JP2010159648A - Power source device for hybrid working machine - Google Patents

Power source device for hybrid working machine Download PDF

Info

Publication number
JP2010159648A
JP2010159648A JP2009001004A JP2009001004A JP2010159648A JP 2010159648 A JP2010159648 A JP 2010159648A JP 2009001004 A JP2009001004 A JP 2009001004A JP 2009001004 A JP2009001004 A JP 2009001004A JP 2010159648 A JP2010159648 A JP 2010159648A
Authority
JP
Japan
Prior art keywords
flow rate
pump
power
maximum
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009001004A
Other languages
Japanese (ja)
Other versions
JP5401992B2 (en
Inventor
Toshio Sora
利雄 空
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Construction Machinery Co Ltd
Original Assignee
Kobelco Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Construction Machinery Co Ltd filed Critical Kobelco Construction Machinery Co Ltd
Priority to JP2009001004A priority Critical patent/JP5401992B2/en
Priority to US12/640,572 priority patent/US8468816B2/en
Priority to EP09180158.9A priority patent/EP2204504B1/en
Priority to CN2010100021230A priority patent/CN101825025B/en
Publication of JP2010159648A publication Critical patent/JP2010159648A/en
Application granted granted Critical
Publication of JP5401992B2 publication Critical patent/JP5401992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/46Automatic regulation in accordance with output requirements
    • F16H61/475Automatic regulation in accordance with output requirements for achieving a target power, e.g. input power or output power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To prevent overdischarge of a storage device and engine stall by changing contents of control when charged quantity drops to a set value or less. <P>SOLUTION: In a hybrid working machine in which the maximum engine output is set at the average power and the maximum pump input is set to be larger than the maximum engine output in a normal state, in an abnormal state in which a level of charge of a battery 8 decreases and assistance ability of a motor function of a power machine 2 is lost, the minimum pump flow rate is reduced to a value equal to or smaller than a standby flow rate, the standby flow rate being the minimum pump flow rate used in normal state control, and a set value of the maximum pump input is changed such that the maximum pump input is smaller than the maximum engine output. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はエンジン動力と電力を併用するハイブリッド式作業機械の動力源装置に関するものである。   The present invention relates to a power source device for a hybrid work machine that uses both engine power and electric power.

ハイブリッド式の作業機械(たとえばショベル)においては、油圧アクチュエータを駆動する油圧ポンプと、発電機作用と電動機作用とを行う動力機(通常は発電機兼電動機)とがエンジンに接続され、動力機の発電機作用によって蓄電装置が充電されるとともに、この蓄電装置の放電力により動力機が駆動されて電動機作用を行い、この電動機作用により油圧ポンプの駆動をアシストする(特許文献1参照)。   In a hybrid work machine (for example, an excavator), a hydraulic pump that drives a hydraulic actuator and a power machine (usually a generator / motor) that performs a generator action and a motor action are connected to the engine. The power storage device is charged by the action, and the motive power is driven by the discharge force of the power storage device to perform an electric motor action. The electric motor action assists the drive of the hydraulic pump (see Patent Document 1).

全油圧式のショベル(以下、通常ショベルという)では、エンジンが過負荷とならないように、油圧ポンプの最大入力はエンジンの最大出力以下に設定される。すなわち、
ポンプ最大入力<エンジン最大出力
である。
In a fully hydraulic excavator (hereinafter, referred to as a normal excavator), the maximum input of the hydraulic pump is set to be equal to or less than the maximum output of the engine so that the engine is not overloaded. That is,
Pump maximum input <engine maximum output.

これに対し、上記のようにエンジン動力に動力機のアシスト動力がプラスされるハイブリッド機械では、エンジンの最大出力は上記アシスト分を考慮して通常ショベルのそれよりも低い値(通常は平均動力。以下、この場合で説明する)に設定される。すなわち、
ポンプ最大入力>エンジン最大出力
である。
On the other hand, in the hybrid machine in which the assist power of the power machine is added to the engine power as described above, the maximum output of the engine is lower than that of the normal excavator in consideration of the assist amount (usually average power. Will be described in this case). That is,
Pump maximum input> engine maximum output.

なお、ポンプ入力は負荷圧×ポンプ流量で決まり、ハイブリッド式作業機械ではエンジン出力と動力機アシスト出力とで分担される。   The pump input is determined by load pressure × pump flow rate, and is shared between the engine output and the power machine assist output in the hybrid work machine.

一方、ポンプ流量の制御に関して、通常ショベルでは、図6に示すように油圧アクチュエータを操作する操作手段の操作量(以下、レバー操作量という場合がある)に応じてポンプ流量を制御する方式(流量制御)と、図7に示すように負荷圧(ポンプ圧)に応じて流量を制御する方式(馬力制御。特許文献2参照)とが併用され、両制御によって算出される流量のうち低位側を選択し、この選択された流量をポンプのレギュレータに指令する構成がとられている。図8はこのレギュレータ指令とポンプ流量の関係を示す。   On the other hand, with regard to the control of the pump flow rate, a normal excavator controls the pump flow rate according to the amount of operation of the operating means for operating the hydraulic actuator (hereinafter sometimes referred to as lever operation amount) as shown in FIG. Control) and a method of controlling the flow rate according to the load pressure (pump pressure) as shown in FIG. 7 (horsepower control; see Patent Document 2), and the lower side of the flow rate calculated by both controls The selected flow rate is commanded to the regulator of the pump. FIG. 8 shows the relationship between the regulator command and the pump flow rate.

上記流量制御では、レバー中立でスタンバイ流量(動き始めのシステム応答性を考慮して決定される)、レバーフル操作で最大流量となる。   In the above flow rate control, the standby flow rate is determined when the lever is neutral (determined in consideration of system responsiveness at the start of movement), and the maximum flow rate is achieved when the lever is fully operated.

これに対し、上記馬力制御では、制御開始圧(図7中のAの圧力区間)で最大流量、リリーフ圧で最小流量となる。   On the other hand, in the horsepower control, the maximum flow rate is obtained at the control start pressure (pressure section A in FIG. 7), and the minimum flow rate is obtained at the relief pressure.

従って、上記圧力区間Aではレバー操作量に応じた流量制御によるポンプ流量が指令され、この区間Aを超える負荷圧範囲では馬力制御によるポンプ流量が指令される。   Therefore, in the pressure section A, a pump flow rate by the flow control according to the lever operation amount is commanded. In a load pressure range exceeding the section A, a pump flow rate by the horsepower control is commanded.

ここで、一般には、流量制御のスタンバイ流量<馬力制御の最小流量に設定される。従って、システムの最小流量はスタンバイ流量となり、これ以下には下がらないように設定される。   Here, in general, the standby flow rate of the flow rate control is set to be smaller than the minimum flow rate of the horsepower control. Therefore, the minimum flow rate of the system is set to the standby flow rate, and is set so as not to decrease below this.

特開2001−12274号公報JP 2001-12274 A 特開昭59−23090号公報JP 59-23090 A

以上を前提として、ハイブリッド式作業機械では次のような問題が生じていた。   On the premise of the above, the following problems have occurred in the hybrid work machine.

ハイブリッド式作業機械では、上記のようにエンジン最大出力を低め(平均動力)に設定し、不足分を、蓄電装置で駆動される動力機の電動機作用によってカバーする構成であって、
ポンプ最大入力>エンジン最大出力
に設定される。
In the hybrid work machine, the engine maximum output is set low (average power) as described above, and the shortage is covered by the electric motor action of the power machine driven by the power storage device,
Pump maximum input> engine maximum output.

このため、高負荷(平均動力以上の負荷)の状態が続くと、蓄電装置の充電量が減少し、限界を超えると動力機によるアシスト作用が失われる。   For this reason, if the state of high load (load more than average power) continues, the amount of charge of the power storage device decreases, and if the limit is exceeded, the assisting action by the power machine is lost.

こうなると、過負荷にならないようにポンプ入力を下げる制御を行う必要があるが、流量制御・馬力制御のみのままでは、ポンプ最小流量をスタンバイ流量以下には下げられないため、過負荷を回避するまでにはポンプ入力を減少させることができなかった。   If this happens, it will be necessary to control the pump input to prevent overloading. However, if only flow control and horsepower control are used, the minimum pump flow rate cannot be reduced below the standby flow rate, so avoid overload. By the time, the pump input could not be reduced.

このため、蓄電装置の過放電(頻繁な充放電による蓄電装置の劣化)やエンジン過負荷によるエンストに陥るという問題があった。   For this reason, there existed a problem of falling into the engine stall due to overdischarge of the power storage device (deterioration of the power storage device due to frequent charge / discharge) or engine overload.

そこで本発明は、充電量が設定値(アシスト能力を喪失する限界値)以下に低下したときに、制御内容を変更して蓄電装置の過放電やエンストを防止することができるハイブリッド作業機械の動力源装置を提供するものである。   Accordingly, the present invention provides a power for a hybrid work machine that can change the control content to prevent overdischarge or engine stall when the charge amount falls below a set value (a limit value for losing assist capability). A source device is provided.

請求項1の発明は、油圧アクチュエータを駆動する油圧ポンプと、発電機作用と電動機作用を行う動力機とがエンジンに接続され、上記動力機の発電機作用によって蓄電装置が充電されるとともに、この蓄電装置の放電力により上記動力機が駆動されて電動機作用を行い、この電動機作用により油圧ポンプの駆動をアシストするように構成され、かつ、上記油圧アクチュエータを操作する操作手段の操作量または油圧ポンプの負荷圧に応じてポンプ流量を指令するポンプ流量指令手段と、このポンプ流量指令手段からの流量指令に基づいて上記油圧ポンプの流量を制御するレギュレータとを備え、上記油圧ポンプの最大入力の設定値がエンジン最大出力よりも大きな値に設定されるハイブリッド作業機械の動力源装置において、上記蓄電装置の充電量を検出する充電量検出手段と、検出された充電量に応じて上記流量指令手段からの指令流量を補正する補正手段とが設けられ、この補正手段は、検出される充電量が設定値以下となる非常時に、上記充電量が設定値を超える通常時よりもポンプ最小流量を下げることによって、上記ポンプ最大入力の設定値をエンジン最大出力以下に変更するように構成されたものである。   According to the first aspect of the present invention, a hydraulic pump that drives a hydraulic actuator and a power machine that performs a generator action and a motor action are connected to an engine, and the power storage device is charged by the power generator action of the power machine. The electric power is driven by the discharge force of the motor to perform an electric motor action, and the electric motor action assists the driving of the hydraulic pump, and the operation amount of the operating means for operating the hydraulic actuator or the load pressure of the hydraulic pump And a regulator for controlling the flow rate of the hydraulic pump based on the flow rate command from the pump flow rate command unit, and the set value of the maximum input of the hydraulic pump is the engine In the power source device of the hybrid work machine set to a value larger than the maximum output, the power storage device A charge amount detection means for detecting the charge amount and a correction means for correcting the command flow rate from the flow rate command means according to the detected charge amount are provided. In the following emergency, the set value of the pump maximum input is changed to be equal to or less than the engine maximum output by lowering the pump minimum flow rate than the normal time when the charge amount exceeds the set value.

請求項2の発明は、請求項1の構成において、上記ポンプ流量指令手段は、
(A)上記操作量に応じてポンプ流量を制御する流量制御と、上記負荷圧に応じてポンプ流量を制御する馬力制御によるポンプ流量のうちから低位選択されたポンプ流量を指令し、
(B)上記流量制御における最小流量として、上記馬力制御による最小流量よりも少ないスタンバイ流量を指令し、
(C)上記非常時にポンプ最小流量を上記スタンバイ流量よりも少ない流量に設定する
ように構成されたものである。
According to a second aspect of the present invention, in the configuration of the first aspect, the pump flow rate command means includes:
(A) Instructing the pump flow rate selected at a low level from the flow rate control for controlling the pump flow rate according to the operation amount and the pump flow rate by the horsepower control for controlling the pump flow rate according to the load pressure,
(B) As a minimum flow rate in the flow rate control, command a standby flow rate less than the minimum flow rate by the horsepower control,
(C) The minimum pump flow rate is set to be lower than the standby flow rate in the emergency.

本発明によると、ポンプ最大入力>エンジン最大出力となるハイブリッド式作業機械において、その前提となる蓄電装置の充電量低下によって動力機の電動機作用によるアシスト能力が喪失した(または喪失のおそれのある)非常時に、ポンプ最小流量を通常時よりも下げることによってポンプ最大入力<エンジン最大出力となるようにポンプ最大入力の設定値を変更する構成としたから、蓄電装置の過放電やエンジン過負荷によるエンストを確実に防止することができる。   According to the present invention, in a hybrid work machine where the maximum pump input is greater than the engine maximum output, the assist capability due to the motor action of the power machine is lost (or may be lost) due to a decrease in the charge amount of the power storage device that is the premise. Sometimes, the pump maximum input is set so that the maximum pump input is less than the maximum engine output by reducing the minimum pump flow rate from the normal level. It can be surely prevented.

この場合、請求項2の発明では、操作量に応じた流量制御と馬力制御とによるポンプ流量の低位選択で流量制御を行うハイブリッド式作業機械において、非常時のポンプ最小流量を、通常時の最小流量であるスタンバイ流量よりもさらに少ない流量に設定することによってポンプ最大入力の設定値をエンジン最大出力よりも小さくする。このため、上記両制御の低位選択でポンプ流量を決める既存の機械に対し、基本的な制御方式は変えずに制御内容を変えるだけで容易に適用することができる。   In this case, according to the second aspect of the present invention, in the hybrid work machine that performs flow rate control by low-order selection of the pump flow rate based on the flow rate control and the horsepower control according to the operation amount, the minimum pump flow rate during emergency is set to the minimum value during normal operation. By setting the flow rate to be lower than the standby flow rate that is the flow rate, the set value of the pump maximum input is made smaller than the engine maximum output. For this reason, it can be easily applied to an existing machine that determines the pump flow rate by selecting a low level of both the above-mentioned controls by changing the control contents without changing the basic control method.

本発明の実施形態にかかる動力装置の全体構成を示すブロック図である。It is a block diagram showing the whole power unit composition concerning an embodiment of the present invention. 同装置のコントローラの構成内容を示すブロック図である。It is a block diagram which shows the structure content of the controller of the apparatus. 同装置の作用を説明するためのフローチャートである。It is a flowchart for demonstrating the effect | action of the apparatus. 同装置におけるレギュレータ指令とポンプ流量との関係を示すグラフである。It is a graph which shows the relationship between the regulator instruction | command and pump flow volume in the apparatus. 同装置における負荷圧(ポンプ圧)ポンプ流量の関係を示すグラフである。It is a graph which shows the relationship of the load pressure (pump pressure) pump flow rate in the apparatus. 通常ショベルの流量制御における操作量とポンプ流量の関係を示すグラフである。It is a graph which shows the relationship between the operation amount and pump flow volume in the flow control of a normal shovel. 通常ショベルの馬力制御における負荷圧とポンプ流量の関係を示すグラフである。It is a graph which shows the relationship between the load pressure in the horsepower control of a normal shovel, and a pump flow rate. 通常ショベルの流量/馬力両制御の低位選択によるレギュレータ指令とポンプ流量の関係を示すグラフである。It is a graph which shows the relationship between the regulator command by the low-order selection of both flow rate / horsepower control of a normal shovel, and a pump flow rate.

本発明の実施形態を図1〜図5によって説明する。   An embodiment of the present invention will be described with reference to FIGS.

実施形態では、蓄電装置としてバッテリ(リチウムイオン蓄電器等の二次電池)を用いた場合を例示している。   In the embodiment, the case where a battery (secondary battery such as a lithium ion capacitor) is used as the power storage device is illustrated.

図1にシステム全体のブロック構成を示す。   FIG. 1 shows a block configuration of the entire system.

同図において、エンジン1に、発電機作用と電動機作用とを行う動力機(通常は発電機兼電動機。発電機と電動機が別体となったものを用いてもよい)2と油圧ポンプ3とが接続されている。   In the figure, an engine 1 has a power generator (generally a generator / motor; a generator and a motor separated from each other) 2 and a hydraulic pump 3 that perform a generator action and a motor action. It is connected.

なお、ハイブリッド作業機械において、油圧ポンプ3に対する動力の供給方式として所謂パラレル方式とシリーズ方式とがあるが、本発明は両方式のいずれにも適用することができる。   In the hybrid work machine, there are a so-called parallel system and a series system for supplying power to the hydraulic pump 3, but the present invention can be applied to both systems.

油圧ポンプ3は、コントローラ4で制御されるレギュレータ5により傾転が変化して吐出流量が変化する可変容量ポンプとして構成され、この油圧ポンプ3からの圧油が制御弁6を介して複数の油圧アクチュエータ(たとえばショベルでいうとブーム、アーム、バケット各シリンダや走行用油圧モータ等)に供給される。   The hydraulic pump 3 is configured as a variable displacement pump in which the displacement is changed by the regulator 5 controlled by the controller 4, and the pressure oil from the hydraulic pump 3 is supplied to a plurality of hydraulic pressures via the control valve 6. It is supplied to an actuator (for example, in a shovel, a boom, an arm, a bucket cylinder, a traveling hydraulic motor, etc.).

なお、制御弁6は、アクチュエータごとに設けられるが、図では複数の制御弁の集合体として示している。   In addition, although the control valve 6 is provided for every actuator, in the figure, it has shown as an aggregate | assembly of a some control valve.

また、レギュレータ5は、コントローラ4からの電気信号によって直接作動するものを用いてもよいし、コントローラ4からの信号で電磁弁を作動させ、この電磁弁からの油圧によってレギュレータ作動するものを用いてもよい。   The regulator 5 may be one that operates directly by an electrical signal from the controller 4, or one that operates a solenoid valve by a signal from the controller 4 and operates by a hydraulic pressure from the solenoid valve. Also good.

7は操作手段としてのリモコン弁で、このリモコン弁7の操作量(以下、レバー操作量という場合がある)に応じたパイロット圧によって制御弁6が作動し、油圧アクチュエータに対する圧油の給排(油圧アクチュエータの動作方向と速度)が制御される。   Reference numeral 7 denotes a remote control valve as an operation means. The control valve 6 is operated by a pilot pressure corresponding to an operation amount of the remote control valve 7 (hereinafter sometimes referred to as a lever operation amount), and pressure oil is supplied to and discharged from the hydraulic actuator ( The operation direction and speed of the hydraulic actuator are controlled.

動力機2は、動力機制御手段としてのインバータ8を介してバッテリ9に接続されている。   The power machine 2 is connected to a battery 9 via an inverter 8 as a power machine control means.

インバータ8は、動力機2の発電機作用と電動機作用の切換え、発電機、電動機としての電流またはトルクを制御するとともに、発電機出力に応じてバッテリ9の充・放電を制御する。   The inverter 8 controls switching between the generator action and the motor action of the power machine 2, the current or torque as the generator and the motor, and controls charging / discharging of the battery 9 according to the generator output.

コントローラ4には次の情報が入力される。   The controller 4 receives the following information.

i.バッテリ9の充電量。この充電量は、図示しない電流センサで検出されるバッテリ電流を積算し、さらにバッテリ電圧やバッテリ温度特性を加味して求められる。   i. The amount of charge of the battery 9. This amount of charge is obtained by integrating the battery current detected by a current sensor (not shown) and further considering the battery voltage and battery temperature characteristics.

ii.リモコン弁7の操作量(レバー操作量)。リモコン弁7のパイロット圧をパイロット圧センサ10で検出することによって求められる。   ii. Operation amount of the remote control valve 7 (lever operation amount). It is obtained by detecting the pilot pressure of the remote control valve 7 with the pilot pressure sensor 10.

iii.ポンプ圧センサ11で検出される負荷圧(ポンプ圧)。   iii. Load pressure (pump pressure) detected by the pump pressure sensor 11.

このコントローラ4の構成内容を図2に示す。   The configuration content of the controller 4 is shown in FIG.

コントローラ4には、流量制御のためにレバー操作量からポンプ流量を算出する第1ポンプ流量演算手段12と、馬力制御のために負荷圧からポンプ流量を算出する第2ポンプ流量演算手段13と、この両演算手段12,13で求められた流量のうち低位を選択してポンプ流量を指令するポンプ流量指令手段14と、前記のようにバッテリ電流の積算値にバッテリ電圧等を加味してバッテリ充電量を求める充電量検出手段15と、充電量検出手段15からのバッテリ充電量とポンプ流量指令手段14からの指令流量が入力される補正手段16とが設けられている。   The controller 4 includes a first pump flow rate calculation unit 12 that calculates the pump flow rate from the lever operation amount for flow rate control, a second pump flow rate calculation unit 13 that calculates the pump flow rate from the load pressure for horsepower control, The pump flow rate command means 14 for commanding the pump flow rate by selecting the lower one of the flow rates obtained by both the calculation means 12 and 13, and the battery charging by adding the battery voltage or the like to the integrated value of the battery current as described above. A charge amount detection means 15 for obtaining the amount, and a correction means 16 for inputting the battery charge amount from the charge amount detection means 15 and the command flow rate from the pump flow rate command means 14 are provided.

補正手段16は、バッテリ充電量が、動力機2の電動機作用によるアシスト力を行い得る下限値としての設定値以上か以下かに応じてポンプ最大入力の設定値を決める。   The correction means 16 determines the set value of the pump maximum input according to whether the battery charge amount is greater than or less than a set value as a lower limit value at which the assist force by the motor action of the power machine 2 can be performed.

これを図3のフローチャートを併用して説明する。   This will be described with reference to the flowchart of FIG.

スタートとともにバッテリ充電量が検出され、この充電量が設定値以下か否か(アシスト不能か否か)が判断される(ステップS1)。   The battery charge amount is detected at the start, and it is determined whether or not the charge amount is equal to or less than a set value (whether or not assist is possible) (step S1).

ここでNOの場合、つまり充電量が設定値を超えている場合は、通常時制御として、アシスト能力(充電量)に応じた最大ポンプ入力の設定値の算出(ステップS3)、及び馬力制御によるポンプ負荷圧に応じたポンプ流量の算出(ステップS4)がそれぞれ行われ、図1のレギュレータ5に向けてこのポンプ流量(傾転)が指令される(ステップS5)。   In the case of NO here, that is, when the charge amount exceeds the set value, calculation of the set value of the maximum pump input corresponding to the assist capability (charge amount) (step S3) and horsepower control are performed as normal control. Calculation of the pump flow rate according to the pump load pressure (step S4) is performed, and this pump flow rate (tilt) is commanded to the regulator 5 of FIG. 1 (step S5).

これに対し、ステップS2でYES(充電量が設定値以下)の場合は、動力機2のアシスト作用が喪失したときの非常時制御として、最大ポンプ入力の設定値をエンジン最大出力以下に変更し、ステップS5でこの非常時の最大ポンプ入力の設定値に基づいてレギュレータ5に対する流量指令を出力する。   On the other hand, if YES in step S2 (the charge amount is equal to or less than the set value), the emergency pump control when the assisting action of the power machine 2 is lost, the set value of the maximum pump input is changed to the engine maximum output or less, In step S5, a flow rate command for the regulator 5 is output based on the set value of the maximum pump input in an emergency.

図4はこのレギュレータ5に対する流量指令(レギュレータ指令)とポンプ流量の関係を示し、通常時制御ではスタンバイ流量がシステムの最小流量となるのに対し、非常時制御ではスタンバイ流量よりも少ない流量をシステムの最小流量に設定する。   FIG. 4 shows the relationship between the flow rate command (regulator command) for the regulator 5 and the pump flow rate. In normal control, the standby flow rate is the minimum flow rate of the system, whereas in emergency control, the flow rate is lower than the standby flow rate. Set to the minimum flow rate.

これにより、非常時のポンプ最大入力の設定値をエンジン最大出力以下に設定することができる。   Thereby, the set value of the pump maximum input in an emergency can be set below the engine maximum output.

図5は通常時制御と非常時制御におけるポンプ圧とポンプ流量の関係を示し、従来機と同じ通常時制御では、ポンプ最大入力の設定値は、二点鎖線で示すように常にエンジン最大出力以上(スタンバイ流量で限界)となる。   FIG. 5 shows the relationship between pump pressure and pump flow rate in normal control and emergency control. In normal control, which is the same as the conventional machine, the set value of the pump maximum input is always greater than the engine maximum output as shown by the two-dot chain line. (Limit at standby flow rate).

これに対し、非常時制御では、最小流量をスタンバイ流量以下まで下げるため、(ポンプ最小流量×最大負荷圧)によって決まるポンプ最大入力の設定値をエンジン最大出力以下に落とすことができる。   On the other hand, in the emergency control, since the minimum flow rate is lowered to the standby flow rate or less, the set value of the pump maximum input determined by (pump minimum flow rate x maximum load pressure) can be lowered to the engine maximum output or less.

このため、バッテリの充電量低下によって動力機の電動機作用によるアシスト能力が喪失した(または喪失のおそれのある)非常時に、これを受けてポンプ最大入力<エンジン最大出力となるようにポンプ最大入力の設定値を変更する構成としたから、蓄電装置の過放電やエンジン過負荷によるエンストを確実に防止することができる。   For this reason, the pump maximum input is set so that the maximum pump input is less than the maximum engine output in an emergency when the assist capability due to the motor action of the power machine is lost (or there is a risk of loss) due to a decrease in the charge amount of the battery Since the configuration is such that the value is changed, engine stall due to overdischarge of the power storage device or engine overload can be reliably prevented.

ところで、この装置によると、上記のようにポンプ最小流量をスタンバイ流量以下まで下げることができる点を生かして次のような制御を実現することが可能となる。   By the way, according to this apparatus, it is possible to realize the following control by taking advantage of the fact that the minimum pump flow rate can be lowered to the standby flow rate or less as described above.

(イ)リリーフ状態が一定時間続いたときに、油圧ポンプ最大入力を最小に設定して省エネを図る。   (B) When the relief state continues for a certain period of time, the maximum input of the hydraulic pump is set to the minimum to save energy.

(ロ)作業待機時等にエンジン回転速度を落とす所謂デセル状態が一定時間続いたときに、ポンプ最小流量をスタンバイ流量以下に落として省エネを図る。   (B) When a so-called decel state in which the engine speed is reduced during work standby or the like continues for a certain period of time, the pump minimum flow rate is reduced below the standby flow rate to save energy.

(ハ)冬季等の低温始動時にポンプ最小流量をスタンバイ流量以下にしてエンジン負荷を減らし、始動を容易にする。   (C) Reduce the engine load by reducing the pump minimum flow rate to the standby flow rate or lower during cold starting in winter, etc., to facilitate starting.

1 エンジン
2 動力機
3 油圧ポンプ
4 ポンプ流量指令手段、充電量検出手段、補正手段を備えたコントローラ
5 レギュレータ
7 操作手段としてのリモコン弁
8 動力機を制御するインバータ
9 バッテリ(蓄電装置)
10 操作量を検出するパイロット圧センサ
11 負荷圧を検出するポンプ圧センサ
12 ポンプ流量演算手段
13 ポンプ流量演算手段
14 ポンプ流量指令手段
15 充電量検出手段
16 補正手段
DESCRIPTION OF SYMBOLS 1 Engine 2 Power machine 3 Hydraulic pump 4 Controller provided with pump flow rate command means, charge amount detection means, correction means 5 Regulator 7 Remote control valve as operation means 8 Inverter for controlling power machine 9 Battery (power storage device)
DESCRIPTION OF SYMBOLS 10 Pilot pressure sensor which detects operation amount 11 Pump pressure sensor which detects load pressure 12 Pump flow rate calculation means 13 Pump flow rate calculation means 14 Pump flow rate command means 15 Charge amount detection means 16 Correction means

Claims (2)

油圧アクチュエータを駆動する油圧ポンプと、発電機作用と電動機作用を行う動力機とがエンジンに接続され、上記動力機の発電機作用によって蓄電装置が充電されるとともに、この蓄電装置の放電力により上記動力機が駆動されて電動機作用を行い、この電動機作用により油圧ポンプの駆動をアシストするように構成され、かつ、上記油圧アクチュエータを操作する操作手段の操作量または油圧ポンプの負荷圧に応じてポンプ流量を指令するポンプ流量指令手段と、このポンプ流量指令手段からの流量指令に基づいて上記油圧ポンプの流量を制御するレギュレータとを備え、上記油圧ポンプの最大入力の設定値がエンジン最大出力よりも大きな値に設定されるハイブリッド作業機械の動力源装置において、上記蓄電装置の充電量を検出する充電量検出手段と、検出された充電量に応じて上記流量指令手段からの指令流量を補正する補正手段とが設けられ、この補正手段は、検出される充電量が設定値以下となる非常時に、上記充電量が設定値を超える通常時よりもポンプ最小流量を下げることによって、上記ポンプ最大入力の設定値をエンジン最大出力以下に変更するように構成されたことを特徴とするハイブリッド作業機械の動力源装置。   A hydraulic pump that drives the hydraulic actuator and a power machine that performs a generator action and a motor action are connected to the engine, and the power storage device is charged by the power generator action of the power machine, and the power source is discharged by the discharge force of the power storage device. It is configured to act as an electric motor and to assist the driving of the hydraulic pump by this electric motor action, and to command the pump flow rate according to the operation amount of the operating means for operating the hydraulic actuator or the load pressure of the hydraulic pump And a regulator for controlling the flow rate of the hydraulic pump based on the flow rate command from the pump flow rate command unit, and the set value of the maximum input of the hydraulic pump is larger than the maximum engine output. In the set power source device of the hybrid work machine, the charge amount of the power storage device is detected. An electric amount detection means and a correction means for correcting the command flow rate from the flow rate command means according to the detected charge amount are provided, and this correction means is used in an emergency when the detected charge amount is equal to or less than a set value. The power of the hybrid work machine is configured to change the set value of the pump maximum input to be equal to or lower than the engine maximum output by lowering the pump minimum flow rate than the normal time when the charge amount exceeds the set value. Source equipment. 上記ポンプ流量指令手段は、
(A)上記操作量に応じてポンプ流量を制御する流量制御と、上記負荷圧に応じてポンプ流量を制御する馬力制御によるポンプ流量のうちから低位選択されたポンプ流量を指令し、
(B)上記流量制御における最小流量として、上記馬力制御による最小流量よりも少ないスタンバイ流量を指令し、
(C)上記非常時にポンプ最小流量を上記スタンバイ流量よりも少ない流量に設定する
ように構成されたことを特徴とする請求項1記載のハイブリッド作業機械の動力源装置。
The pump flow rate command means is
(A) Instructing the pump flow rate selected at a low level from the flow rate control for controlling the pump flow rate according to the operation amount and the pump flow rate by the horsepower control for controlling the pump flow rate according to the load pressure,
(B) As a minimum flow rate in the flow rate control, command a standby flow rate less than the minimum flow rate by the horsepower control,
(C) The power source device for a hybrid work machine according to claim 1, wherein the pump minimum flow rate is set to a flow rate smaller than the standby flow rate in the emergency.
JP2009001004A 2009-01-06 2009-01-06 Power source device for hybrid work machine Active JP5401992B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009001004A JP5401992B2 (en) 2009-01-06 2009-01-06 Power source device for hybrid work machine
US12/640,572 US8468816B2 (en) 2009-01-06 2009-12-17 Hybrid working machine
EP09180158.9A EP2204504B1 (en) 2009-01-06 2009-12-21 Hybrid working machine
CN2010100021230A CN101825025B (en) 2009-01-06 2010-01-05 Hybrid working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009001004A JP5401992B2 (en) 2009-01-06 2009-01-06 Power source device for hybrid work machine

Publications (2)

Publication Number Publication Date
JP2010159648A true JP2010159648A (en) 2010-07-22
JP5401992B2 JP5401992B2 (en) 2014-01-29

Family

ID=42060940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009001004A Active JP5401992B2 (en) 2009-01-06 2009-01-06 Power source device for hybrid work machine

Country Status (4)

Country Link
US (1) US8468816B2 (en)
EP (1) EP2204504B1 (en)
JP (1) JP5401992B2 (en)
CN (1) CN101825025B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061044A (en) * 2011-09-14 2013-04-04 Hitachi Constr Mach Co Ltd Power regeneration device for work machine
WO2014087978A1 (en) * 2012-12-03 2014-06-12 日立建機株式会社 Work machine
JPWO2012173160A1 (en) * 2011-06-14 2015-02-23 住友建機株式会社 Hybrid work machine and control method thereof
JP2016165985A (en) * 2015-03-10 2016-09-15 日立建機株式会社 Hybrid work machine
JP2017115454A (en) * 2015-12-24 2017-06-29 日立建機株式会社 Hybrid work machine
WO2017204037A1 (en) * 2016-05-26 2017-11-30 日立オートモティブシステムズ株式会社 In-vehicle compression device

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803687B (en) * 2009-06-19 2016-10-05 住友重机械工业株式会社 Hybrid construction machine and the control method of hybrid construction machine
WO2011092837A1 (en) * 2010-01-29 2011-08-04 住友重機械工業株式会社 Hybrid construction machine
CN102918281B (en) * 2010-06-28 2015-07-29 沃尔沃建造设备有限公司 For the flow system of the oil hydraulic pump of construction plant
CN103003498B (en) 2010-07-19 2015-08-26 沃尔沃建造设备有限公司 For controlling the system of the hydraulic pump in construction machinery
JP5542016B2 (en) * 2010-09-15 2014-07-09 川崎重工業株式会社 Drive control method for work machine
JP5353849B2 (en) * 2010-09-24 2013-11-27 コベルコ建機株式会社 Construction machinery
EP2660117A4 (en) * 2010-12-27 2016-09-21 Volvo Constr Equip Ab Device and method for controlling power according to a load of a hybrid excavator
JP2012154092A (en) * 2011-01-26 2012-08-16 Kobelco Contstruction Machinery Ltd Hybrid construction machine
JP5585488B2 (en) * 2011-02-17 2014-09-10 コベルコ建機株式会社 Power source device for hybrid construction machinery
JP5585487B2 (en) * 2011-02-17 2014-09-10 コベルコ建機株式会社 Power source device for hybrid construction machinery
US8355847B2 (en) 2011-04-29 2013-01-15 Harnischfeger Technologies, Inc. Controlling a digging operation of an industrial machine
JP5653844B2 (en) * 2011-06-07 2015-01-14 住友建機株式会社 Excavator
KR101928597B1 (en) * 2011-06-15 2018-12-12 히다찌 겐끼 가부시키가이샤 Power regeneration device for work machine
JP5687150B2 (en) 2011-07-25 2015-03-18 日立建機株式会社 Construction machinery
JP5867039B2 (en) * 2011-12-09 2016-02-24 コベルコ建機株式会社 Hybrid construction machinery
JP5767996B2 (en) * 2012-03-29 2015-08-26 カヤバ工業株式会社 Fluid pressure drive unit
JP6019956B2 (en) * 2012-09-06 2016-11-02 コベルコ建機株式会社 Power control device for hybrid construction machinery
JP2014118985A (en) * 2012-12-13 2014-06-30 Kobelco Contstruction Machinery Ltd Hydraulic circuit for construction machine
WO2014120930A1 (en) 2013-01-30 2014-08-07 Parker-Hannifin Corporation Hydraulic hybrid swing drive system for excavators
WO2015173963A1 (en) * 2014-05-16 2015-11-19 日立建機株式会社 Hydraulic energy regeneration apparatus for machinery
JP7149917B2 (en) * 2019-09-30 2022-10-07 日立建機株式会社 working machine
EP3929141A1 (en) * 2020-06-24 2021-12-29 Hiab AB Working equipment with electrically powered hydraulically operated arm arrangement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143473A (en) * 1990-10-05 1992-05-18 Komatsu Ltd Control device of oil-hydraulic pump
JPH0579502A (en) * 1991-07-24 1993-03-30 Hitachi Constr Mach Co Ltd Hydraulic construction machine
JP2003184604A (en) * 2001-12-21 2003-07-03 Hitachi Constr Mach Co Ltd Hydraulic driving device for working machine and its method
JP2005083242A (en) * 2003-09-08 2005-03-31 Komatsu Ltd Drive controller of hybrid working machine
JP2007247230A (en) * 2006-03-15 2007-09-27 Kobelco Contstruction Machinery Ltd Hybrid construction equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923090A (en) 1982-07-29 1984-02-06 Hitachi Constr Mach Co Ltd Control apparatus for variable displacement pump
FR2732652B1 (en) * 1995-04-05 1997-05-16 Techno Expres ELECTRO-HYDRAULIC VEHICLE WITH ENERGY RECOVERY
JP2000136806A (en) * 1998-11-04 2000-05-16 Komatsu Ltd Pressure oil energy recovery equipment and pressure oil energy recovery/regeneration equipment
DE60043729D1 (en) 1999-06-28 2010-03-11 Kobelco Constr Machinery Ltd EXCAVATOR WITH HYBRID DRIVE DEVICE
JP2001012274A (en) 1999-06-30 2001-01-16 Kobe Steel Ltd Driving gear for work machine
JP3859982B2 (en) * 2001-04-27 2006-12-20 株式会社神戸製鋼所 Power control device for hybrid construction machine
JP4179465B2 (en) * 2002-07-31 2008-11-12 株式会社小松製作所 Construction machinery
JP2005237178A (en) * 2004-02-23 2005-09-02 Kobelco Contstruction Machinery Ltd Power source apparatus for working machine
JP4380643B2 (en) * 2006-02-20 2009-12-09 コベルコ建機株式会社 Hydraulic control device for work machine
JP4957111B2 (en) * 2006-08-08 2012-06-20 株式会社豊田自動織機 Industrial vehicle hydraulic system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143473A (en) * 1990-10-05 1992-05-18 Komatsu Ltd Control device of oil-hydraulic pump
JPH0579502A (en) * 1991-07-24 1993-03-30 Hitachi Constr Mach Co Ltd Hydraulic construction machine
JP2003184604A (en) * 2001-12-21 2003-07-03 Hitachi Constr Mach Co Ltd Hydraulic driving device for working machine and its method
JP2005083242A (en) * 2003-09-08 2005-03-31 Komatsu Ltd Drive controller of hybrid working machine
JP2007247230A (en) * 2006-03-15 2007-09-27 Kobelco Contstruction Machinery Ltd Hybrid construction equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012173160A1 (en) * 2011-06-14 2015-02-23 住友建機株式会社 Hybrid work machine and control method thereof
JP2013061044A (en) * 2011-09-14 2013-04-04 Hitachi Constr Mach Co Ltd Power regeneration device for work machine
WO2014087978A1 (en) * 2012-12-03 2014-06-12 日立建機株式会社 Work machine
JP2016165985A (en) * 2015-03-10 2016-09-15 日立建機株式会社 Hybrid work machine
KR101833608B1 (en) * 2015-03-10 2018-02-28 히다찌 겐끼 가부시키가이샤 Hybrid working machine
US10458097B2 (en) 2015-12-24 2019-10-29 Hitachi Construction Machinery Co., Ltd. Hybrid work machine
JP2017115454A (en) * 2015-12-24 2017-06-29 日立建機株式会社 Hybrid work machine
WO2017110157A1 (en) * 2015-12-24 2017-06-29 日立建機株式会社 Hybrid-type working machine
WO2017204037A1 (en) * 2016-05-26 2017-11-30 日立オートモティブシステムズ株式会社 In-vehicle compression device
CN109312734A (en) * 2016-05-26 2019-02-05 日立汽车系统株式会社 Vehicle-mounted compression set
KR20190002558A (en) * 2016-05-26 2019-01-08 히다치 오토모티브 시스템즈 가부시키가이샤 On-vehicle compression device
KR102194660B1 (en) * 2016-05-26 2020-12-23 히다치 오토모티브 시스템즈 가부시키가이샤 In-vehicle compression device
US11015593B2 (en) 2016-05-26 2021-05-25 Hitachi Astemo, Ltd. In-vehicle compression device

Also Published As

Publication number Publication date
JP5401992B2 (en) 2014-01-29
EP2204504A1 (en) 2010-07-07
US20100170239A1 (en) 2010-07-08
CN101825025B (en) 2013-04-10
CN101825025A (en) 2010-09-08
US8468816B2 (en) 2013-06-25
EP2204504B1 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
JP5401992B2 (en) Power source device for hybrid work machine
EP1834854B1 (en) Hybrid construction machine
JP5055948B2 (en) Hybrid work machine
US9290908B2 (en) Hybrid construction machine
JP4725406B2 (en) Power source device for hybrid work machines
JP5585488B2 (en) Power source device for hybrid construction machinery
JP5764310B2 (en) Power transmission device
EP2851475B1 (en) Hybrid construction machinery
EP1720244A1 (en) Power source device for working machine
JP5974014B2 (en) Hybrid drive hydraulic work machine
EP2677147B1 (en) Power source apparatus and hybrid construction machine equipped with same
EP3141442B1 (en) Hybrid work machine
EP3128086B1 (en) Shovel
JP2012092577A (en) Power transmission device
JP2005233164A (en) Power source device of working machine
JP2012233312A (en) Hybrid work machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5401992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150