することも任意である。   In order to solve the above problems, the present invention provides a fuel tank that receives fuel, a power storage unit that receives power supply from a power line, a fuel supply preparation detection unit that detects a fuel supply preparation state to the fuel tank, and a power storage unit. The power supply preparation detection unit that detects the power supply preparation state and the power storage unit when the power supply preparation detection unit detects the power supply preparation state depending on whether or not the fuel supply preparation detection unit detects the fuel supply preparation state. There is provided a vehicle capable of traveling with charging power, characterized in that it has a control unit that varies the power supply status. An example of making the power supply status different is that when the refueling preparation detection unit detects the refueling preparation state, even if the power supply preparation detection unit detects the power supply preparation state, it does not supply power to the power storage unit. Is to control. Such a feature is that, for example, when the vehicle is in a predetermined power supply contract conclusion state such as a late-night power charge contract assuming charging at home, the power supply preparation detection unit detects the power supply preparation state at a service stand or the like. However, it is useful when power supply to the power storage unit is not performed and expensive power supply is not received. Examples of making the power supply status different are not limited to the above. In the case of an emergency, even when the refueling preparation detection unit detects the refueling preparation state according to the operation of the operation unit at a service stand or the like, when the power supply preparation detection unit detects the power supply preparation state, to the power storage unit It is also optional that the power supply can be permitted.

本発明の他の特徴によれば、給油を受ける燃料タンクと、電力線から電力供給を受ける電力蓄積部と、電力蓄積部への電力供給準備状態を検出する電力供給準備検出部と、車両が所定の電力供給契約締結状態にあるか否かによって電力供給準備検出部が電力供給準備状態を検出したときの電力蓄積部への電力供給状況を異ならしめる制御部とを有することを特徴とする充電電力により走行可能な車両が提供される。電力供給状況を異ならしめる一例は、車両が所定の電力供給契約締結状態にあるとき電力供給準備検出部が電力供給準備状態を検出しても電力蓄積部への電力供給を行わないよう制御することである。このような特徴は、例えば車両が所定の電力供給契約締結状態にありかつ契約に基づく電力供給可能時間帯でないとき電力供給準備検出部が電力供給準備状態を検出しても電力蓄積部への電力供給を行わないようにして高価な電力供給を受けないようにする場合等に有用である。電力供給状況を異ならしめる例は、上記に限られるものではない。   According to another aspect of the invention, a fuel tank that receives fuel, a power storage unit that receives power supply from a power line, a power supply preparation detection unit that detects a power supply preparation state to the power storage unit, Charging power, comprising: a control unit that changes the power supply status to the power storage unit when the power supply preparation detection unit detects the power supply preparation state depending on whether or not the power supply contract is concluded A vehicle capable of traveling is provided. An example of making the power supply status different is that when the vehicle is in a predetermined power supply contract conclusion state, even if the power supply preparation detection unit detects the power supply preparation state, control is performed so that power supply to the power storage unit is not performed. It is. Such a feature is that, for example, when the vehicle is in a predetermined power supply contract conclusion state and is not in the power supply available time zone based on the contract, the power to the power storage unit is detected even if the power supply preparation detection unit detects the power supply preparation state. This is useful when the supply is not performed and the expensive power supply is not received. Examples of making the power supply status different are not limited to the above.

本発明の他の特徴によれば、電力線から電力供給を受ける電力蓄積部と、電力蓄積部への電力供給準備状態を検出する電力供給準備検出部と、走行開始操作部と、電力供給準備検出部が電力供給準備状態を検出しているとき走行開始操作部の操作を無効とする走行制御部とを有することを特徴とする充電電力により走行可能な車両を提供する。電力供給準備状態の検出の一例は、電力蓄積部に電力を供給する外部ケーブルが車両に接続されたままである状態の検出であり、このような状態のままでの走行してしまうことが防止される。電力供給準備状態の検出の例は、上記に限られるものではない。また、走行制御部が走行開始操作部の操作を無効としていることを報知する報知部を設ければ電力供給準備状態を解除して走行可能とするのを促すことができる。このような構成は、車両が所定の電力供給契約締結状態にありかつ契約に基づく電力供給可能時間帯でないとき電力供給準備検出部が電力供給準備状態を検出しても電力蓄積部への電力供給を行わないよう制御する制御部が設けられた場合に有用である。このような構成において、例えば車両を自宅の駐車場に入れて深夜に自動的に充電開始されるよう電力供給準備状態としておいた場合、翌朝、電力供給準備状態を解除しないまま走行してしまうような事故が防止できるからである。なお、上記の特徴は、プラグインハイブリッド車両であるか電気自動車であるかの如何に係わらず有用である。   According to another aspect of the present invention, a power storage unit that receives power supply from a power line, a power supply preparation detection unit that detects a power supply preparation state to the power storage unit, a travel start operation unit, and a power supply preparation detection And a travel control unit that disables the operation of the travel start operation unit when the unit detects a power supply preparation state. An example of detection of the power supply preparation state is detection of a state in which an external cable that supplies power to the power storage unit remains connected to the vehicle, and it is prevented that the vehicle travels in such a state. The The example of the detection of the power supply preparation state is not limited to the above. In addition, if a notification unit is provided for notifying that the travel control unit invalidates the operation of the travel start operation unit, it is possible to prompt the user to cancel the power supply preparation state and enable traveling. Such a configuration provides power supply to the power storage unit even when the power supply preparation detection unit detects the power supply preparation state when the vehicle is in a predetermined power supply contract conclusion state and is not in a power supply available time zone based on the contract. This is useful in the case where a control unit that controls not to perform is provided. In such a configuration, for example, if the vehicle is placed in a parking lot at home and is in a power supply preparation state so that charging is automatically started at midnight, the next morning, the vehicle will run without releasing the power supply preparation state. This is because a serious accident can be prevented. The above features are useful regardless of whether the vehicle is a plug-in hybrid vehicle or an electric vehicle.

本発明の他の特徴によれば、電力線から電力供給を受ける電力蓄積部と、電力蓄積部への電力供給準備状態を検出する電力供給準備検出部と、電力供給準備検出部が電力供給準備状態を検出しているとき車両が所定の電力供給契約に基づいて電力供給可能時間帯であるかどうかの検知を継続する時間帯検知部と、時間帯検知部が電力供給時間帯であることを検知しない限り電力供給準備検出部が電力供給準備状態を検出していても電力供給を行わない制御部とを有することを特徴とする充電電力により走行可能な車両が提供される。このようにして所定の電力供給契約があるときの電力供給準備状態の検知と電力供給可能時間帯の検知が連動させられる。   According to another aspect of the present invention, the power storage unit that receives power supply from the power line, the power supply preparation detection unit that detects the power supply preparation state to the power storage unit, and the power supply preparation detection unit are in the power supply preparation state Detecting that the vehicle is in a power supply available time zone based on a predetermined power supply contract and detecting that the time zone detection unit is in a power supply time zone A vehicle capable of traveling with charging power is provided, which includes a control unit that does not supply power even if the power supply preparation detection unit detects a power supply preparation state unless otherwise provided. In this way, the detection of the power supply preparation state when there is a predetermined power supply contract and the detection of the power supply available time zone are linked.

本発明の他の特徴によれば、給油を受ける燃料タンクと、電力線から電力供給を受ける電力蓄積部と、電力蓄積部の電力蓄積状態を検知する検知部と、燃料タンクの燃料を消費して動力を発生する第1動力源と、電力蓄積部の電力を消費して動力を発生する第2動力源と、検知部の第1の検知レベルに基づいて第2動力源から第1動力源に切換えを行う第1モードと第1の検知レベルとは異なる検知部の第2の検知レベルに基づいて第2動力源から第1動力源に切換えを行う第2モードとが選択可能な制御部とを有することを特徴とする充電電力により走行可能な車両が提供される。例えば、第2の検知レベルは、例えば電力蓄積部が充分充電されている状態を維持するためのレベルであり、第1の検知レベルは、例えば第1動力源による走行効率が所定以下のときに第2動力源による走行を可能とするレベルである。また、制御部が、さらに第2動力源のみによる連続走行を行う第3モードの選択が可能なよう構成することも可能である。この場合、制御部が第2モードから第3モードへの変更を可能とするよう構成すれば電力蓄積部が充分充電されている状態から第2動力源のみによる走行状態に入ることができる。また、制御部が第2モードから第1モードへの変更を可能とするよう構成することも可能であり、この場合も電力蓄積部が充分充電されている状態から第1モードに入ることができる。なお、さらに制御部が走行効率に基づいて第1動力源と第2動力源を切換えることができるよう構成するのが望ましい。   According to another aspect of the present invention, a fuel tank that receives fuel, a power storage unit that receives power supply from a power line, a detection unit that detects a power storage state of the power storage unit, and consumes fuel in the fuel tank. A first power source that generates power, a second power source that generates power by consuming electric power from the power storage unit, and a second power source to a first power source based on a first detection level of the detection unit A control unit capable of selecting a first mode for switching and a second mode for switching from the second power source to the first power source based on a second detection level of a detection unit different from the first detection level; There is provided a vehicle capable of traveling with charging power. For example, the second detection level is, for example, a level for maintaining the state where the power storage unit is sufficiently charged, and the first detection level is, for example, when the traveling efficiency by the first power source is not more than a predetermined value. It is a level that enables traveling by the second power source. Further, the control unit can be configured to be able to select the third mode in which continuous running is performed only by the second power source. In this case, if the control unit is configured to enable the change from the second mode to the third mode, it is possible to enter the traveling state using only the second power source from the state where the power storage unit is sufficiently charged. In addition, the control unit can be configured to be able to change from the second mode to the first mode. In this case, the first mode can be entered from a state where the power storage unit is sufficiently charged. . Further, it is desirable that the control unit be configured to be able to switch between the first power source and the second power source based on the traveling efficiency.

本発明の他の特徴によれば、燃料供給路と、電力供給路と、電力供給路の異常を検知する異常検知部と、異常検知部が電力供給路の異常を検知したとき燃料供給路からの燃料供給を禁止する制御部とを有することを特徴とする充電電力により走行可能な車両のための充電システムが提供され、サービススタンド等において電力と燃料を同時に供給する際において電力供給路の異常によるスパーク等による引火の防止が図られる。   According to another feature of the present invention, a fuel supply path, a power supply path, an abnormality detection unit that detects an abnormality in the power supply path, and a fuel supply path when the abnormality detection unit detects an abnormality in the power supply path. A charging system for a vehicle that can be driven by charging power, characterized by having a control unit that prohibits fuel supply, and an abnormality in the power supply path when supplying power and fuel simultaneously at a service stand or the like It is possible to prevent ignition by sparks.

上記のように、本発明によれば、充電電力により走行可能な車両およびその充電システムにおける実用面の種々の改善が可能となる。   As described above, according to the present invention, various practical improvements in the vehicle that can be driven by the charging power and the charging system thereof can be achieved.

本発明の実施の形態に係る車両充電システムの第1実施例を示すブロック図である。It is a block diagram which shows the 1st Example of the vehicle charging system which concerns on embodiment of this invention. 図1の第1実施例において、特に配線関係の詳細を示すブロック図である。FIG. 2 is a block diagram showing details of wiring relations in the first embodiment of FIG. 1. 図1の第1実施例において車庫のコンセントユニットにおける給電開閉部および住居システムの詳細を示すブロック図である。It is a block diagram which shows the detail of the electric power supply opening-and-closing part in the outlet unit of a garage, and a residence system in 1st Example of FIG. 図1の第1実施例において給電開閉部における給電スイッチ等の詳細を示すブロック図である。FIG. 2 is a block diagram illustrating details of a power supply switch and the like in a power supply opening / closing unit in the first embodiment of FIG. 1. 住居システムの制御コンピュータの基本動作を示すフローチャートである。It is a flowchart which shows the basic operation | movement of the control computer of a residence system. 図5のステップS20の詳細を示すフローチャートである。It is a flowchart which shows the detail of step S20 of FIG. 図6のステップS46およびステップS52の詳細を示すフローチャートである。It is a flowchart which shows the detail of step S46 and step S52 of FIG. 本発明の実施の形態に係る車両充電システムの第2実施例を示すブロック図である。It is a block diagram which shows the 2nd Example of the vehicle charging system which concerns on embodiment of this invention. 第2実施例におけるコンセントユニットの構造の詳細を示すブロック図である。It is a block diagram which shows the detail of the structure of the outlet unit in 2nd Example. 第2実施例における複数のコンセントユニットの配置を示すブロック図である。It is a block diagram which shows arrangement | positioning of the some outlet unit in 2nd Example. 第2実施例における給電制御コンピュータの基本動作を示すフローチャートである。It is a flowchart which shows the basic operation | movement of the electric power feeding control computer in 2nd Example. 本発明の実施の形態に係る第3実施例を示すブロック図である。It is a block diagram which shows the 3rd Example which concerns on embodiment of this invention. 第3実施例における車両制御部の基本動作を示すフローチャートである。It is a flowchart which shows the basic operation | movement of the vehicle control part in 3rd Example. 図13のステップS214の詳細を示すフローチャートである。It is a flowchart which shows the detail of step S214 of FIG. 図13のステップS220の詳細を示すフローチャートである。It is a flowchart which shows the detail of step S220 of FIG. 図15のステップS296の詳細を示すフローチャートである。It is a flowchart which shows the detail of step S296 of FIG. 図16のステップS338の詳細を示すフローチャートである。It is a flowchart which shows the detail of step S338 of FIG. 図16のステップS342の詳細を示すフローチャートである。It is a flowchart which shows the detail of step S342 of FIG. 図16のステップS344の詳細を示すフローチャートである。It is a flowchart which shows the detail of step S344 of FIG.

図1は、本発明の実施の形態に係る車両充電システムの第1実施例を示すブロック図である。車庫2はプラグインハイブリッドタイプの車両4を収容可能であるとともに、コンセントユニット6を備えている。コンセントユニット6の接続部8と車両4の充電用接続部10の間は、充電ケーブル12で接続可能となっている。充電ケーブル12は、通常車両4に収納されており、充電時に取り出されて図1のように接続される。   FIG. 1 is a block diagram showing a first example of the vehicle charging system according to the embodiment of the present invention. The garage 2 can accommodate a plug-in hybrid type vehicle 4 and includes an outlet unit 6. The connecting portion 8 of the outlet unit 6 and the connecting portion 10 for charging of the vehicle 4 can be connected by a charging cable 12. The charging cable 12 is normally stored in the vehicle 4 and is taken out during charging and connected as shown in FIG.

上記のように、車両4はプラグインハイブリッドタイプであって、その走行メカ14は、燃料タンク16のガソリンを消費して回転するエンジン18および二次電池20の電力を消費して回転するモータ22のいずれによっても駆動可能である。二次電池20は、エンジン18の余剰パワーによって充電されるとともに、充電用接続部10を介して車両4の外部から供給される電力によっても充電可能となっている。二次電池20はまた、減速時のモータ22の逆起電力によっても充電される。   As described above, the vehicle 4 is a plug-in hybrid type, and the traveling mechanism 14 consumes the gasoline in the fuel tank 16 and rotates, and the motor 22 that consumes power from the secondary battery 20 and rotates. It can be driven by either of these. The secondary battery 20 is charged by surplus power of the engine 18 and can be charged by electric power supplied from the outside of the vehicle 4 via the charging connection portion 10. The secondary battery 20 is also charged by the counter electromotive force of the motor 22 during deceleration.

充電ケーブル12は、後に詳述するようにPLC(Power Line Communications:電力線搬送通信)システムに組み込まれた電力線となっている。つまり、充電ケーブル12は電力線であるとともに、これに合成されたデジタル通信信号の通信路にもなっている。PLC分波合成部24は充電ケーブル12を介して充電用接続部10が受けた電力を二次電池20に供給するとともに、デジタル通信信号を分波し、車両制御部26に伝達する。一方で、PLC分波合成部24は 車両制御部26からの命令や、記憶部28に記憶されているデータなどを電力線に合成し、充電用接続部10から車両4の外部に出力する。記憶部28には例えば車両4を外部から認証するためのデータなどが記憶される。
車両制御部26はさらに表示部30を制御するとともに、操作部32での手動操作に応じて無線の通信部34から赤外線操作信号36を発生する。この赤外線操作信号は、例えば車庫扉を開閉するための信号である。また、車両制御部26は、二次電池20の充電状況をモニタしている。
The charging cable 12 is a power line incorporated in a PLC (Power Line Communications) system as will be described in detail later. That is, the charging cable 12 is a power line and also serves as a communication path for a digital communication signal synthesized with the charging cable 12. The PLC demultiplexing / combining unit 24 supplies the power received by the charging connection unit 10 via the charging cable 12 to the secondary battery 20, demultiplexes the digital communication signal, and transmits the demultiplexed signal to the vehicle control unit 26. On the other hand, the PLC demultiplexing / synthesizing unit 24 synthesizes a command from the vehicle control unit 26, data stored in the storage unit 28, and the like into the power line and outputs the power line to the outside of the vehicle 4. The storage unit 28 stores, for example, data for authenticating the vehicle 4 from the outside.
The vehicle control unit 26 further controls the display unit 30 and generates an infrared operation signal 36 from the wireless communication unit 34 in response to a manual operation at the operation unit 32. This infrared operation signal is a signal for opening and closing a garage door, for example. In addition, the vehicle control unit 26 monitors the charging status of the secondary battery 20.

コンセントユニット6は、PLCシステムに組み込まれた電力線38からの給電をうけており、給電開閉部40を経由して接続部8に接続されている。給電開閉部40は、不要時および不都合時に接続部8への給電を断つ機能とともにメータ等を有するものであり、給電を断つための信号を分波するとともにメータの情報を電力線に合成するためのPLC分波合成部42を有する。その詳細は後述する。
コンセントユニット6はさらに手元表示部44および手元照明部46を有する。手元表示部44はPLC分波部48によって分波されたデジタル通信信号に基づいてコンセントユニット6の手元において充電状況などの表示を行うものである。手元照明部46はPLC分波部50によって分波されたデジタル通信信号に基づいてコンセントユニット6の手元が暗いとき接続部8や手元表示部44を照明するものである。
The outlet unit 6 is supplied with power from the power line 38 incorporated in the PLC system, and is connected to the connection unit 8 via the power supply opening / closing unit 40. The power supply opening / closing unit 40 has a meter and the like with a function of cutting off the power supply to the connection unit 8 when unnecessary and inconvenient, and demultiplexes a signal for cutting off the power supply and combines the meter information into the power line. A PLC demultiplexer / synthesizer 42 is provided. Details thereof will be described later.
The outlet unit 6 further includes a hand display unit 44 and a hand illumination unit 46. The hand display unit 44 displays the charging status and the like at the hand of the outlet unit 6 based on the digital communication signal demultiplexed by the PLC demultiplexing unit 48. The hand illumination unit 46 illuminates the connection unit 8 and the hand display unit 44 when the hand of the outlet unit 6 is dark based on the digital communication signal demultiplexed by the PLC demultiplexing unit 50.

車庫2は、さらに、電力線38に接続された車庫照明部52および車庫扉メカ54を有しており、これらは、やはり電力線38に接続されている車庫制御部56によって制御される。車庫制御部56はPLC分波合成部58を有し、車庫照明部52や車庫扉メカ54などへの制御信号を電力線38に合成して出力する。これらの制御信号はPLC分波部60またはPLC分波部62で分波され、車庫照明部52または車庫扉メカ54を制御する。
例えば、操作部32の車庫扉開放操作に基づいて発生させられた赤外線操作信号36が無線の通信部64で受信されると、車両制御部56に制御されるPLC分波合成部58によって車庫扉開放制御信号が電力線38に合成され、これがPLC分波部62で分波されることによって車庫扉メカ54が駆動されて車庫扉が開く。なお、赤外線信号36は車両4が車庫2に接近することにより自動的に発生させられるよう構成しても良い。
同様に、操作部32の車庫照明点灯操作または接近自動検知により発生させられた赤外線操作信号36が通信部64で受信されると、車両制御部56に制御されるPLC分波合成部58によって車庫扉開放制御信号が電力線38に合成され、これがPLC分波部60で分波されることによって車庫全体を照明するための車庫照明部52が点灯する。
The garage 2 further includes a garage illumination unit 52 and a garage door mechanism 54 connected to the power line 38, and these are controlled by a garage control unit 56 that is also connected to the power line 38. The garage control unit 56 has a PLC demultiplexing / combining unit 58, and synthesizes control signals to the garage lighting unit 52, the garage door mechanism 54, and the like on the power line 38 and outputs the power signal 38. These control signals are demultiplexed by the PLC demultiplexing unit 60 or the PLC demultiplexing unit 62 to control the garage illumination unit 52 or the garage door mechanism 54.
For example, when an infrared operation signal 36 generated based on the garage door opening operation of the operation unit 32 is received by the wireless communication unit 64, the garage door is controlled by the PLC demultiplexing synthesis unit 58 controlled by the vehicle control unit 56. The opening control signal is combined with the power line 38 and is demultiplexed by the PLC demultiplexing unit 62, whereby the garage door mechanism 54 is driven to open the garage door. The infrared signal 36 may be automatically generated when the vehicle 4 approaches the garage 2.
Similarly, when an infrared operation signal 36 generated by a lighting operation of the garage lighting of the operation unit 32 or automatic approach detection is received by the communication unit 64, the garage is operated by the PLC demultiplexing unit 58 controlled by the vehicle control unit 56. The door opening control signal is combined with the power line 38, and is demultiplexed by the PLC demultiplexing unit 60, so that the garage illumination unit 52 for illuminating the entire garage is turned on.

なお、上記の第1実施例においては、無線の通信部34および通信部64が赤外線通信機能を有するものとして構成されているが、両者をともに無線LAN通信部として構成することも可能である。この場合、無線通信は赤外線操作信号36に代わる電波によって双方向かつ高速で行うことができ、車両制御部26と後述する住居システム66内の制御コンピュータとの間で種々の情報交換を行うことができる。
また、通信部34を無線LAN通信部として構成する場合、住居システム66内の制御コンピュータが無線LAN通信に対応できるようにしておけば、通信部34と住居システム66との間の直接無線通信により、種々の情報交換を行うこともできる。この場合、記憶部28に記憶される車両4の認証データを、充電ケーブル12経由の他に無線LAN経由でも直接住居システム66に伝達することができる。
In the first embodiment, the wireless communication unit 34 and the communication unit 64 are configured to have an infrared communication function, but both can be configured as a wireless LAN communication unit. In this case, wireless communication can be performed bidirectionally and at high speed by radio waves in place of the infrared operation signal 36, and various information exchanges can be performed between the vehicle control unit 26 and a control computer in a residential system 66 described later. it can.
Further, when the communication unit 34 is configured as a wireless LAN communication unit, direct communication between the communication unit 34 and the residential system 66 is possible if the control computer in the residential system 66 can support wireless LAN communication. Various information exchanges can also be performed. In this case, the authentication data of the vehicle 4 stored in the storage unit 28 can be directly transmitted to the dwelling system 66 not only via the charging cable 12 but also via the wireless LAN.

なお、充電ケーブル12により車庫2と車両4が接続されているときは、操作部32などの操作信号をPLC分波合成部24で電力線に合成することにより、充電ケーブル12から電力線38経由で車庫照明部52または車庫扉メカ54を制御することができる。
また、上記のような車両制御部26からの直接制御に換えて、電力線38の種々のデジタル信号をまずPLC分波合成部58で分波し、これを車両制御部56で処理した後、その結果に基づく専用の制御信号をPLC分波合成部58で電力線38に合成することにより車庫照明部52や車庫扉メカ54などを制御するようにしてもよい。この場合、PLC分波合成部58で分波されるデジタル信号は、車両4からのものだけでなく、車庫2が付属する住居システム66からの情報であってもよい。
When the garage 2 and the vehicle 4 are connected by the charging cable 12, the operation signal from the operation unit 32 or the like is synthesized with the power line by the PLC demultiplexing / combining unit 24, thereby the garage from the charging cable 12 via the power line 38. The illumination unit 52 or the garage door mechanism 54 can be controlled.
Further, instead of the direct control from the vehicle control unit 26 as described above, various digital signals on the power line 38 are first demultiplexed by the PLC demultiplexing synthesis unit 58 and processed by the vehicle control unit 56. A dedicated control signal based on the result may be combined with the power line 38 by the PLC demultiplexing combining unit 58 to control the garage lighting unit 52, the garage door mechanism 54, and the like. In this case, the digital signal to be demultiplexed by the PLC demultiplexing / synthesizing unit 58 may be information not only from the vehicle 4 but also from the dwelling system 66 to which the garage 2 is attached.

なお、電力は、引込み線68から売電/買電メータ70を介して分電盤72に引き込まれ、PLC分波合成部74を介して住居内の電力線38に供給される。PLC分波合成部74には光ケーブル76が接続されており、この光ケーブル76から伝えられたデジタル通信信号が電力線38に合成されるとともに、住居内の電力線38を流れるデジタル通信信号が分波されて光ケーブル76から外部に送信される。
ソーラーシステム78は、太陽電池80を有し、発生した電力がインバータ82を介して分電盤72に供給される。ソーラーシステム78から供給される電力が住居内で消費される電力より少ないとき、売電/買電メータ70は買電状態となり、逆にソーラーシステム78から供給される電力が住居内で消費される電力より過剰であるときは、売電/買電メータ70は売電状態となる。
The electric power is drawn from the lead-in line 68 to the distribution board 72 via the power selling / buying meter 70 and supplied to the power line 38 in the residence via the PLC demultiplexing / combining unit 74. An optical cable 76 is connected to the PLC demultiplexing / combining unit 74. A digital communication signal transmitted from the optical cable 76 is combined with the power line 38, and a digital communication signal flowing through the power line 38 in the residence is demultiplexed. It is transmitted from the optical cable 76 to the outside.
The solar system 78 includes a solar cell 80, and generated electric power is supplied to the distribution board 72 via the inverter 82. When the power supplied from the solar system 78 is less than the power consumed in the house, the power sale / buy meter 70 is in a power purchase state, and conversely, the power supplied from the solar system 78 is consumed in the house. When it is more than the electric power, the power sale / power purchase meter 70 is in a power sale state.

住居システム66は、後述する制御コンピュータを有し、住居内を制御しているとともにこの制御に必要なPLC分波合成部84を有している。売電/買電メータ70からの電力売買情報はLANケーブル86によって住居システム66に伝えられ、制御コンピュータで処理される。   The dwelling system 66 has a control computer, which will be described later, and controls the interior of the dwelling and also has a PLC demultiplexing / synthesizing unit 84 necessary for this control. The power trading information from the power selling / buying meter 70 is transmitted to the dwelling system 66 through the LAN cable 86 and processed by the control computer.

図2は、図1における車両充電システムの第1実施例において、特に配線関係の詳細を図示したブロック図である。構成自体は図1と全く同一のものなので、対応する部分には同一の番号を付し、必要のない限り説明は省略する。なお、図2では、図1で図示されている構成を一部省略している。例えば、図2では、給電開閉部40などの詳細構成が図示されていないとともに、車両4は全く図示されていない。しかし、これらは、あくまで簡単のために図示を省略しているだけであり、両者は同一の構成なので、第1実施例は図1と図2を総合して理解すべきものとする。   FIG. 2 is a block diagram showing details of wiring relations in the first embodiment of the vehicle charging system in FIG. Since the configuration itself is exactly the same as in FIG. 1, the corresponding parts are denoted by the same reference numerals, and the description thereof is omitted unless necessary. In FIG. 2, a part of the configuration shown in FIG. 1 is omitted. For example, in FIG. 2, the detailed configuration such as the power supply opening / closing unit 40 is not illustrated, and the vehicle 4 is not illustrated at all. However, these are merely omitted for the sake of simplicity, and since both have the same configuration, the first embodiment should be understood with reference to FIGS.

図2から明らかなように、第1実施例における電力線は、単相三線電力線となっている。具体的には、図1に図示した引き込み線68は、図2のように第一外線102、第二外線104および中性線106から構成される。中性線106は、家庭内に引きこまれる前に電柱等で接地されている。
これに対応して、図1において分電盤72から家庭内に配線される電力線38も、図2のように第一外線108、第二外線110および中性線112から構成される。第一外線102と第二外線104には、中性線106に対し逆相でそれぞれ100ボルトの交流電圧が供給される。この結果、第一外線108と中性線112の間または第二外線110と中性線112の間から取られたコンセントからはそれぞれ100ボルトの交流電圧が得られるとともに、第一外線108と第二外線110から取られたコンセントからは200ボルトの交流電流が得られる。
As is apparent from FIG. 2, the power line in the first embodiment is a single-phase three-wire power line. Specifically, the lead-in line 68 illustrated in FIG. 1 includes a first outer line 102, a second outer line 104, and a neutral line 106 as illustrated in FIG. The neutral wire 106 is grounded by a utility pole or the like before being drawn into the home.
Correspondingly, the power line 38 wired in the home from the distribution board 72 in FIG. 1 is also composed of the first outer line 108, the second outer line 110, and the neutral line 112 as shown in FIG. The first outer wire 102 and the second outer wire 104 are each supplied with an AC voltage of 100 volts in reverse phase with respect to the neutral wire 106. As a result, an AC voltage of 100 volts is obtained from the outlet taken between the first outer line 108 and the neutral line 112 or between the second outer line 110 and the neutral line 112, and the first outer line 108 and the first An AC current of 200 volts is obtained from an outlet taken from the two outer wires 110.

PLC分波合成部74は光ケーブル76から受信される通信信号を第一外線108と中性線112の間および第二外線110と中性線112の間にそれぞれ合成するととともに、第一外線108と中性線112の間から分波された通信信号および第二外線110と中性線112の間から分波された通信信号のいずれであってもこれを光ケーブル76から送信できるよう構成される。さらに、第一外線108と第二外線110との間には、電力の50Hzまたは60Hz程度の交流帯域はカットするとともに高周波の通信信号は通過させる中継カプラーを有しており、住居内において第一外線108と中性線112の間の通信信号と第二外線110と中性線112の間の通信信号を中継している。このような第一外線108と第二外線110の間のPLC通信信号の中継の詳細は、同一出願人による特願2007−298696に記載されている。
この結果、第一外線108と中性線112の間から取られたコンセントを利用するPLC対応機器、第二外線110と中性線112の間から取られたコンセントを利用するPLC対応機器、および第一外線108と第二外線110から取られたコンセントを利用するPLC対応機器のいずれも相互のPLC通信が可能であるとともに光ケーブル76を通じた外部との通信が可能となる。
The PLC demultiplexing unit 74 combines communication signals received from the optical cable 76 between the first outer line 108 and the neutral line 112 and between the second outer line 110 and the neutral line 112, and Any one of the communication signal demultiplexed from between the neutral lines 112 and the communication signal demultiplexed from between the second outer line 110 and the neutral line 112 can be transmitted from the optical cable 76. Further, between the first outer line 108 and the second outer line 110, there is a relay coupler that cuts an AC band of about 50 Hz or 60 Hz and allows high-frequency communication signals to pass. The communication signal between the external line 108 and the neutral line 112 and the communication signal between the second external line 110 and the neutral line 112 are relayed. Details of the relay of the PLC communication signal between the first outside line 108 and the second outside line 110 are described in Japanese Patent Application No. 2007-298696 by the same applicant.
As a result, a PLC-compatible device using an outlet taken between the first external line 108 and the neutral wire 112, a PLC-compatible device using an outlet taken between the second external line 110 and the neutral wire 112, and Any PLC-compatible device using an outlet taken from the first external line 108 and the second external line 110 can perform PLC communication with each other and can communicate with the outside through the optical cable 76.

住居システム66のPLC分波合成部84は、第二外線110と中性線112から取られたコンセントに接続され、100ボルトの交流電流を制御コンピュータ114の電源に供給する。また、PLC分波合成部84は、制御コンピュータ114から出力される通信信号を第二外線110と中性線112の間に合成するととともに、第二外線110と中性線112の間から分波された通信信号を制御コンピュータ114に入力する。
なお、PLC分波合成部84は、図2のように第二外線110と中性線112から取られたコンセントに接続するのに代えて、第一外線108と中性線112から取られたコンセントに接続しても全く同様に機能する。
The PLC demultiplexing / synthesizing unit 84 of the residential system 66 is connected to an outlet taken from the second external line 110 and the neutral line 112, and supplies an alternating current of 100 volts to the power source of the control computer 114. The PLC demultiplexing / synthesizing unit 84 synthesizes the communication signal output from the control computer 114 between the second external line 110 and the neutral line 112 and demultiplexes between the second external line 110 and the neutral line 112. The transmitted communication signal is input to the control computer 114.
The PLC demultiplexing / synthesizing unit 84 is taken from the first outer line 108 and the neutral line 112 instead of connecting to the outlet taken from the second outer line 110 and the neutral line 112 as shown in FIG. It works exactly the same when connected to an electrical outlet.

車庫2には、第一外線108、第二外線110および中性線112の三線が配線され、これがコンセントユニット6にもそのまま配線される。コンセントユニット6の内部において、給電開閉部40は第一外線108と第二外線110に接続され、接続部8に200ボルトの交流電流を供給する。これによって、車両4への急速充電を可能とする。
また、手元表示部44は第一外線108と中性線112の間から取られたコンセントに接続されるとともに、手元照明部46は第二外線110と中性線112の間から取られたコンセントに接続されている。
In the garage 2, three lines of the first outer line 108, the second outer line 110 and the neutral line 112 are wired, and these are also wired to the outlet unit 6 as they are. Inside the outlet unit 6, the power supply opening / closing unit 40 is connected to the first outer line 108 and the second outer line 110, and supplies an AC current of 200 volts to the connection unit 8. As a result, the vehicle 4 can be rapidly charged.
The hand display unit 44 is connected to an outlet taken between the first external line 108 and the neutral line 112, and the hand illumination unit 46 is connected to an outlet taken between the second external line 110 and the neutral line 112. It is connected to the.

さらに、車庫2における車庫照明部52および車庫扉メカ54は第一外線108と中性線112の間から取られたコンセントに接続されるとともに、車庫制御部26は第二外線110と中性線112の間から取られたコンセントに接続されている。
コンセントユニット6の第一外線108と第二外線110の間には、さらに電力の交流帯域はカットするとともに高周波の通信信号は通過させる中継カプラー116が設けられており、車庫2内において第一外線108と中性線112の間の通信信号と第二外線110と中性線112の間の通信信号を中継している。
このような中継は、前述のように分電盤72近傍のPLC分波合成部74でも行われているが、中継部からの電力線長が長くなっている部分における通信信号の減衰に対応するため、車庫2においても第一外線108と第二外線110の間の通信信号を中継し、第一外線108と中性線112を利用するPLC通信と第二外線110と中性線112を利用するPLC通信を中継する。なお、接続部8を介した車両4とのPLC通信は、第一外線108と第二外線110の両方を利用して行われており、これら両線と接地との間で通信信号の分波合成が行われる。
Further, the garage lighting unit 52 and the garage door mechanism 54 in the garage 2 are connected to an outlet taken from between the first outer line 108 and the neutral line 112, and the garage control unit 26 is connected to the second outer line 110 and the neutral line. 112 is connected to an outlet taken from between 112.
Between the first outer line 108 and the second outer line 110 of the outlet unit 6, a relay coupler 116 that cuts the AC power band and allows high-frequency communication signals to pass therethrough is provided in the garage 2. The communication signal between 108 and the neutral line 112 and the communication signal between the second outer line 110 and the neutral line 112 are relayed.
Such relaying is also performed in the PLC demultiplexing / combining unit 74 in the vicinity of the distribution board 72 as described above, but in order to cope with the attenuation of the communication signal in the portion where the power line length from the relaying unit is long. In the garage 2 as well, the communication signal between the first outside line 108 and the second outside line 110 is relayed, and the PLC communication using the first outside line 108 and the neutral line 112 and the second outside line 110 and the neutral line 112 are used. Relay PLC communication. Note that PLC communication with the vehicle 4 via the connection unit 8 is performed using both the first outer line 108 and the second outer line 110, and the communication signal is demultiplexed between these two lines and the ground. Synthesis is performed.

図3は、図2と同様にして、図1における車両充電システムの第1実施例を示すブロック図であるが、制御コンピュータ114による制御の詳細を説明するために、特に車庫2のコンセントユニット6における給電開閉部40、および住居システム66の詳細を図示したものである。
図2と同様にして図3の構成自体は図1と全く同一なので、対応する部分には同一の番号を付し、必要のない限り説明は省略する。なお、図3でも、図1または図2で図示されている構成を一部省略しているが、これらは、あくまで簡単のために図示を省略しているだけであり、実施例は同一なので、その構成は図1から図3を総合して理解すべきものとする。
3 is a block diagram showing the first embodiment of the vehicle charging system in FIG. 1 in the same manner as in FIG. 2, but in order to explain the details of the control by the control computer 114, in particular, the outlet unit 6 of the garage 2 is shown. 2 shows details of the power supply opening / closing unit 40 and the dwelling system 66 in FIG.
3 is exactly the same as that of FIG. 1, the corresponding parts are denoted by the same reference numerals, and the description thereof is omitted unless necessary. In FIG. 3, the configuration illustrated in FIG. 1 or 2 is partially omitted, but these are merely omitted for the sake of simplicity, and the embodiments are the same. The configuration should be understood with reference to FIGS.

給電開閉部40においては、PLC分波合成部42と接続部8の間に充電メータ202および給電スイッチ204が設けられている。この充電メータ202は電力線38から接続部8に流れる電流を検出することによって車両4を充電するために消費された電力をモニタするものである。電力のモニタ結果は制御部206に送られ、これがPLC分波合成部42で電力線38に合成されることにより、制御コンピュータ114に伝えられる。
また、充電メータ202は通常の充電モニタだけでなく、電流検出によって接続部8の出力インピーダンスの検出も行っている。そして、接続部8に車両4以外の予定外の機器が接続された場合における出力インピーダンスの異常を検出すると、これを制御部206およびPLC分波合成部42を介して制御コンピュータ114に通報する。
In the power supply opening / closing unit 40, a charge meter 202 and a power supply switch 204 are provided between the PLC demultiplexing / combining unit 42 and the connection unit 8. The charge meter 202 monitors the power consumed to charge the vehicle 4 by detecting the current flowing from the power line 38 to the connecting portion 8. The power monitoring result is sent to the control unit 206, and this is combined with the power line 38 by the PLC demultiplexing / combining unit 42, and is transmitted to the control computer 114.
In addition, the charge meter 202 detects not only the normal charge monitor but also the output impedance of the connecting portion 8 by current detection. When an abnormal output impedance is detected when an unscheduled device other than the vehicle 4 is connected to the connection unit 8, this is reported to the control computer 114 via the control unit 206 and the PLC demultiplexing / combining unit 42.

給電スイッチ204は、接続部8に電力を供給すべきでないとの指示を制御部206から受けたとき、給電を遮断するためのものである。制御部206からの指示は制御コンピュータ114が決定しており、例えば上記のように出力インピーダンスが異常の場合や、後述するように車両4の認証が不可であった場合に給電を遮断する。これによって、接続部に来ている200ボルトの電圧が不用意に外部に出力されないよう危険防止を行うとともに、盗電などの防止も行う。   The power supply switch 204 is for cutting off the power supply when receiving an instruction from the control unit 206 that power should not be supplied to the connection unit 8. An instruction from the control unit 206 is determined by the control computer 114. For example, when the output impedance is abnormal as described above or when the vehicle 4 cannot be authenticated as described later, the power supply is cut off. As a result, danger is prevented so that the voltage of 200 volts coming to the connection part is not inadvertently output to the outside, and theft and the like are also prevented.

制御コンピュータ114は、表示部208およびスピーカ210に接続されており、住居システム66に関する種々の情報を表示またはアナウンスによって住居内に通知する。また、これら表示部208およびスピーカ210は、制御コンピュータ114の制御により、制御部206からの通報により、充電状況、ならびにインピーダンス異常や車両認証不可などの車庫2内の遠隔情報を住居内にいても知ることができるようにする。   The control computer 114 is connected to the display unit 208 and the speaker 210, and notifies the dwelling of various information related to the dwelling system 66 by display or announcement. Further, the display unit 208 and the speaker 210 are controlled by the control computer 114, and may receive remote information in the garage 2 such as charging status and impedance abnormality or vehicle authentication failure in the residence by a report from the control unit 206. To be able to know.

図4は、図2、図3と同様にして、図1における車両充電システムの第1実施例を示すブロック図であるが、給電制御の詳細を説明するために、特に給電開閉部40における給電スイッチ204等の詳細を図示したものである。
図2、図3と同様にして図4の構成自体は図1と全く同一なので、対応する部分には同一の番号を付し、必要のない限り説明は省略する。なお、図4ではコンセントユニット6以外の構成について簡単のため図示を省略しているが、実施例は同一なので、その構成は図1から図4を総合して理解すべきものとする。
FIG. 4 is a block diagram showing the first embodiment of the vehicle charging system in FIG. 1 in the same manner as FIGS. 2 and 3. In order to explain the details of the power supply control, the power supply in the power supply opening / closing unit 40 is particularly shown. The details of the switch 204 and the like are illustrated.
2 and FIG. 3 are the same as those in FIG. 1, the corresponding parts are denoted by the same reference numerals, and description thereof is omitted unless necessary. In FIG. 4, the illustration of the configuration other than the outlet unit 6 is omitted for the sake of simplicity. However, since the embodiments are the same, the configuration should be understood with reference to FIGS.

図4から明らかなように、本発明の第1実施例における給電スイッチ204は、IGBT(Insulated Gate Bipolar Transistor)302を有し、制御部206からの制御信号に基づいて充電メータ202と接続部8の間を導通させるか非導通とするかのスイッチングを行う。IGBT302には並列にハイパスフィルタ304が接続されており、IGBT302の導通・非導通に係らず、PLC通信における高周波のデジタル信号を通過させる。ハイパスフィルタ304は、電力の50Hzまたは60Hz程度の交流帯域はカットしているので電力を供給するか否かは専らIGBT302が決定する。
中性線112はコンセントユニット6においてに示すように接地306がとられている。中性線の接地は、中性線106が家庭内に引きこまれる前に電柱等で行われているが、安全のため、コンセントユニット6でも行われる。また、PLC分波合成部42は接地306に接続されており、第一外線108と第二外線110の両方を利用して、これら両線と接地との間で通信信号の分波合成が行われるようにしている。
As is apparent from FIG. 4, the power supply switch 204 in the first embodiment of the present invention includes an IGBT (Insulated Gate Bipolar Transistor) 302, and the charge meter 202 and the connection unit 8 based on a control signal from the control unit 206. Switching between the two is conducted or not. A high-pass filter 304 is connected in parallel to the IGBT 302, and allows high-frequency digital signals in PLC communication to pass regardless of whether the IGBT 302 is conductive or non-conductive. Since the high-pass filter 304 cuts the AC band of about 50 Hz or 60 Hz, the IGBT 302 exclusively determines whether to supply power.
The neutral wire 112 is grounded 306 as shown in the outlet unit 6. The neutral wire is grounded by a utility pole or the like before the neutral wire 106 is drawn into the home, but is also performed by the outlet unit 6 for safety. The PLC demultiplexing / synthesizing unit 42 is connected to the ground 306, and the demultiplexing / combining of the communication signal is performed between both the first outer line 108 and the second outer line 110 using the first outer line 108 and the second outer line 110. It is supposed to be.

図4から明らかなように、接続部8にはさらに接続部8への接続が予定されている充電ケーブル12の接続プラグの形状をメカ的に検出し、これを制御部に伝達するための接続部メカセンサ308が設けられており、従って、接続部8への電気的接続が行われたとしても、接続プラグの形状が所定のものであることが接続部メカセンサ308で検出できなかったときは、その旨が制御部206からPLC分波合成部42を介して制御コンピュータ114に通報する。そしてこれを受けた制御コンピュータ114は、IGBT302を非導通にする信号を制御部206に送り、接続部に来ている200ボルトの電圧が定格外の機器に出力されないよう危険防止を行うとともに、盗電などの防止も行う。   As apparent from FIG. 4, the connection portion 8 is further connected to mechanically detect the shape of the connection plug of the charging cable 12 scheduled to be connected to the connection portion 8 and transmit this to the control portion. Therefore, even when the electrical connection to the connection unit 8 is performed, if the connection unit mechanical sensor 308 cannot detect that the shape of the connection plug is predetermined, To that effect, the control unit 206 notifies the control computer 114 via the PLC demultiplexing / combining unit 42. In response to this, the control computer 114 sends a signal to turn off the IGBT 302 to the control unit 206 to prevent the voltage of 200 volts coming to the connection unit from being output to a device that is not rated, and to prevent theft. Also prevent such.

図5は、制御コンピュータ114の基本動作を示すフローチャートである。このフローは、接続部8への充電ケーブル12の接続、または、充電ケーブル12が接続されている状態において深夜料金となる充電開始時間が到来したときスタートする。
フローがスタートすると、ステップS2で車両に認証のためのIDの送付を車両4に要求する。そしてステップS4でIDの受領があったかどうかチェックし、受領を検出すればステップS6に進んでIDが登録済みのものと一致するかどうかチェックする。ステップS6でIDの一致が検出されるとステップS8に進み、パスワードの要求が行われる。そしてステップS10でパスワードの一致が検出されるとステップS12に進む。
以上のステップにおけるIDおよびパスワードの要求および送信はPLCシステムを通じて有線で行われるが、通信部34および64を通じて無線で行ってもよい。
FIG. 5 is a flowchart showing the basic operation of the control computer 114. This flow starts when the charging cable 12 is connected to the connection unit 8 or when a charging start time that becomes a late night charge comes when the charging cable 12 is connected.
When the flow starts, the vehicle 4 is requested to send an ID for authentication to the vehicle in step S2. In step S4, it is checked whether or not an ID has been received, and if reception is detected, the process proceeds to step S6 to check whether or not the ID matches that already registered. If a match of ID is detected in step S6, the process proceeds to step S8, and a password request is made. If a password match is detected in step S10, the process proceeds to step S12.
The request and transmission of the ID and password in the above steps are performed by wire through the PLC system, but may be performed wirelessly through the communication units 34 and 64.

ステップS12では、充電ケーブル12が接続されている状態において充電開始時間が到来することによる割り込みによってフローがスタートしたのかどうかチェックする。
ステップS12で時間到来割り込みであることが検出されなかったときは、充電ケーブル12の接続によってフローがスタートしたことを意味するからステップS14に進み、深夜割引料金の適用などを含む時間帯別電灯契約がなされているかどうかをチェックする。
In step S12, it is checked whether or not the flow has started due to an interruption due to the arrival of the charging start time when the charging cable 12 is connected.
If it is not detected in step S12 that it is a time-arrival interrupt, it means that the flow has started due to the connection of the charging cable 12, so that the process proceeds to step S14, and the electric lamp contract according to time zone including the application of a late-night discount fee, etc. Check if has been done.

ステップS14で時間帯別伝統契約が行われていることが検出されるとステップS16に進み、深夜時間帯か否かにかかわらず直ちに充電を開始するための緊急充電操作が行われているかどうかチェックする。
そして、ステップS16で緊急充電操作が検出されなければステップS18に進んで深夜料金等の割引時間帯かどうかチェックし、該当すればステップS20に進んで給電処理を実行する。そして給電処理の完了によりフローを終了する。給電処理の詳細については後述する。
If it is detected in step S14 that a traditional contract by time zone is being performed, the process proceeds to step S16, and whether or not an emergency charging operation for immediately starting charging is performed regardless of whether it is a midnight time zone or not is checked. To do.
If no emergency charging operation is detected in step S16, the process proceeds to step S18 to check whether it is a discount time zone such as a late night charge, and if applicable, the process proceeds to step S20 to execute the power supply process. And a flow is complete | finished by completion of an electric power feeding process. Details of the power supply process will be described later.

一方、ステップS12で時間到来割込みによりフローがスタートしたことが検出されたとき、またはステップS14で時間帯別伝統契約が行われていることが検出されなかったとき、またはステップS16で緊急充電操作が検出されたときは、それぞれ、直ちにステップS20の給電処理に入る。
また、ステップS18で割引時間帯であることが検出されなかったときはステップS22に進み、割引時間帯の到来を検出するための時間モニタを開始する。さらに、ステップS24で、時間到来検出によって図5のフローをスタートするための割込みを可能とする処置を行ってフローを終了する。これによって制御コンピュータ114は、時間到来への待機状態となる。
なお、ステップS4でID受領が検出できなかったとき、又はステップS6でID一致が検出できなかったとき、またはステップS10でパスワードの一致が検出できなかったときは、ステップS26に進んで異常の記録と通報を行い、直ちにフローを終了する。この通報は、図3の表示部208またはスピーカ210にて行われる。
On the other hand, when it is detected in step S12 that the flow has started due to the time-arrival interrupt, or when it is not detected in step S14 that the time-based traditional contract is being performed, or in step S16, the emergency charging operation is performed. If detected, the power supply process of step S20 is immediately started.
If it is not detected in step S18 that it is a discount time zone, the process proceeds to step S22, and time monitoring for detecting the arrival of the discount time zone is started. Further, in step S24, a process for enabling an interrupt for starting the flow of FIG. 5 by time arrival detection is performed, and the flow is terminated. As a result, the control computer 114 enters a standby state for the arrival of time.
If no ID receipt is detected in step S4, or if no ID match is detected in step S6, or if no password match is detected in step S10, the process proceeds to step S26 to record an abnormality. And immediately end the flow. This notification is made on the display unit 208 or the speaker 210 of FIG.

図6は、図5のステップS20における給電処理の詳細を示すフローチャートである。フローがスタートすると、ステップS32で充電ケーブル12が接続されている状態において充電開始時間が到来することによる割り込みによってフローがスタートしたのかどうか改めてチェックする。
そして時間到来割込みによるスタートであった場合はステップS34で時間モニタをキャンセルするとともにステップS36で時間到来割込みを不可としてステップS38に進む。一方時間到来割込みでなかったときは、直接ステップS36に移行する。
FIG. 6 is a flowchart showing details of the power supply process in step S20 of FIG. When the flow starts, it is checked again in step S32 whether or not the flow has started due to an interruption due to the arrival of the charging start time in a state where the charging cable 12 is connected.
If the start is due to a time arrival interrupt, the time monitor is canceled in step S34 and the time arrival interrupt is disabled in step S36, and the process proceeds to step S38. On the other hand, if it is not a time arrival interrupt, the process directly proceeds to step S36.

ステップS38では、図4の接続部メカセンサ308によって充電ケーブル12の専用プラグの接続が検出されたかどうかチェックし、専用プラグであればステップS40に進んで給電スイッチ204をオンする。これによって接続部8に200ボルトの電源電圧が印加される。
次いでステップS42で、充電メータ202からの信号に基づいて充電ケーブル12以降の結線がOKで電流が流れるかどうかのチェックが行われる。そして結線がOKであれば、ステップS44に進み、やはり充電メータ202からの信号に基づいて出力インピーダンスが予定通りでOKかどうかのチェックが行われる。
In step S38, it is checked whether or not the connection plug mechanical sensor 308 in FIG. 4 detects the connection of the dedicated plug of the charging cable 12. If the plug is the dedicated plug, the process proceeds to step S40 and the power supply switch 204 is turned on. As a result, a power supply voltage of 200 volts is applied to the connection portion 8.
Next, in step S42, based on the signal from the charge meter 202, it is checked whether the connection after the charging cable 12 is OK and current flows. If the connection is OK, the process proceeds to step S44, and it is also checked whether the output impedance is OK as planned based on the signal from the charge meter 202.

ステップS44で出力インピーダンスがOKである旨の検出ができるとステップS46に進み、エコ表示処理に入る。その詳細は後述する。
エコ表示処理が終了するとステップS48に進み、充電メータ202または車両の二次電池20からの情報により、充電が完了したかどうかチェックする。そして充電完了が検出できなければステップS42に戻り、以下、結線やインピーダンスの異常がない限り、充電完了までステップS42からステップS48を繰り返す。
ステップS48で充電完了が検出されるとステップS50に進み、給電スイッチをオフとともにステップS52のエコ表示処理に進む。そしてエコ表示処理が完了するとフローを終了する。
If it is detected in step S44 that the output impedance is OK, the process proceeds to step S46, and the eco display process is entered. Details thereof will be described later.
When the eco display process ends, the process proceeds to step S48, and it is checked whether or not the charging is completed based on information from the charge meter 202 or the secondary battery 20 of the vehicle. If the completion of charging cannot be detected, the process returns to step S42. Thereafter, unless there is an abnormality in connection or impedance, steps S42 to S48 are repeated until the charging is completed.
When the completion of charging is detected in step S48, the process proceeds to step S50, the power supply switch is turned off, and the process proceeds to the eco display process in step S52. When the eco display process is completed, the flow ends.

一方、結線がOKであることがステップS42で検出できないとき、またはステップS44で出力インピーダンスがOKであることが検出できないときはステップS54で異常の記録と通報のための処置をして直ちにステップS50に移行し、給電スイッチをオフする。なお、ステップS40で給電スイッチをオンしてからこのような異常によりステップS50で給電スイッチをオフするまでの時間は極短いので、実質的に接続部8から電力が取り出されることはなく、危険もない。
また、ステップS38において専用プラグであることが検出できないときはステップS56に進んで異常の記録と通報のための処置を行い、直ちにフローを終了する。
On the other hand, if it is not possible to detect that the connection is OK in step S42, or if it is not possible to detect that the output impedance is OK in step S44, an error is recorded and reported in step S54, and step S50 is immediately performed. , And turn off the power feed switch. Since the time from turning on the power supply switch in step S40 to turning off the power supply switch in step S50 due to such an abnormality is extremely short, power is not substantially taken out from the connection portion 8, and there is a danger. Absent.
If it is not detected in step S38 that the plug is a dedicated plug, the process proceeds to step S56, where an abnormality is recorded and reported, and the flow is immediately terminated.

図7は、図6のステップS46およびステップS52におけるエコ表示処理の詳細を示すフローチャートである。フローがスタートすると、ステップS62で充電中かどうかのチェックが行われ、充電中であればステップS64に進んで現時点での充電割合を表示するため処置を行うとともにステップS66で充電完了予定時間を表示するための処置を行ってステップS68に移行する。
さらにステップS70に進んでコンセントユニット6の手元表示を行わせるための指示を行ってステップS70に移行する。以上は、図5のステップS46の時点での動作に該当する。
FIG. 7 is a flowchart showing details of the eco display process in steps S46 and S52 of FIG. When the flow starts, it is checked in step S62 whether or not charging is in progress. If charging is in progress, the process proceeds to step S64 to take action to display the current charging rate, and in step S66 the charging completion scheduled time is displayed. Then, the process proceeds to step S68.
Furthermore, it progresses to step S70, the instruction | indication for performing the hand display of the outlet unit 6 is performed, and it transfers to step S70. The above corresponds to the operation at the time of step S46 in FIG.

一方、ステップS62で充電中であることが検出されない場合は、ステップS72に進み、充電完了状態かどうかのチェックを行う。そして、充電完了であれば、ステップS74に進んで充電完了を表示するため処置を行うとともにステップS76で充電完了をアナウンスする音声通報を行うための処置を行う。さらに、ステップS78でコンセントユニット6の手元照明46を点滅させるための処置を行ってステップS68に移行する。これは、手元表示44における充電完了表示を目立たせるためであるとともに、手元照明46だけでも充電完了を通知できるようにするためである。
また、ステップS72において充電完了が検出されない場合は、充電中でも充電完了でもないので直接ステップS70に移行する。
以上のステップS72からステップS78を経由してステップS68に至る動作、又はステップS72から直接ステップS70に至る動作は、図5のステップS52の時点での動作に該当する。
On the other hand, if it is not detected in step S62 that charging is in progress, the process proceeds to step S72 to check whether or not the charging is complete. If the charging is completed, the process proceeds to step S74 to perform a process for displaying the completion of the charging, and a process for performing a voice notification for announcing the charging completion in step S76. Further, in step S78, a measure for blinking the hand illumination 46 of the outlet unit 6 is performed, and the process proceeds to step S68. This is to make the charge completion display in the hand display 44 conspicuous and to make it possible to notify the charge completion only by the hand illumination 46.
If the completion of charging is not detected in step S72, the process proceeds directly to step S70 because neither charging nor charging is completed.
The operation from step S72 through step S78 to step S68 or the operation from step S72 directly to step S70 corresponds to the operation at the time of step S52 in FIG.

ステップS70では、車両4への月間の累積充電量を表示する。そしてステップS80に進んで、ソーラーシステム78や風力発電など、売電が生じる可能性もあるエコ発電システムが住居内に導入されているかどうかがチェックされる。
エコ発電システムが導入されていればステップS82に進み、月間の累積エコ発電量を表示する。さらにステップS84で、月間の累積エコ発電量と月間の車両4への累積充電量とのバランスを表示する。これによって、車両4の充電が自然エネルギーによる割合等を知ることができる。さらにステップS86によってステップS84のバランスを二酸化炭素(以下「CO2」)排出量に換算して表示しステップS88に至る。これらが、車両4とその充電システムの採用による地球環境保護への貢献度合いを表示するエコ表示の内容である。
なお、ステップS80でエコ発電システムの採用が検出できないときは、以上のようなエコ表示を省略し、直接ステップS88に至る。
In step S70, the monthly charge amount to the vehicle 4 is displayed. And it progresses to step S80 and it is checked whether the eco power generation system which may generate electric power sales, such as the solar system 78 and wind power generation, is introduced in the residence.
If the eco power generation system has been introduced, the process proceeds to step S82, and the monthly accumulated eco power generation amount is displayed. Further, in step S84, the balance between the monthly accumulated eco-electric power generation amount and the monthly charged amount to the vehicle 4 is displayed. Thereby, it is possible to know the rate of charging of the vehicle 4 due to natural energy. Further, in step S86, the balance in step S84 is converted into carbon dioxide (hereinafter referred to as “CO2”) emission and displayed, and the process proceeds to step S88. These are the contents of the eco display that displays the degree of contribution to the protection of the global environment through the adoption of the vehicle 4 and its charging system.
In addition, when adoption of an eco power generation system cannot be detected in step S80, the above eco display is abbreviate | omitted and it directly reaches step S88.

ステップ88では、充電中であるかどうかが再度チェックされ、充電中であることが検出されなければステップS90に進んで表示終了操作をしたかどうかがチェックされる。操作がなければ、ステップS92に進み、表示を開始してから所定時間が経過したかどうかがチェックされる。そして、所定時間の経過がない場合はステップS62に戻り、以下、充電中でなく、かつ所定時間が経過しない限り、ステップS62からステップS62からステップS92を繰り返す。これは充電完了後の表示を所定時間継続するためである。
なお、ステップS92で所定時間が経過するとエコ表示処理フローは終了される。また、ステップS90で表示終了操作が行われたことが検出された場合もエコ表示処理フローは終了となる。以上は、図6のステップS52の場合の動作に該当する。
In step 88, it is checked again whether charging is in progress. If it is not detected that charging is in progress, the process proceeds to step S90 to check whether display end operation has been performed. If there is no operation, the process proceeds to step S92, and it is checked whether or not a predetermined time has elapsed since the display was started. Then, if the predetermined time has not elapsed, the process returns to step S62. Hereinafter, unless charging is being performed and the predetermined time has not elapsed, steps S62 to S62 to step S92 are repeated. This is because the display after completion of charging is continued for a predetermined time.
Note that when the predetermined time has elapsed in step S92, the eco-display processing flow ends. The eco display processing flow is also ended when it is detected in step S90 that the display end operation has been performed. The above corresponds to the operation in step S52 of FIG.

一方、ステップS88で充電中であることが検出された場合も図7のエコ表示フローは終了されるが、これは、図6のステップS46の動作に該当しており、ステップS42を経由して再びステップS46のエコ表示処理に入ることになる。   On the other hand, when it is detected in step S88 that charging is in progress, the eco-display flow in FIG. 7 is also terminated. This corresponds to the operation in step S46 in FIG. The eco display process of step S46 is entered again.

なお、図7のエコ表示のためのフローチャートは、以上のようにして、図6のステップS46およびステップS52の詳細フローとして給電処理の一部として機能する他、給電とは無関係に、制御コンピュータ114に表示開始操作信号が伝えられることによる割込みによっても動作する。この場合は、ステップS62からステップS72を経由し、直接ステップS70に飛ぶ動作となる。   The eco-display flowchart of FIG. 7 functions as part of the power supply process as the detailed flow of steps S46 and S52 of FIG. 6 as described above, and the control computer 114 is independent of power supply. It is also activated by an interruption due to the display start operation signal being transmitted to. In this case, the operation jumps directly from step S62 to step S70 via step S72.

以上、本発明の第1実施例では、プラグインハイブリッドタイプの車両4を収容可能な車庫2を含む車両充電システムが開示されている。しかしながら、本発明はこれに限られるものではなく、ガソリンエンジンを用いない純粋の電気自動車およびこれを収容可能な車庫を含む車両充電システムにも採用可能である。
また、第1実施例におけるような住居に付属する車庫だけでなく、業務用の駐車場においても本発明の種々の特徴は適用可能である。
As described above, in the first embodiment of the present invention, the vehicle charging system including the garage 2 that can accommodate the plug-in hybrid type vehicle 4 is disclosed. However, the present invention is not limited to this, and can be applied to a vehicle charging system including a pure electric vehicle that does not use a gasoline engine and a garage that can accommodate the pure electric vehicle.
Further, the various features of the present invention can be applied not only to the garage attached to the residence as in the first embodiment but also to a commercial parking lot.

図8は、本発明の実施の形態に係る車両充電システムの第2実施例を示すブロック図である。第1実施例は一般家庭用の車庫における実施に好適な用構成されていたが、第2実施例は、業務用の月極駐車場または都市や店舗の訪問者用駐車場などにおける実施に好適なよう構成されている。なお、図8は図3と同様の構成が多いので、同一の構成には同一番号を付すとともに、対応する構成については、図8において500番台の番号を付すとともに下二桁の数字を図3と共通にして図示している。これらの構成については、必要のない限り、説明は省略する。
駐車場602は、上記のように業務用の月極駐車場または都市や店舗の訪問者用駐車場であり、車両4を駐車させることができる。コンセントユニット506は図3のコンセントユニット6と同様にして車両4に充電を行うものであるが、給電制御コンピュータ604によって制御されている。給電制御コンピュータ604は、図3の制御部206に準じた機能を持つが、その詳細は後述する。
FIG. 8 is a block diagram showing a second example of the vehicle charging system according to the embodiment of the present invention. The first embodiment is configured to be suitable for implementation in a general garage, but the second embodiment is suitable for implementation in a business-use monthly parking lot or a parking lot for a city or store visitor. It is configured as follows. 8 has many of the same configurations as those in FIG. 3, the same components are given the same numbers, and the corresponding components are given the numbers in the 500s in FIG. It is shown in common with. Description of these configurations is omitted unless necessary.
The parking lot 602 is a business-use monthly parking lot or a parking lot for visitors to cities and stores as described above, and can park the vehicle 4. The outlet unit 506 charges the vehicle 4 in the same manner as the outlet unit 6 in FIG. 3, but is controlled by the power supply control computer 604. The power supply control computer 604 has a function according to the control unit 206 in FIG. 3, and details thereof will be described later.

駐車場602は、決済コンピュータ606によって制御されている。この決済コンピュータ606は図3の制御コンピュータ114に対応するものであるが、図8の第2実施例では主に、インターネットで結ばれる銀行システム608と連携して充電電力の決済を担当する。具体的には、買電メータ570を通じて購入する電力をコンセントユニット506から車両4に供給するとともに、最終的に車両4が買う電力の料金が銀行システム608における車両4の所有者口座から引き落とされるよう決済する。給電制御コンピュータ604は、後述のように、このような決済コンピュータ606と連携してコンセントユニット506から車両4への給電を制御する。
なお、図8の第2実施例においても、光ケーブル576を通じた通信信号はPLC分波合成部576によって駐車場602内の電力線538に分波合成され、駐車場602内の通信はPLCによって行われる。また、図8では、コンセントユニットが一つしか図示されていないが、駐車場602は複数の車両が駐車可能なよう構成されており、後述するように同様のコンセントユニットが複数設けられている。
The parking lot 602 is controlled by the settlement computer 606. The settlement computer 606 corresponds to the control computer 114 of FIG. 3, but in the second embodiment of FIG. 8, the settlement computer 606 is mainly in charge of settlement of charging power in cooperation with the bank system 608 connected via the Internet. Specifically, the power purchased through the power purchase meter 570 is supplied from the outlet unit 506 to the vehicle 4, and finally, the charge of the power purchased by the vehicle 4 is withdrawn from the owner account of the vehicle 4 in the bank system 608. Settlement. The power supply control computer 604 controls power supply from the outlet unit 506 to the vehicle 4 in cooperation with the settlement computer 606 as described later.
Also in the second embodiment of FIG. 8, the communication signal through the optical cable 576 is demultiplexed and synthesized by the PLC demultiplexing / combining unit 576 into the power line 538 in the parking lot 602, and the communication in the parking lot 602 is performed by the PLC. . In FIG. 8, only one outlet unit is shown, but the parking lot 602 is configured so that a plurality of vehicles can be parked, and a plurality of similar outlet units are provided as will be described later.

図9は、図8の第2実施例におけるコンセントユニット506の構造の詳細を示すブロック図である。図8と共通する構成には同一の番号を付し、必要のない限り、説明は省略する。なお、図9では、図8で図示されている構成を一部省略している。しかし、これらは、あくまで簡単のために図示を省略しているだけであり、両者は同一の構成なので、第2実施例は図8と図9を総合して理解すべきものとする。
図9から明らかなように、第2実施例ではコンセントユニット506が駐車スペースに設けられる右側車輪止め702に設けられている。そして接続部508は、右側車輪止め702の右側面の凹部704に風雨を避けるため下向きに配置されていて、車両4がバックで駐車したときにその右側後輪近傍に位置するようになる。
FIG. 9 is a block diagram showing details of the structure of the outlet unit 506 in the second embodiment of FIG. Components that are the same as those in FIG. 8 are given the same reference numerals, and descriptions thereof are omitted unless necessary. In FIG. 9, a part of the configuration shown in FIG. 8 is omitted. However, these are merely omitted for the sake of simplicity, and since both have the same configuration, the second embodiment should be understood with reference to FIGS.
As is apparent from FIG. 9, in the second embodiment, the outlet unit 506 is provided on the right wheel stop 702 provided in the parking space. And the connection part 508 is arrange | positioned downward in order to avoid a wind and rain in the recessed part 704 of the right side surface of the right wheel stopper 702, and when the vehicle 4 parks with the back | bag, it will be located in the right rear wheel vicinity.

接続部508には、不使用時に接続部508を防塵するし保護するためのキャップ706が装着可能となっている。接続部/キャップメカセンサ708は図4の接続部メカセンサ308と同様にして接続部508に接続される接続プラグの形状が所定のものであるか否かを検出するとともに、キャップ706の着脱も検出し、その結果を給電制御コンピュータ604に入力する。
上記のように右側車輪止め702に設けられた接続部508は、車両4の右側に充電用接続部10がある場合に適するが、充電用接続部10が左側にある車両4が駐車される場合のために、同様の構成の補助接続部710が左側車輪止め712の左側面の凹部714にも設けられている。補助接続部710には、右側の接続部と同様にキャップ716が着脱可能であるとともに接続/キャップメカセンサ718が設けられている。
A cap 706 for protecting and protecting the connection portion 508 when not in use can be attached to the connection portion 508. The connection part / cap mechanical sensor 708 detects whether or not the shape of the connection plug connected to the connection part 508 is the same as the connection part mechanical sensor 308 of FIG. The result is input to the power supply control computer 604.
As described above, the connecting portion 508 provided on the right wheel stop 702 is suitable when the charging connecting portion 10 is on the right side of the vehicle 4, but the vehicle 4 having the charging connecting portion 10 on the left side is parked. Therefore, an auxiliary connection portion 710 having a similar configuration is also provided in the concave portion 714 on the left side surface of the left wheel stop 712. The auxiliary connection portion 710 is provided with a connection / cap mechanical sensor 718 as well as a cap 716 that is detachable in the same manner as the connection portion on the right side.

補助接続部710に車両4の接続プラグが接続される場合の給電制御のために、右側の給電スイッチ504と同様の補助給電スイッチ720が設けられており、接続部/キャップメカセンサ718による検出結果に基づき、給電制御コンピュータ604によってそのオンオフが制御されるようになっている。補助接続部710と補助給電スイッチ720は左側車輪止め712への設置を容易にするため、コンセントユニット内にまとめられている。但し、コンセントユニット506とは異なり、給電制御コンピュータ604、充電メータ502PLC分波合成部542は有しておらず、補助給電スイッチ720への電力線入力部と給電制御コンピュータとの通信ライン接続部を有する簡単な構成となっている。
このように、右側の接続部508および左側の補助接続部710からの給電を別々に制御し、接続部毎に独立に給電スイッチを設けたことにより、接続プラグが接続されていない接続部に電圧が印加されるような不測の事態を防止することができる。
For power supply control when the connection plug of the vehicle 4 is connected to the auxiliary connection part 710, an auxiliary power supply switch 720 similar to the right-side power supply switch 504 is provided, and the detection result by the connection part / cap mechanical sensor 718 is provided. The power supply control computer 604 controls on / off based on the above. The auxiliary connection portion 710 and the auxiliary power supply switch 720 are grouped in the outlet unit to facilitate installation on the left wheel stop 712. However, unlike the outlet unit 506, the power supply control computer 604 and the charge meter 502PLC demultiplexing / synthesizing unit 542 are not provided, but a power line input unit to the auxiliary power supply switch 720 and a communication line connection unit between the power supply control computer are provided. It has a simple configuration.
As described above, the power supply from the right connection portion 508 and the left auxiliary connection portion 710 is separately controlled, and the power supply switch is provided independently for each connection portion, so that the voltage is applied to the connection portion to which the connection plug is not connected. It is possible to prevent an unforeseen situation in which is applied.

なお、給電制御コンピュータ604は、同一の車止め702に設けられた右側の接続部508および左側の補助接続部710の一方から給電を開始したときは、この給電が継続する限り、その後他方の接続部に車両4の接続プラグが接続されたことを検出しても、この他方の接続部から給電が行われることがないよう給電スイッチ504または補助給電スイッチ716を制御する。
これは左右に接続部を設けた結果、二つの接続部から同時に充電が行われて、定格以上の電流が一つのコンセントユニットに流れるのを防止するためである。なお、図9から明らかなように右側の接続部508および左側の補助接続部710のいずれを利用して充電を行った場合でも、充電メータ502は共通なので決済に影響はない。
Note that when the power supply control computer 604 starts power supply from one of the right side connection portion 508 and the left side auxiliary connection portion 710 provided in the same vehicle stop 702, as long as this power supply continues, the other connection portion Even if it is detected that the connection plug of the vehicle 4 is connected to the vehicle, the power supply switch 504 or the auxiliary power supply switch 716 is controlled so that power is not supplied from the other connection portion.
This is because the connection portions are provided on the left and right sides, so that charging is simultaneously performed from the two connection portions and current exceeding the rating is prevented from flowing to one outlet unit. As is clear from FIG. 9, even when charging is performed using either the right side connection portion 508 or the left side auxiliary connection portion 710, the charge meter 502 is the same, so there is no effect on settlement.

図10は、図8および図9の第2実施例における駐車場602に複数設けられているコンセントユニットの配置を示すブロック図である。図8または図9と共通する構成には同一の番号を付し、必要のない限り、説明は省略する。なお、図10では、図8または図9で図示されている構成を一部省略している。しかし、これらは、あくまで簡単のために図示を省略しているだけであり、両者は同一の構成なので、第2実施例は図8から図10を総合して理解すべきものとする。
図10から明らかなように、コンセントユニット506が設けられた右側車輪止め702は、第1駐車スペース802に配置されている。なお、図10では、既に述べた図示の簡単のため、第1駐車スペース802に配される左側車輪止め712の図示を省略している。これは他の駐車スペースでも同様である。
FIG. 10 is a block diagram showing the arrangement of a plurality of outlet units provided in the parking lot 602 in the second embodiment of FIGS. 8 and 9. Components common to those in FIG. 8 or FIG. 9 are denoted by the same reference numerals, and description thereof is omitted unless necessary. In FIG. 10, a part of the configuration illustrated in FIG. 8 or FIG. 9 is omitted. However, these are merely omitted for the sake of simplicity, and since both are the same configuration, the second embodiment should be understood with reference to FIGS.
As is clear from FIG. 10, the right wheel stop 702 provided with the outlet unit 506 is disposed in the first parking space 802. In addition, in FIG. 10, illustration of the left side wheel stopper 712 distribute | arranged to the 1st parking space 802 is abbreviate | omitted for the simplification of illustration already mentioned. The same applies to other parking spaces.

同様にして、第2駐車スペース804には、第2車輪止め806が配置されており、コンセントユニット506と同様の第2コンセントユニット808が設けられている。他の駐車スペースにも同様のコンセントユニットつき車輪止めが設けられているが、簡単のため、図示は省略する。これらのコンセントユニットの通信はPLCによるため、駐車スペース増設の際には各車輪止めに充電用電力線を配線するだけでよい。   Similarly, a second wheel stopper 806 is disposed in the second parking space 804, and a second outlet unit 808 similar to the outlet unit 506 is provided. Although other parking spaces are provided with the same wheel stopper with an outlet unit, the illustration is omitted for simplicity. Since communication of these outlet units is performed by PLC, it is only necessary to wire a charging power line to each wheel stop when adding a parking space.

一方、第3駐車スペース810の第3車輪止め812には、PLCによる通信に対応していない第3コンセントユニット814が設けられている。第3コンセントユニット814の給電開閉部816は、図8または図9と同様の充電メータ818、給電スイッチ820および接続部822を有するが、給電制御コンピュータ824の通信方式が異なる。
第3コンセントユニットでは、PLCに代わって、無線LAN通信部826が司り、決済コンピュータ606に接続された無線LANルータ828と通信している。このように、駐車場602が無線LANの環境下にあれば、コンセントユニットに無線LAN通信部826を搭載すれば、電力線の配線だけで駐車スペースの増設に対応できる。なお、LANケーブルの配線も可能であれば、有線のLANにより給電制御コンピュータ824と決済コンピュータ606の間の通信を行ってもよい。
On the other hand, the third wheel stopper 812 of the third parking space 810 is provided with a third outlet unit 814 that does not support communication by PLC. The power supply opening / closing unit 816 of the third outlet unit 814 includes a charge meter 818, a power supply switch 820, and a connection unit 822 similar to those in FIG. 8 or FIG. 9, but the communication method of the power supply control computer 824 is different.
In the third outlet unit, instead of the PLC, the wireless LAN communication unit 826 manages and communicates with the wireless LAN router 828 connected to the settlement computer 606. In this way, if the parking lot 602 is in a wireless LAN environment, the installation of the wireless LAN communication unit 826 in the outlet unit can support the expansion of the parking space only by wiring the power line. Note that if wiring of the LAN cable is possible, communication between the power supply control computer 824 and the settlement computer 606 may be performed by a wired LAN.

図11は、第2実施例における図8から図10のコンセントユニット506が備える給電制御コンピュータ604または図10における第3コンセントユニット814が備える給電制御コンピュータ824の基本動作を示すフローチャートである。このフローは、図9における接続部508のキャップ706または補助接続部710のキャップ712が取り外されたことを接続部/キャップメカセンサ708または714が検出することによってきスタートする。
フローがスタートすると、ステップS102でキャップの取り外しから所定時間内にプラグの装着が行われたかどうかチェックし、所定時間経過まではステップS102を繰り返す。
FIG. 11 is a flowchart showing the basic operation of the power supply control computer 604 provided in the outlet unit 506 of FIGS. 8 to 10 in the second embodiment or the third outlet unit 814 in FIG. This flow starts when the connecting portion / cap mechanical sensor 708 or 714 detects that the cap 706 of the connecting portion 508 or the cap 712 of the auxiliary connecting portion 710 in FIG. 9 has been removed.
When the flow starts, it is checked in step S102 whether or not the plug has been attached within a predetermined time from the removal of the cap, and step S102 is repeated until the predetermined time elapses.

ステップS102で所定時間内にプラグの装着が行われたことが検出されるとステップS104に進み、接続部/キャップメカセンサ708または714によって充電ケーブル12の専用プラグの接続が検出されたかどうかチェックし、専用プラグであればステップS106に進んで決済コンピュータ606との通信を開始する。
次いでステップS108に進み、決済コンピュータ606からの指示に基づき、車両認証のためのID送付を車両4に要求する。そしてステップS110でIDの受領があったかどうかチェックし、受領を検出すればステップS112に進んでIDが登録済みのものと一致するかどうかチェックする。
When it is detected in step S102 that the plug has been attached within the predetermined time, the process proceeds to step S104, and it is checked whether or not the connection / cap mechanical sensor 708 or 714 detects the connection of the dedicated plug of the charging cable 12. If it is a dedicated plug, the process proceeds to step S106 and communication with the settlement computer 606 is started.
In step S108, the vehicle 4 is requested to send an ID for vehicle authentication based on an instruction from the settlement computer 606. In step S110, it is checked whether or not an ID has been received, and if reception is detected, the process proceeds to step S112 to check whether or not the ID matches that already registered.

ステップS112におけるチェックは具体的には次のようにして行われる。まず、受領したIDは決済コンピュータ606の中継で銀行システム608に送られ、銀行システム608において口座に登録されたIDとの一致が確認されるとこれが決済コンピュータ606経由で給電制御コンピュータに通知される。
この通知によりステップS112でIDが登録済みのものと一致することが確認されるとステップS114に進み、パスワードの要求が行われる。そしてステップS116でパスワードの一致が検出されるとステップS118に進む。ステップS118では、IDおよびパスワードで認証された顧客の口座に引き落とし可能な預金があって決済可能かどうかのチェックが行われ、決済がOKであればステップS120に進む。
Specifically, the check in step S112 is performed as follows. First, the received ID is sent to the bank system 608 via the settlement computer 606, and when the identity with the ID registered in the account is confirmed in the bank system 608, this is notified to the power supply control computer via the settlement computer 606. .
If it is confirmed in step S112 that the ID matches that already registered by this notification, the process proceeds to step S114 to request a password. If a password match is detected in step S116, the process proceeds to step S118. In step S118, it is checked whether there is a deposit that can be withdrawn in the account of the customer authenticated with the ID and password, and whether settlement is possible. If settlement is OK, the process proceeds to step S120.

ステップS116およびステップS118のチェックはともに、ステップS112と同様にして決済コンピュータ606の中継による銀行システム608との交信により行われる。なお、決済コンピュータ606は単に情報の中継を行うだけでなく、自らチェック結果の判断を行い結果の指示だけを給電制御コンピュータ604または824に伝達するだけでもよい。   Both the check in step S116 and step S118 are performed by communication with the bank system 608 via the relay of the settlement computer 606 in the same manner as in step S112. Note that the settlement computer 606 may not only relay information but also determine the check result by itself and transmit only the instruction of the result to the power supply control computer 604 or 824.

ステップS120では給電スイッチ504または716または820がオンされ、これによって対応する接続部に200ボルトの電源電圧が印加される。
次いでステップS122で、充電メータ502または818からの信号に基づいて充電ケーブル12以降の結線がOKで電流が流れるかどうかのチェックが行われる。そして結線がOKであれば、ステップS124に進み、やはり充電メータ502または818からの信号に基づいて出力インピーダンスが予定通りでOKかどうかのチェックが行われる。
In step S120, the power supply switch 504, 716, or 820 is turned on, whereby a power supply voltage of 200 volts is applied to the corresponding connection.
Next, in step S122, based on the signal from the charge meter 502 or 818, it is checked whether the connection after the charge cable 12 is OK and current flows. If the connection is OK, the process proceeds to step S124, and it is also checked whether the output impedance is OK as planned based on the signal from the charge meter 502 or 818.

ステップS44で出力インピーダンスがOKである旨の検出ができるとステップS128に進み、充電メータ502や818または車両の二次電池20からの情報により、充電が完了したかどうかチェックする。そして充電完了が検出できなければステップS122に戻り、以下、結線やインピーダンスの異常がない限り、充電完了までステップS122からステップS128を繰り返す。
ステップS128で充電完了が検出されるとステップS130に進み、給電スイッチをオフとともにステップS132の決済処理に進む。そして決済処理が完了するとフローを終了する。なおステップS132における決済処理は充電電力料金を銀行口座からの引き落とす通常の決済処理である。
If it is detected in step S44 that the output impedance is OK, the process proceeds to step S128, and it is checked whether charging is completed based on information from the charge meters 502 and 818 or the secondary battery 20 of the vehicle. If the completion of charging cannot be detected, the process returns to step S122. Hereinafter, unless there is a connection or impedance abnormality, steps S122 to S128 are repeated until the charging is completed.
When the completion of charging is detected in step S128, the process proceeds to step S130, the power supply switch is turned off, and the process proceeds to the settlement process in step S132. When the settlement process is completed, the flow ends. Note that the payment process in step S132 is a normal payment process in which the charging power charge is withdrawn from the bank account.

一方、結線がOKであることがステップS122で検出できないとき、またはステップS124で出力インピーダンスがOKであることが検出できないときはステップS134で異常の記録と通報のための処置をして直ちにステップS130に移行し、給電スイッチをオフする。
なお、図6でも説明したようにステップS120で給電スイッチをオンしてからこのような異常によりステップS130で給電スイッチをオフするまでの時間は極短いので、実質的に接続部508、710または822等から電力が取り出されることはなく、危険もない。
On the other hand, if it is not possible to detect that the connection is OK in step S122, or if it is not possible to detect that the output impedance is OK in step S124, an abnormality is recorded and reported in step S134, and step S130 is immediately performed. , And turn off the power feed switch.
As described with reference to FIG. 6, since the time from turning on the power supply switch in step S120 to turning off the power supply switch in step S130 due to such an abnormality is extremely short, the connection portions 508, 710, or 822 are practically short. There is no danger of power being taken out of the equipment.

また、ステップS102でステップキャップの取り外しから所定時間内に接続プラグの装着が検出できなかったとき、または、S104において専用プラグであることが検出できないときはステップS136に進んで異常の記録と通報のための処置を行い、直ちにフローを終了する。
同様に、ステップS110でID受領が検出できなかったとき、又はステップS112でID一致が検出できなかったとき、又はステップS116でパスワードの一致が検出できなかったとき、又はステップS118で決済がOKであることが検出できなかったときも、ステップS136に進んで異常の記録と通報を行い、直ちにフローを終了する。この通報は、決済コンピュータ606に対して行われ、必要に応じ、決済コンピュータ606経由で銀行システム608に対しても通報される。
Further, when it is not detected in step S102 that the connection plug is attached within a predetermined time from the removal of the step cap, or if it is not possible to detect that the plug is a dedicated plug in S104, the process proceeds to step S136, where an abnormality is recorded and notified. Then, the flow is finished immediately.
Similarly, when ID receipt cannot be detected in step S110, or ID match cannot be detected in step S112, or password match cannot be detected in step S116, or payment is OK in step S118. Even if it cannot be detected, the process proceeds to step S136, where an abnormality is recorded and reported, and the flow is immediately terminated. This notification is made to the settlement computer 606, and is also reported to the bank system 608 via the settlement computer 606 as necessary.

なお、本発明の実施は以上の実施例に限られるものではなく、本発明の利点は他の種々の実施例によって達成できる。例えば、図4における給電スイッチ204にはIGBT302を用いているがこれに代えて、シリコンカーバイド(SiC)のパワー半導体素子を用いてもよい。   The embodiment of the present invention is not limited to the above-described embodiments, and the advantages of the present invention can be achieved by other various embodiments. For example, although the IGBT 302 is used for the power supply switch 204 in FIG. 4, a silicon carbide (SiC) power semiconductor element may be used instead.

図12は、本発明の実施の形態に係る第3実施例を示すブロック図である。第3実施例も上記の第1実施例および第2実施例と同様にして車両の充電システムを構成するものであるが、特にハイブリッドタイプの車両の燃費管理に関する特徴を有し、その特徴の一部は充電を伴わない通常のガソリンエンジンタイプの車両にも適用可能である。図12はこのような特徴を説明するため給電および給油が可能なサービススタンド904およびハイブリッドタイプの車両904をブロック図にて図示している。図12の車両904の構成は、図1の車両4と同一であるが、図1では省略していた構成を付加している。以下これらの付加構成を中心に説明するが、図1で既に言及した構成については、同一番号を付すとともに、必要のない限り、説明は省略する。   FIG. 12 is a block diagram showing a third example according to the embodiment of the present invention. The third embodiment also constitutes a vehicle charging system in the same manner as the first and second embodiments described above, and has a feature relating to fuel consumption management of a hybrid type vehicle. The part can also be applied to a normal gasoline engine type vehicle without charging. FIG. 12 is a block diagram illustrating a service stand 904 and a hybrid type vehicle 904 capable of supplying and refueling in order to explain such characteristics. The configuration of the vehicle 904 in FIG. 12 is the same as that of the vehicle 4 in FIG. 1, but the configuration omitted in FIG. 1 is added. Hereinafter, these additional configurations will be mainly described, but the configurations already mentioned in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted unless necessary.

図1では触れていなかったが、車両904は、サービススタンド902における給油または充電またはその両者(以下これらを総じて「パワー注入」と称する)のための総合パワー注入口906を有し、充電用接続部10は給油口908とともにこの総合パワー注入口906にまとめられている。なお、総合パワー注入口906は充電用接続部10近辺でのスパークによる引火を避けるため、両者を電気的および空間的に隔てる配置および構成とする。さらに、同様の目的のため、充電ケーブル12が確実に充電用接続部10に接続されたことが確認されない限り、給電は開始されず、また給電中は充電ケーブル12を充電用接続部10から取り外すことはできない。   Although not touched in FIG. 1, the vehicle 904 has a total power inlet 906 for refueling and / or charging at the service stand 902 (hereinafter collectively referred to as “power injection”), and charging connection The unit 10 is combined with the total power inlet 906 together with the fuel filler 908. The total power inlet 906 is disposed and configured to be electrically and spatially separated from each other in order to avoid ignition by sparks in the vicinity of the charging connection portion 10. Furthermore, for the same purpose, power supply is not started unless it is confirmed that the charging cable 12 is securely connected to the charging connection unit 10, and the charging cable 12 is removed from the charging connection unit 10 during power supply. It is not possible.

サービススタンド902側には、総合パワー注入口906に接続するための総合パワーケーブル910が設けられており、充電ケーブル12は給油パイプ912とともにこの総合パワーケーブル910にまとめられている。なお、図12では総合パワーケーブル910が巾の広いブロック状に図示されているが、これは概念上のことで、実際の総合パワーケーブル910は、充電ケーブル12および給油パイプ912を一本の可撓性のあるケーブルとしてまとめたものである。なお、総合パワーケーブル910は、破損による充電ケーブル12から給油パイプ912への引火を防止するため、外周に破損センサ913が設けられており、総合パワーケーブル910が破損したときは、その破損が内部に達する前に破損センサで検知され、これがサービススタンド制御部922に伝えられて充電ケーブル12への給電を断つよう構成される。この目的のための破損センサ913は、例えば総合パワーケーブル910の外周を覆うようその表面から浅い部分にケーブルに沿って網目状に這わされた微弱電流の信号線であり、この信号線の断線をサービススタンド制御部922で検知することで総合パワーケーブル910の破損が外部から始まったものと判断する。   On the service stand 902 side, a total power cable 910 for connecting to the total power inlet 906 is provided, and the charging cable 12 is bundled together with the fuel supply pipe 912 into the total power cable 910. In FIG. 12, the total power cable 910 is shown in a wide block shape. However, this is conceptual, and the actual total power cable 910 includes a charging cable 12 and a fuel supply pipe 912. It is summarized as a flexible cable. The general power cable 910 is provided with a damage sensor 913 on the outer periphery in order to prevent ignition from the charging cable 12 to the oil supply pipe 912 due to damage. When the total power cable 910 is damaged, Is detected by the breakage sensor before reaching, and this is transmitted to the service stand control unit 922 to cut off the power supply to the charging cable 12. The breakage sensor 913 for this purpose is a weak current signal line that is formed in a mesh shape along the cable from the surface to the shallow part so as to cover the outer periphery of the general power cable 910, for example. By detecting the service stand control unit 922, it is determined that the damage of the integrated power cable 910 has started from the outside.

総合パワー注入口906には、家庭または駐車場のコンセントユニット6からの充電ケーブルを単独で接続することも可能である。この場合、充電ケーブル12が単独で充電用接続部10に接続され、給油口908は開かれない。図1や図8はこのような状態を図示したものである。図12の車両904には、燃料タンク16の油量を検出する油量計914、エンジン18へのガソリン噴射の状況および走行メカ14からの速度をモニタして瞬間燃費を算出する瞬間燃費計916、走行メカ14に基づくトリップメータ917および二次電池20から車両904全体への電源供給を行う電源部918が図示されているが、これらは図1の車両9にも備えられているものである。これら油量計914、瞬間燃費計916およびトリップメータ917の情報は車両制御部26に伝達される。   The total power inlet 906 can be connected to a charging cable from the outlet unit 6 in a home or parking lot alone. In this case, the charging cable 12 is connected to the charging connection unit 10 alone, and the fuel filler port 908 is not opened. FIG. 1 and FIG. 8 illustrate such a state. The vehicle 904 in FIG. 12 includes an oil amount meter 914 that detects the amount of oil in the fuel tank 16 and an instantaneous fuel consumption meter 916 that calculates the instantaneous fuel consumption by monitoring the state of gasoline injection to the engine 18 and the speed from the traveling mechanism 14. In addition, a trip meter 917 based on the traveling mechanism 14 and a power supply unit 918 that supplies power to the entire vehicle 904 from the secondary battery 20 are illustrated, but these are also provided in the vehicle 9 of FIG. . Information of the oil amount meter 914, the instantaneous fuel consumption meter 916, and the trip meter 917 is transmitted to the vehicle control unit 26.

サービススタンド902における燃料貯蔵庫918に蓄えられたガソリンは、サービススタンド制御部922の制御により給油計920を介して給油パイプ912から車両904の給油口908に供給される。給油計920で計測される給油量のデータはサービススタンド制御部922に送られて後述の課金処理に供される。一方、給電源924からの電力は、サービススタンド制御部922の制御により給電計926を介して接続部928から充電ケーブル12経由で車両904の充電用接続部10に供給される。給電計926で計測される給電量のデータはサービススタンド制御部922に送られて後述の課金処理に供される。なお、給電計926と接続部928の間には既に説明したのと同様のPLC分波合成部928が設けられており、充電ケーブル12を介したサービススタンド制御部922と車両制御部26の間のPLC通信を可能としている。   The gasoline stored in the fuel storage 918 in the service stand 902 is supplied from the fuel supply pipe 912 to the fuel supply port 908 of the vehicle 904 through the fuel supply meter 920 under the control of the service stand control unit 922. The data of the amount of oil measured by the fuel meter 920 is sent to the service stand control unit 922 and used for billing processing described later. On the other hand, the power from the power supply 924 is supplied from the connection unit 928 to the charging connection unit 10 of the vehicle 904 through the power supply meter 926 and the charging cable 12 under the control of the service stand control unit 922. Data on the amount of power supply measured by the power supply meter 926 is sent to the service stand control unit 922 and used for billing processing described later. Note that a PLC demultiplexing / synthesizing unit 928 similar to that already described is provided between the power supply meter 926 and the connection unit 928, and between the service stand control unit 922 and the vehicle control unit 26 via the charging cable 12. PLC communication is possible.

サービススタンド制御部922は、給油計920または給電計926またはその両者から、給油データまたは給電データまたはその両者を受信すると、これを課金部930に送る。課金部930では、受信したデータに応じ、給油量、ガソリン単価、請求ガソリン代、給電量、電気代単価、請求電気代を集計して計算する等の処理を行う。このとき車両904とサービススタンド902の間でCO2排出権取引があればその収支も合算処理する。この取引情報は、車両制御部26が通信部34または充電用接続部10経由でサービススタンド902から取得し、記憶部28に記憶する。なお、CO2排出権取引に関する情報は、は家庭における充電時において、図2の住居システム66の制御コンピュータ114から充電ケーブル12または通信部34を介して受信することもできる。   When the service stand control unit 922 receives the fuel supply data and / or the power supply data from the fuel supply meter 920 and / or the power supply meter 926, the service stand control unit 922 sends the data to the charging unit 930. The charging unit 930 performs processing such as summing up and calculating the amount of oil supply, gasoline unit price, billed gasoline cost, power supply amount, electricity cost unit price, and billed electricity cost according to the received data. At this time, if there is a CO2 emission trading between the vehicle 904 and the service stand 902, the balance is also processed. The transaction information is acquired from the service stand 902 by the vehicle control unit 26 via the communication unit 34 or the charging connection unit 10 and stored in the storage unit 28. The information on the CO2 emission trading can be received via the charging cable 12 or the communication unit 34 from the control computer 114 of the dwelling system 66 of FIG.

サービススタンド制御部922は、課金部930による処理結果のデータを入出力部932から出力し、インターネット経由で銀行システム934に送ってガソリン代や電気代の電子決済を任せる。またサービススタンド制御部922は、課金部930による処理結果のデータを入出力部932から出力し、インターネット経由で燃費管理外部サーバ936に送る。燃費管理外部サーバ936には、さらに車両904のトリップメータ917の情報が車両制御部26からサービススタンド制御部922を中継してインターネット経由で伝えられる。これらの情報により燃費管理外部サーバ936は燃費の計算が可能となる。計算される燃費としては、給油量が満タン方による燃費算出条件に合致していれば給油の都度の燃費計算が可能となるし、累積給油回数が所定以上であれば満タン給油でなくても累積平均燃費の計算が可能となる。燃費管理外部サーバ936の処理結果は、サービススタンド制御部922を経由して車両制御部26にフィードバックすることもできる。また、燃費管理外部サーバ936は多数の車両からのデータを集約した統計処理も行っており車両制御部はこのような統計データのフィードバックも受けることができる。   The service stand control unit 922 outputs the data of the processing result by the charging unit 930 from the input / output unit 932 and sends the data to the bank system 934 via the Internet, and entrusts electronic payment for gasoline and electricity. Further, the service stand control unit 922 outputs processing result data from the charging unit 930 from the input / output unit 932 and sends the data to the fuel consumption management external server 936 via the Internet. Information on the trip meter 917 of the vehicle 904 is further relayed to the fuel efficiency management external server 936 from the vehicle control unit 26 via the service stand control unit 922 via the Internet. With this information, the fuel consumption management external server 936 can calculate the fuel consumption. The calculated fuel consumption can be calculated for each fueling if the fueling amount meets the fueling conditions for full tanks. The cumulative average fuel consumption can be calculated. The processing result of the fuel efficiency management external server 936 can also be fed back to the vehicle control unit 26 via the service stand control unit 922. The fuel efficiency management external server 936 also performs statistical processing that aggregates data from many vehicles, and the vehicle control unit can also receive feedback of such statistical data.

一方、サービススタンド制御部922は、課金部930による処理結果のデータをPLC分波合成部928により電力線に合成する。これによって、給油量、ガソリン単価、請求ガソリン代、給電量、電気代単価、請求電気代等の実績データがサービススタンド制御部922から車両制御部26に伝えられる。車両制御部26は、このようにして伝えられた給油量が満タン法による燃費算出条件に合致していれば、このデータでトリップメータ917の情報に基づく走行量のデータを割り算して燃費を自動算出する。サービススタンド902から車両904へのデータ転送は、上記のような充電ケーブル12を介したPLC通信による他、データは通信部938から通信部34への無線LAN通信によって行うこともできる。このような無線LAN通信はサービススタンドに充電機能がなく充電ケーブル12によるPLC通信が行えないときに特に有用である。   On the other hand, the service stand control unit 922 combines the data of the processing result by the charging unit 930 into the power line by the PLC demultiplexing unit 928. As a result, actual data such as the amount of oil supply, gasoline unit price, billing gasoline cost, power supply amount, electricity unit price, billing electricity cost, etc. is transmitted from the service stand control unit 922 to the vehicle control unit 26. If the refueling amount communicated in this way matches the fuel consumption calculation condition by the full tank method, the vehicle control unit 26 divides the travel amount data based on the information of the trip meter 917 by this data to reduce the fuel consumption. Calculate automatically. Data transfer from the service stand 902 to the vehicle 904 can be performed by wireless LAN communication from the communication unit 938 to the communication unit 34 in addition to the PLC communication via the charging cable 12 as described above. Such wireless LAN communication is particularly useful when the service stand does not have a charging function and PLC communication using the charging cable 12 cannot be performed.

図13は、図12の第3実施例における車両制御部26の基本動作を示すフローチャートである。このフローは、車両制御部26が二次電池20からの給電を受けて立ち上がり、以後、二次電池20からの給電が断たれるまで動作状態を維持するが、後述のように、イグニションのONまたは外部からの総合パワー注入口への接続がない限り、これらを待つ状態となり、実質的な動作の実行はない。   FIG. 13 is a flowchart showing the basic operation of the vehicle control unit 26 in the third embodiment of FIG. This flow rises when the vehicle control unit 26 receives power from the secondary battery 20 and thereafter maintains the operating state until power from the secondary battery 20 is cut off. As will be described later, the ignition is turned on. Or, unless there is a connection to the total power inlet from the outside, it will be in a state of waiting for these and there will be no substantial operation.

フローがスタートすると、ステップS202で、イグニションがオンとなったかどうかチェックされる。そしてイグニションのオンが検出されるとステップS204に進み、車両904の初期機能チェック処理が行われる。次いでステップS206で車両904の走行開始操作が行われたかどうかチェックが行われる。走行開始操作が検出されるとステップS208に進み、総合パワー注入口906にケーブルが接続中であるかどうかチェックする。そして接続中でなければステップS210に進み、今回の走行前の最新の燃費記憶を記憶部28から読み出し、ステップS212でこれを表示する。   When the flow starts, it is checked in step S202 whether the ignition is turned on. When the ignition is turned on, the process proceeds to step S204, and an initial function check process for the vehicle 904 is performed. Next, in step S206, it is checked whether or not a travel start operation of the vehicle 904 has been performed. When the travel start operation is detected, the process proceeds to step S208, and it is checked whether or not a cable is connected to the total power inlet 906. If not connected, the process proceeds to step S210, and the latest fuel consumption memory before the current travel is read from the storage unit 28 and displayed in step S212.

以上の後、ステップS214の走行処理に移行する。上記のように、ステップS206で走行開始操作が行われても、ステップS208で総合パワー注入口にケーブルが接続中でないことが確認されないとステップS214の走行処理に移行して走行を実行することはない。これは、例えば家庭の車庫において電力料金の安い深夜に充電を行わせておいたまま翌朝ケーブルをはずすのを忘れて走行を開始してしまうような事故を防止する意味がある。なお、ステップS208で総合パワー注入口が接続中であることが検出されるとステップS216に移行し、ケーブルを除去する旨の警告を表示部30で行ってステップS206に戻る。このようにして警告に従ってケーブルが除去されない限りステップS206、ステップS208およびステップS216が繰り返され、ステップS214の走行処理に至ることがない。   After the above, the process proceeds to the traveling process in step S214. As described above, even if the travel start operation is performed in step S206, if it is not confirmed in step S208 that the cable is not connected to the total power inlet, the travel processing of step S214 is performed and the travel is performed. Absent. This has the meaning of preventing accidents such as forgetting to disconnect the cable the next morning while starting charging at midnight when the power rate is low in a home garage. If it is detected in step S208 that the total power inlet is connected, the process proceeds to step S216, a warning that the cable is to be removed is given on the display unit 30, and the process returns to step S206. As long as the cable is not removed in accordance with the warning in this way, step S206, step S208, and step S216 are repeated, and the traveling process of step S214 is not reached.

ステップS214の走行処理の詳細は後述するが、この処理は走行停止で終了し、ステップS218に移行する。ステップS218は、総合パワー注入口にケーブルが接続されたかどうかをチェックするためのものである。なお、ステップS202においてイグニションがオンとなったことが検出されない場合は、直接ステップS218に移行する。また、ステップS206で走行開始操作が検出されない場合も、直接ステップS218に移行する。このように、イグニションのオンオフ状態に係らずステップS218における総合パワー注入口接続チェックが行われる。   Although details of the travel process in step S214 will be described later, this process ends when the travel is stopped, and the process proceeds to step S218. Step S218 is for checking whether a cable is connected to the total power inlet. If it is not detected in step S202 that the ignition is turned on, the process directly proceeds to step S218. Moreover, also when the driving | running | working start operation is not detected by step S206, it transfers to step S218 directly. In this way, the overall power inlet connection check in step S218 is performed regardless of the ignition ON / OFF state.

ステップS218で総合パワー注入口へのケーブル接続が検出されるとステップS220に進み、給油/給電処理に移行する。その詳細は後述する。給油/給電処理が終了するとステップS222に進み、イグニションがオフになったかどうかチェックする。そしてオフでなければフローはステップS206に戻り、次の走行開始操作または総合パワー注入口接続を待つ。一方ステップS222でイグニションのオフが検出されるとフローはステップS202に戻り、次のイグニションオンまたは総合パワー注入口接続を待つ。   When the cable connection to the total power inlet is detected in step S218, the process proceeds to step S220, and the process proceeds to the oil supply / power supply process. Details thereof will be described later. When the refueling / power feeding process ends, the process proceeds to step S222, and it is checked whether the ignition is turned off. If it is not off, the flow returns to step S206 and waits for the next travel start operation or the total power inlet connection. On the other hand, when it is detected in step S222 that the ignition is turned off, the flow returns to step S202, and waits for the next ignition on or total power inlet connection.

図14は、図13のステップS214における走行処理の詳細を示すフローチャートである。フローがスタートするとステップS232で瞬間燃費計からのデータの表示を開始する指示を行うとともにステップS234で瞬間燃費計からのデータの蓄積を指示する。そしてステップS236に進み、モータ22による走行を指示する。車両904はハイブリッド車なので、このようにエンジン18の効率の悪い走行開始時点ではモータ22による走行を指示する。   FIG. 14 is a flowchart showing details of the traveling process in step S214 of FIG. When the flow starts, an instruction to start displaying data from the instantaneous fuel consumption meter is issued in step S232, and an accumulation of data from the instantaneous fuel consumption meter is instructed in step S234. Then, the process proceeds to step S236 to instruct traveling by the motor 22. Since the vehicle 904 is a hybrid vehicle, the travel by the motor 22 is instructed when the engine 18 starts traveling with low efficiency.

次いでステップS238で、走行モードが電動モードに設定されているかどうかチェックする。電動モードとは二次電池20の電力を消費してモータ22のみを動力として走行する電気自動車モードである。ステップS238で電動モードの設定が検出されない場合はハイブリッドモードであるのでステップS240に進み、走行モードが最適効率ハイブリッドモードに設定されているかどうかチェックする。そしてこのモード設定が検出されるとステップS242に進み、最適効率ハイブリッド走行処理が行われる。この処理は、その時点での走行をモータ22によって行うかエンジン18によって行うかを燃費最優先で決定する処理である。つまり、二次電池20の電力が潤沢であることを前提とし、エンジン走行の燃費効率が悪いとどんどんモータ走行を選択するので二次電池20が消耗していくことになる。なお、ハイブリッド走行では制動時等のモータ逆起電力により二次電池20を充電するので、走行状態によっては、最適効率ハイブリッド走行においても二次電池20の充電状況が走行により復活することもある。   Next, in step S238, it is checked whether the traveling mode is set to the electric mode. The electric mode is an electric vehicle mode in which the power of the secondary battery 20 is consumed and only the motor 22 is used as power. If the setting of the electric mode is not detected in step S238, the hybrid mode is set, so the process proceeds to step S240, and it is checked whether or not the traveling mode is set to the optimum efficiency hybrid mode. When this mode setting is detected, the process proceeds to step S242, and the optimum efficiency hybrid travel process is performed. This process is a process of determining whether the traveling at that time is performed by the motor 22 or the engine 18 with the highest priority on fuel consumption. That is, on the assumption that the power of the secondary battery 20 is ample, if the fuel efficiency of the engine running is poor, the motor running is selected more and more, so the secondary battery 20 is consumed. In the hybrid traveling, the secondary battery 20 is charged by the motor back electromotive force at the time of braking or the like. Depending on the traveling state, the charging state of the secondary battery 20 may be restored by traveling even in the optimum efficiency hybrid traveling.

ステップS242においてその時点の走行選択が行われる度にフローはステップS244に進み走行が停止したかどうかチェックする。そして停止でなければステップS246に進み、二次電池20の充電が最低限度に達しているかどうかチェックする。最低限度を割っていなければフローはステップS242に戻り、以下走行停止または充電最低限が検出されない限りステップS242からステップS246を繰り返して最適効率ハイブリッド走行を継続する。ステップS244で走行停止が検出されるとその時点で図14の走行処理は終了する。   Each time the travel selection at that time is performed in step S242, the flow proceeds to step S244 to check whether the travel has stopped. If not stopped, the process proceeds to step S246, and it is checked whether or not the charging of the secondary battery 20 has reached the minimum level. If the minimum limit is not broken, the flow returns to step S242, and the optimal efficiency hybrid travel is continued by repeating steps S242 to S246 unless the travel stop or the minimum charge is detected. When the travel stop is detected in step S244, the travel processing in FIG.

一方、ステップS246において二次電池20が消耗して充電最低限を割ったことが検出されるとステップS248に移行し、通常ハイブリッド走行処理に移行する。この処理では、エンジン走行とするかモータ走行とするかを燃費効率によって決定するとともに、二次電池20の充電量をモニタしてこれが充電最低限を割ると強制的にエンジン走行を選択し、二次電池20が充電最低限に復活するまでエンジン走行を継続して充電を行うものである。この処理による走行選択が行われる度にフローはステップS2250に進み、走行が停止したかどうかチェックする。そして停止でなければステップS248に戻り、以下走行停止が検出されない限りステップS248とステップS250を繰り返して通常ハイブリッド走行を継続する。このように通常ハイブリッド走行処理は外部からの充電を前提としないハイブリッド走行処理である。ステップS250で走行停止が検出されるとその時点で図14の走行処理は終了する。   On the other hand, when it is detected in step S246 that the secondary battery 20 has been consumed and the minimum charge has been broken, the process proceeds to step S248, and the process proceeds to the normal hybrid travel process. In this process, whether to drive the engine or to drive the motor is determined based on fuel efficiency, and the charge amount of the secondary battery 20 is monitored. Charging is performed by continuing the engine running until the next battery 20 is restored to the minimum charge. Each time the travel selection by this process is performed, the flow proceeds to step S2250 to check whether the travel has stopped. If it is not stopped, the process returns to step S248, and the normal hybrid travel is continued by repeating steps S248 and S250 unless a travel stop is detected. As described above, the normal hybrid traveling process is a hybrid traveling process that does not assume charging from the outside. When the travel stop is detected in step S250, the travel processing in FIG.

ステップS240で最適効率モードの設定が検出されないときはステップS252の循環ハイブリッド走行処理に移行する。この処理は、外部からの充電を前提としないハイブリッド走行を行う点では通常ハイブリッド走行処理と共通するが、プラグインハイブリッド車において外部から充電した電力を電動モードへの切換え時等のためにほぼフル充電状態に温存しつつハイブリッド走行を行う点が異なる。つまり、エンジン走行とするかモータ走行とするかを通常ハイブリッド走行処理におけると同様の燃費効率によって決定するが、エンジン走行への強制切換えは二次電池20が充電最低限になるはるか以前の段階で後述するステップによって行う。   When the setting of the optimum efficiency mode is not detected in step S240, the process proceeds to the circulating hybrid travel process in step S252. This process is the same as the normal hybrid driving process in that it performs hybrid driving that does not require charging from the outside, but the power charged from the outside in a plug-in hybrid vehicle is almost full for switching to the electric mode. The difference is that hybrid driving is performed while preserving the state of charge. In other words, the engine running or the motor running is determined by the same fuel efficiency as in the normal hybrid running process, but the forced switching to the engine running is performed at a stage long before the secondary battery 20 becomes the minimum charge. This is performed by the steps described later.

ステップS252においてその時点の走行選択が行われる度にフローはステップS254に進み走行が停止したかどうかチェックする。そして停止でなければステップS256に進み、二次電池20をモニタしてその充電がフル充電維持限界に達しているかどうかチェックする。フル充電維持限界でなければフローはステップS252に戻り、以下、走行停止またはフル充電維持限界が検出されない限りステップS252からステップS256を繰り返して循環ハイブリッド走行を継続する。ステップS254で走行停止が検出されるとその時点で図14の走行処理は終了する。   Each time the current travel selection is made in step S252, the flow proceeds to step S254 to check whether the travel has stopped. If not stopped, the process proceeds to step S256, where the secondary battery 20 is monitored to check whether or not the charge has reached the full charge maintenance limit. If the full charge maintenance limit is not reached, the flow returns to step S252. Thereafter, unless a travel stop or full charge maintenance limit is detected, steps S252 to S256 are repeated to continue the circulating hybrid travel. When the travel stop is detected in step S254, the travel processing in FIG.

ステップS256でフル充電維持限界を割ったことが検出されるとフローはステップS258のエンジン走行処理に進み、強制的にエンジン走行を選択する。このように図14のフローによる走行処理では、ステップS248の通常ハイブリッド走行処理においてエンジン走行への強制切換えが行われる二次電池の第1充電レベルと、ステップS256においてエンジン走行への強制切換えを判定する二次電池の第2充電レベルの二つが備えられておりモードによって使い分けられる。既に述べたように、第2の充電レベルは第1充電レベルよりはるかに高い。ステップS258のエンジン走行処理が完了するとステップS260に進み、走行が停止したかどうかチェックする。停止でなければステップS262に進み、二次電池20の充電がフル充電に復帰したかどうかチェックする。フル充電に復帰していなければフローはステップS258に戻り、以下走行停止またはフル充電復帰が検出されない限りステップS258からステップS262を繰り返してエンジン走行処理を継続し、二次電池20への充電を行う。ステップS254で走行停止が検出されるとその時点で図14の走行処理は終了する。   If it is detected in step S256 that the full charge maintenance limit has been broken, the flow proceeds to the engine running process in step S258 to forcibly select engine running. As described above, in the travel processing according to the flow of FIG. 14, the first charge level of the secondary battery that is forcedly switched to engine travel in the normal hybrid travel processing of step S248 and the forced switch to engine travel are determined in step S256. There are two secondary charge levels of the secondary battery to be used, depending on the mode. As already mentioned, the second charge level is much higher than the first charge level. When the engine traveling process in step S258 is completed, the process proceeds to step S260, and it is checked whether traveling has stopped. If it is not a stop, it will progress to step S262 and it will be checked whether charge of the secondary battery 20 returned to full charge. If it has not returned to full charge, the flow returns to step S258, and the following steps S258 to S262 are repeated until the travel stop or full charge return is detected, and the engine running process is continued to charge the secondary battery 20. . When the travel stop is detected in step S254, the travel processing in FIG.

ステップS262でフル充電復帰が検出されるとフローはステップS238に戻る。これは、フル充電状態から電動モードまたは最適効率モードへの切換えを可能とするためである。つまり、これらいずれのモードも二次電池がフル充電状態であることを前提としているが、ステップS258からステップS262を経由してステップS238に戻ることにより、これらのモードへの切換えを可能としている。ステップS238でこれらのモードへの切換えが行われない限り、フローはステップS238からステップS240を経由してステップS252に進むので、以下、ステップS260で走行停止が検出されない限り、ステップS238、ステップS240およびステップS252からステップS262が繰り返されて二次電池をほぼフル充電状態に温存しながらハイブリッド走行を継続する。ステップS260で走行停止が検出されるとその時点で図14の走行処理は終了する。   If full charge return is detected in step S262, the flow returns to step S238. This is to enable switching from the fully charged state to the electric mode or the optimum efficiency mode. That is, in any of these modes, it is assumed that the secondary battery is in a fully charged state, but switching to these modes is possible by returning from step S258 to step S238 via step S262. Unless switching to these modes is performed in step S238, the flow proceeds from step S238 via step S240 to step S252. Therefore, unless a travel stop is detected in step S260, steps S238, S240, and Steps S252 to S262 are repeated to continue the hybrid running while preserving the secondary battery in a substantially fully charged state. When the travel stop is detected in step S260, the travel processing in FIG.

ステップS238電動モードが検出された時はステップS264に進み、強制的にモータ走行を選択する。そしてステップS266に進み、走行が停止したかどうかチェックする。停止でなければステップS268に進み、二次電池20の充電が充電最低限に達したチェックする。充電最低限を割っていなければフローはステップS264に戻り、以下走行停止または充電最低限が検出されない限りステップS264からステップS268を繰り返してモータ走行処理を継続する。二次電池20への充電を行う。ステップS254で走行停止が検出されるとその時点で図14の走行処理は終了する。一方、ステップS246において二次電池20が消耗して充電最低限を割ったことが検出されるとステップS248に移行し、通常ハイブリッド走行処理に移行する。   Step S238 When the electric mode is detected, the process proceeds to step S264 to forcibly select motor travel. Then, the process proceeds to step S266, and it is checked whether or not traveling has stopped. If not stopped, the process proceeds to step S268 to check that the charging of the secondary battery 20 has reached the minimum charging. If the charging minimum is not broken, the flow returns to step S264, and the motor driving process is continued by repeating steps S264 to S268 unless a driving stop or charging minimum is detected. The secondary battery 20 is charged. When the travel stop is detected in step S254, the travel processing in FIG. On the other hand, when it is detected in step S246 that the secondary battery 20 has been consumed and the minimum charge has been broken, the process proceeds to step S248, and the process proceeds to the normal hybrid travel process.

図15は、図13のステップS220における給油/給電処理の詳細を示すフローチャートである。フローがスタートすると、ステップS272で給油口908への接続があるかどうかをチェックする。接続が検出されれば、充電ケーブル12および給油パイプ912を備えた総合パワーケーブル910または給油パイプのみのいずれかが接続されたことを意味するのでステップS274に進み、給油開始を指示してステップS276に進む。一方給油口908への接続が検出されない場合は、充電ケーブル12のみが接続されたことを意味するので直接ステップS276に移行する。   FIG. 15 is a flowchart showing details of the refueling / power feeding process in step S220 of FIG. When the flow starts, it is checked in step S272 whether or not there is a connection to the fuel filler port 908. If the connection is detected, it means that either the total power cable 910 provided with the charging cable 12 and the oil supply pipe 912 or only the oil supply pipe is connected, so that the process proceeds to step S274, and the start of oil supply is instructed. Proceed to On the other hand, when the connection to the fuel filler port 908 is not detected, it means that only the charging cable 12 is connected, and the process directly proceeds to step S276.

ステップS276では充電用接続部10への接続があるかどうかをチェックする。接続が検出されれば、充電ケーブル12および給油パイプ912を備えた総合パワーケーブル910または充電ケーブル12のみのいずれかが接続されたことを意味するのでステップS278に進む。ステップS278では緊急充電操作が行われたかどうかがチェックされ、この操作が検出されなければステップS280に進んで時間帯別伝統契約を行っているかどうかチェックする。契約があることが検出された車両の場合、充電は家庭の電灯線から深夜に行うことが意図されていると考えられるので、ステップS282に進み、給油口908への接続があるかどうかチェックする。そして給油口908への接続がなければ家庭の電灯線からの給電ケーブルが接続されていると考えられるのでステップS284に進む。   In step S276, it is checked whether or not there is a connection to the charging connection unit 10. If the connection is detected, it means that either the total power cable 910 provided with the charging cable 12 and the oil supply pipe 912 or only the charging cable 12 is connected, and the process proceeds to step S278. In step S278, it is checked whether or not an emergency charging operation has been performed. If this operation is not detected, the process proceeds to step S280 to check whether or not a traditional contract is made by time. In the case of a vehicle in which it is detected that there is a contract, it is considered that charging is intended to be performed at night from the home power line, and thus the process proceeds to step S282 to check whether there is a connection to the fuel filler port 908. . If there is no connection to the fuel filler port 908, it is considered that a power feeding cable from the household electric power line is connected, so the process proceeds to step S284.

ステップS284では、現在時刻が割引時間帯に該当するかどうかチェックされ、該当しなければ286に進んで割引時間帯に入ったことを検出するための時間モニタ中であるかどうかチェックする。そして時間モニタ中でなければステップS288でこの時間モニタを開始してステップS290に進む。なお、ステップS286で既に時間モニタ中であることが検出された時は直接ステップS290に進む。このように、緊急充電操作なしに時間帯別電灯契約の下で割引時間帯外に充電用接続部10への接続があった場合は、家庭において車庫入れをした後、深夜における充電を意図して充電ケーブル12を接続したものとして時間モニタ行い、充電の実行は時間到来まで保留する。   In step S284, it is checked whether or not the current time falls within the discount time zone, and if not, the process proceeds to 286 to check whether or not the time monitor for detecting that the discount time zone has been entered. If the time is not being monitored, the time monitoring is started in step S288 and the process proceeds to step S290. If it is detected in step S286 that the time is already being monitored, the process proceeds directly to step S290. In this way, if there is a connection to the charging connection unit 10 outside the discounted time zone under an hourly lighting contract without an emergency charging operation, it is intended to charge at midnight after entering the garage at home. Then, the time monitoring is performed assuming that the charging cable 12 is connected, and the execution of charging is suspended until the time comes.

一方、ステップS278で緊急充電操作があった場合は、時間帯別電灯契約の有無にかかわらずサービススタンド904または家庭において即座に充電を開始することが求められたことを意味するのでステップS292に進み充電開始を指示してステップS290に進む。また、ステップS280で時間帯別電灯契約が検出されなかった場合も、ステップS292に進み、サービススタンド904または家庭において即座に充電を開始する指示を行ってステップS290に進む。さらにステップS284で現在時刻が割引時間帯に該当することが検出された場合も、ステップS292に進み、充電開始を指示してステップS290に進む。   On the other hand, if there is an emergency charging operation in step S278, it means that it is required to start charging immediately at the service stand 904 or at home regardless of whether or not there is a lighting contract by time of day, so the process proceeds to step S292. The start of charging is instructed, and the process proceeds to step S290. Also, if the hourly lighting contract is not detected in step S280, the process proceeds to step S292, where an instruction to immediately start charging at the service stand 904 or at home is given, and the process proceeds to step S290. Furthermore, when it is detected in step S284 that the current time corresponds to the discount time zone, the process proceeds to step S292, the start of charging is instructed, and the process proceeds to step S290.

ステップS290では、充電中かどうかをチェックし、充電中であればステップS290を繰り返して充電完了を待つ。そして、ステップS286経由のように充電実行なしにステップS290に至った場合、またはステップS292を経由してステップS290に至り充電が完了した場合はステップS294に進む。また、ステップS276で充電用接続部10への接続が検出されなかった時は直接ステップS294に移行する。さらに、ステップS282における時間帯別電灯契約の検出を経てステップS282で給油口の接続が検出されたときは、サービススタンド902での充電は意図していないと考えられるので直ちにステップS294に移行する。   In step S290, it is checked whether or not charging is in progress. If charging is in progress, step S290 is repeated to wait for completion of charging. Then, when step S290 is reached without executing charging as in step S286, or when step S290 is reached via step S292 and charging is completed, the process proceeds to step S294. If connection to the charging connection unit 10 is not detected in step S276, the process directly proceeds to step S294. Further, when the connection of the fuel filler is detected in step S282 after the detection of the hourly electric lamp contract in step S282, it is considered that charging at the service stand 902 is not intended, and the process immediately proceeds to step S294.

ステップS294では、給油中かどうかをチェックし、給油中であればステップS294を繰り返して給油完了を待つ。そして、S274における給油指示なしにステップS294に至った場合、またはステップS274における給油指示を経由してステップS294に至り給油が完了した場合はステップS296に進む。ステップS296では燃費計算処理が行われるがその詳細は後述する。   In step S294, it is checked whether refueling is in progress. If refueling is in progress, step S294 is repeated to wait for completion of refueling. If step S294 is reached without a refueling instruction in S274, or if refueling is completed via step S274 via the refueling instruction in step S274, the process proceeds to step S296. In step S296, fuel consumption calculation processing is performed, details of which will be described later.

次いでステップS298では、充電用接続部10にケーブルが接続中かどうかチェックし、接続中であればステップS300で時間モニタ中であるかどうかチェックする。そして時間モニタ中であればステップS278に戻る。以下、ステップS278で緊急充電操作が検出されるか、又はステップS284で現在時刻が割引時間帯に該当することが検出されるか、又はステップS298でケーブルの除去が検出されるまで、ステップS278からステップS290およびステップS294からステップS300を繰り返す。なお、ステップS300で時間モニタ中であることが検出されない場合、またはステップS298でケーブルの除去が検出されたときは図15の給油/給電処理のフローを終了する。   Next, in step S298, it is checked whether or not a cable is connected to the charging connection unit 10, and if it is connected, it is checked whether or not the time is being monitored in step S300. If the time is being monitored, the process returns to step S278. Hereinafter, from step S278 until the emergency charging operation is detected in step S278, it is detected in step S284 that the current time corresponds to the discount time zone, or the removal of the cable is detected in step S298. Steps S290 and S294 to S300 are repeated. If it is not detected in step S300 that the time is being monitored, or if removal of the cable is detected in step S298, the flow of the refueling / power feeding process in FIG.

図16は、図15のステップS296における給油/給電処理の詳細を示すフローチャートである。フローがスタートすると、ステップS312で充電があったかどうかチェックする。そして、充電があればステップS314に進んでPLC通信または無線LAN通信により充電量、電力料金単価および請求料金などの充電データをサービススタンド制御部922から取得し、ステップS316に進む。なお、ステップS312で充電があったことが検出されなければ直接ステップS316に移行する。   FIG. 16 is a flowchart showing details of the refueling / power feeding process in step S296 of FIG. When the flow starts, it is checked in step S312 whether or not there is a charge. Then, if there is a charge, the process proceeds to step S314, and charging data such as the charge amount, the power unit price, and the billing charge is acquired from the service stand control unit 922 by PLC communication or wireless LAN communication, and the process proceeds to step S316. If it is not detected in step S312 that the battery has been charged, the process directly proceeds to step S316.

ステップS316では、給油があったかどうかチェックし、給油があればステップ318に進んで瞬間燃費計による前回給油から今回給油までの燃費累積データを読み出す。さらにS320ではPLC通信または無線LAN通信により給油量、満タンまでの給油の有無、ガソリン単価、および請求料金などの今回の給油に関するサービススタンドデータを取得する。次いでステップS322では前回までに取得している給油に関する累積のサービススタンドデータを記憶部28から読み出し、ステップS324に移行する。   In step S316, it is checked whether there has been refueling. If there is refueling, the flow proceeds to step 318, and fuel consumption accumulated data from the previous refueling to the current refueling is read by the instantaneous fuel consumption meter. Further, in S320, service stand data relating to the current refueling such as the amount of refueling, the presence / absence of refueling until full tank, the unit price of gasoline, and the billing fee are acquired by PLC communication or wireless LAN communication. Next, in step S322, accumulated service stand data relating to refueling acquired up to the previous time is read from the storage unit 28, and the process proceeds to step S324.

ステップS324では、ステップS320およびステップS322により得られたデータに基づき、前回給油および今回給油がともに満タンまで行われたかどうかチェックする。該当すれば満タン法による燃費計算が可能なのでステップS326に進み、ステップS320で得た今回給油量のデータを採用してステップS328に移行する。ステップS328ではトリップメータ917から前回給油から今回給油までの走行データを取得する。さらにステップS330では、今回給油量と今回走行距離から今回給油時の燃費を計算し、ステップS332に進む。一方ステップS324において今回および前回の給油がともに満タンであることが検出できなかった時はステップS334に進みステップS318から得た瞬間燃費計の燃費データより前回給油から今回給油までの累積燃費データを採用してステップS332に進む。   In step S324, based on the data obtained in steps S320 and S322, it is checked whether both the previous and current refueling have been performed to full tank. If applicable, the fuel consumption calculation by the full tank method is possible, so the process proceeds to step S326, and the current fuel amount data obtained in step S320 is adopted, and the process proceeds to step S328. In step S328, travel data from the previous refueling to the current refueling is acquired from the trip meter 917. Further, in step S330, the fuel consumption at the current refueling is calculated from the current refueling amount and the current travel distance, and the process proceeds to step S332. On the other hand, if it is not detected in step S324 that both the current and previous refueling are full, the process proceeds to step S334, and cumulative fuel consumption data from the previous refueling to the current refueling is obtained from the fuel consumption data of the instantaneous fuel consumption meter obtained from step S318. Adopt and go to step S332.

ステップ332では、今回までの累積給油回数が所定(例えば10回)以上であるかどうかチェックし、該当すればステップS336に進んで今回までの累積走行距離および今回までの累積給油量から平均推定燃費を算出してステップS338に移行する。これは、累積給油量が燃料タンク16の容量よりも充分大きくなると給油量を油消費量と看做しても甚だしい誤差はないからである。一方ステップS332で累積給油回数が所定回数に達していない場合はステップS340に進み、瞬間燃費計のデータから今回までの平均燃費を算出してステップS338に移行する。これは、給油回数が少ない場合は給油量実績から平均燃費を推定するよりも瞬間燃費計のデータに基づいて平均燃費を推定する方が妥当性が大きいからである。なお、ステップS316で給油があったことが検出できなかったときは直ちにステップS338に移行する。   In step 332, it is checked whether or not the cumulative number of refueling up to this time is equal to or greater than a predetermined value (for example, 10 times). Is calculated and the process proceeds to step S338. This is because when the cumulative amount of fuel supply is sufficiently larger than the capacity of the fuel tank 16, there is no significant error even if the amount of fuel supply is considered as the oil consumption amount. On the other hand, if the cumulative number of refueling has not reached the predetermined number in step S332, the process proceeds to step S340, where the average fuel consumption up to this time is calculated from the instantaneous fuel consumption meter data, and the process proceeds to step S338. This is because when the number of refueling is small, it is more appropriate to estimate the average fuel consumption based on the instantaneous fuel consumption meter data than to estimate the average fuel consumption from the actual amount of fuel supply. If it is not detected in step S316 that there has been refueling, the process immediately proceeds to step S338.

ステップS338では、所定距離(例えば10キロ)走行するのに要する累積走行コストを算出する処理を行う。その詳細は後述する。次いでステップS342では消費エネルギーをCO2に換算する処理を行う。その詳細も後述する。さらにステップS344では給油実績と走行実績に基づいて瞬間燃費計を補正する処理を行ってフローを終了する。ステップS344の瞬間燃費計補正処理についても後述する。   In step S338, a process for calculating an accumulated travel cost required to travel a predetermined distance (for example, 10 km) is performed. Details thereof will be described later. Next, in step S342, processing for converting the consumed energy into CO2 is performed. Details thereof will also be described later. Further, in step S344, a process for correcting the instantaneous fuel consumption meter is performed based on the refueling performance and the travel performance, and the flow ends. The instantaneous fuel consumption meter correction process in step S344 will also be described later.

なお、上記ステップS332では累積給油量が燃料タンク16の容量よりも充分大きいことの判定を給油回数で行っているが、これに代えて、累積給油量が所定以上に達したかどうかを直接的に判定するようにしてもよい。また、給油量の累積による判断に代え、ステップS332において累積走行距離が所定以上に達したかどうかをチェックするようにしてもよい。これらいずれによっても、給油量累積平均推定燃費を採用するか瞬間燃費計平均燃費を採用するかの決定が可能である。   In step S332, it is determined whether the cumulative amount of fuel is sufficiently larger than the capacity of the fuel tank 16 based on the number of times of fueling. Instead, it is directly determined whether the cumulative amount of fuel has reached a predetermined value or more. You may make it determine to. Moreover, it may replace with the judgment by accumulation | storage of the amount of oil supply, and you may make it check in step S332 whether the accumulated travel distance has reached more than predetermined. In any case, it is possible to determine whether to adopt the fuel amount accumulated average estimated fuel consumption or the instantaneous fuel consumption meter average fuel consumption.

図17は、図16のステップS338における累積走行コスト算出処理の詳細を示すフローチャートである。フローがスタートすると、ステップS352で今回の充電に関する支払電力料金があったかどうかチェックし、あればステップS354で今回支払い電力料金データを加算してステップS356に移行する。一方、ステップS352で今回支払電力料金がなければ直接ステップS356に移行する。ステップS356では、今回の充電に自家発電データがあったかどうかチェックし、あればステップS358で充電量相当分の充電設備償却費を加算してステップS360に移行する。一方、ステップS356で今回自家発電データがなければ直接ステップS360に移行する。   FIG. 17 is a flowchart showing details of the accumulated travel cost calculation process in step S338 of FIG. When the flow starts, it is checked in step S352 whether or not there is a payment power charge related to the current charging, and if there is, the current payment power charge data is added in step S354 and the process proceeds to step S356. On the other hand, if there is no current power payment fee in step S352, the process directly proceeds to step S356. In step S356, it is checked whether or not there is private power generation data for the current charging. If there is, the charging equipment depreciation cost corresponding to the charging amount is added in step S358, and the process proceeds to step S360. On the other hand, if there is no private power generation data this time in step S356, the process proceeds directly to step S360.

ステップS360では、今回CO2排出権取引に関する電力を充電したかどうかチェックし、該当すればステップS362に進む。ステップS362ではCO2排出権を売却したのなら売却代金を減算し、CO2排出権を購入したのなら購入代金を加算してステップS364に移行する。一方、ステップS360で今回の充電にCO2排出権取引が関係しなければ直接ステップS364に移行する。ステップS364では、今回の給油に関する支払給油料金があったかどうかチェックし、あればステップS366で今回支払給油料金データを加算してステップS368に移行する。一方、ステップS364で今回支払電力料金がなければ直接ステップS368に移行する。   In step S360, it is checked whether or not the electric power related to the current CO2 emission trading is charged, and if applicable, the process proceeds to step S362. In step S362, if the CO2 emission right is sold, the sale price is subtracted. If the CO2 emission right is purchased, the purchase price is added and the process proceeds to step S364. On the other hand, if the current charge is not related to the CO2 emission trading in step S360, the process proceeds directly to step S364. In step S364, it is checked whether or not there is a refueling fee related to the current refueling. If there is a refueling fee for this refueling, the current refueling fee data is added in step S366 and the process proceeds to step S368. On the other hand, if there is no current power charge in step S364, the process directly proceeds to step S368.

ステップS368では、今回までの累積走行データをトリップメータ917から読み出すとともにこれに今回の走行データを加算する。次いでステップS370では上記の結果の最新累積走行データが所定距離以上かどうかチェックする。そして所定距離以上であればステップS372で今回までの累積電力料金データがあるかどうかチェックし、あればステップS374に進んで累積電力料金データを記憶部28から読み出してステップS376に移行する。一方、ステップS372で累積電力料金データがなければ直接ステップS376に移行する。ステップS376では、今回までの累積給油料金データがあるかどうかチェックし、あればステップS378に進んで累積給油料金データを記憶部28から読み出し、ステップS380に移行する。一方、ステップS376で累積給油料金データがなければ直接ステップS380に移行する。   In step S368, the cumulative travel data up to this time is read from the trip meter 917 and the current travel data is added to this. Next, in step S370, it is checked whether or not the latest cumulative travel data as a result is greater than or equal to a predetermined distance. If it is equal to or longer than the predetermined distance, it is checked in step S372 whether there is accumulated power charge data up to this time. If so, the process proceeds to step S374, where the accumulated power charge data is read from the storage unit 28, and the process proceeds to step S376. On the other hand, if there is no accumulated power charge data in step S372, the process directly proceeds to step S376. In step S376, it is checked whether or not there is accumulated refueling charge data up to this time, and if there is, the process proceeds to step S378, where the accumulated refueling charge data is read from the storage unit 28, and the process proceeds to step S380. On the other hand, if there is no accumulated fuel charge data in step S376, the process proceeds directly to step S380.

ステップS380では、ステップS374で読み出した今回までの累積電力料金データとステップS378で読み出した今回までの累積給油料金データを合算し、総合累積料金を算出する。そして、ステップS382に進み、ステップS380で得られた今回までの合算総累積料金をステップS368で得られた今回までの累積走行データで除算するとともに10kmを乗算し、10kmあたりの累積平均走行コスト金額を算出してフローを終了する。なお、ステップS370で最新累積走行データが所定距離以上であることが検出できない場合は、直ちにフローを終了する。累積走行距離が一回のエネルギー注入で走行可能な距離よりも充分大きくない限りは、給油量や充電量などの注入エネルギー量を消費エネルギー量と看做すには誤差が大きく、これら注入エネルギーに関する支払料金から走行コストを算出するのは不適当だからである。   In step S380, the accumulated power charge data up to this time read out in step S374 and the accumulated refueling charge data up to this time read out in step S378 are added together to calculate a total accumulated charge. Then, the process proceeds to step S382, in which the total accumulated cumulative charge up to this time obtained in step S380 is divided by the cumulative travel data obtained up to this time obtained in step S368 and multiplied by 10 km, and the accumulated average running cost amount per 10 km Is calculated and the flow ends. If it is not detected in step S370 that the latest cumulative travel data is greater than or equal to the predetermined distance, the flow is immediately terminated. Unless the cumulative travel distance is sufficiently larger than the distance that can be traveled by a single energy injection, there is a large error in considering the amount of energy consumed, such as the amount of fuel and charge, as the amount of energy consumed. This is because it is inappropriate to calculate the travel cost from the payment fee.

なお、上記ステップS370では累積走行距離が所定以上に達したかどうかをチェックしているが、その趣旨は、給油を伴う限り、図16のステップS332と同様に累積給油量が燃料タンク16の容量よりも充分大きいことの判定である。従って、車両904が電力のみで走行するのでない限り、ステップS370を、給油回数が所定回数に達したかどうかを判定するステップ、または累積給油量自体が所定量以上に達したかどうか判定するステップとしてもよい。これらいずれによっても、走行コストの算出が妥当かどうかの判断が可能である。   In step S370, it is checked whether or not the cumulative travel distance has reached a predetermined value or more. The purpose of this is that as long as refueling is involved, the cumulative amount of fuel supplied is the capacity of the fuel tank 16 as in step S332 of FIG. It is a judgment that it is sufficiently larger than that. Therefore, unless the vehicle 904 travels only with electric power, step S370 is a step for determining whether or not the number of refueling has reached a predetermined number, or a step for determining whether or not the cumulative amount of refueling has reached a predetermined amount or more. It is good. In any case, it is possible to determine whether the calculation of the travel cost is appropriate.

図18は、図16のステップS342におけるCO2換算処理の詳細を示すフローチャートである。フローがスタートすると、ステップS392で記憶部28に充電データがあるかどうかチェックし、あればステップS394で過去の累積電力量を記憶部28から読み出してステップS396に移行する。一方、ステップS392で充電データがなければ直接ステップS396に移行する。ステップS396では今回の充電データがあったかどうかチェックし、あればステップS398で今回充電量を加算してステップS400に移行する。一方、ステップS396で今回充電データがなければ直接ステップS400に移行する。   FIG. 18 is a flowchart showing details of the CO2 conversion processing in step S342 of FIG. When the flow starts, it is checked in step S392 whether there is charging data in the storage unit 28, and if there is, the past accumulated power amount is read from the storage unit 28 in step S394, and the process proceeds to step S396. On the other hand, if there is no charge data in step S392, the process directly proceeds to step S396. In step S396, it is checked whether or not there is current charging data. If there is, the current charging amount is added in step S398, and the process proceeds to step S400. On the other hand, if there is no current charging data in step S396, the process directly proceeds to step S400.

ステップS400では、今回CO2排出権取引に関する電力を充電したかどうかチェックし、該当すればステップS402に進む。ステップS402ではCO2排出権を売却したのなら売却相当分の電力量を加算し、CO2排出権を購入したのなら購入相当分の電力量を減算してステップS404に移行する。一方、ステップS400で今回の充電にCO2排出権取引が関係しなければ直接ステップS404に移行する。ステップ404では電力消費量をCO2排出量に換算する所定の換算式に基づき、ステップS392からステップS402の処理に基づく所定期間内の充電電力量をCO2排出量に換算する。   In step S400, it is checked whether or not the electric power related to the current CO2 emission trading is charged, and if applicable, the process proceeds to step S402. In step S402, if the CO2 emission right is sold, the power amount corresponding to the sale is added. If the CO2 emission right is purchased, the power amount corresponding to the purchase is subtracted and the process proceeds to step S404. On the other hand, if the current charge is not related to the CO2 emission trading in step S400, the process proceeds directly to step S404. In step 404, based on a predetermined conversion formula for converting electric power consumption into CO2 emission, charging electric energy within a predetermined period based on the processing from step S392 to step S402 is converted into CO2 emission.

次いで、ステップS406で、記憶部28に累積給油データがあるかどうかチェックし、あればステップS408で過去の累積給油量を記憶部28から読み出してステップS410に移行する。一方、ステップS406で累積給油データがなければ直接ステップS410に移行する。ステップS410では今回の給油データがあったかどうかチェックし、あればステップS412で今回給油量を加算してステップS412に移行する。一方、ステップS410で今回給油データがなければ直接ステップS414に移行する。ステップ414では石油消費量をCO2排出量に換算する所定の換算式に基づき、ステップS406からステップS412の処理に基づく今回までの累積給油量をCO2排出量に換算する。   Next, in step S406, it is checked whether there is accumulated refueling data in the storage unit 28. If there is, the past accumulated refueling amount is read from the storage unit 28 in step S408, and the process proceeds to step S410. On the other hand, if there is no accumulated refueling data in step S406, the process directly proceeds to step S410. In step S410, it is checked whether or not there is current refueling data. If there is, the current refueling amount is added in step S412 and the process proceeds to step S412. On the other hand, if there is no current refueling data in step S410, the process directly proceeds to step S414. In step 414, based on a predetermined conversion formula for converting oil consumption into CO2 emission, the cumulative amount of oil supply from this time based on the processing of step S406 to step S412 is converted into CO2 emission.

次いでステップS416で、今回までの累積走行データをトリップメータから読み出すとともにこれに今回の走行データを加算する。そしてステップS418で、上記の結果の最新累積走行データが所定距離以上かどうかチェックする。最新累積走行データが所定距離以上であればステップS420で、ステップS404で充電量から換算したCO2量とステップS414で給油量から換算したCO2量とを合算し、今回までの累積総CO2量を算出する。   Next, in step S416, the cumulative travel data up to this time is read from the trip meter and the current travel data is added to this. In step S418, it is checked whether or not the latest accumulated travel data as a result is equal to or greater than a predetermined distance. If the latest cumulative travel data is greater than or equal to the predetermined distance, in step S420, the CO2 amount converted from the charge amount in step S404 and the CO2 amount converted from the refueling amount in step S414 are added together to calculate the cumulative total CO2 amount thus far. To do.

次いでステップS422に進み、ステップS420で得られた今回までの累積総CO2量合算値をステップS416で得られた今回までの累積走行データで除算するとともに10kmを乗算し、10kmあたりの推定平均CO2排出量を算出してフローを終了する。なお、ステップS416で最新累積走行データが所定距離以上であることが検出できない場合は、直ちにフローを終了する。累積走行距離が一回のエネルギー注入で走行可能な距離よりも充分大きくない限りは、給油量や充電量などの注入エネルギー量を消費エネルギー量と看做すには誤差が大きく、これら注入エネルギーのCO2換算値から平均CO2排出量を算出するのは不適当だからである。   Next, the process proceeds to step S422, where the total accumulated CO2 amount obtained up to this time obtained in step S420 is divided by the accumulated traveling data obtained up to this time obtained in step S416 and multiplied by 10 km, and the estimated average CO2 emission per 10 km is obtained. The amount is calculated and the flow ends. If it is not detected in step S416 that the latest cumulative travel data is greater than or equal to the predetermined distance, the flow is immediately terminated. Unless the cumulative mileage is sufficiently larger than the distance that can be traveled with a single energy injection, there is a large error in considering the amount of energy consumed, such as the amount of fuel and the amount of charge, as the amount of energy consumed. This is because it is inappropriate to calculate the average CO2 emission from the CO2 equivalent value.

なお、上記ステップS416でも図17のステップS370のように累積走行距離が所定以上に達したかどうかをチェックしているが、その趣旨は、給油を伴う限り、図16のステップS332と同様に累積給油量が燃料タンク16の容量よりも充分大きいことの判定である。従って、車両904が電力のみで走行するのでない限り、ステップS416を、給油回数が所定回数に達したかどうかを判定するステップ、または累積給油量自体が所定量以上に達したかどうか判定するステップとしてもよい。これらいずれによっても、走行コストの算出が妥当かどうかの判断が可能である。   Note that even in step S416, it is checked whether the accumulated travel distance has reached a predetermined value or more as in step S370 in FIG. 17, but the gist is the same as in step S332 in FIG. 16 as long as refueling is involved. It is determined that the amount of fuel supply is sufficiently larger than the capacity of the fuel tank 16. Therefore, unless the vehicle 904 travels only with electric power, step S416 is performed to determine whether or not the number of refueling has reached a predetermined number, or to determine whether or not the cumulative refueling amount itself has reached a predetermined amount or more. It is good. In any case, it is possible to determine whether the calculation of the travel cost is appropriate.

図19は、図16のステップS344における瞬間燃費計補正処理の詳細を示すフローチャートである。フローがスタートすると、ステップS432で給油データがあるかどうかチェックする。そして給油データがあればステップS434に進み、今回までの累積走行データをトリップメータから読み出すとともにこれに今回の走行データを加算する。そしてステップS436で、上記の結果の最新累積走行データが所定距離以上かどうかチェックする。最新累積走行データが所定距離以上であればステップS438で今回までの累積給油データを記憶部28から読み出すとともにこれに今回の走行データを加算して最新データに更新する。そして、ステップS440で最新累積給油量データと最新累積給油量データから給油量累積平均指定燃費を算出する。   FIG. 19 is a flowchart showing details of the instantaneous fuel consumption meter correction process in step S344 of FIG. When the flow starts, it is checked in step S432 whether there is refueling data. If there is refueling data, the process proceeds to step S434, where the accumulated traveling data up to this time is read from the trip meter and the current traveling data is added to this. In step S436, it is checked whether or not the latest cumulative travel data as a result is equal to or greater than a predetermined distance. If the latest accumulated travel data is greater than or equal to the predetermined distance, the accumulated refueling data up to this time is read from the storage unit 28 and the current travel data is added to this to update to the latest data in step S438. In step S440, the fuel supply amount cumulative average designated fuel consumption is calculated from the latest cumulative fuel supply amount data and the latest cumulative fuel supply amount data.

次にステップS442で該当する期間について瞬間燃費計よりのデータに基づき平均燃費を算出する。そしてステップS444において瞬間燃費計平均燃費と給油量累積平均推定燃費を比較し、ステップS446で両者の乖離が所定以上あるかどうかチェックする。その差が所定以上あればステップS448に進み、瞬間燃費計補正処理を行ってフローを終了する。ステップS448の瞬間燃費計補正処理は、給油量累積平均推定燃費をベースに瞬間燃費計平均燃費がこれと同じになるよう瞬間燃費計による瞬間燃費データに補正を加えるものである。つまり、瞬間燃費計平均燃費が高すぎれば、以後瞬間燃費計のデータが低め出るよう瞬間燃費計の出力を補正し、瞬間燃費計平均燃費が低すぎれば、以後瞬間燃費計のデータが高めに出るよう瞬間燃費計をの出力を補正するものである。   Next, in step S442, the average fuel consumption is calculated based on the data from the instantaneous fuel consumption meter for the corresponding period. Then, in step S444, the instantaneous fuel consumption meter average fuel consumption is compared with the fuel amount cumulative average estimated fuel consumption, and in step S446, it is checked whether or not there is a difference between both. If the difference is greater than or equal to the predetermined value, the process proceeds to step S448, where instantaneous fuel consumption meter correction processing is performed, and the flow ends. The instantaneous fuel consumption meter correction process in step S448 is to correct the instantaneous fuel consumption data by the instantaneous fuel consumption meter so that the instantaneous fuel consumption meter average fuel consumption becomes the same based on the fuel amount accumulated average estimated fuel consumption. In other words, if the instantaneous fuel consumption meter average fuel consumption is too high, the output of the instantaneous fuel consumption meter is corrected so that the instantaneous fuel consumption meter data will be lowered thereafter. This is to correct the output of the instantaneous fuel consumption meter so that it can be output.

一方、ステップ446において乖離が所定以上であることが検出されないときは、瞬間燃費計補正処理は行わずに直ちにフローを終了する。また、ステップS432で給油データがあることが検出されなかった時、または、ステップS436で最新累積走行データが所定以上であることが検出されなかった時は、いずれも瞬間燃費計補正処理を行うことが適当でないので、直ちにフローを終了する。   On the other hand, when it is not detected in step 446 that the deviation is greater than or equal to the predetermined value, the flow is immediately terminated without performing the instantaneous fuel consumption meter correction process. Further, when it is not detected in step S432 that there is refueling data, or when it is not detected in step S436 that the latest cumulative travel data is greater than or equal to a predetermined value, the instantaneous fuel consumption meter correction process is performed. Is not appropriate, the flow is immediately terminated.

なお、上記ステップS436でも図17のステップS370のように累積走行距離が所定以上に達したかどうかをチェックしているが、その趣旨は、図16のステップS332と同様に累積給油量が燃料タンク16の容量よりも充分大きいことの判定である。従って、ステップS436を、給油回数が所定回数に達したかどうかを判定するステップ、または累積給油量自体が所定量以上に達したかどうか判定するステップとしてもよい。これらいずれによっても、瞬間燃費計補正処理に入るのが妥当かどうかの判断が可能である。   In step S436, it is checked whether or not the cumulative travel distance has reached a predetermined value or more as in step S370 in FIG. 17, but the gist is that, as in step S332 in FIG. This is a determination that the capacity is sufficiently larger than 16 capacities. Therefore, step S436 may be a step of determining whether or not the number of times of refueling has reached a predetermined number, or a step of determining whether or not the cumulative amount of refueling itself has reached a predetermined amount or more. In any case, it is possible to determine whether it is appropriate to enter the instantaneous fuel consumption meter correction process.

上記の第3実施例では、給油と給電の制御処理を車両904側で行うよう構成したが、本発明の実施はこれにかぎられるものではない。例えば、図15の給油/給電処理と同様の処理を車両制御部26で行わせるのに代えて、サービススタンド制御部922に行わせるよう構成することも可能である。この場合、給油口や充電用接続部の接続の検出、並びに緊急充電捜査もサービススタンド902側で行うことになる。また、ステップS280における時間帯別電灯契約車かどうかの判断は契約情報を車両904から受信して判断することになる。   In the third embodiment, the fuel supply and power supply control processes are performed on the vehicle 904 side, but the present invention is not limited to this. For example, instead of causing the vehicle control unit 26 to perform the same process as the refueling / power feeding process of FIG. 15, the service stand control unit 922 may be configured to perform the process. In this case, the detection of the connection of the fuel filler and the connecting part for charging and the emergency charging investigation are also performed on the service stand 902 side. In step S280, whether or not the vehicle is a time-dependent electric vehicle contract vehicle is determined by receiving the contract information from the vehicle 904.

本発明は、実用的なプラグインハイブリッド車または電気自動車およびこれらのための充電システムを提供するものである。   The present invention provides a practical plug-in hybrid vehicle or electric vehicle and a charging system therefor.

16 燃料タンク
20 電力蓄積部
908、26 給油準備検出部
10、26 電力供給準備検出部
26 制御部
32 操作部
32 走行開始操作部
26 走行制御部
12 外部ケーブル
30 報知部
26 時間検知部
18 第1動力源
22 第2動力源
26 電力蓄積状態検知部
912 燃料供給路
12 電力供給路
913、922 異常検知部
922 充電システムの制御部
DESCRIPTION OF SYMBOLS 16 Fuel tank 20 Electric power storage part 908,26 Refueling preparation detection part 10,26 Electric power supply preparation detection part 26 Control part 32 Operation part 32 Travel start operation part 26 Travel control part 12 External cable 30 Notification part 26 Time detection part 18 1st Power source 22 Second power source 26 Power storage state detection unit 912 Fuel supply path 12 Power supply path 913, 922 Abnormality detection unit 922 Control unit of charging system

Claims (19)

給油を受ける燃料タンクと、電力線から電力供給を受ける電力蓄積部と、前記燃料タンクへの給油準備状態を検出する給油準備検出部と、前記電力蓄積部への電力供給準備状態を検出する電力供給準備検出部と、前記給油準備検出部が給油準備状態を検出しているか否かによって前記電力供給準備検出部が電力供給準備状態を検出したときの前記電力蓄積部への電力供給状況を異ならしめる制御部とを有することを特徴とする充電電力により走行可能な車両。 A fuel tank that receives fuel, a power storage unit that receives power supply from a power line, a fuel supply preparation detection unit that detects a fuel supply preparation state to the fuel tank, and a power supply that detects a power supply preparation state to the power storage unit The power supply status to the power storage unit when the power supply preparation detection unit detects the power supply preparation state is made different depending on whether the preparation detection unit and the fuel supply preparation detection unit detect the fuel supply preparation state And a vehicle capable of traveling with charging power. 前記制御部は、前記給油準備検出部が給油準備状態を検出しているとき、前記電力供給準備検出部が電力供給準備状態を検出しても前記電力蓄積部への電力供給を行わないよう制御することを特徴とする請求項1記載の充電電力により走行可能な車両。 The control unit performs control so that power supply to the power storage unit is not performed even when the power supply preparation detection unit detects a power supply preparation state when the fuel supply preparation detection unit detects a fuel supply preparation state. The vehicle capable of traveling with charging power according to claim 1. 前記制御部は、車両が所定の電力供給契約締結状態にあるとき前記電力供給準備検出部が電力供給準備状態を検出しても前記電力蓄積部への電力供給を行わないよう制御することを特徴とする請求項2記載の充電電力により走行可能な車両。 The control unit controls the power storage unit not to supply power even when the power supply preparation detection unit detects a power supply preparation state when the vehicle is in a predetermined power supply contract conclusion state. The vehicle which can drive | work with the charging power of Claim 2. 操作部を有し、前記制御部は、前記操作部の操作に応じ前記給油準備検出部が給油準備状態を検出しているときでも前記電力供給準備検出部が電力供給準備状態を検出したときに前記電力蓄積部への電力供給を許可するよう制御することを特徴とする請求項2または3記載の充電電力により走行可能な車両。 An operation unit, and the control unit detects when the power supply preparation detection unit detects a power supply preparation state even when the fuel supply preparation detection unit detects a fuel supply preparation state according to an operation of the operation unit. 4. The vehicle capable of traveling with charging power according to claim 2 or 3, wherein control is performed to permit power supply to the power storage unit. 給油を受ける燃料タンクと、電力線から電力供給を受ける電力蓄積部と、前記電力蓄積部への電力供給準備状態を検出する電力供給準備検出部と、車両が所定の電力供給契約締結状態にあるか否かによって前記電力供給準備検出部が電力供給準備状態を検出したときの前記電力蓄積部への電力供給状況を異ならしめる制御部とを有することを特徴とする充電電力により走行可能な車両。 A fuel tank that receives fuel, a power storage unit that receives power supply from a power line, a power supply preparation detection unit that detects a power supply preparation state to the power storage unit, and whether the vehicle is in a predetermined power supply contract conclusion state A vehicle capable of traveling with charging power, comprising: a control unit that changes a power supply state to the power storage unit when the power supply preparation detection unit detects a power supply preparation state depending on whether or not. 前記制御部は、車両が所定の電力供給契約締結状態にあるとき前記電力供給準備検出部が電力供給準備状態を検出しても前記電力蓄積部への電力供給を行わないよう制御することを特徴とする請求項5記載の充電電力により走行可能な車両。 The control unit controls the power storage unit not to supply power even when the power supply preparation detection unit detects a power supply preparation state when the vehicle is in a predetermined power supply contract conclusion state. The vehicle which can drive | work with the charging electric power of Claim 5. 前記制御部は、車両が所定の電力供給契約締結状態にありかつ契約に基づく電力供給可能時間帯でないとき前記電力供給準備検出部が電力供給準備状態を検出しても前記電力蓄積部への電力供給を行わないよう制御することを特徴とする請求項6記載の充電電力により走行可能な車両。 The control unit is configured to supply power to the power storage unit even when the power supply preparation detection unit detects a power supply preparation state when the vehicle is in a predetermined power supply contract conclusion state and is not in a power supply available time zone based on the contract. 7. The vehicle capable of traveling with charging power according to claim 6, wherein the vehicle is controlled so as not to be supplied. 電力線から電力供給を受ける電力蓄積部と、前記電力蓄積部への電力供給準備状態を検出する電力供給準備検出部と、走行開始操作部と、前記電力供給準備検出部が電力供給準備状態を検出しているとき前記走行開始操作部の操作を無効とする走行制御部とを有することを特徴とする充電電力により走行可能な車両。 A power storage unit that receives power supply from a power line, a power supply preparation detection unit that detects a power supply preparation state to the power storage unit, a travel start operation unit, and the power supply preparation detection unit detect a power supply preparation state And a travel control unit that disables the operation of the travel start operation unit when the vehicle is running. 前記電力供給準備検出部は、前記電力蓄積部に電力を供給する外部ケーブルが前記車両に接続されたままである状態を電力供給準備状態として検出することを特徴とする請求項8記載の充電電力により走行可能な車両。 The charging power according to claim 8, wherein the power supply preparation detection unit detects a state in which an external cable that supplies power to the power storage unit remains connected to the vehicle as a power supply preparation state. A vehicle that can run. 前記走行制御部が走行開始操作部の操作を無効としていることを報知する報知部を有することを特徴とする請求項8または9記載の充電電力により走行可能な車両。 The vehicle capable of traveling with charging power according to claim 8 or 9, further comprising a notification unit that notifies that the travel control unit invalidates the operation of the travel start operation unit. 車両が所定の電力供給契約締結状態にありかつ契約に基づく電力供給可能時間帯でないとき前記電力供給準備検出部が電力供給準備状態を検出しても前記電力蓄積部への電力供給を行わないよう制御する制御部を有することを特徴とする請求項8から10のいずれかに記載の充電電力により走行可能な車両。 When the vehicle is in a predetermined power supply contract conclusion state and is not in a power supply available time zone based on the contract, even if the power supply preparation detection unit detects the power supply preparation state, it does not supply power to the power storage unit 11. A vehicle capable of traveling with charging power according to claim 8, further comprising a control unit for controlling the vehicle. 電力線から電力供給を受ける電力蓄積部と、前記電力蓄積部への電力供給準備状態を検出する電力供給準備検出部と、前記電力供給準備検出部が電力供給準備状態を検出しているとき車両が所定の電力供給契約に基づいて電力供給可能時間帯であるかどうかの検知を継続する時間帯検知部と、前記時間帯検知部が電力供給時間帯であることを検知しない限り前記電力供給準備検出部が電力供給準備状態を検出していても電力供給を行わない制御部とを有することを特徴とする充電電力により走行可能な車両。 A power storage unit that receives power supply from a power line, a power supply preparation detection unit that detects a power supply preparation state to the power storage unit, and the vehicle when the power supply preparation detection unit detects a power supply preparation state A time zone detection unit that continuously detects whether or not it is a power supply available time zone based on a predetermined power supply contract, and the power supply preparation detection unless the time zone detection unit detects that it is a power supply time zone A vehicle capable of traveling with charging power, comprising: a control unit that does not supply power even when the unit detects a power supply preparation state. 給油を受ける燃料タンクと、電力線から電力供給を受ける電力蓄積部と、前記電力蓄積部の電力蓄積状態を検知する検知部と、前記燃料タンクの燃料を消費して動力を発生する第1動力源と、前記電力蓄積部の電力を消費して動力を発生する第2動力源と、前記検知部の第1の検知レベルに基づいて前記第2動力源から前記第1動力源に切換えを行う第1モードと前記第1の検知レベルとは異なる前記検知部の第2の検知レベルに基づいて前記第2動力源から前記第1動力源に切換えを行う第2モードとが選択可能な制御部とを有することを特徴とする充電電力により走行可能な車両。 A fuel tank that receives fuel, a power storage unit that receives power from a power line, a detection unit that detects a power storage state of the power storage unit, and a first power source that generates power by consuming fuel in the fuel tank A second power source that generates power by consuming power from the power storage unit, and a second power source that switches from the second power source to the first power source based on a first detection level of the detection unit. A control unit capable of selecting a first mode and a second mode for switching from the second power source to the first power source based on a second detection level of the detection unit different from the first detection level; A vehicle capable of traveling with charging power. 前記第2の検知レベルは、前記電力蓄積部が充分充電されている状態を維持するためのレベルであり、前記第1の検知レベルは、前記第1動力源による走行効率が所定以下のときに前記第2動力源による走行を可能とするレベルであることを特徴とする請求項13記載の充電電力により走行可能な車両。 The second detection level is a level for maintaining the state where the power storage unit is sufficiently charged, and the first detection level is when the traveling efficiency by the first power source is not more than a predetermined value. The vehicle capable of traveling with charging power according to claim 13, wherein the vehicle is at a level that enables traveling by the second power source. 前記制御部は、さらに前記第2動力源のみによる連続走行を行う第3モードの選択が可能であることを特徴とする請求項13または14記載の充電電力により走行可能な車両。 The vehicle capable of traveling with charging power according to claim 13 or 14, wherein the control unit is further capable of selecting a third mode in which continuous traveling is performed only by the second power source. 前記制御部は、前記第2モードから前記第3モードへの変更を可能とすることを特徴とする請求項15記載の充電電力により走行可能な車両。 16. The vehicle capable of traveling with charging power according to claim 15, wherein the control unit is capable of changing from the second mode to the third mode. 前記制御部は、前記第2モードから前記第1モードへの変更を可能とすることを特徴とする請求項13から16のいずれかに記載の充電電力により走行可能な車両。 The vehicle capable of traveling with charging power according to any one of claims 13 to 16, wherein the control unit is capable of changing from the second mode to the first mode. 前記制御部は、走行効率に基づいて前記第1動力源と前記第2動力源を切換えることを特徴とする請求項13から17のいずれかに記載の充電電力により走行可能な車両。 The vehicle capable of traveling with charging power according to any one of claims 13 to 17, wherein the control unit switches between the first power source and the second power source based on traveling efficiency. 燃料供給路と、電力供給路と、前記電力供給路の異常を検知する異常検知部と、前記異常検知部が前記電力供給路の異常を検知したとき前記燃料供給路からの燃料供給を禁止する制御部とを有することを特徴とする充電電力により走行可能な車両のための充電システム。 A fuel supply path, a power supply path, an abnormality detection unit that detects an abnormality in the power supply path, and prohibits fuel supply from the fuel supply path when the abnormality detection unit detects an abnormality in the power supply path A charging system for a vehicle capable of traveling with charging power, comprising a control unit.
JP2009006499A 2008-02-18 2009-01-15 Vehicle capable of traveling with charged power, and charging system for the same Pending JP2010163028A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009006499A JP2010163028A (en) 2009-01-15 2009-01-15 Vehicle capable of traveling with charged power, and charging system for the same
EP09713602A EP2246957A4 (en) 2008-02-18 2009-02-18 Vehicle and system for charging the same
PCT/JP2009/052760 WO2009104634A1 (en) 2008-02-18 2009-02-18 Vehicle and system for charging the same
CN2009801054364A CN101953050A (en) 2008-02-18 2009-02-18 Vehicle and system for charging the same
US12/867,163 US8548659B2 (en) 2008-02-18 2009-02-18 Vehicle and system for charging the same
US13/956,458 US8725338B2 (en) 2008-02-18 2013-08-01 Vehicle and system for charging the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009006499A JP2010163028A (en) 2009-01-15 2009-01-15 Vehicle capable of traveling with charged power, and charging system for the same

Publications (2)

Publication Number Publication Date
JP2010163028A true JP2010163028A (en) 2010-07-29
JP2010163028A5 JP2010163028A5 (en) 2011-04-07

Family

ID=42579557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009006499A Pending JP2010163028A (en) 2008-02-18 2009-01-15 Vehicle capable of traveling with charged power, and charging system for the same

Country Status (1)

Country Link
JP (1) JP2010163028A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027167A (en) * 2011-07-21 2013-02-04 Mitsubishi Motors Corp Vehicle cruising range estimator
JP2013230016A (en) * 2012-04-26 2013-11-07 Tatsuno Corp Fuel supply device
JP2015197700A (en) * 2014-03-31 2015-11-09 Jx日鉱日石エネルギー株式会社 hydrogen station

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214412A (en) * 1995-02-06 1996-08-20 Honda Motor Co Ltd Battery charge controller for electric vehicle
JP2003189411A (en) * 2001-12-11 2003-07-04 Araco Corp Hybrid vehicle
JP2005335627A (en) * 2004-05-28 2005-12-08 Mazda Motor Corp Driving attitude adjusting apparatus of automobile
WO2006006715A1 (en) * 2004-07-13 2006-01-19 Toyota Jidosha Kabushiki Kaisha Fuel resupply facility, fuel resupply system, and method for resupplying fuel
JP2006178861A (en) * 2004-12-24 2006-07-06 Denso Corp Equipment operation system
WO2007070248A2 (en) * 2005-12-12 2007-06-21 Exxonmobil Research And Engineering Company Service station for serving requirements of multiple vehicle technologies
JP2008043040A (en) * 2006-08-04 2008-02-21 Toyota Motor Corp Power system and method for managing charging state in the power system
JP2008284952A (en) * 2007-05-16 2008-11-27 Daihatsu Motor Co Ltd Driving device for hybrid vehicle
WO2009104634A1 (en) * 2008-02-18 2009-08-27 ローム株式会社 Vehicle and system for charging the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214412A (en) * 1995-02-06 1996-08-20 Honda Motor Co Ltd Battery charge controller for electric vehicle
JP2003189411A (en) * 2001-12-11 2003-07-04 Araco Corp Hybrid vehicle
JP2005335627A (en) * 2004-05-28 2005-12-08 Mazda Motor Corp Driving attitude adjusting apparatus of automobile
WO2006006715A1 (en) * 2004-07-13 2006-01-19 Toyota Jidosha Kabushiki Kaisha Fuel resupply facility, fuel resupply system, and method for resupplying fuel
JP2006178861A (en) * 2004-12-24 2006-07-06 Denso Corp Equipment operation system
WO2007070248A2 (en) * 2005-12-12 2007-06-21 Exxonmobil Research And Engineering Company Service station for serving requirements of multiple vehicle technologies
JP2009519178A (en) * 2005-12-12 2009-05-14 エクソンモービル リサーチ アンド エンジニアリング カンパニー A service station that meets the demands of various vehicle technologies
JP2008043040A (en) * 2006-08-04 2008-02-21 Toyota Motor Corp Power system and method for managing charging state in the power system
JP2008284952A (en) * 2007-05-16 2008-11-27 Daihatsu Motor Co Ltd Driving device for hybrid vehicle
WO2009104634A1 (en) * 2008-02-18 2009-08-27 ローム株式会社 Vehicle and system for charging the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027167A (en) * 2011-07-21 2013-02-04 Mitsubishi Motors Corp Vehicle cruising range estimator
JP2013230016A (en) * 2012-04-26 2013-11-07 Tatsuno Corp Fuel supply device
JP2015197700A (en) * 2014-03-31 2015-11-09 Jx日鉱日石エネルギー株式会社 hydrogen station

Similar Documents

Publication Publication Date Title
WO2009104634A1 (en) Vehicle and system for charging the same
US10529151B2 (en) Apparatus, method and article for reserving power storage devices at reserving power storage device collection, charging and distribution machines
JP5905836B2 (en) Aggregation server for distribution network integrated vehicle
US8170699B2 (en) Metering system and method of operation
EP2784905B1 (en) Vehicle, vehicle control method, and power-receiving facility
JP2009213301A (en) Vehicluar charging unit
US20160178678A1 (en) Method and apparatus for controlling the power supply from an electric vehicle to a dwelling or to an ac power distribution network
WO2011096441A1 (en) Energy display system
JP5404756B2 (en) Power management system
JP5589890B2 (en) Power supply system
JP5411479B2 (en) Remote monitoring and control system
JP2012075282A (en) Charging control device
JP2021016288A (en) Notification control device and electric vehicle
JP2021034271A (en) Electric vehicle
JP2014039390A (en) System energy minimization charging system
JP2015095983A (en) Charge/discharge management system
KR101619535B1 (en) Two-way Power Supply Apparatus of Electric Vehicle for Smart Grid and Two-way Power Supply Method Using the Same
JP5608574B2 (en) Power control system, power control method, power control apparatus, and power control program thereof
JP2010163028A (en) Vehicle capable of traveling with charged power, and charging system for the same
JP2010149586A (en) System for environmental countermeasure for vehicle
JP2015191701A (en) Fuel supply system for fuel battery vehicle
JP2012060713A (en) Device and method for generating charging plan
JP2020054070A (en) Power control system
JP2010145309A (en) Fuel consumption measurement system for vehicle
JP2009214668A (en) Charge determination system, server and hybrid vehicle

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806