JP2010156639A - Method and system of determining oxidation stress state - Google Patents
Method and system of determining oxidation stress state Download PDFInfo
- Publication number
- JP2010156639A JP2010156639A JP2008335835A JP2008335835A JP2010156639A JP 2010156639 A JP2010156639 A JP 2010156639A JP 2008335835 A JP2008335835 A JP 2008335835A JP 2008335835 A JP2008335835 A JP 2008335835A JP 2010156639 A JP2010156639 A JP 2010156639A
- Authority
- JP
- Japan
- Prior art keywords
- hydroxydeoxyguanosine
- stress state
- oxidative stress
- concentration
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 10
- 230000003647 oxidation Effects 0.000 title claims abstract description 9
- HCAJQHYUCKICQH-VPENINKCSA-N 8-Oxo-7,8-dihydro-2'-deoxyguanosine Chemical compound C1=2NC(N)=NC(=O)C=2NC(=O)N1[C@H]1C[C@H](O)[C@@H](CO)O1 HCAJQHYUCKICQH-VPENINKCSA-N 0.000 claims abstract description 100
- 239000012472 biological sample Substances 0.000 claims abstract description 63
- 230000036542 oxidative stress Effects 0.000 claims description 70
- 239000000126 substance Substances 0.000 claims description 61
- 239000000523 sample Substances 0.000 claims description 58
- 238000005259 measurement Methods 0.000 claims description 31
- 238000006243 chemical reaction Methods 0.000 claims description 27
- 210000002700 urine Anatomy 0.000 claims description 27
- 238000009739 binding Methods 0.000 claims description 24
- 239000003153 chemical reaction reagent Substances 0.000 claims description 18
- 239000000376 reactant Substances 0.000 claims description 17
- 239000000872 buffer Substances 0.000 claims description 13
- 239000007853 buffer solution Substances 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 8
- 238000012360 testing method Methods 0.000 claims description 7
- YKBGVTZYEHREMT-KVQBGUIXSA-N 2'-deoxyguanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 YKBGVTZYEHREMT-KVQBGUIXSA-N 0.000 claims description 6
- 210000004369 blood Anatomy 0.000 claims description 6
- 239000008280 blood Substances 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 230000035882 stress Effects 0.000 claims description 5
- 239000012491 analyte Substances 0.000 claims description 4
- 108091023037 Aptamer Proteins 0.000 claims description 3
- 238000002835 absorbance Methods 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims description 3
- 210000000601 blood cell Anatomy 0.000 claims description 3
- 238000000502 dialysis Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 claims description 3
- 239000004382 Amylase Substances 0.000 claims description 2
- 102000013142 Amylases Human genes 0.000 claims description 2
- 108010065511 Amylases Proteins 0.000 claims description 2
- 102000010792 Chromogranin A Human genes 0.000 claims description 2
- 108010038447 Chromogranin A Proteins 0.000 claims description 2
- 102000016610 Oxidized LDL Receptors Human genes 0.000 claims description 2
- 108010028191 Oxidized LDL Receptors Proteins 0.000 claims description 2
- 102100025386 Oxidized low-density lipoprotein receptor 1 Human genes 0.000 claims description 2
- 101710199789 Oxidized low-density lipoprotein receptor 1 Proteins 0.000 claims description 2
- 102000002933 Thioredoxin Human genes 0.000 claims description 2
- 235000019418 amylase Nutrition 0.000 claims description 2
- -1 biopyrine Proteins 0.000 claims description 2
- 108091004222 oxidized alpha-1-antitrypsin Proteins 0.000 claims description 2
- 229940094937 thioredoxin Drugs 0.000 claims description 2
- 108060008226 thioredoxin Proteins 0.000 claims description 2
- 230000000007 visual effect Effects 0.000 claims 1
- 238000001727 in vivo Methods 0.000 abstract 1
- 238000005070 sampling Methods 0.000 abstract 1
- 238000012800 visualization Methods 0.000 description 29
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 15
- 238000011161 development Methods 0.000 description 11
- 239000012085 test solution Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 4
- 239000012488 sample solution Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 2
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 229940029575 guanosine Drugs 0.000 description 2
- 230000004792 oxidative damage Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000000391 smoking effect Effects 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000003317 immunochromatography Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
本発明は、例えば、8-ヒドロキシデオキシグアノシンのよう低分子物質の測定を行うのに適したイムノクロマトセンサに関する。 The present invention relates to an immunochromatographic sensor suitable for measuring a low molecular substance such as 8-hydroxydeoxyguanosine.
「酸化ストレス状態」とは、体内で活性酸素と抗酸化物質とのバランスが崩れて活性酸素が優位になっている状態をいう。
喫煙、睡眠不足等の身体への過剰の負荷、過度のストレスが原因で抗酸化作用が低下すると、活性酸素が増加して酸化ストレスが高い状態になる。
“Oxidative stress state” refers to a state in which active oxygen is dominant because the balance between active oxygen and antioxidants is lost in the body.
When the antioxidant action decreases due to excessive load on the body such as smoking and lack of sleep and excessive stress, active oxygen increases and oxidative stress becomes high.
酸化ストレスが高い状態は、上記したように、喫煙、睡眠不足等の身体への過剰の負荷、過度のストレスが原因で陥る症状であるため、これが長く続くと何らかの病気に進行していく可能性がある。また、体内の細胞の酸化が進むと身体が老化するという問題もある。
このため、酸化ストレス状態を出来るだけ早期に検知することによって、このままでは病気に進行していく可能性がある状態、即ち、未病の状態を検知することができる。
一方、酸化ストレス状態を調べる方法には、いくつか知られており、測定もされている。しかし、酸化状態を測定するために、生体試料を安定にするための前処理が必要であったり、煩雑な測定操作をしなければならないという問題点がある。
本発明は、上記した酸化ストレス状態を出来るだけ早期に検知するための酸化ストレス状態判定方法及びシステムに関する。
As described above, a state with high oxidative stress is a symptom caused by excessive stress on the body such as smoking and lack of sleep and excessive stress. There is. Another problem is that the body ages as cells in the body oxidize.
For this reason, by detecting the oxidative stress state as early as possible, it is possible to detect a state where there is a possibility of progressing to a disease, that is, a non-disease state.
On the other hand, several methods for examining the oxidative stress state are known and measured. However, in order to measure the oxidation state, there is a problem that a pretreatment for stabilizing the biological sample is necessary or a complicated measurement operation is required.
The present invention relates to an oxidative stress state determination method and system for detecting the above oxidative stress state as early as possible.
上記した目的を達成するために本発明に係る酸化ストレス状態判定方法は、生体試料サンプル中の8-ヒドロキシデオキシグアノシン(8-OHdG)の濃度を、生体試料を採取した直後の早い時間で測定し、測定した8-ヒドロキシデオキシグアノシンの濃度に基づいて、体内の酸化ストレス状態を判定することを特徴とする。
生体試料サンプルは、生体内での状態をそのまま反映できるものでなければならない。生体試料を採取後に外気に接触し、また種々の外的要因を受けて時間が経過することで状態が変化し、間違った結果を得ることにつながることを回避するために、必要に応じて、前記生体試料サンプルは、前処理をせずに測定に供することができ、また、生体試料サンプルを測定試料と混合してから測定に供することもできる。
生体試料サンプルとしては、例えば、尿や全血等が用いられる。
また、生体試料サンプル中の8-ヒドロキシデオキシグアノシン(8-OHdG)の濃度の測定では、DNAの構成物質であるグアノシンに対する酸化損傷の状態を知ることができるが、その損傷は酸化作用のある物質からの酸化作用により起こるもので、酸化作用の蓄積が8-ヒドロキシデオキシグアノシンの濃度に関係する。それとともに酸化作用の異なる前記8-ヒドロキシデオキシグアノシンとは別の分析物の濃度も測定し、両測定結果に基づいて、酸化ストレス状態を総合的に判定してもよい。
この場合、別の分析物は、例えば、クロモグラニンA、アミラーゼ、酸素ラジカル、バイオピリン、チオレドキシン、MDA−LDL、血中酸化型α1アンチトリプシン、酸化LDL受容体LOX−1からなる群から選択され得る。
具体的には、例えば、生体試料サンプル中に存在する8-ヒドロキシデオキシグアノシンと、該8-ヒドロキシデオキシグアノシンに特異的に反応する反応物質とを反応させ、反応により生成又は消費される物質の濃度を電気的又は光学的に測定することにより、生体試料サンプル中の8-ヒドロキシデオキシグアノシンの濃度が測定され得る。
生体試料サンプル中に存在する8-ヒドロキシデオキシグアノシンの濃度と、酸化損傷を受けることなく生体試料サンプル中に存在するデオキシグアノシンの濃度とを比較することによって酸化ストレス状態の判定を行ってもよい。また、生体試料サンプル中に既知濃度のデオキシグアノシンを添加し、デオキシグアノシンの添加前後の8-ヒドロキシデオキシグアノシンの濃度およびデオキシグアノシンの濃度を比較することによって酸化ストレス状態の判定を行ってもよい。
本発明に係る酸化ストレス状態判定システムは、生体試料サンプルを導入するサンプル導入部と、サンプル導入部から導入された生体試料サンプル中の8-ヒドロキシデオキシグアノシンの濃度を測定する8-ヒドロキシデオキシグアノシン濃度測定部と、前記濃度測定部において測定された情報を入力し、8-ヒドロキシデオキシグアノシン濃度から体内の酸化ストレス状態を判定する判定処理部とを備えていることを特徴とする。
生体試料サンプルとしては、例えば、尿が用いられ得る。
前記8-ヒドロキシデオキシグアノシン濃度測定部は、生体試料サンプルと、8-ヒドロキシデオキシグアノシンに特異的に反応する反応物質とを反応させることができるように構成され得る。この場合、前記8-ヒドロキシデオキシグアノシン濃度測定部は、予め前記反応物質を備えていてもよく、また、前記反応物質を測定部の外部から供給する反応物質供給部を備えていてもよい。
前記8-ヒドロキシデオキシグアノシンに特異的に反応する反応物質は、抗8-ヒドロキシデオキシグアノシン抗体による抗原抗体反応を生じる試薬、又はアプタマーによる結合反応を生じる試薬であり得る。
前記8-ヒドロキシデオキシグアノシン濃度測定部は、前記反応物質との反応により生成又は消費される物質の濃度を電気的又は光学的に測定することができるように構成され得る。
前記8-ヒドロキシデオキシグアノシン濃度測定部における前記光学的に測定を行う手段は、例えば、分光光度計である。この場合、前記分光光度計は、8-ヒドロキシデオキシグアノシン濃度測定部におけるサンプルの反射率、蛍光、吸光度、透過率又はエバネッセント波の少なくとも一つを測定するために用いられ得る。
前記8-ヒドロキシデオキシグアノシン濃度測定部における前記電気的に測定を行う手段は、例えば、電気化学センサである。この場合、前記電気化学センサは、8-ヒドロキシデオキシグアノシン濃度測定部におけるサンプルの電流値、電圧値、電気抵抗値又はインピーダンスの少なくとも一つを測定するために用いられ得る。
前記8-ヒドロキシデオキシグアノシン濃度測定部は、緩衝液を含有する液透過性緩衝液層と、前記反応物質を含有する反応層と、生体試料サンプルが、前記液透過性緩衝液層を通過した後に前記反応層に至るように前記液透過性緩衝液層及び前記反応層を支持する支持部材を有し得る。
前記8-ヒドロキシデオキシグアノシン濃度測定部は、前記緩衝液層と液接触する少なくとも一つの付加的な層をさらに含み得る。具体的には、前記付加的な層は、血球分離層、放射線遮断層、干渉除去層、透析層又は濾過層の少なくとも一つであり得る。
前記支持部材は、生体試料サンプル導入孔を備え、かつ、前記支持部材は、前記緩衝液層及び前記反応層を挟み込み、前記サンプル導入孔から生体試料サンプルが前記緩衝液層及び前記反応層に供給されるように構成され得る。
前記8-ヒドロキシデオキシグアノシン濃度測定部は、色素を保持する色素層を備え、前記緩衝液層は、前記色素層の上に重ねて配置されるか、又は前記色素層と並置され得る。
In order to achieve the above object, the oxidative stress state determination method according to the present invention measures the concentration of 8-hydroxydeoxyguanosine (8-OHdG) in a biological sample sample at an early time immediately after collecting the biological sample. The oxidative stress state in the body is determined based on the measured concentration of 8-hydroxydeoxyguanosine.
The biological sample sample must be able to reflect the state in the living body as it is. In order to avoid contact with the outside air after collecting a biological sample, and changing the state over time due to various external factors, leading to wrong results, as necessary, The biological sample sample can be subjected to measurement without pretreatment, and can also be subjected to measurement after mixing the biological sample sample with the measurement sample.
As the biological sample, for example, urine or whole blood is used.
In addition, by measuring the concentration of 8-hydroxydeoxyguanosine (8-OHdG) in a biological sample, it is possible to know the state of oxidative damage to guanosine, which is a constituent of DNA. The accumulation of oxidation is related to the concentration of 8-hydroxydeoxyguanosine. At the same time, the concentration of an analyte different from the 8-hydroxydeoxyguanosine having a different oxidizing action may be measured, and the oxidative stress state may be comprehensively determined based on both measurement results.
In this case, another analyte may be selected from the group consisting of, for example, chromogranin A, amylase, oxygen radical, biopyrine, thioredoxin, MDA-LDL, blood oxidized α1 antitrypsin, oxidized LDL receptor LOX-1.
Specifically, for example, 8-hydroxydeoxyguanosine present in a biological sample sample is reacted with a reactive substance that specifically reacts with 8-hydroxydeoxyguanosine, and the concentration of the substance produced or consumed by the reaction Can be measured electrically or optically to determine the concentration of 8-hydroxydeoxyguanosine in a biological sample.
The oxidative stress state may be determined by comparing the concentration of 8-hydroxydeoxyguanosine present in the biological sample with the concentration of deoxyguanosine present in the biological sample without oxidative damage. Further, the oxidative stress state may be determined by adding a known concentration of deoxyguanosine to a biological sample sample and comparing the concentration of 8-hydroxydeoxyguanosine and the concentration of deoxyguanosine before and after the addition of deoxyguanosine.
An oxidative stress state determination system according to the present invention includes a sample introduction unit that introduces a biological sample, and an 8-hydroxydeoxyguanosine concentration that measures the concentration of 8-hydroxydeoxyguanosine in the biological sample introduced from the sample introduction unit. The information processing apparatus includes a measurement unit and a determination processing unit that inputs information measured by the concentration measurement unit and determines an oxidative stress state in the body from the 8-hydroxydeoxyguanosine concentration.
For example, urine can be used as the biological sample.
The 8-hydroxydeoxyguanosine concentration measuring unit may be configured to allow a biological sample sample to react with a reactant that specifically reacts with 8-hydroxydeoxyguanosine. In this case, the 8-hydroxydeoxyguanosine concentration measuring unit may include the reactive substance in advance, or may include a reactive substance supply unit that supplies the reactive substance from the outside of the measuring unit.
The reactant that specifically reacts with 8-hydroxydeoxyguanosine may be a reagent that causes an antigen-antibody reaction with an anti-8-hydroxydeoxyguanosine antibody or a reagent that causes a binding reaction with an aptamer.
The 8-hydroxydeoxyguanosine concentration measuring unit may be configured to be able to electrically or optically measure the concentration of a substance produced or consumed by reaction with the reactant.
The means for optically measuring in the 8-hydroxydeoxyguanosine concentration measuring unit is, for example, a spectrophotometer. In this case, the spectrophotometer can be used for measuring at least one of the reflectance, fluorescence, absorbance, transmittance, or evanescent wave of the sample in the 8-hydroxydeoxyguanosine concentration measuring unit.
The means for electrically measuring in the 8-hydroxydeoxyguanosine concentration measuring unit is, for example, an electrochemical sensor. In this case, the electrochemical sensor can be used to measure at least one of a current value, a voltage value, an electric resistance value, and an impedance of the sample in the 8-hydroxydeoxyguanosine concentration measuring unit.
The 8-hydroxydeoxyguanosine concentration measurement unit includes a liquid-permeable buffer layer containing a buffer solution, a reaction layer containing the reactant, and a biological sample sample after passing through the liquid-permeable buffer layer. A support member that supports the liquid-permeable buffer layer and the reaction layer may be provided so as to reach the reaction layer.
The 8-hydroxydeoxyguanosine concentration measuring unit may further include at least one additional layer in liquid contact with the buffer layer. Specifically, the additional layer may be at least one of a blood cell separation layer, a radiation blocking layer, an interference removal layer, a dialysis layer, or a filtration layer.
The support member includes a biological sample sample introduction hole, the support member sandwiches the buffer solution layer and the reaction layer, and a biological sample sample is supplied from the sample introduction hole to the buffer solution layer and the reaction layer. Can be configured.
The 8-hydroxydeoxyguanosine concentration measurement unit includes a dye layer that holds a dye, and the buffer layer may be disposed on the dye layer or juxtaposed with the dye layer.
本発明に係る酸化ストレス状態判定方法は、生体試料サンプル中の8-ヒドロキシデオキシグアノシン(8-OHdG)の濃度を、生体試料を採取した直後の早い時間で測定し、測定した8-ヒドロキシデオキシグアノシンの濃度に基づいて、濃度が濃ければ濃いほど酸化ストレス状態が高いと判定し、濃度が低ければ低いほど酸化ストレス状態が低いと判定するので、未病の状態を事前に検知することが可能になり、より早い治療を行うことができるようになる。
また、本発明に係る酸化ストレス状態判定システムは、生体試料サンプルを導入するサンプル導入部と、サンプル導入部から導入された生体試料サンプル中の8-ヒドロキシデオキシグアノシンの濃度を測定する8-ヒドロキシデオキシグアノシン濃度測定部と、前記濃度測定部において測定された情報を入力し、8-ヒドロキシデオキシグアノシン濃度から体内の酸化ストレス状態を判定する判定処理部とを備え、前記判定部において、生体試液中の8-ヒドロキシデオキシグアノシン濃度が濃ければ濃いほど酸化ストレス状態が高いと判定し、濃度が低ければ低いほど酸化ストレス状態が低いと判定するので、未病の状態を事前に検知することが可能になり、病気になる前のより早い段階で生活習慣を見直すきっかけを作ることが出来、治療が必要な病気になることを未然に防ぐ効果をもつことができる。また、何らかの自覚症状が出始めた段階で、病院に行き医師に相談するときにでも、スクリーニングの検査により過去の酸化ストレス状態を判断することが出来、医師による適切な指導と治療指針を行うことができるようになる。なお、尿中の8-ヒドロキシデオキシグアノシンの濃度の境界値は、40ng/mLであり、この境界値を健常な人では余程の濃縮された尿サンプルでなければ超えることはなく、4ng/mL〜10ng/mLの変動、推移を個々人でモニターすることで酸化ストレス状態を把握することが出来る。
The method for determining oxidative stress state according to the present invention comprises measuring 8-hydroxydeoxyguanosine (8-OHdG) concentration in a biological sample sample at an early time immediately after collecting the biological sample, and measuring the measured 8-hydroxydeoxyguanosine. The higher the concentration, the higher the oxidative stress state, and the lower the concentration, the lower the oxidative stress state, so it is possible to detect a disease-free state in advance. It becomes possible to perform faster treatment.
The oxidative stress state determination system according to the present invention includes a sample introduction unit for introducing a biological sample, and an 8-hydroxydeoxyguanosine concentration in the biological sample introduced from the sample introduction unit. A guanosine concentration measurement unit, and a determination processing unit that inputs information measured in the concentration measurement unit and determines an oxidative stress state in the body from the 8-hydroxydeoxyguanosine concentration. In the determination unit, The higher the 8-hydroxydeoxyguanosine concentration, the higher the oxidative stress state, and the lower the concentration, the lower the oxidative stress state, so it is possible to detect an unaffected state in advance. , Can make an opportunity to review lifestyle at an earlier stage before getting sick, need treatment It is possible to have a prevent effect to become sick. In addition, when any subjective symptom begins to appear, even when going to the hospital and consulting a doctor, it is possible to determine the past oxidative stress state by screening tests, and to give appropriate guidance and treatment guidelines by the doctor. Will be able to. The boundary value of 8-hydroxydeoxyguanosine concentration in urine is 40 ng / mL, and this threshold value is not exceeded unless it is an excessively concentrated urine sample in healthy people, and it is 4 ng / mL. It is possible to grasp the oxidative stress state by monitoring the fluctuation and transition of -10ng / mL by individual.
以下、添付図面に示した一実施例を参照して、本発明に係る酸化ストレス状態判定方法を実施するための酸化ストレス状態判定システムの実施の形態を説明していく。 Hereinafter, an embodiment of an oxidative stress state determination system for carrying out an oxidative stress state determination method according to the present invention will be described with reference to an embodiment shown in the accompanying drawings.
図1は酸化ストレス状態判定システムの概略ブロック図である。
この図面に示すように、酸化ストレス状態判定システムは、生体試料サンプルを導入するサンプル導入部20、サンプル導入部から導入された生体試料サンプル中の8-ヒドロキシデオキシグアノシンの濃度を測定する8-ヒドロキシデオキシグアノシン濃度測定部21、及び前記濃度測定部において測定された情報を入力し、8-ヒドロキシデオキシグアノシン濃度から体内の酸化ストレス状態を判定する判定処理部22を有する。
前記生体試料サンプルを導入するサンプル導入部20は、生体試料サンプルを吸収するような形態であってもよく、又は、生体試料サンプルを注入する形態であってもよい。前記生体試料サンプル導入部20からは、例えば、生体試料サンプルとして尿や全血が導入され得る。
生体試料サンプルとして尿を使用する場合、前処理をせずに直接尿をサンプル導入部20から導入させることができるが、生体試料サンプルとして全血を使用し、かつ、測定結果が色で現れる場合には、赤血球が妨害となり判別できないため、予め血清又はは血漿が分離される。
前記8-ヒドロキシデオキシグアノシン濃度測定部21は、生体試料サンプルと、8-ヒドロキシデオキシグアノシンに特異的に反応する反応物質とを反応させることができるように構成され得る。測定結果を色で判別する場合、例えば、前記反応物質に予め金コロイド等の存在を可視化できる可視化物質を結合させておき、8-ヒドロキシデオキシグアノシンと反応した可視化物質結合反応物質の量、又は8-ヒドロキシデオキシグアノシンと反応しなかった可視化物質結合反応物質の量に基づく色を用いて判定処理部22において酸化ストレス状態が判定され得る。
また、前記8-ヒドロキシデオキシグアノシン濃度測定部21は、前記反応物質を予め保持していてもよく、又は、前記反応物質を測定部21の外部から供給する反応物質供給部21gを備えていてもよい。
前記8-ヒドロキシデオキシグアノシン濃度測定部21において用いられる8-ヒドロキシデオキシグアノシンに特異的に反応する反応物質には、抗8-ヒドロキシデオキシグアノシン抗体による抗原抗体反応を生じる試薬、又はアプタマーによる結合反応を生じる試薬が用いられる。
前記8-ヒドロキシデオキシグアノシン濃度測定部21が、前記反応物質との反応により生成又は消費される物質の濃度を電気的又は光学的に測定することができるように構成されている。
光学的に測定を行う場合には、前記8-ヒドロキシデオキシグアノシン濃度測定部21は、分光光度計21aを備え、この分光光度計21aで8-ヒドロキシデオキシグアノシン濃度測定部21におけるサンプルの反射率、蛍光、吸光度、透過率又はエバネッセント波の少なくとも一つを測定する。
電気的に測定を行う場合には、前記8-ヒドロキシデオキシグアノシン濃度測定部21は、電気化学センサ21bを備え、電気化学センサが、8-ヒドロキシデオキシグアノシン濃度測定部におけるサンプルの電流値、電圧値、電気抵抗値又はインピーダンスの少なくとも一つを測定する。
前記8-ヒドロキシデオキシグアノシン濃度測定部21は、緩衝液を含有する液透過性緩衝液層21cと、前記反応物質を含有する反応層21dと、生体試料サンプルが、前記液透過性緩衝液層21cを通過した後に前記反応層21dに至るように前記液透過性緩衝液層21c及び前記反応層21dを支持する支持部材21eを有する。
また、試料サンプルの種類や測定方法等によって必要に応じて、前記8-ヒドロキシデオキシグアノシン濃度測定部21は、前記緩衝液層21cと液接触する少なくとも一つの付加的な層(図示せず)を有することができる。具体的には、前記付加的な層は、血球分離層、放射線遮断層、干渉除去層、透析層又は濾過層の少なくとも一つである。
前記支持部材21eは、サンプル導入部20を介して生体試料サンプルが導入される生体試料サンプル導入孔21fを備え、かつ、前記支持部材21eは、前記緩衝液層21c及び前記反応層21dを挟み込み、前記サンプル導入孔20から生体試料サンプルが前記緩衝液層21c及び前記反応層21dに供給されるように構成されている。
前記反応層21dでは、生体試料サンプル中の測定対象物と前記反応物質が反応し、それにより生成もしくは消費した物質により色が変化するように構成されている。
上記したように構成された前記8-ヒドロキシデオキシグアノシン濃度測定部21において測定された測定結果は、判定処理部22に送られ、判定処理部22において、生体試料サンプル中の8-ヒドロキシデオキシグアノシンの濃度に基づいて酸化ストレス状態の判定を行う。具体的には、生体試料サンプル中の8-ヒドロキシデオキシグアノシンの濃度が高ければ高いほど、酸化ストレス状態が高いと判定し、同濃度が低ければ低い程、酸化ストレス状態が低いと判定する。
FIG. 1 is a schematic block diagram of an oxidative stress state determination system.
As shown in this drawing, the oxidative stress state determination system includes a sample introduction unit 20 for introducing a biological sample, and an 8-hydroxydeoxyguanosine concentration in the biological sample introduced from the sample introduction unit. A deoxyguanosine concentration measuring unit 21 and a determination processing unit 22 for inputting information measured by the concentration measuring unit and determining an oxidative stress state in the body from the 8-hydroxydeoxyguanosine concentration are included.
The sample introduction unit 20 for introducing the biological sample sample may be configured to absorb the biological sample sample or may be configured to inject the biological sample sample. From the biological sample sample introduction unit 20, for example, urine or whole blood can be introduced as a biological sample sample.
When urine is used as a biological sample, urine can be directly introduced from the sample introduction unit 20 without pretreatment, but when whole blood is used as the biological sample and the measurement result appears in color In this case, erythrocytes are obstructed and cannot be discriminated, so that serum or plasma is separated in advance.
The 8-hydroxydeoxyguanosine concentration measuring unit 21 may be configured to allow a biological sample sample to react with a reactant that specifically reacts with 8-hydroxydeoxyguanosine. When discriminating the measurement result by color, for example, a visualizing substance capable of visualizing the presence of colloidal gold or the like is bound in advance to the reactive substance, and the amount of the visualizing substance-bound reactive substance reacted with 8-hydroxydeoxyguanosine, or 8 The oxidative stress state can be determined in the determination processing unit 22 using a color based on the amount of the visualization substance binding reactant that has not reacted with -hydroxydeoxyguanosine.
The 8-hydroxydeoxyguanosine concentration measuring unit 21 may hold the reactant in advance, or may include a reactant supply unit 21g that supplies the reactant from outside the measuring unit 21. Good.
The reactant that specifically reacts with 8-hydroxydeoxyguanosine used in the 8-hydroxydeoxyguanosine concentration measuring unit 21 includes a reagent that causes an antigen-antibody reaction with an anti-8-hydroxydeoxyguanosine antibody, or a binding reaction with an aptamer. The resulting reagent is used.
The 8-hydroxydeoxyguanosine concentration measuring unit 21 is configured to be able to electrically or optically measure the concentration of a substance generated or consumed by reaction with the reactant.
When optically measuring, the 8-hydroxydeoxyguanosine concentration measuring unit 21 includes a spectrophotometer 21a, and the spectrophotometer 21a uses the reflectance of the sample in the 8-hydroxydeoxyguanosine concentration measuring unit 21; At least one of fluorescence, absorbance, transmittance, or evanescent wave is measured.
When the measurement is performed electrically, the 8-hydroxydeoxyguanosine concentration measurement unit 21 includes an electrochemical sensor 21b, and the electrochemical sensor has a current value and a voltage value of a sample in the 8-hydroxydeoxyguanosine concentration measurement unit. Measure at least one of electrical resistance or impedance.
The 8-hydroxydeoxyguanosine concentration measuring unit 21 includes a liquid-permeable buffer layer 21c containing a buffer solution, a reaction layer 21d containing the reactant, and a biological sample sample containing the liquid-permeable buffer layer 21c. And a support member 21e for supporting the liquid permeable buffer solution layer 21c and the reaction layer 21d so as to reach the reaction layer 21d.
In addition, the 8-hydroxydeoxyguanosine concentration measuring unit 21 may include at least one additional layer (not shown) in liquid contact with the buffer layer 21c as necessary depending on the type of sample sample, the measurement method, and the like. Can have. Specifically, the additional layer is at least one of a blood cell separation layer, a radiation blocking layer, an interference removal layer, a dialysis layer, or a filtration layer.
The support member 21e includes a biological sample sample introduction hole 21f through which a biological sample sample is introduced via the sample introduction unit 20, and the support member 21e sandwiches the buffer layer 21c and the reaction layer 21d, A biological sample is supplied from the sample introduction hole 20 to the buffer solution layer 21c and the reaction layer 21d.
The reaction layer 21d is configured such that the measurement object in the biological sample sample reacts with the reactant and the color changes depending on the substance generated or consumed.
The measurement result measured by the 8-hydroxydeoxyguanosine concentration measuring unit 21 configured as described above is sent to the determination processing unit 22, and the determination processing unit 22 determines the 8-hydroxydeoxyguanosine in the biological sample sample. The oxidative stress state is determined based on the concentration. Specifically, the higher the 8-hydroxydeoxyguanosine concentration in the biological sample is determined, the higher the oxidative stress state, and the lower the concentration, the lower the oxidative stress state.
次に、本発明における酸化ストレス状態判定方法で使用可能なイムノクロマトセンサの実施例を説明していく。
図2は、イムノクロマトセンサの分解展開図、図3は図2に示したイムノクロマトセンサの上面カバー以外の部分を組立てた部分分解展開図、図4は図2に示したイムノクロマトセンサの上面図を各々示している。
図中、符号1は土台となるベース基板を示しており、このベース基板1の上に、テストストリップ2及び試液吸収部3が設けられている。
テストストリップ2は、試液吸収部3に部分的に重ねて配置された試液展開層4と、前記試液展開層4に部分的に重ねて配置された可視化物質結合抗体保持層5と、可視化物質結合抗体保持層5に部分的に重ねて配置された展開層6とから成る。
可視化物質結合抗体保持層5には、測定すべき物質と特異的に反応する抗体に、その抗体の存在を可視化できる可視化物質を結合させた可視化物質結合抗体が保持されている。具体的には、例えば、測定すべき物質が8-ヒドロキシデオキシグアノシンの場合、その抗体は、8OHdG1B1(独立行政法人 産業技術総合研究所 特許生物寄託センター 受託番号FERM P-20122)(本願の出願人が特開2006-056859にて既に提案している抗体)であり、可視化物質としては金コロイドが挙げられる。この可視化物質結合抗体保持層5に保持された可視化物質結合抗体は、試液展開層4を介して試液が導入されると試液中に溶出する。このため、可視化物質結合抗体保持層5は、使用前(即ち、試液が通過する前)は、可視化物質(例えば、金コロイド)によって色付いているが、使用後、即ち、試液が正常に通過した後は、可視化物質が試液中に溶出してしまうため色が無くなる。具体的には、可視化物質結合抗体保持層5が白いメンブレンから成り、可視化物質が金コロイドである場合には、可視化物質結合抗体保持層5は、使用前は赤色であるが、使用後は白色になる。
展開層6は、前記可視化物質結合抗体保持層5に保持された可視化物質結合抗体と結合して、同抗体を捕捉する固定化抗原物質が固定された判定部7を有する。この判定部7は、展開層6において測定すべき物質と可視化物質結合抗体とが充分に抗体抗原反応することができるように、可視化物質結合抗体保持層5から充分に離れた位置に設けられている。
Next, an example of an immunochromatographic sensor that can be used in the oxidative stress state determination method of the present invention will be described.
2 is an exploded development view of the immunochromatographic sensor, FIG. 3 is a partial exploded development view in which parts other than the top cover of the immunochromatographic sensor shown in FIG. 2 are assembled, and FIG. 4 is a top view of the immunochromatographic sensor shown in FIG. Show.
In the figure, reference numeral 1 denotes a base substrate that serves as a base, and a test strip 2 and a reagent solution absorbing portion 3 are provided on the base substrate 1.
The test strip 2 includes a reagent solution developing layer 4 that is partially overlapped with the reagent solution absorbing portion 3, a visualization substance binding antibody holding layer 5 that is partially overlapped with the reagent solution developing layer 4, and a visualization substance binding. And a spreading layer 6 disposed partially overlapping the antibody holding layer 5.
The visualization substance-bound antibody holding layer 5 holds a visualization substance-binding antibody in which a visualization substance capable of visualizing the presence of the antibody is bound to an antibody that specifically reacts with the substance to be measured. Specifically, for example, when the substance to be measured is 8-hydroxydeoxyguanosine, the antibody is 8OHdG1B1 (National Institute of Advanced Industrial Science and Technology, Patent Biodeposition Center Accession No.FERM P-20122) (the applicant of the present application). Is an antibody already proposed in Japanese Patent Application Laid-Open No. 2006-056859), and examples of the visualization substance include colloidal gold. The visualized substance-bound antibody retained in the visualized substance-bound antibody retaining layer 5 is eluted in the reagent when the reagent is introduced through the reagent developing layer 4. Therefore, the visualization substance-bound antibody holding layer 5 is colored by the visualization substance (for example, gold colloid) before use (that is, before the sample solution passes), but after use, that is, the sample solution has passed normally. After that, since the visualization substance is eluted in the test solution, the color disappears. Specifically, when the visualization substance binding antibody holding layer 5 is made of a white membrane and the visualization substance is a gold colloid, the visualization substance binding antibody holding layer 5 is red before use but is white after use. become.
The development layer 6 includes a determination unit 7 to which an immobilized antigen substance that binds to the visualization substance-bound antibody retained in the visualization substance-bound antibody retention layer 5 and captures the antibody is immobilized. The determination unit 7 is provided at a position sufficiently separated from the visualization substance-bound antibody holding layer 5 so that the substance to be measured in the development layer 6 and the visualization substance-bound antibody can sufficiently react with each other. Yes.
上記したように構成されたテストストリップ2及び試液吸収部3はベース基板1上に配置され、さらに基板1にカバー10が取り付けられる。
この実施例では、カバー10は、ベース基板1における試液吸収部3以外の部分を全て覆うように寸法決めされており、かつ、テストストリップ2に相当する部分には確認用窓11が形成されている。
この確認用窓11は、可視化物質結合抗体保持層5の一部と、展開層6における判定部7が露出するように形成されている。
また、カバー10における判定部7に相当する部分には、判定部7を挟むように色調表12が設けられている。この実施例では、図3における判定部7の左側に測定すべき物質の量が少ない時の色(即ち、濃い色)が、右側に測定すべき物質の量が多い時の色(即ち、薄い色)が印刷されている。
The test strip 2 and the test solution absorber 3 configured as described above are disposed on the base substrate 1, and a cover 10 is attached to the substrate 1.
In this embodiment, the cover 10 is dimensioned so as to cover all portions of the base substrate 1 other than the reagent solution absorbing portion 3, and a confirmation window 11 is formed in a portion corresponding to the test strip 2. Yes.
This confirmation window 11 is formed so that a part of the visualization substance binding antibody holding layer 5 and the determination part 7 in the development layer 6 are exposed.
A color tone table 12 is provided at a portion corresponding to the determination unit 7 in the cover 10 so as to sandwich the determination unit 7. In this embodiment, the color when the amount of the substance to be measured is small on the left side of the determination unit 7 in FIG. 3 (that is, the dark color) is the color when the amount of the substance to be measured is large on the right side (that is, the color is light). Color) is printed.
次に、上記したように構成されたイムノクロマトセンサの作用を説明していく。
図5は、上記したイムノクロマトセンサの作用を示す図であり、(a)は使用前の状態を、(b)は使用後の状態を各々示している。
この説明では、測定すべき物質は、尿中に含まれている8-ヒドロキシデオキシグアノシンの量であり、従って、抗体は、8-ヒドロキシデオキシグアノシンに特異的に反応する抗体(8OHdG1B1(独立行政法人 産業技術総合研究所 特許生物寄託センター 受託番号FERM P-20122))であり、可視化物質は金コロイドである。また、判定層に固定されている固定化物質は8-ヒドロキシデオキシグアノシン(8OHdG)である。
使用者が、尿を試液吸収部3にかけると、尿は試液吸収部3に吸収される。試液吸収部3に吸収した尿は、毛細管現象により試液展開層4に入り、試液展開層4の幅全体に広がりながら可視化物質結合抗体保持層5に進む。そして、尿が可視化物質結合抗体保持層5を通過する時に、尿中に、同層5に保持された金コロイドが結合した抗体(8OHdG1B1(独立行政法人 産業技術総合研究所 特許生物寄託センター 受託番号FERM P-20122))が溶出する。金コロイド結合抗体が溶出した尿は、そのまま展開層6へ進み、同層6で8-ヒドロキシデオキシグアノシンと金コロイド結合抗体とが抗体抗原反応して、尿中にある8-ヒドロキシデオキシグアノシンに金コロイド結合抗体が結合する。展開層6に入った尿は、さらに、毛細管現象により展開層6を判定部7に向かって進む。
尿が判定部7を通過する時に、既に8-ヒドロキシデオキシグアノシンと結合した金コロイド結合抗体は判定部7を通過するが、8-ヒドロキシデオキシグアノシンと結合していない金コロイド結合抗体は判定部7に固定された固定化物質と結合して判定部7に留まる。このため、判定部7は固定化物質と結合した金コロイド結合抗体の金コロイドの色の作用で赤く見える。
尿中に含まれている8-ヒドロキシデオキシグアノシンの量が多ければ多いほど、8-ヒドロキシデオキシグアノシンと結合しない金コロイド結合抗体の量は少なくなるので判定部7の色は薄くなり、逆に、尿中に含まれている8-ヒドロキシデオキシグアノシンの量が少なければ少ないほど、8-ヒドロキシデオキシグアノシンと結合しない金コロイド結合抗体の量が多くなるので判定部7の色は濃くなる。
使用者は、判定部7の両隣にある色調表12の色と判定部7の色とを比較して、尿中に含まれている8-ヒドロキシデオキシグアノシンの量が多いか否かを判断する。
ところで、上記したように、このイムノクロマトセンサはカバー10の窓部11が、可視化物質結合抗体保持層5の一部が露出するように形成されている。このため、使用者は、窓部11から見える可視化物質結合抗体保持層5の色の変化によって、尿が展開層6に入っているか否かを確認することができる。具体的には、可視化物質結合抗体保持層5は、使用前は、そこに保持されている可視化物質結合抗体の可視化物質、ここでは金コロイドの作用で色付いている。そして、可視化物質結合抗体保持層5は試液、ここでは尿が通過すると、可視化物質結合抗体が試液中に溶出するため同層5の色はなくなる。従って、試液導入部3から導入した尿が、何らかの原因で展開層6に進まなければ可視化物質結合抗体保持層5の色は変わらないが、試液導入部3から導入した尿が、正確に展開層6に進めば可視化物質結合抗体保持層5の色が変わる。このため、使用者は、窓部11から見える可視化物質結合抗体保持層5の色によって試液が正確に展開層6に進んでいるか否かを確認することができるため、判定結果を間違えて認識することがない。
Next, the operation of the immunochromatographic sensor configured as described above will be described.
FIGS. 5A and 5B are diagrams showing the operation of the immunochromatographic sensor described above. FIG. 5A shows a state before use, and FIG. 5B shows a state after use.
In this description, the substance to be measured is the amount of 8-hydroxydeoxyguanosine contained in the urine. Therefore, the antibody is an antibody (8OHdG1B1 (independent administrative agency) that specifically reacts with 8-hydroxydeoxyguanosine. The National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center, Accession Number FERM P-20122)), and the visualization material is colloidal gold. The immobilization substance immobilized on the determination layer is 8-hydroxydeoxyguanosine (8OHdG).
When the user puts urine on the sample solution absorption unit 3, the urine is absorbed by the sample solution absorption unit 3. The urine absorbed in the test solution absorbing part 3 enters the test solution developing layer 4 by capillary action and proceeds to the visualization substance-binding antibody holding layer 5 while spreading over the entire width of the test solution developing layer 4. When the urine passes through the visualization substance-binding antibody holding layer 5, the antibody (8OHdG1B1 (Independent Administrative Institution, National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Accession No.) FERM P-20122)) elutes. The urine from which the gold colloid-binding antibody is eluted proceeds to the developing layer 6 as it is, and 8-hydroxydeoxyguanosine and the gold colloid-binding antibody react with each other in the same layer 6 to form gold into 8-hydroxydeoxyguanosine in the urine. Colloid binding antibody binds. The urine that has entered the development layer 6 further proceeds through the development layer 6 toward the determination unit 7 by capillary action.
When the urine passes through the determination unit 7, the gold colloid-binding antibody already bound to 8-hydroxydeoxyguanosine passes the determination unit 7, but the gold colloid-binding antibody not bonded to 8-hydroxydeoxyguanosine determines the determination unit 7. It remains in the determination unit 7 by combining with the immobilized substance fixed on the surface. For this reason, the determination unit 7 looks red due to the effect of the colloidal gold color of the colloidal gold antibody bound to the immobilized substance.
The greater the amount of 8-hydroxydeoxyguanosine contained in the urine, the smaller the amount of colloidal gold-bound antibody that does not bind to 8-hydroxydeoxyguanosine, so the color of the determination unit 7 becomes lighter. The smaller the amount of 8-hydroxydeoxyguanosine contained in the urine, the greater the amount of colloidal gold-bound antibody that does not bind to 8-hydroxydeoxyguanosine, so the color of the determination unit 7 becomes darker.
The user compares the color of the color tone table 12 on both sides of the determination unit 7 with the color of the determination unit 7 to determine whether the amount of 8-hydroxydeoxyguanosine contained in the urine is large. .
By the way, as described above, in this immunochromatographic sensor, the window portion 11 of the cover 10 is formed so that a part of the visualization substance binding antibody holding layer 5 is exposed. For this reason, the user can confirm whether or not urine is in the spreading layer 6 by a change in the color of the visualization substance binding antibody holding layer 5 visible from the window portion 11. Specifically, the visualized substance-bound antibody holding layer 5 is colored by the action of the visualized substance of the visualized substance-bound antibody held therein, here, colloidal gold, before use. The visualization substance-binding antibody holding layer 5 disappears when the test solution, here urine passes, because the visualization substance-binding antibody is eluted in the test solution. Therefore, the color of the visualization substance-bound antibody retaining layer 5 does not change unless the urine introduced from the reagent introduction part 3 proceeds to the development layer 6 for some reason, but the urine introduced from the reagent introduction part 3 does not accurately If it advances to 6, the color of the visualization substance binding antibody holding layer 5 will change. For this reason, since the user can confirm whether or not the test solution has advanced to the developing layer 6 accurately based on the color of the visualization substance-binding antibody holding layer 5 that can be seen from the window portion 11, the determination result is mistakenly recognized. There is nothing.
上記したイムノクロマトセンサの実施例では、使用者が、判定部7の両隣にある色調表12の色と判定部7の色とを比較して、尿中に含まれている8-ヒドロキシデオキシグアノシンの量が多いか否かを判断し、尿中に含まれている8-ヒドロキシデオキシグアノシンの量が多ければ多いほど酸化ストレス状態が高く、同濃度が低ければ酸化ストレス状態が低いと判定できるように構成した例を挙げているが、生体試料中の8-ヒドロキシデオキシグアノシンの濃度に基づく酸化ストレス状態の判定は、本実施例に限定されることなく、例えば、判定部7の色を光学的に測定する手段(例えば、分光光度計)で測定して、その測定結果に基づいて、予め、測定結果に応じた酸化ストレス状態の高さを記憶するか、又は測定結果に応じた酸化ストレス状態の算出方法を記憶した判定処理手段を用いて酸化ストレス状態を判定してもよい。 In the embodiment of the immunochromatographic sensor described above, the user compares the color of the color tone table 12 on both sides of the determination unit 7 with the color of the determination unit 7 to determine the 8-hydroxydeoxyguanosine contained in the urine. Judging whether the amount is high, the higher the amount of 8-hydroxydeoxyguanosine contained in the urine, the higher the oxidative stress state, and the lower the concentration, the lower the oxidative stress state Although the example which comprised was given, determination of the oxidative stress state based on the density | concentration of 8-hydroxydeoxyguanosine in a biological sample is not limited to a present Example, For example, the color of the determination part 7 is optically determined. Measured with a measuring means (for example, a spectrophotometer), and based on the measurement result, the height of the oxidative stress state corresponding to the measurement result is stored in advance, or the oxidative stress state according to the measurement result The method of calculating may determine the oxidative stress status using the determination processing means for storing.
1 ベース基板
2 テストストリップ
3 試液吸収部
4 試液展開層
5 可視化物質結合抗体保持層
6 展開層
7 判定部
10 カバー
11 窓部
12 色調表
20 サンプル導入部
21 8-ヒドロキシデオキシグアノシン濃度測定部
21a 分光光度計
21b 電気化学センサ
21c 液透過性緩衝液層
21d 反応層
21e 支持部材
21f サンプル導入孔
21g 反応物質供給部
22 判定処理部
DESCRIPTION OF SYMBOLS 1 Base substrate 2 Test strip 3 Reagent absorption part 4 Reagent development layer 5 Visualization substance binding antibody holding layer 6 Development layer 7 Judgment part 10 Cover 11 Window part 12 Color tone table
20 Sample introduction unit 21 8-hydroxydeoxyguanosine concentration measurement unit 21a Spectrophotometer 21b Electrochemical sensor 21c Liquid permeable buffer layer 21d Reaction layer 21e Support member 21f Sample introduction hole 21g Reactant supply unit 22 Determination processing unit
Claims (26)
測定した8-ヒドロキシデオキシグアノシンの濃度に基づいて、体内の酸化ストレス状態を判定する
ことを特徴とする酸化ストレス状態判定方法。 Measure the concentration of 8-hydroxydeoxyguanosine (8-OHdG) in the biological sample,
An oxidative stress state determination method characterized by determining an oxidative stress state in the body based on the measured concentration of 8-hydroxydeoxyguanosine.
ことを特徴とする請求項1に記載の酸化ストレス状態判定方法。 The method for determining an oxidative stress state according to claim 1, wherein the concentration of 8-hydroxydeoxyguanosine in a biological sample sample that has not been pretreated is measured.
ことを特徴とする請求項1に記載の酸化ストレス状態判定方法。 The oxidative stress state determination method according to claim 1, wherein the biological sample is mixed with the measurement sample, and the concentration of 8-hydroxydeoxyguanosine in the measurement sample is measured in one test.
ことを特徴とする請求項1〜3の何れか一項に記載の酸化ストレス状態判定方法。 The oxidative stress state determination method according to claim 1, wherein the biological sample is urine.
ことを特徴とする請求項1〜4の何れか一項に記載の酸化ストレス状態判定方法。 The oxidative stress state determination method according to any one of claims 1 to 4, wherein the biological sample is whole blood.
ことを特徴とする請求項1〜5の何れか一項に記載の酸化ストレス状態判定方法。 The oxidation according to any one of claims 1 to 5, wherein a concentration of an analyte different from the 8-hydroxydeoxyguanosine in the biological sample is further measured as an index of an oxidative stress state. Stress state determination method.
クロモグラニンA、アミラーゼ、酸素ラジカル、バイオピリン、チオレドキシン、MDA−LDL、血中酸化型α1アンチトリプシン、酸化LDL受容体LOX−1からなる群から選択される
ことを特徴とする請求項6に記載の酸化ストレス状態判定方法。 Said another analyte is
The oxidation according to claim 6, which is selected from the group consisting of chromogranin A, amylase, oxygen radical, biopyrine, thioredoxin, MDA-LDL, blood oxidized α1 antitrypsin, and oxidized LDL receptor LOX-1. Stress state determination method.
該8-ヒドロキシデオキシグアノシンに特異的に反応する反応物質とを反応させ、
反応により生成又は消費される物質の濃度を電気的又は光学的に測定することにより、
生体試料サンプル中の8-ヒドロキシデオキシグアノシンの濃度を測定する
ことを特徴とする請求項1〜7の何れか一項に記載の酸化ストレス状態判定方法。 8-hydroxydeoxyguanosine present in the biological sample;
Reacting with a reactant that specifically reacts with the 8-hydroxydeoxyguanosine,
By measuring the concentration of substances produced or consumed by the reaction electrically or optically,
The method for determining an oxidative stress state according to any one of claims 1 to 7, wherein the concentration of 8-hydroxydeoxyguanosine in the biological sample is measured.
酸化損傷を受けることなく生体試料サンプル中に存在する、もしくはあらかじめ生体試料サンプル中に投入したデオキシグアノシンの濃度と
を比較することによって酸化ストレス状態の判定を行う
ことを特徴とする請求項1〜8の何れか一項に記載の酸化ストレス状態判定方法。 The concentration of 8-hydroxydeoxyguanosine present in the biological sample;
The oxidative stress state is determined by comparing the concentration of deoxyguanosine that is present in a biological sample sample without being damaged by oxidization, or that has been previously introduced into the biological sample sample. The oxidative stress state determination method according to any one of the above.
サンプル導入部から導入された生体試料サンプル中の8-ヒドロキシデオキシグアノシンの濃度を測定する8-ヒドロキシデオキシグアノシン濃度測定部と、
前記濃度測定部において測定された情報を入力し、8-ヒドロキシデオキシグアノシン濃度から体内の酸化ストレス状態を判定する判定処理部と
を備えていることを特徴とする酸化ストレス状態判定システム。 A sample introduction part for introducing a biological sample, and
An 8-hydroxydeoxyguanosine concentration measuring unit for measuring the concentration of 8-hydroxydeoxyguanosine in the biological sample sample introduced from the sample introduction unit;
An oxidative stress state determination system comprising: a determination processing unit that inputs information measured by the concentration measurement unit and determines an oxidative stress state in the body from an 8-hydroxydeoxyguanosine concentration.
ことを特徴とする請求項10に記載の酸化ストレス状態判定システム。 The oxidative stress state determination system according to claim 10, wherein the biological sample is urine.
ことを特徴とする請求項10又は11に記載の酸化ストレス状態判定システム。 The said 8-hydroxydeoxyguanosine density | concentration measurement part is comprised so that a biological sample sample and the reactive substance which reacts specifically with 8-hydroxydeoxyguanosine can be made to react. Or the oxidative stress state determination system according to 11.
ことを特徴とする請求項12に記載の酸化ストレス状態判定システム。 The oxidative stress state determination system according to claim 12, wherein the 8-hydroxydeoxyguanosine concentration measuring unit includes the reactive substance in advance.
ことを特徴とする請求項12に記載の酸化ストレス状態判定システム。 The oxidative stress state determination system according to claim 12, wherein the 8-hydroxydeoxyguanosine concentration measurement unit includes a reaction material supply unit that supplies the reaction material from outside the measurement unit.
抗8-ヒドロキシデオキシグアノシン抗体による抗原抗体反応を生じる試薬、又は
アプタマーによる結合反応を生じる試薬である
ことを特徴とする請求項12〜14の何れか一項に記載の酸化ストレス状態判定システム。 A reactive substance that specifically reacts with 8-hydroxydeoxyguanosine
The oxidative stress state determination system according to any one of claims 12 to 14, which is a reagent that causes an antigen-antibody reaction with an anti-8-hydroxydeoxyguanosine antibody or a reagent that causes a binding reaction with an aptamer.
ことを特徴とする請求項12〜15の何れか一項に記載の酸化ストレス状態判定システム。 The 8-hydroxydeoxyguanosine concentration measurement unit is configured to be able to electrically or optically measure the concentration of a substance produced or consumed by reaction with the reactant. Item 16. The oxidative stress state determination system according to any one of Items 12 to 15.
ことを特徴とする請求項16に記載の酸化ストレス状態判定システム。 The oxidative stress state determination system according to claim 16, wherein the optically measuring means in the 8-hydroxydeoxyguanosine concentration measuring unit is a visual or spectrophotometer.
ことを特徴とする請求項17に記載の酸化ストレス状態判定システム。 The spectrophotometer is used to measure at least one of reflectance, fluorescence, absorbance, transmittance, or evanescent wave of a sample in an 8-hydroxydeoxyguanosine concentration measurement unit. Oxidative stress state determination system.
ことを特徴とする請求項16に記載の酸化ストレス状態判定システム。 The oxidative stress state determination system according to claim 16, wherein the means for electrically measuring in the 8-hydroxydeoxyguanosine concentration measuring unit is an electrochemical sensor.
ことを特徴とする請求項19に記載の酸化ストレス状態判定システム。 The electrochemical sensor is used to measure at least one of a current value, a voltage value, an electric resistance value, and an impedance of a sample in an 8-hydroxydeoxyguanosine concentration measurement unit. Oxidative stress state determination system.
緩衝液を含有する液透過性緩衝液層と、
前記反応物質を含有する反応層と、
生体試料サンプルが、前記液透過性緩衝液層を通過した後に前記反応層に至るように前記液透過性緩衝液層及び前記反応層を支持する支持部材を有する
ことを特徴とする請求項12〜20の何れか一項に記載の酸化ストレス状態判定システム。 The 8-hydroxydeoxyguanosine concentration measuring unit is
A liquid permeable buffer layer containing a buffer;
A reaction layer containing the reactant,
The biological sample sample has a support member that supports the liquid permeable buffer solution layer and the reaction layer so as to reach the reaction layer after passing through the liquid permeable buffer solution layer. The oxidative stress state determination system according to any one of 20.
前記緩衝液層と液接触する少なくとも一つの付加的な層をさらに含む
ことを特徴とする請求項21に記載の酸化ストレス状態判定システム。 The 8-hydroxydeoxyguanosine concentration measuring unit is
The oxidative stress state determination system according to claim 21, further comprising at least one additional layer in liquid contact with the buffer layer.
血球分離層、
放射線遮断層、
干渉除去層、
透析層又は
濾過層
の少なくとも一つである
ことを特徴とする請求項22に記載の酸化ストレス状態判定システム。 The additional layer is
Blood cell separation layer,
Radiation blocking layer,
Interference cancellation layer,
The oxidative stress state determination system according to claim 22, wherein the oxidative stress state determination system is at least one of a dialysis layer and a filtration layer.
前記支持部材が、前記緩衝液層及び前記反応層を挟み込み、前記サンプル導入孔から生体試料サンプルが前記緩衝液層及び前記反応層に供給されるように構成されている
ことを特徴とする請求項21〜23の何れか一項に記載の酸化ストレス状態判定システム。 The support member includes a biological sample sample introduction hole; and
The said support member is comprised so that the said buffer solution layer and the said reaction layer may be pinched | interposed, and a biological sample sample may be supplied to the said buffer solution layer and the said reaction layer from the said sample introduction hole. The oxidative stress state determination system according to any one of 21 to 23.
前記緩衝液層が前記色素層の上に重ねて配置される
ことを特徴とする請求項21〜24の何れか一項に記載の酸化ストレス状態判定システム。 The 8-hydroxydeoxyguanosine concentration measuring unit includes a dye layer for holding a dye,
The oxidative stress state determination system according to any one of claims 21 to 24, wherein the buffer solution layer is disposed so as to overlap the dye layer.
前記緩衝液層が前記色素層と並置される
ことを特徴とする請求項21〜24の何れか一項に記載の酸化ストレス状態判定システム。 The 8-hydroxydeoxyguanosine concentration measuring unit includes a dye layer for holding a dye,
The oxidative stress state determination system according to any one of claims 21 to 24, wherein the buffer solution layer is juxtaposed with the dye layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008335835A JP5997418B2 (en) | 2008-12-30 | 2008-12-30 | Oxidative stress state system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008335835A JP5997418B2 (en) | 2008-12-30 | 2008-12-30 | Oxidative stress state system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010156639A true JP2010156639A (en) | 2010-07-15 |
JP5997418B2 JP5997418B2 (en) | 2016-09-28 |
Family
ID=42574658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008335835A Active JP5997418B2 (en) | 2008-12-30 | 2008-12-30 | Oxidative stress state system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5997418B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2405335A2 (en) | 2010-07-09 | 2012-01-11 | Sony Corporation | Display control apparatus and display control method, display control program, and recording medium |
WO2019004195A1 (en) * | 2017-06-30 | 2019-01-03 | キヤノン株式会社 | Kit for chromatography, developing liquid for chromatography, and chromatography |
JP7461037B2 (en) | 2020-07-22 | 2024-04-03 | 株式会社Resvo | Biomarkers for determining sleep disorders |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3091974B2 (en) * | 1990-09-27 | 2000-09-25 | 日研フード株式会社 | 8-Hydroxy-2'-deoxyguanosine monoclonal antibody, method for producing the same, and hybrid cell producing monoclonal antibody |
JP2001272388A (en) * | 2000-03-27 | 2001-10-05 | Nissei Bio Kk | Simple biological evaluation method for natural/ artificial substance using dna damage index |
JP2005095171A (en) * | 2003-09-05 | 2005-04-14 | Toyobo Co Ltd | PROBE DETECTING CHANGE OF ENVIRONMENT, PROTEIN, GENE DNA ENCODING THE SAME, mRNA, AND METHOD FOR DETECTING THE CHANGE OF ENVIRONMENT |
JP2006056859A (en) * | 2004-08-24 | 2006-03-02 | Techno Medica Co Ltd | Anti-8-hydroxy-2'-deoxyguanosine monoclonal antibody and hybridoma producing the same |
JP2007114097A (en) * | 2005-10-21 | 2007-05-10 | Rohto Pharmaceut Co Ltd | Case for inspection tool and liquid sample inspection tool |
JP2007244254A (en) * | 2006-03-14 | 2007-09-27 | Kanazawa Univ | Dna aptamer having specific binding property to 8-hydroxydeoxyguanosine |
WO2008135862A2 (en) * | 2007-03-16 | 2008-11-13 | Inverness Medical Switzerland Gmbh | Devices and methods for detecting analytes |
-
2008
- 2008-12-30 JP JP2008335835A patent/JP5997418B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3091974B2 (en) * | 1990-09-27 | 2000-09-25 | 日研フード株式会社 | 8-Hydroxy-2'-deoxyguanosine monoclonal antibody, method for producing the same, and hybrid cell producing monoclonal antibody |
JP2001272388A (en) * | 2000-03-27 | 2001-10-05 | Nissei Bio Kk | Simple biological evaluation method for natural/ artificial substance using dna damage index |
JP2005095171A (en) * | 2003-09-05 | 2005-04-14 | Toyobo Co Ltd | PROBE DETECTING CHANGE OF ENVIRONMENT, PROTEIN, GENE DNA ENCODING THE SAME, mRNA, AND METHOD FOR DETECTING THE CHANGE OF ENVIRONMENT |
JP2006056859A (en) * | 2004-08-24 | 2006-03-02 | Techno Medica Co Ltd | Anti-8-hydroxy-2'-deoxyguanosine monoclonal antibody and hybridoma producing the same |
JP2007114097A (en) * | 2005-10-21 | 2007-05-10 | Rohto Pharmaceut Co Ltd | Case for inspection tool and liquid sample inspection tool |
JP2007244254A (en) * | 2006-03-14 | 2007-09-27 | Kanazawa Univ | Dna aptamer having specific binding property to 8-hydroxydeoxyguanosine |
WO2008135862A2 (en) * | 2007-03-16 | 2008-11-13 | Inverness Medical Switzerland Gmbh | Devices and methods for detecting analytes |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2405335A2 (en) | 2010-07-09 | 2012-01-11 | Sony Corporation | Display control apparatus and display control method, display control program, and recording medium |
WO2019004195A1 (en) * | 2017-06-30 | 2019-01-03 | キヤノン株式会社 | Kit for chromatography, developing liquid for chromatography, and chromatography |
JP7461037B2 (en) | 2020-07-22 | 2024-04-03 | 株式会社Resvo | Biomarkers for determining sleep disorders |
Also Published As
Publication number | Publication date |
---|---|
JP5997418B2 (en) | 2016-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Luppa et al. | Clinically relevant analytical techniques, organizational concepts for application and future perspectives of point-of-care testing | |
EP1664783B1 (en) | Rapid test for glycated albumin | |
JP5036867B2 (en) | Biosensor | |
JP2007528005A (en) | Combined system of body fluid sample measuring instrument and cartridge | |
PL216216B1 (en) | Appliance designed to perform immunological tests and method of performing immunological tests | |
US20200182778A1 (en) | Device and method for blood hemoglobin measurement without carboxyhemoglobin interference | |
CA2962931C (en) | Hemolysis detection device, system and method | |
Strzelak et al. | Nephelometry and turbidimetry with paired emitter detector diodes and their application for determination of total urinary protein | |
CA2618305C (en) | Multi-layer strip for use in measuring biological material and system for measuring biological material | |
JP5997418B2 (en) | Oxidative stress state system | |
WO2019035082A1 (en) | Techniques for performing optical and electrochemical assays with universal circuitry | |
US11154857B2 (en) | Single-channel, hybrid biosensor and sensor system including the same | |
JP2008513787A (en) | Biological test strip | |
WO2001069246A1 (en) | Test paper | |
US11703502B2 (en) | Vertical flow assay device for detecting glucose concentration in a fluid sample | |
JP5162439B2 (en) | Immunochromatographic sensor | |
JP2010156640A (en) | Immunochromatosensor | |
US20180203008A1 (en) | Sensor for analyzing analyte and method of analyzing analyte | |
KR101326399B1 (en) | Stick for bio material and system for measuring bio material | |
WO2015028811A2 (en) | Methods for detecting proteins | |
EP4244604B1 (en) | Portable device for detecting and quantifying a concentration of a marker present in a sample of biological fluid | |
EP4257981A1 (en) | Sensing device with improved detection sensitivity for detecting the presence of a predefined chemical, biological or biochemical entity in a fluid sample | |
JP2001330605A (en) | Test paper | |
KR20110084636A (en) | Blood sample assay cartridge and cartridge reader | |
JP2010156641A (en) | Concentration measuring sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121003 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130612 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130812 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140514 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140714 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160328 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160531 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160826 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5997418 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |