JP2010162714A - Injection nozzle of injection molding machine - Google Patents

Injection nozzle of injection molding machine Download PDF

Info

Publication number
JP2010162714A
JP2010162714A JP2009005105A JP2009005105A JP2010162714A JP 2010162714 A JP2010162714 A JP 2010162714A JP 2009005105 A JP2009005105 A JP 2009005105A JP 2009005105 A JP2009005105 A JP 2009005105A JP 2010162714 A JP2010162714 A JP 2010162714A
Authority
JP
Japan
Prior art keywords
nozzle
injection
rubber material
recess
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009005105A
Other languages
Japanese (ja)
Other versions
JP4792087B2 (en
Inventor
Tadahiro Kureishi
忠浩 暮石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyu Industries Ltd
Original Assignee
Sanyu Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyu Industries Ltd filed Critical Sanyu Industries Ltd
Priority to JP2009005105A priority Critical patent/JP4792087B2/en
Publication of JP2010162714A publication Critical patent/JP2010162714A/en
Application granted granted Critical
Publication of JP4792087B2 publication Critical patent/JP4792087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection nozzle of a rubber injection molding machine, wherein a rubber material is allowed to efficiently generate heat when passing the injection nozzle, so that the temperature of the rubber material to be injected into a mold can be made higher than before and an injection molding cycle time can be shortened and the calorific value of the rubber material or the extent of raising temperature thereof can be controlled easily as needed. <P>SOLUTION: The injection nozzle 30 of the injection molding machine for injecting the rubber material packed in an injection chamber of an injection cylinder 24 into the mold is composed of: a nozzle body 36 having a nozzle orifice 48 at the tip thereof; and a friction heat generator 38 which is arranged separately from the nozzle body 36, is inserted fittingly into a recessed portion 44 of the nozzle body 36 and has a porous structure having many pores 52. The rubber material is made to pass through many pores 52 to the axial direction to generate frictional heat, further made to pass through the nozzle orifice 48 to generate heat and supplied to the mold. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、ゴム材料を成形型に射出し成形する射出成形機の射出ノズルに関する。   The present invention relates to an injection nozzle of an injection molding machine that injects a rubber material into a molding die.

従来、ゴム成形品の成形機として射出成形機が広く用いられている。
この射出成形機では、射出シリンダの内部の射出チャンバに充填されたゴム材料を、射出シリンダの先端部の射出ノズルから成形型に射出し所定形状に成形する。
このときゴム材料は射出ノズルを通過する過程で射出ノズルの内周面との間の摩擦力で発熱し、昇温した上で成形型の内部に注入される。
Conventionally, an injection molding machine has been widely used as a molding machine for rubber molded products.
In this injection molding machine, the rubber material filled in the injection chamber inside the injection cylinder is injected from the injection nozzle at the tip of the injection cylinder into a mold and molded into a predetermined shape.
At this time, the rubber material generates heat by a frictional force between the rubber material and the inner peripheral surface of the injection nozzle in the process of passing through the injection nozzle, and is injected into the mold after the temperature is raised.

図6は従来の射出ノズルの具体例を示している。
図において200は成形型、202は射出シリンダで、204は射出ノズルである。
射出ノズル204は軸方向一端側(図中上端側)の外周面に雄ねじ206を有しており、この雄ねじ206において射出シリンダ202にねじ結合され、取り付けられている。
射出ノズル204は全体として筒状をなしており、その内部にゴム材料の通過空間としての凹所208を有している。
また先端部には凹所208に連通した、凹所208よりも小径のノズル孔210を有している。
FIG. 6 shows a specific example of a conventional injection nozzle.
In the figure, 200 is a mold, 202 is an injection cylinder, and 204 is an injection nozzle.
The injection nozzle 204 has a male screw 206 on the outer peripheral surface on one end side in the axial direction (upper end side in the figure). The male screw 206 is screwed to the injection cylinder 202 and attached.
The injection nozzle 204 has a cylindrical shape as a whole, and has a recess 208 as a passage space for the rubber material therein.
Further, a nozzle hole 210 having a diameter smaller than that of the recess 208 is provided at the distal end portion and communicated with the recess 208.

このような射出ノズル204を備えた射出成形機では、射出シリンダ内部の射出チャンバに充填されたゴム材料が射出ノズル204を通過して成形型200の内部に注入される。
そしてこのときゴム材料が射出ノズル204のノズル孔210で流れが絞られ、ノズル孔210を通過する際にノズル孔210の内周面との間に生ずる大きな摩擦力に基づいて発熱を生じ、昇温せしめられる。
In an injection molding machine equipped with such an injection nozzle 204, a rubber material filled in an injection chamber inside the injection cylinder passes through the injection nozzle 204 and is injected into the mold 200.
At this time, the flow of the rubber material is restricted by the nozzle hole 210 of the injection nozzle 204, and heat is generated based on a large frictional force generated between the rubber material and the inner peripheral surface of the nozzle hole 210 when passing through the nozzle hole 210. Can be warmed.

このときのゴム材料の昇温温度が高く、加硫温度に近くなるほど成形型200内部でのゴム材料の加熱のための所要時間が短くて済み、ゴム成形品の加硫成形のための成形サイクルタイムを短くすることができ、生産性を高めることができる。   At this time, the temperature rise temperature of the rubber material is higher, and the closer to the vulcanization temperature, the shorter the time required for heating the rubber material inside the mold 200, and the molding cycle for vulcanization molding of the rubber molded product. Time can be shortened and productivity can be increased.

しかしながら従来の射出ノズル204の場合、ゴム材料が摩擦発熱を生じるのは主としてゴム材料がノズル孔210を通過するときだけであり、また発熱を生じるのはノズル孔210の内周面と摩擦接触する外周部分だけであるためにゴム材料の昇温が十分ではなく、成形型内部に到ってからゴム材料を加硫温度まで加熱するための所要時間が長くなって、成形サイクルタイムが長くなってしまうといった問題があった。   However, in the case of the conventional injection nozzle 204, the rubber material generates frictional heat only when the rubber material passes through the nozzle hole 210, and the heat generation generates frictional contact with the inner peripheral surface of the nozzle hole 210. The temperature of the rubber material is not sufficient because it is only the outer periphery, and the time required to heat the rubber material to the vulcanization temperature after reaching the inside of the mold becomes longer, and the molding cycle time becomes longer. There was a problem such as.

尤もゴム材料に対するノズル孔210の抵抗を変えるなどしてノズル孔210でのゴム材料の発熱を大きくすること、即ちゴム材料の昇温温度を高めることが可能であるが、単一のノズル孔210の内周面との摩擦による発熱だけでは、ゴム材料の発熱量を大として昇温温度を高めるにしても自ずと限界があり、またゴム材料に対する加熱はノズル孔210を通過する部分の外周部分の部分的な加熱であるため、全体の温度を高めようとすると外周部分が過熱状態となって所謂ゴム焼けを起こしてしまう問題を生ずる。   However, it is possible to increase the heat generation of the rubber material in the nozzle hole 210 by changing the resistance of the nozzle hole 210 with respect to the rubber material, that is, to increase the temperature rise temperature of the rubber material. Only the heat generated by friction with the inner peripheral surface of the rubber material naturally has a limit even if the heat generation amount of the rubber material is increased and the temperature rise is increased, and the heating of the rubber material is limited to the outer peripheral portion of the portion passing through the nozzle hole 210. Since it is a partial heating, if it is going to raise the whole temperature, the outer peripheral part will be in an overheated state and the problem which raise | generates what is called rubber | gum will arise.

またその他にこの射出ノズル204の場合、ノズル孔210を通過するゴム材料の外周部分だけが発熱を生じ、中心部分については摩擦による発熱を生じないために、外周部分と内周部分とで温度差が生じ、ゴム材料に温度ムラが発生してしまう問題があった。   In addition, in the case of the injection nozzle 204, only the outer peripheral portion of the rubber material passing through the nozzle hole 210 generates heat, and the central portion does not generate heat due to friction. Therefore, a temperature difference is generated between the outer peripheral portion and the inner peripheral portion. As a result, there was a problem that temperature unevenness occurred in the rubber material.

尚、本発明に対する先行技術として下記特許文献1に開示されたものがある。
しかしながらこの特許文献1に開示のものは、射出ノズルそのものが複雑な構造となり、また専用の射出シリンダないし射出装置を必要とし、更にゴム材料が射出ノズルを通過する際の抵抗及びその抵抗に基づく発熱を容易に変更できないなど本発明とは別異のものである。
In addition, there exists what was disclosed by the following patent document 1 as a prior art with respect to this invention.
However, the one disclosed in Patent Document 1 has a complicated structure of the injection nozzle itself, requires a dedicated injection cylinder or injection device, and further, resistance when the rubber material passes through the injection nozzle and heat generation based on the resistance. This is different from the present invention in that it cannot be easily changed.

他の先行技術として、下記特許文献2に開示されたものがある。
しかしながらこの特許文献2に開示のものは、成形型の側に注入ノズルを設け、その注入ノズルをゴム材料が通過する際に発熱させるようになしたもので、これもまた本発明とは別異のものである。
Another prior art is disclosed in Patent Document 2 below.
However, the one disclosed in Patent Document 2 is provided with an injection nozzle on the side of the mold and generates heat when the rubber material passes through the injection nozzle, which is also different from the present invention. belongs to.

特開平8−34034号公報JP-A-8-34034 特開2008−105247号公報JP 2008-105247 A

本発明は以上のような事情を背景とし、従来の射出シリンダないし射出ノズルを特に構造的に改変しなくてもゴム材料が射出ノズルを通過する際の発熱を効率的に行わせ得て、成形型に射出されるゴム材料の温度を従来に増して高い温度となし得、成形サイクルタイムを短くすることができるとともに、必要に応じてゴム材料の発熱量,昇温の程度を簡単に調節することのできるゴム射出成形機における射出ノズルを提供することを目的としてなされたものである。   The present invention is based on the circumstances as described above, and can efficiently generate heat when the rubber material passes through the injection nozzle without particularly modifying the structure of the conventional injection cylinder or injection nozzle. The temperature of the rubber material injected into the mold can be increased to a higher temperature than before, the molding cycle time can be shortened, and the amount of heat generated and the temperature rise of the rubber material can be easily adjusted as necessary. The invention has been made for the purpose of providing an injection nozzle in a rubber injection molding machine.

而して請求項1のものは、射出シリンダの内部の射出チャンバに充填されたゴム材料を該射出シリンダの先端部の射出ノズルから成形型に射出する射出成形機の該射出ノズルであって、(a)筒状をなして内部に前記ゴム材料の通過空間としての凹所を有するとともに、先端部には該凹所に連通した該凹所よりも小径のノズル孔を有するノズル本体と、(b)該ノズル本体とは別体をなして該ノズル本体の該凹所の内部に且つ該凹所の内周面に全周に亘って嵌合状態に挿入されるとともに、軸方向に延びて前記ノズル孔に連通し、前記射出チャンバからの前記ゴム材料を軸方向に通過させて摩擦発熱させる、前記ノズル孔よりも細径をなす2以上の複数の細孔を有し、該ゴム材料を該複数の細孔に分散させて各細孔を通過させた上で前記ノズル孔に導く複孔構造の摩擦発熱体と、を含んで構成してあることを特徴とする。   Thus, the first aspect of the present invention is the injection nozzle of an injection molding machine for injecting the rubber material filled in the injection chamber inside the injection cylinder from the injection nozzle at the tip of the injection cylinder into the mold, (a) a nozzle body having a recess as a passage space for the rubber material inside and having a nozzle hole having a diameter smaller than that of the recess communicated with the recess; b) Separated from the nozzle body, inserted into the recess of the nozzle body and into the inner peripheral surface of the recess over the entire circumference, and extending in the axial direction. Two or more pores having a diameter smaller than that of the nozzle hole, which is in communication with the nozzle hole and causes the rubber material from the injection chamber to pass through in an axial direction to generate heat by friction, The nozzle holes are dispersed after passing through each of the pores. And a frictional heating element having a multi-hole structure to be led.

請求項2のものは、請求項1において、前記摩擦発熱体は、前記ノズル本体における前記凹所の前記ノズル孔側の底部に当接状態に設けられているとともに、前記複数の細孔のそれぞれが、該ノズル孔側の前方に進むにつれて該摩擦発熱体の径方向中心側へと移行して該ノズル孔に収束する形状となしてあることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the frictional heating element is provided in contact with a bottom portion of the recess in the nozzle body on the nozzle hole side, and each of the plurality of fine holes is provided. However, it is characterized in that as it proceeds forward on the nozzle hole side, it moves to the radial center side of the frictional heating element and converges to the nozzle hole.

請求項3のものは、請求項1,2の何れかにおいて、前記摩擦発熱体の後端側には、前記ノズル本体の前記凹所に向けて開口した後端の開口から前記前方に進むに連れて内周形状が窄まる形状のすり鉢状の凹形状をなして前記複数の細孔のそれぞれに連続し、前記射出チャンバから前記凹所に到った前記ゴム材料を各細孔に集め案内する案内凹部が各細孔に対応した位置に且つ対応した数で設けてあることを特徴とする。   According to a third aspect of the present invention, in any one of the first and second aspects, on the rear end side of the frictional heating element, the front end is opened from the rear end opening opened toward the recess of the nozzle body. A mortar-like concave shape whose inner peripheral shape narrows along with it is continuous with each of the plurality of pores, and the rubber material reaching the recess from the injection chamber is collected and guided to each pore. The guide recesses to be provided are provided at positions corresponding to the respective pores and in a corresponding number.

発明の作用・効果Effects and effects of the invention

以上のように本発明は、射出ノズルを、筒状をなして内部にゴム材料の通過空間としての凹所を有する、ノズル孔を備えたノズル本体と、ノズル本体とは別体をなしてノズル本体の凹所の内部に且つ凹所の内周面に嵌合状態に挿入されるとともに、軸方向に延びてノズル孔に連通し、射出チャンバからのゴム材料を軸方向に通過させて摩擦発熱させる、ノズル孔よりも細径をなす2以上の複数の細孔を有し、ゴム材料を複数の細孔に分散させて各細孔を通過させた上でノズル孔に導く複孔構造の摩擦発熱体と、を含んで構成したものである。   As described above, according to the present invention, the injection nozzle is formed in a cylindrical shape and has a recess as a passage space for the rubber material therein, and the nozzle body having a nozzle hole and the nozzle body are separated from the nozzle body. It is inserted into the recess of the main body and fitted into the inner peripheral surface of the recess, extends in the axial direction and communicates with the nozzle hole, and causes the rubber material from the injection chamber to pass through in the axial direction to generate frictional heat. The friction of a multi-hole structure that has two or more pores having a diameter smaller than that of the nozzle hole, and that guides the nozzle material after passing through each pore by dispersing the rubber material into the plurality of pores And a heating element.

かかる本発明では、射出チャンバからのゴム材料が射出ノズルを通過する際、ゴム材料がノズル本体のノズル孔を通過するときに発熱を生じるのみならず、ノズル本体の内部に挿入された摩擦発熱体の複数の細孔を通過する過程でも摩擦による発熱を生じ、しかもその摩擦発熱体における各細孔はノズル孔よりも細径であるために各細孔において効果的に発熱を生じる。
しかもその細孔は複数設けられているために摩擦発熱体をゴム材料が通過する際の発熱量が大きく、成形型に射出され、注入された時点でのゴム材料の温度を可及的に加硫温度に近付けることができる。
In the present invention, when the rubber material from the injection chamber passes through the injection nozzle, not only does it generate heat when the rubber material passes through the nozzle hole of the nozzle body, but also a frictional heating element inserted into the nozzle body. Even in the process of passing through the plurality of pores, heat is generated due to friction, and since each pore in the frictional heating element is smaller in diameter than the nozzle hole, heat is effectively generated in each pore.
In addition, since a plurality of pores are provided, the amount of heat generated when the rubber material passes through the frictional heating element is large, and the temperature of the rubber material at the time of injection and injection into the mold is increased as much as possible. Can approach the sulfur temperature.

その結果として、成形型内部でのゴム材料の加熱のための所要時間を短くでき、ゴム成形品の成形サイクルタイムを効果的に短縮化でき、生産能率を高めることができる。   As a result, the time required for heating the rubber material inside the mold can be shortened, the molding cycle time of the rubber molded product can be effectively shortened, and the production efficiency can be increased.

更に本発明では、ゴム材料が摩擦発熱体の細孔を通過する際に細孔による効果(ゴム材料の通過路が狭いことによる効果)によって、細孔を通過するゴム材料に対して外周部から内部に到るまで加熱することが可能であり、しかもゴム材料を複数の細孔に分散してそこを通過させることで加熱するため、ゴム材料全体に対する加熱を均等化し得て、ゴム材料における温度ムラを可及的に少なくすることができる。   Further, in the present invention, when the rubber material passes through the pores of the frictional heating element, the effect of the pores (effect due to the narrow passage of the rubber material) causes the rubber material passing through the pores from the outer periphery. It is possible to heat up to the inside, and furthermore, since the rubber material is heated by being dispersed in a plurality of pores and passing therethrough, the heating of the entire rubber material can be equalized, and the temperature in the rubber material Unevenness can be reduced as much as possible.

加えて本発明では摩擦発熱体がノズル本体と別体をなしていて、ノズル本体の凹所に嵌合状態に挿入されて装着されるものであるため、ゴム材料の材質や品種或いは必要な加熱温度に応じて、細孔の径や数その他の異なった別の摩擦発熱体と取り換えることで、ゴム材料が射出ノズルを通過する際の抵抗及び発熱量を適正なものに容易に調節することができる特長を有する。   In addition, in the present invention, the frictional heating element is separated from the nozzle body, and is inserted into the recess of the nozzle body in a fitted state. Depending on the temperature, it is possible to easily adjust the resistance and the amount of heat generated when the rubber material passes through the injection nozzle to an appropriate one by replacing it with another different friction heating element such as the diameter and number of pores. Has features that can be.

また本発明では単に摩擦発熱体を従来の射出ノズルに相当するノズル本体の内部の凹所に装填するだけでよいため、従来の射出ノズルや射出シリンダないし射出装置の構造を何等改変することなく、そのまま用いることができる利点を有している。   Further, in the present invention, it is only necessary to load the frictional heating element into the recess inside the nozzle body corresponding to the conventional injection nozzle, so without any modification to the structure of the conventional injection nozzle, injection cylinder or injection device, It has the advantage that it can be used as it is.

次に請求項2は、摩擦発熱体をノズル本体における凹所のノズル孔側の底部に当接状態に設けるとともに、複数の細孔のそれぞれを、ノズル孔側の前方に進むに連れて摩擦発熱体の径方向中心側へと移行してノズル孔に収束する形状となしたものである。   Next, according to a second aspect of the present invention, the frictional heating element is provided in contact with the bottom of the nozzle body on the nozzle hole side, and each of the plurality of fine holes is caused to generate frictional heat as it advances forward on the nozzle hole side. The shape shifts toward the center of the body in the radial direction and converges to the nozzle hole.

このようにしておけば、複数の細孔を通過したゴム材料が、摩擦発熱体と凹所の底部との間に生じたゴム溜りに滞留してゴム焼けを生じたり、またその後の射出によってそのゴム溜りの焼けゴムが成形型内部に入り込んで、ゴム成形品の製品不良に繋がるといった問題を生ぜしめず、細孔を通過したゴム材料は確実にそのままノズル孔へと流れ込んで成形型に供給される(本発明ではそのようなゴム溜りは生じない)。
従ってゴム溜りでゴム焼けを生じて、その焼けゴムが成形型内に供給されてしまうのを確実に防止し得て、焼けゴムの混入による製品不良の発生を防止することができる。
By doing so, the rubber material that has passed through the plurality of pores stays in the rubber reservoir formed between the frictional heating element and the bottom of the recess, and the rubber is burnt, or the subsequent injection causes the rubber material to burn. The rubber material that has passed through the pores will surely flow into the nozzle holes and be supplied to the molding die without causing problems such as the burnt rubber in the rubber pool entering the inside of the molding die, leading to defective products of the rubber molded product. (In the present invention, such a rubber pool does not occur).
Accordingly, it is possible to surely prevent the rubber from being burnt in the rubber reservoir and supplying the burnt rubber into the mold, and it is possible to prevent the occurrence of product defects due to the mixture of the burned rubber.

請求項3のものは、摩擦発熱体の後端側に、ノズル本体の上記の凹所に向けて開口した後端の開口から前方に進むに連れて内周形状が窄まる形状のすり鉢状の凹形状をなし、複数の細孔のそれぞれに連続して、射出チャンバから上記凹所に到ったゴム材料を各細孔に集め案内する案内凹部を、各細孔に対応した位置に且つ対応した数で設けたもので、この請求項3によれば、射出チャンバからのゴム材料を良好に摩擦発熱体の各細孔に流入案内して集め、それぞれの細孔を通過してノズル本体のノズル孔へと導くことができ、ノズル本体における凹所の摩擦発熱体近傍個所でゴム材料の流れが悪くなって、そこにゴム材料が滞留してしまうのを良好に防止することができる。   According to a third aspect of the present invention, a mortar-like shape is formed on the rear end side of the frictional heating element, the inner peripheral shape of which narrows toward the front from the rear end opening that opens toward the recess of the nozzle body. Concave shape that is continuous with each of the plurality of pores, and guide recesses for collecting and guiding the rubber material from the injection chamber to the recesses in the respective pores, corresponding to the positions corresponding to the respective pores. According to the third aspect, the rubber material from the injection chamber can be satisfactorily guided and collected in the respective pores of the frictional heating element and pass through the respective pores. It can be led to the nozzle hole, and it is possible to satisfactorily prevent the rubber material from staying there in the vicinity of the concave frictional heating element in the nozzle main body and staying there.

本発明の一実施形態の射出ノズルを備えた射出成形機の要部の図である。It is a figure of the principal part of the injection molding machine provided with the injection nozzle of one Embodiment of this invention. 同実施形態の射出ノズルの断面図である。It is sectional drawing of the injection nozzle of the embodiment. 同実施形態における摩擦発熱体の単品図である。It is a single-piece figure of the frictional heating element in the same embodiment. 図3の摩擦発熱体の断面斜視図である。FIG. 4 is a cross-sectional perspective view of the frictional heating element of FIG. 3. 本発明の他の実施形態の図である。It is a figure of other embodiment of this invention. 従来の射出ノズルの一例を示した図である。It is the figure which showed an example of the conventional injection nozzle.

次に本発明の実施形態を図面に基づいて詳しく説明する。
図1において、10は縦型のゴム射出成形機で12は射出機、14は押出機、16は金型からなる成形型である。
押出機14は、押出シリンダ18の内側にスクリュー20を内蔵しており、供給口22を通じて供給されたテープ状のゴム材料を、スクリュー20の回転により可塑化して射出機12側へと押し出す。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
In FIG. 1, 10 is a vertical rubber injection molding machine, 12 is an injection machine, 14 is an extruder, and 16 is a molding die comprising a mold.
The extruder 14 incorporates a screw 20 inside the extrusion cylinder 18 and plasticizes the tape-like rubber material supplied through the supply port 22 by the rotation of the screw 20 and pushes it out toward the injection machine 12.

射出機12は、射出シリンダ24と、その内部の射出チャンバ26に充填されたゴム材料を前進移動により射出するプランジャ28とを有しており、また射出シリンダ24の先端部には射出ノズル30が設けられている。   The injection machine 12 includes an injection cylinder 24 and a plunger 28 that injects a rubber material filled in an injection chamber 26 therein by forward movement, and an injection nozzle 30 is provided at the tip of the injection cylinder 24. Is provided.

このゴム射出成形機10では、押出機14から可塑化され押し出されたゴム材料が、プランジャ28の後退移動を伴って射出シリンダ24内部の射出チャンバ26に充填される。
そして所定量のゴム材料が射出チャンバ26に押出供給され、充填されたところでプランジャ28が前進移動し、射出チャンバ26内の可塑化状態のゴム材料を、射出シリンダ24の通路32及び射出ノズル30を通じて、成形型16内部のキャビティ34に射出する。
キャビティ34に供給されたゴム材料はそこで所定時間加熱加硫されてゴム成形品となる。
In the rubber injection molding machine 10, the rubber material plasticized and extruded from the extruder 14 is filled into the injection chamber 26 inside the injection cylinder 24 with the backward movement of the plunger 28.
Then, when a predetermined amount of rubber material is extruded and supplied to the injection chamber 26 and filled, the plunger 28 moves forward, and the plasticized rubber material in the injection chamber 26 passes through the passage 32 of the injection cylinder 24 and the injection nozzle 30. Injected into the cavity 34 inside the mold 16.
The rubber material supplied to the cavity 34 is then heated and vulcanized for a predetermined time to form a rubber molded product.

図2に、射出ノズル30の構成が具体的に示してある。
同図に示しているように、射出ノズル30はノズル本体36、及びこれとは別体をなす多孔構造の摩擦発熱体38から成っている。
ノズル本体36は全体として筒状をなしており、図中上端部の外周面には雄ねじ40が形成されていて、この雄ねじ40において射出シリンダ24の雌ねじ42にねじ込まれ、射出シリンダ24に取り付けられている。
FIG. 2 specifically shows the configuration of the injection nozzle 30.
As shown in the figure, the injection nozzle 30 includes a nozzle body 36 and a frictional heating element 38 having a porous structure separate from the nozzle body 36.
The nozzle body 36 has a cylindrical shape as a whole, and a male screw 40 is formed on the outer peripheral surface of the upper end portion in the figure. The male screw 40 is screwed into the female screw 42 of the injection cylinder 24 and is attached to the injection cylinder 24. ing.

このノズル本体36は、内部にゴム材料の通過空間としての断面円形状を成す凹所44を有しているとともに、先端部(図中下端部)には成形型16に当接する部分球状の当接部46を有しており、その中心部に図中下向きに若干末広がり形状をなすテーパ形状のノズル孔48が形成されている。   The nozzle body 36 has a recess 44 having a circular cross-section as a space through which the rubber material is passed, and has a partially spherical abutting contact with the mold 16 at the tip (lower end in the figure). A contact portion 46 is provided, and a tapered nozzle hole 48 is formed in the center of the contact portion 46.

多孔構造の摩擦発熱体38は、ゴム材料を強制通過させることで発熱させ昇温させるための部材で、図2及び図3に示しているように横断面が円形、縦断面が四角形状をなしている。
この摩擦発熱体38は、外周面が凹所44の内周面に全周に亘り隙間なく嵌合する状態に凹所44に挿入され、ノズル本体36に装着されている。
ここで摩擦発熱体38は、図中下面を凹所44の底部50に隙間なく当接させる状態に凹所44に挿入され、装着されている。
The frictional heating element 38 having a porous structure is a member for generating heat and raising the temperature by forcibly passing a rubber material. As shown in FIGS. 2 and 3, the cross section has a circular shape and the vertical section has a rectangular shape. ing.
The frictional heating element 38 is inserted into the recess 44 so that the outer peripheral surface is fitted to the inner peripheral surface of the recess 44 over the entire circumference without any gap, and is attached to the nozzle body 36.
Here, the frictional heating element 38 is inserted into the recess 44 and mounted so that the lower surface in the drawing is in contact with the bottom 50 of the recess 44 without a gap.

この摩擦発熱体38には、軸方向に延びてノズル孔48に連通し、射出チャンバ26からのゴム材料を軸方向に通過させて摩擦発熱させる多数(ここでは6個)の細孔52が設けられている。
ここで各細孔52は、ノズル孔48よりも細径をなしており、且つそれぞれがノズル孔48側の前方(図中下方)に進むに連れて摩擦発熱体38の径方向中心側へと移行し、ノズル孔48に収束する即ちノズル孔48内で先端が開口する形状をなしている。
The frictional heating element 38 is provided with a large number (six in this case) of pores 52 that extend in the axial direction and communicate with the nozzle holes 48 to cause the rubber material from the injection chamber 26 to pass through in the axial direction and generate frictional heat. It has been.
Here, each of the pores 52 has a smaller diameter than the nozzle hole 48, and as it advances forward (downward in the drawing) on the nozzle hole 48 side, toward the radial center of the frictional heating element 38. It shifts and converges in the nozzle hole 48, that is, a shape in which the tip opens in the nozzle hole 48.

摩擦発熱体38にはまた、その後端側(図中上端側)に、細孔52のそれぞれに連続する形態で細孔52に対応した数の多数(ここでは6個)の案内凹部54が設けられている。
ここで案内凹部54は、その後端(図中上端)がノズル本体36の凹所44に向けて開口し、そしてその後端から前方に進むに連れて内周形状が窄まる形状のすり鉢状の凹形状をなしている。
この凹形状を成す案内凹部54は、射出チャンバ26から凹所44に到ったゴム材料を各細孔52に向けて集め、案内する働きをなす。
The frictional heating element 38 is also provided with a large number (six in this case) of guide recesses 54 corresponding to the pores 52 in a form continuous with the pores 52 on the rear end side (upper end side in the figure). It has been.
Here, the guide recess 54 is a mortar-shaped recess whose rear end (upper end in the figure) opens toward the recess 44 of the nozzle body 36 and whose inner peripheral shape narrows as it advances forward from the rear end. It has a shape.
The guide recess 54 having a concave shape serves to collect and guide the rubber material reaching the recess 44 from the injection chamber 26 toward the respective pores 52.

ここで案内凹部54は、基本的にはすり鉢状をなすものであるが、図4に示しているようにここでは1個1個の案内凹部54が、隣接し且つ互いに重なり合ったすり鉢形状の重なり部分を切り欠いた形のすり鉢状の凹形状となしてあり、そしてそのすり鉢状の凹形状の底部に対応する上記の細孔52が位置せしめられている。
尚この実施形態において、図3(A),(C)に示しているように細孔52の図中上端と図中下端とは、それぞれ摩擦発熱体38及びノズル孔48の中心軸線を中心とする同一円周上にそれぞれ位置している。
Here, the guide recesses 54 basically have a mortar shape. However, as shown in FIG. 4, the guide recesses 54 are adjacent to each other and overlap each other in a mortar shape. The mortar-shaped concave shape is formed by cutting out the portion, and the above-described pore 52 corresponding to the bottom of the mortar-shaped concave shape is positioned.
In this embodiment, as shown in FIGS. 3A and 3C, the upper end in the drawing and the lower end in the drawing are centered on the central axes of the frictional heating element 38 and the nozzle hole 48, respectively. Are located on the same circumference.

この実施形態では、押出機14から押し出されたゴム材料が射出チャンバ26に所定量充填されたところで、プランジャ28が前進移動することにより射出チャンバ26のゴム材料が、ノズル本体36の内部の凹所44及びそこに挿入された摩擦発熱体38の各細孔52、更にノズル孔48を通じて成形型16に射出され、キャビティ34に充填される。   In this embodiment, when a predetermined amount of the rubber material extruded from the extruder 14 is filled in the injection chamber 26, the plunger 28 moves forward so that the rubber material in the injection chamber 26 is recessed in the nozzle body 36. 44 and each of the pores 52 of the frictional heating element 38 inserted therein and the nozzle hole 48 are then injected into the mold 16 and filled into the cavity 34.

このとき、凹所44のゴム材料は先ず摩擦発熱体38のすり鉢状の凹形状をなす案内凹部54にて各対応する細孔52へと集められ、導かれて細孔52内に流入する。
そしてゴム材料がそれら複数の細孔52を強制通過させられることで、そこでゴム材料が摩擦発熱し、更に細孔52を通過したゴム材料が次にノズル孔48を通過する過程で、そこでも発熱を生じ、ゴム材料全体が昇温せしめられた状態で成形型16へと供給される。
At this time, the rubber material in the recess 44 is first collected into the corresponding pores 52 by the guide recesses 54 having a mortar-like concave shape of the frictional heating element 38, guided, and flows into the pores 52.
When the rubber material is forced to pass through the plurality of pores 52, the rubber material generates frictional heat there, and further, the rubber material that has passed through the pores 52 passes through the nozzle hole 48, and also generates heat there. And the entire rubber material is supplied to the mold 16 in a state where the temperature is raised.

尚、本発明では図5に示しているように摩擦発熱体38を、ノズル本体36における凹所44の底部50に対して離間する状態に設けるといったことも可能である。
但しこの場合、摩擦発熱体38と凹所44の底部50との間の空間がゴム溜り56となってしまう。
In the present invention, as shown in FIG. 5, the frictional heating element 38 can be provided in a state of being separated from the bottom 50 of the recess 44 in the nozzle body 36.
However, in this case, the space between the frictional heating element 38 and the bottom 50 of the recess 44 becomes a rubber reservoir 56.

従って摩擦発熱体38の細孔52を通過したゴム材料が、そのゴム溜り56に残って滞留し、そのことによってゴム焼けを生じてしまう恐れが生ずる。また更にそのゴム溜り56の焼けゴムが、後に行なわれる射出によって成形型16へと入り込んでしまい、それがゴム成形品の不良に繋がるといった問題を生ずる。
しかるに図2及び図3に示す形態で構成した射出ノズル30の場合、このような不具合を確実に防止できる利点を有している。
Therefore, the rubber material that has passed through the pores 52 of the frictional heating element 38 remains in the rubber reservoir 56 and stays there, which may cause rubber burning. Further, the burnt rubber in the rubber reservoir 56 enters the molding die 16 by the injection performed later, which causes a problem that the rubber molded product is defective.
However, in the case of the injection nozzle 30 configured in the form shown in FIGS. 2 and 3, there is an advantage that such a problem can be reliably prevented.

以上のような本実施形態では、射出チャンバ26からのゴム材料が射出ノズル30を通過する際、ゴム材料がノズル本体36のノズル孔48を通過するときに発熱を生じるのみならず、ノズル本体36の内部に挿入された摩擦発熱体38の多数の細孔52を通過する過程でも摩擦による発熱を生じ、しかもその摩擦発熱体38における各細孔52はノズル孔48よりも細径であるために各細孔52において効果的に発熱を生じる。
しかもその細孔52は複数設けられているために摩擦発熱体38をゴム材料が通過する際の発熱量が大きく、成形型16に射出され、注入された時点でのゴム材料の温度を可及的に加硫温度に近付けることができる。
In the present embodiment as described above, when the rubber material from the injection chamber 26 passes through the injection nozzle 30, not only does it generate heat when the rubber material passes through the nozzle hole 48 of the nozzle body 36, but also the nozzle body 36. Because the frictional heating element 38 generates heat due to friction even in the process of passing through the numerous pores 52 of the frictional heating element 38 inserted therein, and each pore 52 in the frictional heating element 38 is smaller in diameter than the nozzle hole 48. Heat is effectively generated in each pore 52.
Moreover, since a plurality of the pores 52 are provided, the amount of heat generated when the rubber material passes through the frictional heating element 38 is large, and the temperature of the rubber material at the time of injection into the mold 16 and injection is made possible. Thus, the temperature can be brought close to the vulcanization temperature.

その結果として、成形型16内部でのゴム材料の加熱のための所要時間を短くでき、ゴム成形品の成形サイクルタイムを効果的に短縮化でき、生産能率を高めることができる。   As a result, the time required for heating the rubber material inside the mold 16 can be shortened, the molding cycle time of the rubber molded product can be effectively shortened, and the production efficiency can be increased.

更に本実施形態では、ゴム材料が摩擦発熱体38の細孔52を通過する際に細孔52による効果(ゴム材料の通過路が狭いことによる効果)によって、細孔52を通過するゴム材料に対して外周部から内部に到るまで加熱することが可能であり、しかもゴム材料を複数の細孔52に分散してそこを通過させることで加熱するため、ゴム材料全体に対する加熱を均等化し得て、ゴム材料における温度ムラを可及的に少なくすることができる。   Furthermore, in this embodiment, when the rubber material passes through the pores 52 of the frictional heating element 38, the effect of the pores 52 (the effect due to the narrow passage of the rubber material) causes the rubber material to pass through the pores 52. On the other hand, it is possible to heat from the outer peripheral part to the inside, and furthermore, since the rubber material is heated by being dispersed in the plurality of pores 52 and passing therethrough, the heating of the entire rubber material can be equalized. Thus, temperature unevenness in the rubber material can be reduced as much as possible.

加えて本実施形態では、摩擦発熱体38がノズル本体36と別体をなしていて、ノズル本体36の凹所44に嵌合状態に挿入されて装着されるものであるため、ゴム材料の材質や品種或いは必要な加熱温度に応じて、細孔52の径や数その他の異なった別の摩擦発熱体38と取り換えることで、ゴム材料が射出ノズル30を通過する際の抵抗及び発熱量を適正なものに容易に調節することができる特長を有する。   In addition, in the present embodiment, the frictional heating element 38 is separate from the nozzle body 36 and is inserted into the recess 44 of the nozzle body 36 in a fitted state. Depending on the type or the required heating temperature, the resistance and heat value when the rubber material passes through the injection nozzle 30 can be changed by replacing the frictional heating element 38 with a different diameter and number of pores 52. It has the feature that it can be easily adjusted to anything.

また本実施形態では、単に摩擦発熱体38をノズル本体36(図6に示す従来の射出ノズルに相当する)の内部の凹所44に装填するだけでよいため、従来の射出ノズルや射出シリンダないし射出装置の構造を何等改変することなく、そのまま用いることができる利点を有している。   In the present embodiment, the frictional heating element 38 is simply loaded into the recess 44 inside the nozzle body 36 (corresponding to the conventional injection nozzle shown in FIG. 6). There is an advantage that the structure of the injection device can be used as it is without any modification.

更に図1〜図4に示す実施形態では、摩擦発熱体38をノズル本体36における凹所44のノズル孔48側の底部50に当接状態に設けるとともに、複数の細孔52のそれぞれを、ノズル孔48側の前方に進むに連れて摩擦発熱体38の径方向中心側へと移行してノズル孔48に収束する形状となしてあることから、多数の細孔52を通過したゴム材料が摩擦発熱体38と凹所44の底部50との間の図5に示したゴム溜り56に滞留してゴム焼けを生じたり、またその後の射出によってそのゴム溜り56の焼けゴムが成形型16内部に入り込んで、ゴム成形品の製品不良に繋がるといった問題を生ぜしめず、細孔52を通過したゴム材料を確実にそのままノズル孔48へと流入させて成形型16へと供給することができる。
従ってゴム溜り56でゴム焼けを生じて、その焼けゴムが成形型16内に供給されてしまうことにより、製品不良が発生するのを防止することができる。
Further, in the embodiment shown in FIGS. 1 to 4, the frictional heating element 38 is provided in contact with the bottom 50 on the nozzle hole 48 side of the recess 44 in the nozzle body 36, and each of the plurality of pores 52 is provided in the nozzle Since the shape of the frictional heating element 38 is shifted toward the center in the radial direction and converges to the nozzle hole 48 as it advances forward on the hole 48 side, the rubber material that has passed through the numerous pores 52 is rubbed. 5 stays in the rubber reservoir 56 shown in FIG. 5 between the heating element 38 and the bottom 50 of the recess 44, and the burnt rubber of the rubber reservoir 56 is injected into the mold 16 by the subsequent injection. The rubber material that has passed through the pores 52 can surely flow into the nozzle holes 48 and be supplied to the molding die 16 without causing the problem of entering and leading to product defects of the rubber molded product.
Accordingly, it is possible to prevent the occurrence of product defects by causing rubber burn in the rubber reservoir 56 and supplying the burned rubber into the mold 16.

また図1〜図4に示す実施形態では、摩擦発熱体38の後端側に、ノズル本体36の凹所44に向けて開口した後端の開口から前方に進むに連れて内周形状が窄まる形状のすり鉢状の凹形状をなし、複数の細孔52のそれぞれに連続して、射出チャンバ26から凹所44に到ったゴム材料を各細孔52に集め案内する案内凹部54を、各細孔52に対応した位置に且つ対応した数で設けていることから、この実施形態によれば射出チャンバ26からのゴム材料を良好に摩擦発熱体38の各細孔52に流入案内して集め、それぞれの細孔52を通過してノズル本体36のノズル孔48へと導くことができ、ノズル本体36における凹所44の摩擦発熱体38近傍個所でゴム材料の流れが悪くなって、そこにゴム材料が滞留してしまうのを良好に防止することができる。   In the embodiment shown in FIGS. 1 to 4, the inner peripheral shape narrows toward the rear end side of the frictional heating element 38 from the rear end opening opened toward the recess 44 of the nozzle body 36 toward the front. A guide concave portion 54 is formed in a mortar-like concave shape having a round shape, and continuously gathers and guides the rubber material reaching the recess 44 from the injection chamber 26 to each of the plurality of pores 52. According to this embodiment, the rubber material from the injection chamber 26 is favorably introduced and guided into the respective pores 52 of the frictional heating element 38 since the number corresponding to each pore 52 and the corresponding number are provided. Can be led to the nozzle hole 48 of the nozzle body 36 through the respective pores 52, and the flow of the rubber material is deteriorated in the vicinity of the frictional heating element 38 of the recess 44 in the nozzle body 36. It is good that rubber material stays in It is possible to stop.

以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた形態で構成可能である。   Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be configured in various forms without departing from the spirit of the present invention.

10 ゴム射出成形機
16 成形型
24 射出シリンダ
26 射出チャンバ
30 射出ノズル
36 ノズル本体
38 摩擦発熱体
44 凹所
48 ノズル孔
50 底部
52 細孔
54 案内凹部
DESCRIPTION OF SYMBOLS 10 Rubber injection molding machine 16 Mold 24 Injection cylinder 26 Injection chamber 30 Injection nozzle 36 Nozzle body 38 Friction heating element 44 Recess 48 Nozzle hole 50 Bottom part 52 Fine hole 54 Guide recessed part

Claims (3)

射出シリンダの内部の射出チャンバに充填されたゴム材料を該射出シリンダの先端部の射出ノズルから成形型に射出する射出成形機の該射出ノズルであって
(a)筒状をなして内部に前記ゴム材料の通過空間としての凹所を有するとともに、先端部には該凹所に連通した該凹所よりも小径のノズル孔を有するノズル本体と、(b)該ノズル本体とは別体をなして該ノズル本体の該凹所の内部に且つ該凹所の内周面に全周に亘って嵌合状態に挿入されるとともに、軸方向に延びて前記ノズル孔に連通し、前記射出チャンバからの前記ゴム材料を軸方向に通過させて摩擦発熱させる、前記ノズル孔よりも細径をなす2以上の複数の細孔を有し、該ゴム材料を該複数の細孔に分散させて各細孔を通過させた上で前記ノズル孔に導く複孔構造の摩擦発熱体と、を含んで構成してあることを特徴とする射出成形機の射出ノズル。
An injection nozzle of an injection molding machine for injecting a rubber material filled in an injection chamber inside an injection cylinder into a mold from an injection nozzle at the tip of the injection cylinder,
(a) a nozzle body having a recess as a passage space for the rubber material inside and having a nozzle hole having a diameter smaller than that of the recess communicated with the recess; b) Separated from the nozzle body, inserted into the recess of the nozzle body and into the inner peripheral surface of the recess over the entire circumference, and extending in the axial direction. Two or more pores having a diameter smaller than that of the nozzle hole, which is in communication with the nozzle hole and causes the rubber material from the injection chamber to pass through in an axial direction to generate heat by friction, An injection nozzle of an injection molding machine comprising: a frictional heating element having a multi-hole structure that is dispersed in the plurality of fine holes and passes through the fine holes and then led to the nozzle holes. .
請求項1において、前記摩擦発熱体は、前記ノズル本体における前記凹所の前記ノズル孔側の底部に当接状態に設けられているとともに、前記複数の細孔のそれぞれが、該ノズル孔側の前方に進むにつれて該摩擦発熱体の径方向中心側へと移行して該ノズル孔に収束する形状となしてあることを特徴とする射出成形機の射出ノズル。   2. The frictional heating element according to claim 1, wherein the frictional heating element is provided in contact with a bottom portion on the nozzle hole side of the recess in the nozzle body, and each of the plurality of fine holes is provided on the nozzle hole side. An injection nozzle of an injection molding machine, wherein the injection nozzle has a shape that shifts toward the center in the radial direction of the frictional heating element as it advances forward and converges in the nozzle hole. 請求項1,2の何れかにおいて、前記摩擦発熱体の後端側には、前記ノズル本体の前記凹所に向けて開口した後端の開口から前記前方に進むに連れて内周形状が窄まる形状のすり鉢状の凹形状をなして前記複数の細孔のそれぞれに連続し、前記射出チャンバから前記凹所に到った前記ゴム材料を各細孔に集め案内する案内凹部が各細孔に対応した位置に且つ対応した数で設けてあることを特徴とする射出成形機の射出ノズル。   The inner peripheral shape of the friction heating element according to any one of claims 1 and 2 is narrowed at a rear end side of the frictional heating element as it advances from the rear end opening opened toward the recess of the nozzle body to the front. A guide recess is formed in a round mortar-like concave shape that is continuous with each of the plurality of pores and collects and guides the rubber material reaching the recess from the injection chamber. An injection nozzle of an injection molding machine, wherein the injection nozzle is provided at a position corresponding to the number and a number corresponding to the position.
JP2009005105A 2009-01-13 2009-01-13 Injection nozzle of injection molding machine Active JP4792087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009005105A JP4792087B2 (en) 2009-01-13 2009-01-13 Injection nozzle of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009005105A JP4792087B2 (en) 2009-01-13 2009-01-13 Injection nozzle of injection molding machine

Publications (2)

Publication Number Publication Date
JP2010162714A true JP2010162714A (en) 2010-07-29
JP4792087B2 JP4792087B2 (en) 2011-10-12

Family

ID=42579306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009005105A Active JP4792087B2 (en) 2009-01-13 2009-01-13 Injection nozzle of injection molding machine

Country Status (1)

Country Link
JP (1) JP4792087B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221402B1 (en) 2010-10-06 2013-01-11 에이테크솔루션(주) High density blending system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181835A (en) * 1981-05-01 1982-11-09 Takashi Miura Heating method of polymeric plastic material
JPS6294812U (en) * 1985-12-03 1987-06-17
JPH07117091A (en) * 1993-10-26 1995-05-09 Shuji Ishihara Material pressure-introducing and heating device in rubber injection machine
JPH0834034A (en) * 1994-07-22 1996-02-06 Molten Corp Rubber injection molding apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181835A (en) * 1981-05-01 1982-11-09 Takashi Miura Heating method of polymeric plastic material
JPS6294812U (en) * 1985-12-03 1987-06-17
JPH07117091A (en) * 1993-10-26 1995-05-09 Shuji Ishihara Material pressure-introducing and heating device in rubber injection machine
JPH0834034A (en) * 1994-07-22 1996-02-06 Molten Corp Rubber injection molding apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221402B1 (en) 2010-10-06 2013-01-11 에이테크솔루션(주) High density blending system

Also Published As

Publication number Publication date
JP4792087B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
CN1824487A (en) Heat flow passage sprue
CN109476061A (en) The manufacturing method of resin pipe connector
JP4792087B2 (en) Injection nozzle of injection molding machine
JP2007283503A (en) Sprue bush
CN101161443B (en) Feed nozzle for injection-molding machine
JP2009113360A (en) Plunger type injection cylinder for injection molding machine
CN1747825A (en) Method for producing mould parts by injection and a plugged needle nozzle for an injection mould
JP2013075504A (en) Sprue bush, pinpoint gate bush and molding die
KR200393017Y1 (en) Nozzle assembly for shooting out
JP2011062864A (en) Structure of gas entrainment suppressing nozzle of molding machine
TWM511942U (en) Open type hot runner gate structure
JP5618321B2 (en) Hot runner equipment
KR100972810B1 (en) Nozzle for a injector
JP7423415B2 (en) Molding method for synthetic resin products and molds used therein
CN114633439B (en) TPU net and extrusion equipment thereof
JP4800152B2 (en) Injection mold for rubber product vulcanization
KR20100079051A (en) A gas exhauster in nozzle for molding plastic
KR100713178B1 (en) Injection Unit with Gas Plug
JP2018176506A (en) Plunger and injection molding machine
JP2011031514A (en) Plasticizing screw for injection molding machine
JP2002307486A (en) Injection device
TWI620643B (en) Open hot runner gate construction
JP2012187760A (en) Injection molding apparatus
JP2018153969A (en) Raw material supply control system for injection molding machine and raw material supply control method for injection molding machine
KR200395764Y1 (en) Die plate for extrusion molding device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4792087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250