JP2010156543A - Magnetic detecting device - Google Patents

Magnetic detecting device Download PDF

Info

Publication number
JP2010156543A
JP2010156543A JP2007109615A JP2007109615A JP2010156543A JP 2010156543 A JP2010156543 A JP 2010156543A JP 2007109615 A JP2007109615 A JP 2007109615A JP 2007109615 A JP2007109615 A JP 2007109615A JP 2010156543 A JP2010156543 A JP 2010156543A
Authority
JP
Japan
Prior art keywords
magnetic field
external magnetic
effect element
layer
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007109615A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sato
清 佐藤
Hideto Ando
秀人 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2007109615A priority Critical patent/JP2010156543A/en
Priority to PCT/JP2008/056930 priority patent/WO2008132992A1/en
Publication of JP2010156543A publication Critical patent/JP2010156543A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic detecting device, which can have a wider detecting range for an external magnetic field than that of the prior art and which can make a dipole detection highly precisely. <P>SOLUTION: A first magneto-resistance effect element and a second magneto-resistance effect element are formed to have a hard bias layer so that a fixed magnetic layer and a free magnetic layer are made orthogonal in their magnetizing direction thereby to establish a relation between an external magnetic field H and an output value (or a differential potential), as shown in Fig.1. The range for detecting the external magnetic field H can be set wider than that of the prior art. Moreover, there arises no hysteresis, and the output value is straight but not blunt even for the zero external magnetic field, so that the external magnetic field H can be detected highly precisely all over the detecting range. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、従来に比べて、外部磁界の検知範囲を広くできるとともに、高精度に双極検知可能な磁気検出装置に関する。   The present invention relates to a magnetic detection device capable of widening the detection range of an external magnetic field and capable of detecting bipolar with high accuracy as compared with the conventional case.

下記の特許文献1,2に記載されている磁気検出装置では双極検知が可能とされている。すなわち(+)方向の外部磁界及び前記(+)方向とは逆方向の(−)方向の外部磁界が作用しても、どちらの外部磁界も検知することが出来る。   Bipolar detection is possible in the magnetic detection devices described in Patent Documents 1 and 2 below. That is, even if an external magnetic field in the (+) direction and an external magnetic field in the (−) direction opposite to the (+) direction are acted, both external magnetic fields can be detected.

特許文献1,2に記載された発明には、特許文献1,2の図2に示す構造の磁気抵抗効果素子を用い、さらに電流バイアス磁界を与えて、特許文献1に示す図9や特許文献2に示す図7のR−H曲線のうち、線形領域L1,L2部分を実際の検知領域として使用している。
特開2006−19383号公報 特開2005−236134号公報
In the inventions described in Patent Documents 1 and 2, the magnetoresistive effect element having the structure shown in FIG. 2 of Patent Documents 1 and 2 is used, and a current bias magnetic field is further applied, so that FIG. In the RH curve of FIG. 7 shown in FIG. 2, the linear regions L1 and L2 are used as actual detection regions.
JP 2006-19383 A JP-A-2005-236134

しかしながら特許文献1、2に示す磁気検出装置の構成では、線形領域L1,L2が外部磁界の検知範囲であるため、前記検知範囲を広く設定することが出来なかった。   However, in the configuration of the magnetic detection device disclosed in Patent Documents 1 and 2, since the linear regions L1 and L2 are external magnetic field detection ranges, the detection range cannot be set wide.

また、電流バイアス磁界を弱めて、線形領域L1,L2を広く取ろうとすると、例えば特許文献1の図9に示す外部磁界ゼロ近辺の抵抗変化率(ΔR/R)が鈍った部分も線形領域L1,L2内に入ってしまい、高精度な検知が出来ないといった問題があった。   Further, if the current bias magnetic field is weakened and the linear regions L1 and L2 are to be widened, for example, the portion where the resistance change rate (ΔR / R) near zero external magnetic field shown in FIG. , L2 enters, and there is a problem that high-precision detection cannot be performed.

そこで本発明は、上記従来の課題を解決するためのものであり、特に、従来に比べて、外部磁界の検知範囲を広くできるとともに、高精度に双極検知可能な磁気検出装置を提供することを目的としている。   Accordingly, the present invention is to solve the above-described conventional problems, and in particular, to provide a magnetic detection device capable of widening the detection range of the external magnetic field and capable of bipolar detection with high accuracy as compared with the related art. It is aimed.

本発明における磁気検出装置は、
下から固定磁性層、非磁性材料層、及びフリー磁性層の順に、あるいは下からフリー磁性層、非磁性材料層及び固定磁性層の順に積層され、外部磁界に対して電気抵抗が変化する磁気抵抗効果を利用した第1磁気抵抗効果素子及び、第2磁気抵抗効果素子を有し、
前記第1磁気抵抗効果素子及び前記第2磁気抵抗効果素子には共に、無磁場状態において前記固定磁性層の磁化方向に対して前記フリー磁性層の磁化方向を直交方向へ揃えるためのバイアス層が設けられており、
前記第1磁気抵抗効果素子の外部磁界の磁界強度変化に対して変化する抵抗値に基づく第1出力値、及び、前記第2磁気抵抗効果素子の外部磁界の磁界強度変化に対して変化する抵抗値に基づく第2出力値は、共に、(+)方向の外部磁界側から(−)方向の外部磁界側に直線的に変化するリニア領域を備えるとともに、無磁場状態から(+)方向の外部磁界を増大させたときの前記第1出力値の増減傾向と、無磁場状態から(−)方向の外部磁界を増大させたときの前記第2出力値の増減傾向とが同傾向となっていることを特徴とするものである。
The magnetic detection device in the present invention is
Magnetoresistance in which the electrical resistance changes with respect to the external magnetic field, stacked from the bottom in the order of the pinned magnetic layer, nonmagnetic material layer, and free magnetic layer, or from the bottom in the order of the free magnetic layer, nonmagnetic material layer, and pinned magnetic layer A first magnetoresistive effect element and a second magnetoresistive effect element utilizing the effect,
Each of the first magnetoresistive element and the second magnetoresistive element includes a bias layer for aligning the magnetization direction of the free magnetic layer in a direction perpendicular to the magnetization direction of the pinned magnetic layer in the absence of a magnetic field. Provided,
A first output value based on a resistance value that changes with respect to a change in magnetic field strength of an external magnetic field of the first magnetoresistive effect element, and a resistance that changes with respect to a change in magnetic field strength of an external magnetic field of the second magnetoresistive effect element Both of the second output values based on the value include a linear region that linearly changes from the external magnetic field side in the (+) direction to the external magnetic field side in the (−) direction, and from the no magnetic field state to the external in the (+) direction. The increasing / decreasing tendency of the first output value when the magnetic field is increased and the increasing / decreasing tendency of the second output value when the external magnetic field in the (−) direction is increased from the no magnetic field state are the same tendency. It is characterized by this.

上記の構成により、従来に比べて、外部磁界の検知範囲を広く設定できるとともに、高精度に双極検知可能となる。   With the above configuration, the detection range of the external magnetic field can be set wider than before, and bipolar detection can be performed with high accuracy.

本発明では、前記第1出力値、及び前記第2出力値に対して共通の閾値が設定されていることが好ましい。これにより本発明では、回路構成を簡単にでき、また装置の小型化を促進できる。   In the present invention, it is preferable that a common threshold is set for the first output value and the second output value. Thereby, in this invention, a circuit structure can be simplified and size reduction of an apparatus can be accelerated | stimulated.

また本発明では、前記第1磁気抵抗効果素子及び第2磁気抵抗効果素子を同じ膜構成で形成することが出来、磁気検出装置の製造を容易化できる。   In the present invention, the first magnetoresistive effect element and the second magnetoresistive effect element can be formed with the same film configuration, and the manufacture of the magnetic detection device can be facilitated.

本発明では、従来に比べて、外部磁界の検知範囲を広く設定できるとともに、高精度に双極検知できる。   In the present invention, the detection range of the external magnetic field can be set wider than before, and bipolar detection can be performed with high accuracy.

図1及び図2は、外部磁界Hと、本実施形態の第1磁気抵抗効果素子及び第2磁気抵抗効果素子の抵抗値に基づく出力値V(差動電位)との関係を示すグラフ、図3,図4は本実施形態の第1磁気抵抗効果素子及び第2磁気抵抗効果素子のR−H曲線、図5は、本実施形態における第1磁気抵抗効果素子及び第2磁気抵抗効果素子の膜構成を示す断面図、図6及び図7は本実施形態の磁気検出装置の回路構成図、図8は、折畳み式携帯電話を開いた状態の平面図、図9は図8に示す折畳み式携帯電話の斜視図、図10は、図9の状態から折畳み式携帯電話を閉じる途中の状態を示す折畳み式携帯電話の側面図、図11は、図10の状態から完全に折畳み式携帯電話の閉じた状態を横から見た側面図、図12は、図11に示す閉じた状態の折畳み式携帯電話をA−A線から切断し矢印方向から見た部分断面図、図13は、図9の状態から表示筐体を反転させる途中状態を示す折畳み式携帯電話の斜視図、図14は、前記表示筐体の表裏面を反転させた状態を示す折畳み式携帯電話の平面図、図15は図14の状態から折畳み式携帯電話を閉じたときの図12と同じ箇所での部分断面図、である。   1 and 2 are graphs and diagrams showing the relationship between the external magnetic field H and the output value V (differential potential) based on the resistance values of the first magnetoresistive element and the second magnetoresistive element of this embodiment. 3 and 4 are RH curves of the first magnetoresistive effect element and the second magnetoresistive effect element of the present embodiment, and FIG. 5 is a diagram of the first magnetoresistive effect element and the second magnetoresistive effect element of the present embodiment. FIG. 6 and FIG. 7 are circuit configuration diagrams of the magnetic detection device of this embodiment, FIG. 8 is a plan view of the folding cellular phone opened, and FIG. 9 is the folding type shown in FIG. FIG. 10 is a side view of the foldable mobile phone showing a state in the middle of closing the foldable mobile phone from the state of FIG. 9, and FIG. 11 is a side view of the completely foldable mobile phone from the state of FIG. FIG. 12 is a side view of the closed state seen from the side, and FIG. 12 shows the folded state shown in FIG. 13 is a partial cross-sectional view of the cellular phone taken along the line AA and viewed from the direction of the arrow. FIG. 13 is a perspective view of the folding cellular phone showing a state in which the display housing is reversed from the state of FIG. Fig. 15 is a plan view of a folding mobile phone showing the state in which the front and back surfaces of the display casing are reversed. Fig. 15 is a partial cross-sectional view at the same position as Fig. 12 when the folding mobile phone is closed from the state shown in Fig. 14. .

各図で用いられる図示X1、X2方向は横方向、図示Y1、図Y2方向は縦方向、図示Z方向は高さ方向を示し、各方向は残り2つの方向と直交する関係にある。   The X1 and X2 directions used in each figure are the horizontal direction, the Y1 and Y2 directions are the vertical direction, the Z direction is the height direction, and each direction is orthogonal to the remaining two directions.

本実施形態の磁気検出装置20には図6に示すように、2つの磁気抵抗効果素子(GMR素子)23、27が設けられている。   As shown in FIG. 6, the magnetic detection device 20 of this embodiment is provided with two magnetoresistive elements (GMR elements) 23 and 27.

前記磁気抵抗効果素子23,27は図5に示すように、例えば、基板12上に下から下地層17、反強磁性層13、固定磁性層14、非磁性材料層15、フリー磁性層16及び保護層18の順に積層されている。前記下地層17は例えばTa、反強磁性層13は例えばIrMn、固定磁性層14はCoFe、非磁性材料層15はCu、フリー磁性層16はNiFe、保護層18はTaで形成される。図4に示すように、前記下地層17から前記保護層18までの積層体の両側にはハードバイアス層11が設けられている。前記ハードバイアス層11は例えばCoPtで形成される。   As shown in FIG. 5, the magnetoresistive elements 23 and 27 are formed on the substrate 12 from below, for example, the underlayer 17, the antiferromagnetic layer 13, the pinned magnetic layer 14, the nonmagnetic material layer 15, the free magnetic layer 16, and the like. The protective layers 18 are stacked in this order. The underlayer 17 is made of Ta, the antiferromagnetic layer 13 is made of IrMn, the pinned magnetic layer 14 is made of CoFe, the nonmagnetic material layer 15 is made of Cu, the free magnetic layer 16 is made of NiFe, and the protective layer 18 is made of Ta. As shown in FIG. 4, hard bias layers 11 are provided on both sides of the laminate from the base layer 17 to the protective layer 18. The hard bias layer 11 is made of, for example, CoPt.

図5に示すように前記磁気抵抗効果素子23,27の固定磁性層14の磁化14aは、反強磁性層13との界面で生じる交換結合磁界(Hex)等により図示X2方向に固定されている。また前記フリー磁性層16の磁化16aは前記ハードバイアス層11からのバイアス磁界により図示Y1方向に揃えられている。図5に示すように、無磁場状態では、前記固定磁性層14の磁化14aとフリー磁性層16の磁化16aは直交関係にある。   As shown in FIG. 5, the magnetization 14a of the pinned magnetic layer 14 of the magnetoresistive elements 23 and 27 is pinned in the X2 direction by an exchange coupling magnetic field (Hex) generated at the interface with the antiferromagnetic layer 13. . The magnetization 16a of the free magnetic layer 16 is aligned in the Y1 direction by the bias magnetic field from the hard bias layer 11. As shown in FIG. 5, the magnetization 14a of the pinned magnetic layer 14 and the magnetization 16a of the free magnetic layer 16 are orthogonal to each other in the absence of a magnetic field.

図5に示す磁気抵抗効果素子23,27は、巨大磁気抵抗効果(GMR効果)を利用したGMR素子であるが、前記非磁性材料層15の部分が絶縁層で形成されたトンネル型磁気抵抗効果(TMR効果)を利用したTMR素子であってもよい。また図5と異なって、下から下地層17、フリー磁性層16、非磁性材料層15、固定磁性層14、反強磁性層13、及び保護層18の順に積層されていてもよい。   The magnetoresistive effect elements 23 and 27 shown in FIG. 5 are GMR elements utilizing the giant magnetoresistive effect (GMR effect), but the tunnel type magnetoresistive effect in which the portion of the nonmagnetic material layer 15 is formed of an insulating layer. A TMR element utilizing (TMR effect) may be used. Further, unlike FIG. 5, the base layer 17, the free magnetic layer 16, the nonmagnetic material layer 15, the pinned magnetic layer 14, the antiferromagnetic layer 13, and the protective layer 18 may be stacked in this order from the bottom.

図3は磁気抵抗効果素子23,27のR−H曲線を示している。例えば、横軸に示す(+)方向の外部磁界(+H)は、図示X1方向、(−)方向の外部磁界(−H)は、図示X2方向である。図3に示すように前記磁気抵抗効果素子23,27にハードバイアス層11が設けられバイアス磁界がかけられていることでヒステリシスは無くなり(生じてもわずかであり)、図3に示すように、(+)方向の外部磁界(+H)側から(−)方向の外部磁界(−H)側にかけて直線的に変化するリニア領域19を備えている。リニア領域19のように外部磁界Hに対して抵抗値Rが変化する領域の横軸(外部磁界H)に対する傾き角度は、前記ハードバイアス層11を形成しない形態に比べて小さくなり、後述するように、外部磁界Hの検知範囲を広くすることが出来る。   FIG. 3 shows RH curves of the magnetoresistive effect elements 23 and 27. For example, the external magnetic field (+ H) in the (+) direction shown on the horizontal axis is the X1 direction in the figure, and the external magnetic field (−H) in the (−) direction is the X2 direction in the figure. As shown in FIG. 3, the magnetoresistive effect elements 23 and 27 are provided with the hard bias layer 11 and a bias magnetic field is applied, thereby eliminating the hysteresis (even if it occurs), as shown in FIG. A linear region 19 that linearly changes from the external magnetic field (+ H) side in the (+) direction to the external magnetic field (−H) side in the (−) direction is provided. The inclination angle with respect to the horizontal axis (external magnetic field H) of the region where the resistance value R changes with respect to the external magnetic field H as in the linear region 19 is smaller than that in the case where the hard bias layer 11 is not formed, and will be described later. In addition, the detection range of the external magnetic field H can be widened.

図3に示すように、磁気抵抗効果素子23,27の抵抗値Rが最大抵抗値R1あるいは最小抵抗値R2になったときの外部磁界Hの大きさが異方性磁界Hk1と同じである。例えば前記ハードバイアス層11のバイアス磁界の大きさを変化させることで、図3に示すようにリニア領域19の傾きを変えることができ、その結果、異方性磁界Hk1の大きさをHk2に変化させることができる。例えば本実施形態では、前記異方性磁界Hk1を50〜500Oeに設定できる。   As shown in FIG. 3, the magnitude of the external magnetic field H when the resistance value R of the magnetoresistive elements 23 and 27 reaches the maximum resistance value R1 or the minimum resistance value R2 is the same as the anisotropic magnetic field Hk1. For example, by changing the magnitude of the bias magnetic field of the hard bias layer 11, the inclination of the linear region 19 can be changed as shown in FIG. 3, and as a result, the magnitude of the anisotropic magnetic field Hk1 is changed to Hk2. Can be made. For example, in the present embodiment, the anisotropic magnetic field Hk1 can be set to 50 to 500 Oe.

図6に示すように本実施形態の磁気検出装置20は、抵抗素子部21と集積回路(IC)22とを有して構成される。   As shown in FIG. 6, the magnetic detection device 20 of the present embodiment includes a resistance element unit 21 and an integrated circuit (IC) 22.

前記抵抗素子部21には、第1磁気抵抗効果素子23と第1固定抵抗素子24とが第1出力部25を介して直列接続された第1直列回路26、及び、第2磁気抵抗効果素子27と第2固定抵抗素子28とが第2出力部29を介して直列接続された第2直列回路30が設けられている。   The resistance element section 21 includes a first series circuit 26 in which a first magnetoresistance effect element 23 and a first fixed resistance element 24 are connected in series via a first output section 25, and a second magnetoresistance effect element. A second series circuit 30 is provided in which 27 and the second fixed resistance element 28 are connected in series via a second output unit 29.

また、前記集積回路22内には、第3固定抵抗素子31と第4固定抵抗素子32が第3出力部33を介して直列接続された第3直列回路34が設けられる。   In the integrated circuit 22, a third series circuit 34 in which a third fixed resistance element 31 and a fourth fixed resistance element 32 are connected in series via a third output unit 33 is provided.

前記第3直列回路34は、共通回路として前記第1直列回路26及び前記第2直列回路30と夫々ブリッジ回路を構成している。以下では前記第1直列回路26と前記第3直列回路34とが並列接続されてなるブリッジ回路を第1ブリッジ回路BC1と、前記第2直列回路30と前記第3直列回路34とが並列接続されてなるブリッジ回路を第2ブリッジ回路BC2と称する。   The third series circuit 34 forms a bridge circuit with the first series circuit 26 and the second series circuit 30 as a common circuit. Hereinafter, a bridge circuit formed by connecting the first series circuit 26 and the third series circuit 34 in parallel is referred to as a first bridge circuit BC1, and the second series circuit 30 and the third series circuit 34 are connected in parallel. This bridge circuit is referred to as a second bridge circuit BC2.

図6に示すように、前記第1ブリッジ回路BC1では、前記第1磁気抵抗効果素子23と、前記第4固定抵抗素子32とが並列接続されるとともに、前記第1固定抵抗素子24と前記第3固定抵抗素子31とが並列接続されている。また前記第2ブリッジ回路BC2では、前記第2磁気抵抗効果素子27と、前記第3固定抵抗素子31とが並列接続されるとともに、前記第2固定抵抗素子28と前記第4固定抵抗素子32とが並列接続されている。   As shown in FIG. 6, in the first bridge circuit BC1, the first magnetoresistance effect element 23 and the fourth fixed resistance element 32 are connected in parallel, and the first fixed resistance element 24 and the first fixed resistance element 24 are connected to each other. 3 fixed resistance elements 31 are connected in parallel. In the second bridge circuit BC2, the second magnetoresistance effect element 27 and the third fixed resistance element 31 are connected in parallel, and the second fixed resistance element 28 and the fourth fixed resistance element 32 are connected to each other. Are connected in parallel.

図6に示すように前記集積回路22には入力端子(電源)39、グランド端子42及び2つの外部出力端子40,41が設けられている。前記入力端子39、グランド端子42及び外部出力端子40,41は夫々図示しない機器側の端子部とワイヤボンディングやダイボンディング等で電気的に接続されている。   As shown in FIG. 6, the integrated circuit 22 is provided with an input terminal (power source) 39, a ground terminal 42, and two external output terminals 40 and 41. The input terminal 39, the ground terminal 42, and the external output terminals 40, 41 are electrically connected to terminal portions on the device side (not shown) by wire bonding, die bonding, or the like.

前記入力端子39に接続されたライン50及び前記グランド端子42に接続されたライン51は、前記第1直列回路26、第2直列回路30及び第3直列回路34の両側端部に設けられた電極の夫々に接続されている。   A line 50 connected to the input terminal 39 and a line 51 connected to the ground terminal 42 are electrodes provided at both end portions of the first series circuit 26, the second series circuit 30, and the third series circuit 34. Connected to each of them.

図6に示すように集積回路22内には、1つの差動増幅器35が設けられ、前記差動増幅器35の+入力部、−入力部のどちらかに、前記第3直列回路34の第3出力部33が接続されている。前記第1直列回路26の第1出力部25及び第2直列回路30の第2出力部29は夫々第1スイッチ回路(第1接続切換部)36の入力部に接続され、前記第1スイッチ回路36の出力部は前記差動増幅器35の−入力部、+入力部のどちらか(前記第3出力部33が接続されていない側の入力部)に接続されている。   As shown in FIG. 6, a single differential amplifier 35 is provided in the integrated circuit 22, and the third series circuit 34 of the third series circuit 34 is connected to either the + input section or the −input section of the differential amplifier 35. An output unit 33 is connected. The first output section 25 of the first series circuit 26 and the second output section 29 of the second series circuit 30 are connected to the input section of a first switch circuit (first connection switching section) 36, respectively, and the first switch circuit The output unit 36 is connected to either the − input unit or the + input unit of the differential amplifier 35 (the input unit on the side where the third output unit 33 is not connected).

図6に示すように、前記差動増幅器35の出力部はシュミットトリガー型のコンパレータ38に接続され、さらに前記コンパレータ38の出力部は第2のスイッチ回路(第2接続切換部)43の入力部に接続され、さらに前記第2スイッチ回路43の出力部側は2つのラッチ回路46,47及びFET回路54、55を経て第1外部出力端子40及び第2外部出力端子41に夫々接続される。   As shown in FIG. 6, the output section of the differential amplifier 35 is connected to a Schmitt trigger type comparator 38, and the output section of the comparator 38 is an input section of a second switch circuit (second connection switching section) 43. Furthermore, the output side of the second switch circuit 43 is connected to the first external output terminal 40 and the second external output terminal 41 via the two latch circuits 46 and 47 and the FET circuits 54 and 55, respectively.

さらに図6に示すように、前記集積回路22内には第3スイッチ回路48が設けられている。前記第3スイッチ回路48の出力部は、前記グランド端子42に接続されたライン51に接続され、前記第3スイッチ回路48の入力部には、第1直列回路26及び第2直列回路30の一端部が接続されている。   Further, as shown in FIG. 6, a third switch circuit 48 is provided in the integrated circuit 22. The output part of the third switch circuit 48 is connected to a line 51 connected to the ground terminal 42, and one end of the first series circuit 26 and the second series circuit 30 is connected to the input part of the third switch circuit 48. Are connected.

さらに図6に示すように、前記集積回路22内には、インターバルスイッチ回路52及びクロック回路44が設けられている。前記インターバルスイッチ回路52のスイッチがオフされると集積回路22内への通電が停止するようになっている。前記インターバルスイッチ回路52のスイッチのオン・オフは、前記クロック回路44からのクロック信号に連動しており、前記インターバルスイッチ回路52は通電状態を間欠的に行う節電機能を有している。   Further, as shown in FIG. 6, an interval switch circuit 52 and a clock circuit 44 are provided in the integrated circuit 22. When the switch of the interval switch circuit 52 is turned off, the power supply to the integrated circuit 22 is stopped. The on / off of the switch of the interval switch circuit 52 is interlocked with the clock signal from the clock circuit 44, and the interval switch circuit 52 has a power saving function for intermittently energizing.

前記クロック回路44からのクロック信号は、第1スイッチ回路36、第2スイッチ回路43、及び第3スイッチ回路48にも出力される。前記第1スイッチ回路36、第2スイッチ回路43、及び第3スイッチ回路48では前記クロック信号を受けると、そのクロック信号を分割し、非常に短い周期でスイッチ動作を行うように制御されている。例えば1パルスのクロック信号が数十msecであるとき、数十μmsec毎にスイッチ動作を行う。   The clock signal from the clock circuit 44 is also output to the first switch circuit 36, the second switch circuit 43, and the third switch circuit 48. When receiving the clock signal, the first switch circuit 36, the second switch circuit 43, and the third switch circuit 48 are controlled so as to divide the clock signal and perform the switch operation with a very short cycle. For example, when one pulse of the clock signal is several tens of milliseconds, the switching operation is performed every several tens of micrometers.

図5で説明したように第1磁気抵抗効果素子23及び第2磁気抵抗効果素子27は同じ膜構成である。ここで同じ膜構成とは積層構造が同じであるのみならず固定磁性層14及びフリー磁性層16の磁化14a,16aの方向も一致している状態を指す。ここで本実施形態では、図6に示す第1磁気抵抗効果素子23を、(+)方向の外部磁界(+H)の検知用素子として、第2磁気抵抗効果素子27を、(−)方向の外部磁界(−H)の検知用素子として使用している。   As described in FIG. 5, the first magnetoresistive effect element 23 and the second magnetoresistive effect element 27 have the same film configuration. Here, the same film configuration indicates a state in which the directions of the magnetizations 14a and 16a of the pinned magnetic layer 14 and the free magnetic layer 16 are not only the same, but also the laminated structure is the same. Here, in the present embodiment, the first magnetoresistive element 23 shown in FIG. 6 is used as an element for detecting the external magnetic field (+ H) in the (+) direction, and the second magnetoresistive element 27 is used in the (−) direction. It is used as an element for detecting an external magnetic field (-H).

また図6に示すように、前記第1磁気抵抗効果素子23はグランド端子42側に接続され、第2磁気抵抗効果素子27は入力端子39側に接続されている。よって、第1磁気抵抗効果素子23を備える第1ブリッジ回路BC1から出力される第1出力値(差動電位)V1と、第2磁気抵抗効果素子27を備える第2ブリッジ回路BC2から出力される第1出力値(差動電位)V2は、外部磁界Hの変化に対して図1に示すようにクロスした形で現れる。   As shown in FIG. 6, the first magnetoresistance effect element 23 is connected to the ground terminal 42 side, and the second magnetoresistance effect element 27 is connected to the input terminal 39 side. Accordingly, the first output value (differential potential) V1 output from the first bridge circuit BC1 including the first magnetoresistance effect element 23 and the second bridge circuit BC2 including the second magnetoresistance effect element 27 are output. The first output value (differential potential) V2 appears in a crossed manner as shown in FIG.

第1出力値V1及び第2出力値V2は共に(+)方向の外部磁界(+H)側から(−)方向の外部磁界(−H)側にかけて直線的に変化するリニア領域8,9を備える。   Both the first output value V1 and the second output value V2 include linear regions 8 and 9 that linearly change from the external magnetic field (+ H) side in the (+) direction to the external magnetic field (−H) side in the (−) direction. .

例えば直線状のリニア領域8,9は外部磁界ゼロの位置にてクロスし、第1出力値V1のリニア領域8のうち(+)方向の外部磁界(+H)の領域と、第2出力値V2のリニア領域9のうち(−)方向の外部磁界(−H)の検知領域とを合わせて、図1に示す+H1の位置から−H1の位置までの広い外部磁界Hの範囲を検知範囲と設定することが可能である。   For example, the linear linear regions 8 and 9 cross at the position of the external magnetic field zero, and the region of the external magnetic field (+ H) in the (+) direction in the linear region 8 of the first output value V1 and the second output value V2. A wide range of the external magnetic field H from the position + H1 to the position −H1 shown in FIG. 1 is set as the detection range by combining the detection area of the external magnetic field (−H) in the (−) direction in the linear area 9 of FIG. Is possible.

図1に示すように、ON/OFF信号を切換える閾値LV1がコンパレータ38にて設定されており、例えば、この閾値LV1を超えた出力(差動電位)を得た場合、ON信号が、前記閾値LV1を下回った出力(差動電位)を得た場合、OFF信号が生成されるようになっている。閾値は複数設定されていてもよいが、本実施形態では一つだけ閾値が設定されているとして説明する。   As shown in FIG. 1, the threshold value LV1 for switching the ON / OFF signal is set by the comparator 38. For example, when an output (differential potential) exceeding the threshold value LV1 is obtained, the ON signal is set to the threshold value. When an output (differential potential) lower than LV1 is obtained, an OFF signal is generated. A plurality of threshold values may be set, but in the present embodiment, only one threshold value is set.

図1に示すように、無磁場状態から(+)方向の外部磁界(+H)を増大させたとき前記第1出力値V1は大きくなり、同様に、無磁場状態から(−)方向の外部磁界(−H)を増大させたとき前記第2出力値V2は大きくなる。また、無磁場状態から(+)方向の外部磁界(+H)を増大させたとき前記第1出力値V1は小さくなり、同様に、無磁場状態から(−)方向の外部磁界(−H)を増大させたとき前記第2出力値V2は小さくなってもよい。このように、無磁場状態から(+)方向の外部磁界(+H)を増大させたときの第1出力値V1の増減傾向と、無磁場状態から(−)方向の外部磁界(−H)を増大させたときの第2出力値V2の増減傾向とが同傾向であるから、(+)方向の外部磁界(+H)側の検知領域と、(−)方向の外部磁界(−H)側の検知領域の双方でON/OFF信号の切換信号を生成するための閾値LV1を、第1出力値V1と第2出力値V2に対して共通化できる。図1に示すように、(+)方向の外部磁界(+H)が+H2を境として、ON/OFF信号が切換えられ、(−)方向の外部磁界(−H)が−H2を境として、ON/OFF信号が切換えられる。   As shown in FIG. 1, when the external magnetic field (+ H) in the (+) direction is increased from the no magnetic field state, the first output value V1 increases, and similarly, the external magnetic field in the (−) direction from the no magnetic field state. When (−H) is increased, the second output value V2 increases. Further, when the external magnetic field (+ H) in the (+) direction is increased from the no magnetic field state, the first output value V1 decreases, and similarly, the external magnetic field (−H) in the (−) direction from the no magnetic field state. When increased, the second output value V2 may decrease. As described above, when the external magnetic field (+ H) in the (+) direction is increased from the no magnetic field state, the increase / decrease tendency of the first output value V1 and the external magnetic field (−H) in the (−) direction from the no magnetic field state. Since the increase / decrease tendency of the second output value V2 when increasing is the same tendency, the detection region on the (+) direction external magnetic field (+ H) side and the (−) direction external magnetic field (−H) side The threshold value LV1 for generating the ON / OFF signal switching signal in both of the detection areas can be made common to the first output value V1 and the second output value V2. As shown in FIG. 1, the ON / OFF signal is switched when the external magnetic field (+ H) in the (+) direction is at + H2, and the external magnetic field (−H) in the (−) direction is ON at −H2. / OFF signal is switched.

図6は、第1ブリッジ回路BC1と第1外部出力端子40が接続された状態であり、(+)方向の外部磁界(+H)の磁界強度変化に対して、前記第1外部出力端子40からON信号あるいはOFF信号が出力される。   FIG. 6 shows a state in which the first bridge circuit BC1 and the first external output terminal 40 are connected. From the first external output terminal 40, the magnetic field intensity changes in the external magnetic field (+ H) in the (+) direction. An ON signal or an OFF signal is output.

一方、図7は、第2ブリッジ回路BC2と第2外部出力端子41が接続された状態であり、(−)方向の外部磁界(−H)の磁界強度変化に対して、前記第2外部出力端子41からON信号あるいはOFF信号が出力される。   On the other hand, FIG. 7 shows a state in which the second bridge circuit BC2 and the second external output terminal 41 are connected, and the second external output with respect to the change in the magnetic field strength of the external magnetic field (−H) in the (−) direction. An ON signal or an OFF signal is output from the terminal 41.

図6及び図7の回路構成では、第1外部出力端子40と第2外部出力端子41の双方からON/OFFの切換信号が出力されるので、どちらの外部出力端子40,41から例えばON信号が出力されたかを検知することで、(+)方向の外部磁界(+H)か、(−)方向の外部磁界(−H)かを判別することができる。   In the circuit configurations of FIGS. 6 and 7, since the ON / OFF switching signal is output from both the first external output terminal 40 and the second external output terminal 41, the ON signal is output from either of the external output terminals 40, 41, for example. It is possible to determine whether the external magnetic field (+ H) in the (+) direction or the external magnetic field (−H) in the (−) direction.

一方、例えば、第2スイッチ回路43を設けず、第1外部出力端子40か第2外部出力端子41のどちらか一方のみから出力される構成とすることも出来る。ただしかかる場合、外部磁界Hの方向までは検知できない。   On the other hand, for example, the second switch circuit 43 may not be provided, and the output may be performed from only one of the first external output terminal 40 and the second external output terminal 41. In such a case, however, the direction of the external magnetic field H cannot be detected.

図6,図7に示す第1固定抵抗素子24、第2固定抵抗素子28、第3固定抵抗素子31及び第4固定抵抗素子32はいずれも同じ固定抵抗値に設定されているが、例えば第1固定抵抗素子24の抵抗値を、第2固定抵抗素子28、第3固定抵抗素子31及び第4固定抵抗素子32の抵抗値と異なる抵抗値に設定すると、第1出力値V1全体を図2に示すグラフ上にて上下に変動させることができる。図2では例えば前記第1出力値V1全体が下降している。閾値LV1が図1と変わらないとき、第1出力値V1の変動におけるON/OFF信号の切換えは、(+)方向の外部磁界(+H)が+H3のときとなり、図1と異ならせることが可能となる。   The first fixed resistance element 24, the second fixed resistance element 28, the third fixed resistance element 31, and the fourth fixed resistance element 32 shown in FIGS. 6 and 7 are all set to the same fixed resistance value. When the resistance value of the first fixed resistance element 24 is set to a resistance value different from the resistance values of the second fixed resistance element 28, the third fixed resistance element 31, and the fourth fixed resistance element 32, the entire first output value V1 is shown in FIG. It can be moved up and down on the graph shown in FIG. In FIG. 2, for example, the entire first output value V1 is lowered. When the threshold LV1 is not different from that in FIG. 1, the ON / OFF signal switching in the fluctuation of the first output value V1 is when the external magnetic field (+ H) in the (+) direction is + H3, and can be different from that in FIG. It becomes.

また例えば、第2固定抵抗素子28の抵抗値を変えることで、前記第2出力値V2を図2に示すグラフ上にて上下に変動させることが出来る。   Further, for example, by changing the resistance value of the second fixed resistance element 28, the second output value V2 can be varied up and down on the graph shown in FIG.

また、図1に示す外部磁界Hの検知範囲は、例えば、図3に示す異方性磁界Hk1の大きさを変えたり、固定磁性層14とフリー磁性層16との間に作用する層間結合磁界Hinの大きさを変えることで、変化させることができる。層間結合磁界Hinは例えば非磁性材料層15の膜厚を変化させることで変えることができる。   The detection range of the external magnetic field H shown in FIG. 1 is, for example, an interlayer coupling magnetic field that acts between the fixed magnetic layer 14 and the free magnetic layer 16 or changes the magnitude of the anisotropic magnetic field Hk1 shown in FIG. It can be changed by changing the size of Hin. The interlayer coupling magnetic field Hin can be changed, for example, by changing the film thickness of the nonmagnetic material layer 15.

R−Hグラフ上では、前記層間結合磁界Hinは、磁気抵抗効果素子の最大抵抗値R1と最小抵抗値R2の中間抵抗値となるときの外部磁界Hの大きさとして現れる。図3では前記層間結合磁界Hinはゼロであるが、図4に示す形態では、層間結合磁界Hin1,Hin2の絶対値がゼロよりも大きい値として現れている。層間結合磁界Hin1,Hin2の大きさが変化すると、R−H曲線は、横軸(外部磁界H)方向に移動する。図4に示す形態では、例えば第1磁気抵抗効果素子23と第2磁気抵抗効果素子27とを別々に形成し、前記第1磁気抵抗効果素子23で生じる層間結合磁界Hin1の絶対値と、前記第2磁気抵抗効果素子27で生じる層間結合磁界Hin2の絶対値とを同じ値となるように設定している。また図4では、第1磁気抵抗効果素子23の固定磁性層14の磁化14aを、図5と同じ図示X2方向に固定し、第2磁気抵抗効果素子27の固定磁性層14の磁化14aを、図5とは逆方向である図示X1方向に固定している。そして図示X1方向を(+)方向の外部磁界(+H)の方向として、図示X2方向を(−)方向の外部磁界(−H)の方向として設定すると図4に示すR−H曲線が得られる。図4のR−H曲線を有する第1磁気抵抗効果素子23及び第2磁気抵抗効果素子27を夫々形成したとき、例えば図6,図7に示す回路構成では、第2磁気抵抗効果素子27と、第2固定抵抗素子28とを入れ替えて配置する。   On the RH graph, the interlayer coupling magnetic field Hin appears as the magnitude of the external magnetic field H when it becomes an intermediate resistance value between the maximum resistance value R1 and the minimum resistance value R2 of the magnetoresistive effect element. In FIG. 3, the interlayer coupling magnetic field Hin is zero, but in the form shown in FIG. 4, the absolute values of the interlayer coupling magnetic fields Hin1 and Hin2 appear as values larger than zero. When the magnitudes of the interlayer coupling magnetic fields Hin1 and Hin2 change, the RH curve moves in the horizontal axis (external magnetic field H) direction. In the form shown in FIG. 4, for example, the first magnetoresistive effect element 23 and the second magnetoresistive effect element 27 are formed separately, and the absolute value of the interlayer coupling magnetic field Hin1 generated in the first magnetoresistive effect element 23, The absolute value of the interlayer coupling magnetic field Hin2 generated in the second magnetoresistance effect element 27 is set to be the same value. In FIG. 4, the magnetization 14 a of the pinned magnetic layer 14 of the first magnetoresistance effect element 23 is pinned in the same X2 direction as in FIG. 5, and the magnetization 14 a of the pinned magnetic layer 14 of the second magnetoresistance effect element 27 is It is fixed in the X1 direction, which is the opposite direction to FIG. When the X1 direction shown in the figure is set as the direction of the external magnetic field (+ H) in the (+) direction and the X2 direction shown in the figure is set as the direction of the external magnetic field (−H) in the (−) direction, the RH curve shown in FIG. 4 is obtained. . When the first magnetoresistive effect element 23 and the second magnetoresistive effect element 27 having the RH curve of FIG. 4 are formed, for example, in the circuit configuration shown in FIGS. 6 and 7, the second magnetoresistive effect element 27 and The second fixed resistance element 28 is replaced and disposed.

本実施形態では、図1に示す外部磁界Hと出力値(差動電位)との関係を得ることで、従来に比べて外部磁界Hの検知範囲を広く設定でき、またヒステリシスが無く、外部磁界がゼロ付近でも出力値は直線状で鈍りが無いため、検知範囲の全域にて外部磁界Hを高精度に検知することが出来る。   In the present embodiment, by obtaining the relationship between the external magnetic field H and the output value (differential potential) shown in FIG. 1, the detection range of the external magnetic field H can be set wider than in the prior art, and there is no hysteresis. Since the output value is linear and not dull even near zero, the external magnetic field H can be detected with high accuracy over the entire detection range.

また本実施形態では、第1磁気抵抗効果素子23及び第2磁気抵抗効果素子27に同じ膜構成の素子を使用しても、例えば固定抵抗素子の抵抗値を変えることで、ON/OFFの切換時の外部磁界Hの大きさを(+)方向の外部磁界(+H)の検知領域と、(−)方向の外部磁界(−H)の検知領域とで夫々別々に自由に調整することができる。また第1出力値V1及び第2出力値V2に対して共通の閾値LV1を設定することが出来るので、回路構成を容易化でき、磁気検出装置20の小型化にも繋がる。   Further, in this embodiment, even if elements having the same film configuration are used for the first magnetoresistive element 23 and the second magnetoresistive element 27, for example, by switching the resistance value of the fixed resistor element, switching of ON / OFF is performed. The magnitude of the external magnetic field H at the time can be freely adjusted separately in the detection region of the external magnetic field (+ H) in the (+) direction and the detection region of the external magnetic field (−H) in the (−) direction. . Further, since the common threshold LV1 can be set for the first output value V1 and the second output value V2, the circuit configuration can be simplified and the magnetic detection device 20 can be downsized.

本実施形態における磁気検出装置20は、例えば以下に示す折り畳み式携帯電話1に出来る。   The magnetic detection device 20 in the present embodiment can be a foldable mobile phone 1 shown below, for example.

図8,図9に示す本実施形態の折畳み式携帯電話1は、表示筐体2と操作筐体3と、前記表示筐体2と操作筐体3とを連結する連結部材4とを有して構成される。   The foldable mobile phone 1 according to this embodiment shown in FIGS. 8 and 9 includes a display housing 2, an operation housing 3, and a connecting member 4 that connects the display housing 2 and the operation housing 3. Configured.

図8のように折り畳み式携帯電話1を開いた状態では、前記表示筐体2の液晶ディスプレイ等の表示画面5が設けられた表示面2aと、前記操作筐体3の各種の操作釦6が配置された操作面3aとが同じ外側を向いた状態となる。   When the foldable mobile phone 1 is opened as shown in FIG. 8, the display surface 2 a provided with the display screen 5 such as a liquid crystal display of the display housing 2 and various operation buttons 6 of the operation housing 3 are provided. The arranged operation surface 3a faces the same outside.

また前記表示筐体2の前記表示面2aにはスピーカ45が設けられ、前記操作筐体3の操作面3aにはマイク7が設けられている。   A speaker 45 is provided on the display surface 2 a of the display housing 2, and a microphone 7 is provided on the operation surface 3 a of the operation housing 3.

図8,図9に示すように、前記連結部材4は、前記操作筐体3に固定されたヒンジ部49と前記ヒンジ部49の横方向(図示X1−X2方向)に延びる第1回転軸50に接続され、前記表示筐体2とともに、前記第1回転軸50を中心として開閉方向に回動する中間部10とで構成される。   As shown in FIGS. 8 and 9, the connecting member 4 includes a hinge portion 49 fixed to the operation housing 3 and a first rotating shaft 50 extending in a lateral direction (X1-X2 direction in the drawing) of the hinge portion 49. And an intermediate portion 10 that rotates together with the display housing 2 in the opening / closing direction about the first rotation shaft 50.

また前記中間部10には、前記第1回転軸50に対して直交する方向(図示Y1−Y2方向)であって、前記中間部10の横方向(図示X1−X2方向)の中央に第2回転軸56が設けられ、前記表示筐体2は第2回転軸56に接続されている。前記表示筐体2は前記第2回転軸56を中心として反転可能に支持されている。よって本形態の折り畳み式携帯電話1では図9の通常使用状態から図13のように表示筐体2の表裏面を反転させて図14に示す反転状態に移行することができる。   The intermediate portion 10 has a second direction at the center in the lateral direction (X1-X2 direction) of the intermediate portion 10 in a direction orthogonal to the first rotation shaft 50 (Y1-Y2 direction in the drawing). A rotation shaft 56 is provided, and the display housing 2 is connected to the second rotation shaft 56. The display housing 2 is supported to be reversible around the second rotation shaft 56. Therefore, in the foldable mobile phone 1 of this embodiment, the front and back surfaces of the display housing 2 can be reversed as shown in FIG. 13 from the normal use state of FIG. 9 to shift to the reversed state shown in FIG.

図8に示すように、開いた状態での前記折畳み携帯電話1の長手方向を縦方向(図示Y方向)と平行な方向に配置したとき、前記折畳み携帯電話1の横方向(図示X方向)の中心であって、例えば、前記縦方向(図示Y方向)に延びる中心線B−B上の表示筐体2の内部に1個の磁石53が配置される。   As shown in FIG. 8, when the longitudinal direction of the folded mobile phone 1 in the opened state is arranged in a direction parallel to the vertical direction (Y direction in the drawing), the lateral direction (X direction in the drawing) of the folded mobile phone 1 is arranged. For example, one magnet 53 is arranged inside the display housing 2 on the center line BB extending in the vertical direction (Y direction in the drawing).

前記磁石53は、図8に示すようにN極とS極とが横方向(図示X1−X2方向)に向くように配置されている。   As shown in FIG. 8, the magnet 53 is arranged such that the N pole and the S pole are oriented in the horizontal direction (X1-X2 direction in the drawing).

また前記中心線B−B上の前記操作筐体3の内部には、本実施形態の磁気検出装置20が設けられている。   A magnetic detection device 20 of the present embodiment is provided inside the operation housing 3 on the center line BB.

本形態では、前記磁気検出装置20は、図11に示す表示筐体2と操作筐体3とを閉じた状態では、磁石53と高さ方向(図示Z方向)にて対向する位置に配置される。あるいは前記磁気検出装置20は、前記磁石53からX1−X2方向にずれた位置に配置されてもよい。   In this embodiment, the magnetic detection device 20 is arranged at a position facing the magnet 53 in the height direction (Z direction in the drawing) when the display housing 2 and the operation housing 3 shown in FIG. 11 are closed. The Alternatively, the magnetic detection device 20 may be disposed at a position shifted from the magnet 53 in the X1-X2 direction.

折畳み式携帯電話1を図10から図11に示すように閉じるまでの間に、磁石53から磁気検出装置20に作用する水平磁場が徐々に強くなる。このとき、第1磁気抵抗効果素子23及び第2磁気抵抗効果素子27には、図示X1方向への外部磁界H、すなわち(+)方向の外部磁界(+H)が作用し、(+)方向の外部磁界(+H)の磁界強度変化に伴って、第1磁気抵抗効果素子23及び第2磁気抵抗効果素子27が共に抵抗変化する。   Until the foldable mobile phone 1 is closed as shown in FIGS. 10 to 11, the horizontal magnetic field acting on the magnetic detection device 20 from the magnet 53 gradually increases. At this time, the external magnetic field H in the X1 direction, that is, the external magnetic field (+ H) in the (+) direction acts on the first magnetoresistive element 23 and the second magnetoresistive element 27, and the (+) direction As the magnetic field intensity of the external magnetic field (+ H) changes, both the first magnetoresistive effect element 23 and the second magnetoresistive effect element 27 change in resistance.

前記第1磁気抵抗効果素子23及び第2磁気抵抗効果素子27の抵抗変化に基づいて、図1に示す(+)方向の外部磁界(+H)の領域における第1出力値V1及び第2出力値V2が得られる。   Based on the resistance change of the first magnetoresistive effect element 23 and the second magnetoresistive effect element 27, the first output value V1 and the second output value in the region of the external magnetic field (+ H) in the (+) direction shown in FIG. V2 is obtained.

図1に示すように(+)方向の外部磁界(+H)が徐々に強くなると、それに伴って、前記第1出力値V1は、リニア領域8上に沿って徐々に高くなっていき、やがて閾値LV1を超えて、ON/OFF信号が切換えられる。   As shown in FIG. 1, when the external magnetic field (+ H) in the (+) direction gradually increases, the first output value V1 gradually increases along the linear region 8 and eventually becomes a threshold value. Beyond LV1, the ON / OFF signal is switched.

次に、図9の状態から図13のように表示筐体2の表裏面を反転させて、図14の平面状態にし、図14の状態から再び、前記表示筐体2と前記操作筐体3とを折り畳む。   Next, the front and back surfaces of the display housing 2 are reversed from the state shown in FIG. 9 to the flat state shown in FIG. 14, and the display housing 2 and the operation housing 3 are restarted from the state shown in FIG. And fold.

図15は前記表示筐体2の表裏面を反転させて表示筐体2と操作筐体3とを完全に閉じた状態であるが、図15に示すように前記磁気検出装置20には前記磁石53から(−)方向の水平磁場Hが作用する。すなわち図12の場合と比較すると前記水平磁場Hの方向が逆転する。   FIG. 15 shows a state in which the display housing 2 and the operation housing 3 are completely closed by inverting the front and back surfaces of the display housing 2. As shown in FIG. A horizontal magnetic field H in the (−) direction acts from 53. That is, the direction of the horizontal magnetic field H is reversed as compared with the case of FIG.

図14の状態から図15のように前記表示筐体2と操作筐体3とを折り畳むと、徐々に前記磁石53から発せられる(−)方向の外部磁界(−H)が磁気検出装置20に作用して、第1磁気抵抗効果素子23及び第2磁気抵抗効果素子27は共に抵抗変化する。   When the display housing 2 and the operation housing 3 are folded as shown in FIG. 15 from the state of FIG. 14, an external magnetic field (−H) in the (−) direction gradually emitted from the magnet 53 is applied to the magnetic detection device 20. By acting, both the first magnetoresistive effect element 23 and the second magnetoresistive effect element 27 change in resistance.

前記第1磁気抵抗効果素子23及び第2磁気抵抗効果素子27の抵抗変化に基づいて、図1に示す(−)方向の外部磁界(−H)の領域における第1出力値V1及び第2出力値V2が得られる。   Based on the resistance change of the first magnetoresistive effect element 23 and the second magnetoresistive effect element 27, the first output value V1 and the second output in the region of the external magnetic field (-H) in the (-) direction shown in FIG. The value V2 is obtained.

図1に示すように(−)方向の外部磁界(−H)が徐々に強くなると、それに伴って、前記第2出力値V2は、リニア領域9上に沿って徐々に高くなっていき、やがて閾値LV1を超えて、ON/OFF信号が切換えられる。   As shown in FIG. 1, when the external magnetic field (-H) in the (-) direction gradually increases, the second output value V2 gradually increases along the linear region 9, and eventually. The ON / OFF signal is switched over the threshold value LV1.

第1外部出力端子40及び第2外部出力端子41のどちらの出力信号がONからOFF(あるいはOFFからON)へ切換えられたかを検知することによって、折畳み式携帯電話1の表示筐体2の表裏面を反転させない状態での開閉検知か、あるいは表示筐体2の表裏面を反転させた状態での開閉検知かを知ることができる。   By detecting which output signal of the first external output terminal 40 or the second external output terminal 41 is switched from ON to OFF (or from OFF to ON), the surface of the display housing 2 of the foldable mobile phone 1 is displayed. It is possible to know whether the opening / closing detection is performed in a state where the back surface is not reversed, or whether the opening / closing detection is performed in a state where the front and back surfaces of the display housing 2 are reversed.

また図12と図15に示すように、表示筐体2の表裏面を反転させない状態で折畳み式携帯電話1を閉じた場合と、表示筐体2の表裏面を反転させた状態で折畳み式携帯電話1を閉じた場合とでは、磁石53と磁気検出装置20間の間隔D1,D2が異なる。よって図2で説明したように、第1出力値V1が閾値LV1に達する外部磁界Hの大きさ(+H3)と、第2出力値V2が閾値LV1に達する外部磁界Hの大きさ(−H2)を異ならせることで、表示筐体2の表裏面を反転させない状態で折畳み式携帯電話1を閉じた場合と、表示筐体2の表裏面を反転させた状態で折畳み式携帯電話1を閉じた場合とで、同じタイミングでONからOFF(あるいはOFFからON)への切換えが行われるように調整することが出来る。   Further, as shown in FIGS. 12 and 15, when the foldable mobile phone 1 is closed without reversing the front and back surfaces of the display housing 2, and when the foldable mobile phone is folded with the front and back surfaces of the display housing 2 reversed. When the telephone 1 is closed, the distances D1 and D2 between the magnet 53 and the magnetic detection device 20 are different. Therefore, as described in FIG. 2, the magnitude of the external magnetic field H (+ H3) at which the first output value V1 reaches the threshold value LV1, and the magnitude (−H2) of the external magnetic field H at which the second output value V2 reaches the threshold value LV1. The folding cellular phone 1 is closed with the front and back surfaces of the display housing 2 reversed, and the folding cellular phone 1 is closed with the front and back surfaces of the display housing 2 reversed. In some cases, adjustment can be made so that switching from ON to OFF (or OFF to ON) is performed at the same timing.

また本実施形態では、このように双極検知を2出力で得ることができるし、あるいは、双極検知を1出力で得ることも出来る。この場合、特に外部磁界Hの方向の検知まで必要としない場合に、回路構成をシンプルにできて好適である。双極検知とすることで、例えば図8に示す磁石53を図8の設置状態のみならず、N極及びS極を180°反対向きに設置しても、外部磁界Hの検知が可能であるので、磁石53の向きに自由度があり、組立の作業性を向上させることができる。   In the present embodiment, bipolar detection can be obtained with two outputs in this way, or bipolar detection can be obtained with one output. In this case, particularly when detection of the direction of the external magnetic field H is not required, the circuit configuration can be simplified, which is preferable. By adopting bipolar detection, for example, the magnet 53 shown in FIG. 8 can detect the external magnetic field H not only when the magnet 53 shown in FIG. In addition, the direction of the magnet 53 has a degree of freedom, and the assembly workability can be improved.

上記では折畳み携帯電話を実施形態として説明したが、折畳み携帯電話以外、例えばゲーム機やノート型パーソナルコンピュータ、さらには冷蔵庫等の各種電化製品にも本実施形態の磁気検出装置20を適用することが出来る。   Although the folding mobile phone has been described as an embodiment in the above, the magnetic detection device 20 of the present embodiment can be applied to various electric appliances such as a game machine, a notebook personal computer, and a refrigerator other than the folding mobile phone. I can do it.

外部磁界Hと、本実施形態の第1磁気抵抗効果素子及び第2磁気抵抗効果素子の抵抗値に基づく出力値V(差動電位)との関係を示す第1のグラフ、A first graph showing a relationship between an external magnetic field H and an output value V (differential potential) based on resistance values of the first magnetoresistive effect element and the second magnetoresistive effect element of the present embodiment; 外部磁界Hと、本実施形態の第1磁気抵抗効果素子及び第2磁気抵抗効果素子の抵抗値に基づく出力値V(差動電位)との関係を示す第2のグラフ、A second graph showing the relationship between the external magnetic field H and the output value V (differential potential) based on the resistance values of the first magnetoresistive element and the second magnetoresistive element of the present embodiment; 本実施形態の第1磁気抵抗効果素子及び第2磁気抵抗効果素子のR−H曲線、RH curves of the first magnetoresistive element and the second magnetoresistive element of the present embodiment, 図3とは別の実施形態の第1磁気抵抗効果素子及び第2磁気抵抗効果素子のR−H曲線、RH curves of the first magnetoresistive element and the second magnetoresistive element of the embodiment different from FIG. 本実施形態における第1磁気抵抗効果素子及び第2磁気抵抗効果素子の膜構成を示す断面図、Sectional drawing which shows the film | membrane structure of the 1st magnetoresistive effect element in this embodiment, and the 2nd magnetoresistive effect element, 本実施形態の磁気検出装置の回路構成図(第1ブリッジ回路BC1と第1外部出力端子が接続された状態)The circuit block diagram of the magnetic detection apparatus of this embodiment (The state where 1st bridge circuit BC1 and 1st external output terminal are connected) 本実施形態の磁気検出装置の回路構成図(第2ブリッジ回路BC2と第2外部出力端子が接続された状態)、The circuit block diagram of the magnetic detection apparatus of this embodiment (The state where 2nd bridge circuit BC2 and 2nd external output terminal are connected), 折畳み式携帯電話を開いた状態の平面図、A plan view of a state in which the folding mobile phone is opened, 図8に示す折畳み式携帯電話の斜視図、FIG. 9 is a perspective view of the folding mobile phone shown in FIG. 図9の状態から折畳み式携帯電話を閉じる途中の状態を示す折畳み式携帯電話の側面図、The side view of a folding-type mobile phone which shows the state in the middle of closing a folding-type mobile phone from the state of FIG. 図10の状態から完全に折畳み式携帯電話の閉じた状態を横から見た側面図、The side view which looked at the closed state of a completely folding cellular phone from the state of FIG. 図11に示す閉じた状態の折畳み式携帯電話をA−A線から切断し矢印方向から見た部分断面図、The fragmentary sectional view which cut | disconnected the foldable mobile telephone of the closed state shown in FIG. 11 from the AA line, and was seen from the arrow direction, 図9の状態から表示筐体を反転させる途中状態を示す折畳み式携帯電話の斜視図、The perspective view of the folding-type mobile phone which shows the middle state which reverses a display housing | casing from the state of FIG. 前記表示筐体の表裏面を反転させた状態を示す折畳み式携帯電話の平面図、A plan view of a foldable mobile phone showing a state in which the front and back surfaces of the display casing are reversed; 図14の状態から折畳み式携帯電話を閉じたときの図12と同じ箇所での部分断面図、The fragmentary sectional view in the same location as FIG. 12 when the foldable mobile phone is closed from the state of FIG.

符号の説明Explanation of symbols

1 折り畳み式携帯電話
2 表示筐体
3 操作筐体
4 連結部材
5 表示画面
6 操作釦
8、9、19 リニア領域
10 中間部
11 ハードバイアス層
13 反強磁性層
14 固定磁性層
15 非磁性材料層
16 フリー磁性層
20 磁気検出装置
21 抵抗素子部
22 集積回路(IC)
23 第1磁気抵抗効果素子
24、28、31、32 固定抵抗素子
27 第2磁気抵抗効果素子
35 差動増幅器
38 コンパレータ
39 入力端子
40、41 外部出力端子
42 グランド端子
53 磁石
V1 第1出力値
V2 第2出力値
DESCRIPTION OF SYMBOLS 1 Folding type mobile phone 2 Display case 3 Operation case 4 Connecting member 5 Display screen 6 Operation buttons 8, 9, 19 Linear region 10 Intermediate part 11 Hard bias layer 13 Antiferromagnetic layer 14 Fixed magnetic layer 15 Nonmagnetic material layer 16 Free magnetic layer 20 Magnetic detection device 21 Resistance element unit 22 Integrated circuit (IC)
23 First magnetoresistance effect element 24, 28, 31, 32 Fixed resistance element 27 Second magnetoresistance effect element 35 Differential amplifier 38 Comparator 39 Input terminal 40, 41 External output terminal 42 Ground terminal 53 Magnet V1 First output value V2 Second output value

Claims (3)

下から固定磁性層、非磁性材料層、及びフリー磁性層の順に、あるいは下からフリー磁性層、非磁性材料層及び固定磁性層の順に積層され、外部磁界に対して電気抵抗が変化する磁気抵抗効果を利用した第1磁気抵抗効果素子及び、第2磁気抵抗効果素子を有し、
前記第1磁気抵抗効果素子及び前記第2磁気抵抗効果素子には共に、無磁場状態において前記固定磁性層の磁化方向に対して前記フリー磁性層の磁化方向を直交方向へ揃えるためのバイアス層が設けられており、
前記第1磁気抵抗効果素子の外部磁界の磁界強度変化に対して変化する抵抗値に基づく第1出力値、及び、前記第2磁気抵抗効果素子の外部磁界の磁界強度変化に対して変化する抵抗値に基づく第2出力値は、共に、(+)方向の外部磁界側から(−)方向の外部磁界側に直線的に変化するリニア領域を備えるとともに、無磁場状態から(+)方向の外部磁界を増大させたときの前記第1出力値の増減傾向と、無磁場状態から(−)方向の外部磁界を増大させたときの前記第2出力値の増減傾向とが同傾向となっていることを特徴とする磁気検出装置。
Magnetoresistance in which the electrical resistance changes with respect to the external magnetic field, stacked from the bottom in the order of the pinned magnetic layer, nonmagnetic material layer, and free magnetic layer, or from the bottom in the order of the free magnetic layer, nonmagnetic material layer, and pinned magnetic layer A first magnetoresistive effect element and a second magnetoresistive effect element utilizing the effect,
Both the first magnetoresistive element and the second magnetoresistive element have a bias layer for aligning the magnetization direction of the free magnetic layer in a direction perpendicular to the magnetization direction of the pinned magnetic layer in the absence of a magnetic field. Provided,
A first output value based on a resistance value that changes with respect to a change in magnetic field strength of an external magnetic field of the first magnetoresistive effect element, and a resistance that changes with respect to a change in magnetic field strength of an external magnetic field of the second magnetoresistive effect element Both of the second output values based on the value include a linear region that linearly changes from the external magnetic field side in the (+) direction to the external magnetic field side in the (−) direction, and from the no magnetic field state to the external in the (+) direction. The increasing / decreasing tendency of the first output value when the magnetic field is increased and the increasing / decreasing tendency of the second output value when the external magnetic field in the (−) direction is increased from the no magnetic field state are the same tendency. A magnetic detection device.
前記第1出力値、及び前記第2出力値に対して共通の閾値が設定されている請求項1記載の磁気検出装置。   The magnetic detection device according to claim 1, wherein a common threshold is set for the first output value and the second output value. 前記第1磁気抵抗効果素子及び第2磁気抵抗効果素子は同じ膜構成である請求項1又は2に記載の磁気検出装置。   The magnetic detection device according to claim 1, wherein the first magnetoresistive effect element and the second magnetoresistive effect element have the same film configuration.
JP2007109615A 2007-04-18 2007-04-18 Magnetic detecting device Withdrawn JP2010156543A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007109615A JP2010156543A (en) 2007-04-18 2007-04-18 Magnetic detecting device
PCT/JP2008/056930 WO2008132992A1 (en) 2007-04-18 2008-04-08 Magnetic detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109615A JP2010156543A (en) 2007-04-18 2007-04-18 Magnetic detecting device

Publications (1)

Publication Number Publication Date
JP2010156543A true JP2010156543A (en) 2010-07-15

Family

ID=39925451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109615A Withdrawn JP2010156543A (en) 2007-04-18 2007-04-18 Magnetic detecting device

Country Status (2)

Country Link
JP (1) JP2010156543A (en)
WO (1) WO2008132992A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133912A (en) * 2016-01-27 2017-08-03 アルプス電気株式会社 Magnetic sensor
JP2019113390A (en) * 2017-12-22 2019-07-11 ローム株式会社 Magnetic sensor, semiconductor device and electric apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038130A (en) * 1990-11-06 1991-08-06 Santa Barbara Research Center System for sensing changes in a magnetic field
JP2857332B2 (en) * 1994-10-17 1999-02-17 シーケーディ株式会社 Piston position detector
US5561368A (en) * 1994-11-04 1996-10-01 International Business Machines Corporation Bridge circuit magnetic field sensor having spin valve magnetoresistive elements formed on common substrate
US20030214762A1 (en) * 2002-05-14 2003-11-20 Manish Sharma Magnetic field detection sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133912A (en) * 2016-01-27 2017-08-03 アルプス電気株式会社 Magnetic sensor
JP2019113390A (en) * 2017-12-22 2019-07-11 ローム株式会社 Magnetic sensor, semiconductor device and electric apparatus
US11215479B2 (en) 2017-12-22 2022-01-04 Rohm Co., Ltd. Magnetic sensor, semiconductor device, and electric device
JP7061457B2 (en) 2017-12-22 2022-04-28 ローム株式会社 Magnetic sensors, semiconductor devices and electrical equipment

Also Published As

Publication number Publication date
WO2008132992A1 (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JPWO2008029519A1 (en) Electronics
JP5297442B2 (en) Magnetic sensor
JP4810275B2 (en) Magnetic switch
JP5066524B2 (en) Magnetic detector
JP4904359B2 (en) Magnetic detector
JPWO2008059914A1 (en) Magnetic detector and electronic apparatus using the same
JPWO2011089978A1 (en) Magnetic sensor
JP4904352B2 (en) Magnetic sensor
JP2007248054A (en) Magnetic sensor
JP2012122792A (en) Magnetic sensor
JP4904358B2 (en) Magnetic detector
WO2011074488A1 (en) Magnetic sensor
JP2010156543A (en) Magnetic detecting device
JP2010157002A (en) Electronic device
JP5174676B2 (en) Magnetic detection device and electronic apparatus
JP5006339B2 (en) Magnetic detector
JP5048771B2 (en) Magnetic detector and electrical product
JP5184380B2 (en) Magnetic detector
JP5139190B2 (en) Magnetic switch
JPWO2008102786A1 (en) Magnetic detector
JP2010020708A (en) Electronic device
JPWO2008059913A1 (en) Magnetoresistive element, magnetic sensor, and method of manufacturing magnetoresistive element
JP2010096569A (en) Magnetic sensor
JPWO2008093672A1 (en) Magnetic detector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100706