JP2010156392A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2010156392A
JP2010156392A JP2008334398A JP2008334398A JP2010156392A JP 2010156392 A JP2010156392 A JP 2010156392A JP 2008334398 A JP2008334398 A JP 2008334398A JP 2008334398 A JP2008334398 A JP 2008334398A JP 2010156392 A JP2010156392 A JP 2010156392A
Authority
JP
Japan
Prior art keywords
oil
lubricant
bearing
ring
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008334398A
Other languages
Japanese (ja)
Inventor
Kaneaki Matsumoto
兼明 松本
Atsushi Yokouchi
敦 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008334398A priority Critical patent/JP2010156392A/en
Publication of JP2010156392A publication Critical patent/JP2010156392A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/784Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
    • F16C33/7843Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc
    • F16C33/7846Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc with a gap between the annular disc and the inner race
    • F16C33/785Bearing shields made of sheet metal

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing which hardly causes the leakage of a lubricant even if used under the condition of high-speed rotation, and which is rolled at low torque. <P>SOLUTION: The deep-groove ball bearing comprises: an inner ring 1; an outer ring 2; a plurality of rolling bodies 3 which are rollingly arranged between both raceway surfaces 1a, 2a; and non-contact sealing devices 5, 5 with external peripheral ends 5a attached to the outer ring 2, and internal peripheral ends 5b opposed to the external peripheral surface of the inner ring 1 with a clearance. The lubricant G which is obtained by forming base oil into a gel by using an amino-acid system compound or a benzylidene sorbitol dielectric is arranged in an internal space of the bearing which is surrounded by the inner ring 1, the outer ring 2, and the sealing devices 5, 5. Furthermore, fluorine grease containing fluorine oil and fluorine resin is arranged at the clearance which is formed between the internal peripheral ends 5b of the sealing devices 5 and the external peripheral surface of the inner ring 1, and in the vicinity of the clearance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は転がり軸受に関する。   The present invention relates to a rolling bearing.

近年、転がり軸受の使用条件はますます厳しくなっており、例えば回転速度はますます高速化が進んでいる。回転速度を高速化するためには、転がり軸受の回転トルクを低くする必要がある。また、転がり軸受を高速で回転させると、転がり軸受の軸受内部空間内に配されている潤滑剤が外部に漏洩しやすいので、これを防止する必要がある。
例えば特許文献1には、非接触形の密封装置であるシールドが外輪に取り付けられ、該シールドの内周側端部が内輪のシール面に隙間を空けて対向している転がり軸受が開示されている。そして、内輪のシール面と、該シール面に対向するシールドの内周側端部とに撥油剤が付着されているため、軸受内部空間に入れられた潤滑剤が撥油剤によって弾かれ、軸受外部に漏洩することが抑制されている。
In recent years, the usage conditions of rolling bearings have become more severe, and for example, the rotational speed has been increased more and more. In order to increase the rotational speed, it is necessary to reduce the rotational torque of the rolling bearing. In addition, when the rolling bearing is rotated at a high speed, the lubricant disposed in the bearing inner space of the rolling bearing is likely to leak to the outside, and this needs to be prevented.
For example, Patent Document 1 discloses a rolling bearing in which a shield which is a non-contact type sealing device is attached to an outer ring, and an inner peripheral side end of the shield is opposed to a seal surface of the inner ring with a gap. Yes. And since the oil repellent is adhered to the seal surface of the inner ring and the inner peripheral side end of the shield facing the seal surface, the lubricant put in the bearing internal space is repelled by the oil repellent and the outside of the bearing Leakage is suppressed.

また、特許文献2には、軸受内部空間の中心部近傍(潤滑箇所)に軟らかいグリース(JISちょう度がNo.000〜No.1のグリース)が配され、その外側に硬いグリース(JISちょう度がNo.2〜No.5のグリース)が配された転がり軸受が開示されている。そして、上記のような構成により、潤滑性能の向上とグリースの漏洩防止が図られている。
特開平11−62972号公報 特開昭59−11398号公報
In Patent Document 2, soft grease (grease having a JIS consistency of No. 000 to No. 1) is disposed near the center portion (lubricated part) of the bearing internal space, and hard grease (JIS consistency) is disposed on the outside thereof. No. 2 to No. 5 grease) is disclosed. With the above-described configuration, the lubrication performance is improved and the grease is prevented from leaking.
JP-A-11-62972 JP 59-11398

しかしながら、特許文献1に開示の転がり軸受は、低速回転条件では潤滑剤の漏洩防止効果が優れているものの、高速回転条件では撥油剤が剥離しやすいため、潤滑剤の漏洩防止効果を長期間にわたって維持することが困難であった。また、特許文献2に開示の転がり軸受は、高速回転条件ではシールリップによる剪断及び内側のグリースとの混合により外側のグリースの軟化が生じるため、グリースの漏洩が起こるおそれがあった。   However, although the rolling bearing disclosed in Patent Document 1 has an excellent effect of preventing lubricant leakage under low-speed rotation conditions, the oil repellent easily peels off under high-speed rotation conditions. It was difficult to maintain. Further, the rolling bearing disclosed in Patent Document 2 has a risk of grease leakage because the outer grease is softened due to shearing by the seal lip and mixing with the inner grease under high-speed rotation conditions.

そこで、本発明は、上記のような従来技術が有する問題点を解決し、高速回転条件で使用されても軸受内部空間から潤滑剤が漏洩しにくく且つ低トルクな転がり軸受を提供することを課題とする。   Therefore, the present invention solves the above-described problems of the prior art, and provides a rolling bearing that is less likely to leak lubricant from the bearing internal space and has a low torque even when used under high-speed rotation conditions. And

前記課題を解決するため、本発明は次のような構成からなる。すなわち、本発明に係る転がり軸受は、内輪と、外輪と、前記内輪の軌道面と前記外輪の軌道面との間に転動自在に配された複数の転動体と、前記内輪と前記外輪とのうち一方の軌道輪に取り付けられ他方の軌道輪に隙間を空けて対向する非接触形の密封装置と、を備える転がり軸受において、前記内輪と前記外輪と前記密封装置とで囲まれた軸受内部空間内に、アミノ酸系化合物又はベンジリデンソルビトール誘導体で基油をゲル化してなる潤滑剤を配するとともに、前記密封装置と前記他方の軌道輪との間に形成された前記隙間及びその近傍部分に、フッ素油とフッ素樹脂とを含有するフッ素グリースを配したことを特徴とする。   In order to solve the above problems, the present invention has the following configuration. That is, the rolling bearing according to the present invention includes an inner ring, an outer ring, a plurality of rolling elements arranged to freely roll between a raceway surface of the inner ring and a raceway surface of the outer ring, the inner ring, and the outer ring. A non-contact type sealing device that is attached to one of the bearing rings and faces the other bearing ring with a gap therebetween, wherein the inside of the bearing is surrounded by the inner ring, the outer ring, and the sealing device In the space, a lubricant obtained by gelling a base oil with an amino acid compound or a benzylidene sorbitol derivative is disposed, and in the gap formed between the sealing device and the other race ring and in the vicinity thereof, Fluorine grease containing fluorine oil and fluororesin is arranged.

本発明の転がり軸受は、高速回転条件で使用されても軸受内部空間から潤滑剤が漏洩しにくく且つ低トルクである。   Even if the rolling bearing of the present invention is used under high-speed rotation conditions, the lubricant hardly leaks from the bearing inner space and has a low torque.

本発明に係る転がり軸受の実施の形態を、図面を参照しながら詳細に説明する。図1は、本発明に係る転がり軸受の一実施形態である深溝玉軸受の構造を示す部分縦断面図である。
図1の深溝玉軸受は、外周面に軌道面1aを有する内輪1と、軌道面1aに対向する軌道面2aを内周面に有する外輪2と、両軌道面1a,2a間に転動自在に配された複数の転動体(玉)3と、内輪1及び外輪2の間に複数の転動体3を保持する保持器4と、内輪1及び外輪2の間の隙間の開口をほぼ覆う非接触形の密封装置5,5(例えば鋼製のシールドやゴムシール)と、を備えている。なお、保持器4は備えていなくてもよい。
Embodiments of a rolling bearing according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a partial longitudinal sectional view showing a structure of a deep groove ball bearing which is an embodiment of a rolling bearing according to the present invention.
The deep groove ball bearing shown in FIG. 1 is rotatable between an inner ring 1 having a raceway surface 1a on an outer peripheral surface, an outer ring 2 having a raceway surface 2a facing the raceway surface 1a on an inner peripheral surface, and both raceway surfaces 1a and 2a. A plurality of rolling elements (balls) 3 disposed on the inner ring 1, a cage 4 that holds the plurality of rolling elements 3 between the inner ring 1 and the outer ring 2, and a non-cover that substantially covers the opening of the gap between the inner ring 1 and the outer ring 2. Contact-type sealing devices 5 and 5 (for example, steel shields or rubber seals). In addition, the holder | retainer 4 does not need to be provided.

この密封装置5は略環状の部材であり、その外周端部5aが外輪2の内周面の軸方向両端部に取り付けられている。図1においては、外輪2の内周面の軸方向両端部に形成された溝に、密封装置5の外周端部5aが加締められて嵌入されている。そして、密封装置5の内周端部5bが内輪1の外周面に隙間を空けて対向している。なお、外輪2が本発明の構成要件である「一方の軌道輪(密封装置が取り付けられた軌道輪)」に相当し、内輪1が本発明の構成要件である「他方の軌道輪(密封装置が隙間を空けて対向する軌道輪)」に相当する。密封装置5の内周端部5bが内輪1に取り付けられ、外周端部5aが外輪2の内周面に隙間を空けて対向している構成としても差し支えない。   The sealing device 5 is a substantially annular member, and an outer peripheral end portion 5 a is attached to both axial end portions of the inner peripheral surface of the outer ring 2. In FIG. 1, the outer peripheral end 5 a of the sealing device 5 is caulked and fitted into grooves formed at both axial end portions of the inner peripheral surface of the outer ring 2. The inner peripheral end 5 b of the sealing device 5 faces the outer peripheral surface of the inner ring 1 with a gap. The outer ring 2 corresponds to “one race ring (a race ring to which a sealing device is attached)” which is a constituent requirement of the present invention, and the inner ring 1 corresponds to “the other race ring (sealing device) which is a constituent requirement of the present invention. Corresponds to an orbital ring facing with a gap). The inner peripheral end 5b of the sealing device 5 may be attached to the inner ring 1 and the outer peripheral end 5a may be opposed to the inner peripheral surface of the outer ring 2 with a gap.

そして、内輪1と外輪2と密封装置5,5とで囲まれた軸受内部空間内には、両軌道面1a,2aと転動体3の転動面3aとの間の潤滑を行う潤滑剤Gが配されている。この潤滑剤Gは、ゲル化剤で基油をゲル化してなるゲル状潤滑剤である。基油の種類は特に限定されるものではないが、ゲル化剤の種類はアミノ酸系化合物又はベンジリデンソルビトール誘導体である。   In the bearing inner space surrounded by the inner ring 1, the outer ring 2, and the sealing devices 5, 5, a lubricant G that lubricates between the raceway surfaces 1 a and 2 a and the rolling surface 3 a of the rolling element 3. Is arranged. This lubricant G is a gel lubricant formed by gelling a base oil with a gelling agent. The type of base oil is not particularly limited, but the type of gelling agent is an amino acid compound or a benzylidene sorbitol derivative.

一方、密封装置5の内周端部5bと内輪1の外周面との間に形成された隙間及びその近傍部分(図1においては、この隙間及びその近傍部分を丸で囲み、符号Aを付してある。以降は、この隙間及びその近傍部分を合わせたものをシールリップ近傍部と記すこともある。)には、図示しないフッ素グリースが配されている。このフッ素グリースは、フッ素油を基油とし、フッ素樹脂を増ちょう剤とするグリースである。   On the other hand, a gap formed between the inner peripheral end 5b of the sealing device 5 and the outer peripheral surface of the inner ring 1 and its vicinity (in FIG. 1, this gap and its vicinity are circled and denoted by reference symbol A). Hereinafter, a combination of the gap and the vicinity thereof may be referred to as a seal lip vicinity portion), and fluorine grease (not shown) is disposed. This fluorine grease is a grease that uses fluorine oil as a base oil and fluorine resin as a thickener.

アミノ酸系化合物やベンジリデンソルビトール誘導体をゲル化剤として用いた潤滑剤Gは、ゲル化剤の使用量が非常に少ないため、剪断力が付与されるとゲル状から油状(ちょう度380以上)に容易に変化して流動する傾向がある。よって、深溝玉軸受の回転により剪断力が付与されると、軌道面1a,2aや転動体3の転動面3aの近傍に位置していた潤滑剤Gは速やかに油状に変化して、深溝玉軸受の潤滑に供される。その結果、深溝玉軸受は、高速回転条件(例えば、グリース潤滑時の転がり軸受の許容回転速度の80%以上の回転速度)で回転しても低トルクであるとともに、回転トルクが早期に安定する。   Lubricant G using an amino acid compound or a benzylidene sorbitol derivative as a gelling agent has a very small amount of gelling agent. Therefore, when shearing force is applied, it is easy to change from gel to oily (concentration 380 or more). There is a tendency to change and flow. Therefore, when a shearing force is applied by the rotation of the deep groove ball bearing, the lubricant G located in the vicinity of the raceway surfaces 1a and 2a and the rolling surface 3a of the rolling element 3 quickly changes to oil, and the deep groove It is used for ball bearing lubrication. As a result, the deep groove ball bearing has a low torque even when it rotates under a high-speed rotation condition (for example, a rotation speed of 80% or more of the allowable rotation speed of the rolling bearing during grease lubrication), and the rotation torque stabilizes early. .

一方、密封装置5の内周端部5bと内輪1の外周面との間に形成された隙間及びその近傍部分には、フッ素グリースが配されている。よって、深溝玉軸受が高速回転条件で回転して密封装置5の内周端部5bから剪断力を付与されても、フッ素グリースが深溝玉軸受の外部に漏洩するおそれはほとんど無い。また、剪断力の付与により油状に変化した潤滑剤Gが前記シールリップ近傍部に流れてきたとしても、フッ素グリースと混ざりにくく弾かれるため、潤滑剤Gが軸受内部空間内から深溝玉軸受の外部に漏洩するおそれはほとんど無い。   On the other hand, fluorine grease is disposed in the gap formed between the inner peripheral end 5 b of the sealing device 5 and the outer peripheral surface of the inner ring 1 and in the vicinity thereof. Therefore, even if the deep groove ball bearing rotates under high-speed rotation conditions and a shearing force is applied from the inner peripheral end 5b of the sealing device 5, there is almost no possibility that the fluorine grease leaks to the outside of the deep groove ball bearing. Further, even if the lubricant G changed to oily due to the application of shear force flows in the vicinity of the seal lip, the lubricant G is repelled so as not to be mixed with the fluorine grease. There is almost no risk of leakage.

前記シールリップ近傍部にフッ素グリースが配されていないと、高速回転により前記シールリップ近傍部に流れて密封装置5の内周端部5bに付着した潤滑剤Gが、密封装置5の内周端部5bから付与される剪断力により軟化し、軸受内部空間内から深溝玉軸受の外部に漏洩するおそれがある。
また、金属石けんやウレア化合物を増ちょう剤とした一般的なグリースは潤滑剤Gと混ざりやすいので、これらの一般的なグリースが前記シールリップ近傍部に配されていると、剪断力の付与により油状に変化し前記シールリップ近傍部に流れてきた潤滑剤Gと混合するおそれがある。よって、深溝玉軸受を長時間回転させると、前記シールリップ近傍部に配されていた一般的なグリースが軟化し、潤滑剤Gとともに深溝玉軸受の外部に漏洩するおそれがある。
If fluorine grease is not disposed in the vicinity of the seal lip, the lubricant G that flows to the vicinity of the seal lip by high speed rotation and adheres to the inner peripheral end 5b of the sealing device 5 There is a risk of softening due to the shearing force applied from the portion 5b and leakage from the inside space of the bearing to the outside of the deep groove ball bearing.
In addition, general greases using metal soaps and urea compounds as thickeners are easily mixed with the lubricant G. If these general greases are arranged in the vicinity of the seal lip, the shearing force is applied. There is a risk that the oil changes into oil and is mixed with the lubricant G flowing in the vicinity of the seal lip. Therefore, when the deep groove ball bearing is rotated for a long time, general grease arranged in the vicinity of the seal lip is softened and may leak to the outside of the deep groove ball bearing together with the lubricant G.

さらに、フッ素グリースのみを軸受内部空間内に封入した場合は、深溝玉軸受が高速回転条件で使用されてもフッ素グリースが深溝玉軸受の外部に漏洩するおそれはほとんど無いものの、鉱油やポリα−オレフィン油を基油としたグリースと比べて流動性が悪く潤滑性能が劣るため、深溝玉軸受に摩耗が生じやすいという問題がある。そして、摩耗により生じた摩耗粉がフッ素グリースに混入すると、深溝玉軸受の回転トルクが増大するおそれがある。   Furthermore, when only fluorine grease is sealed in the bearing internal space, there is almost no risk of fluorine grease leaking out of the deep groove ball bearing even if the deep groove ball bearing is used under high speed rotation conditions. Since the fluidity is poor and the lubrication performance is inferior as compared with greases based on olefin oil, there is a problem that wear is likely to occur in deep groove ball bearings. When wear powder generated by wear is mixed into the fluorine grease, the rotational torque of the deep groove ball bearing may increase.

さらに、フッ素グリースは、金属石けんやウレア化合物を増ちょう剤とした一般的なグリースと比べて高価であるため、フッ素グリースのみを軸受内部空間内に封入した場合は深溝玉軸受が高価となってしまうという問題もある。   Furthermore, since fluorine grease is more expensive than general greases containing metal soap or urea compounds as a thickener, deep groove ball bearings become expensive when only fluorine grease is sealed in the bearing internal space. There is also a problem of end.

ここで、潤滑剤Gについて詳細に説明する。
〔ゲル化剤について〕
アミノ酸系化合物とベンジリデンソルビトール誘導体は、油をゲル化する能力が高く、一般的なゲル化剤と比べて少量で(数質量%配合することにより)容易にゲル状物を形成することができる。
Here, the lubricant G will be described in detail.
[About gelling agent]
The amino acid compound and the benzylidene sorbitol derivative have a high ability to gel oil, and can easily form a gel-like substance in a small amount (by blending several mass%) as compared with a general gelling agent.

例えば、NLGI No.2(ちょう度265〜295)の硬さを得るために必要なゲル化剤の量は、一般的なゲル化剤(例えば石けん系ゲル化剤,ウレア系ゲル化剤)が10〜30質量%であるのに対して、アミノ酸系化合物やベンジリデンソルビトール誘導体の場合は2〜5質量%である。潤滑剤Gは、ゲル化剤の量が5質量%以下と少ないので、剪断力の付与により容易に油状となり流動する。   For example, NLGI No. The amount of the gelling agent necessary for obtaining a hardness of 2 (concentration 265 to 295) is 10 to 30% by mass of a general gelling agent (for example, a soap-based gelling agent or a urea-based gelling agent). On the other hand, in the case of an amino acid compound or a benzylidene sorbitol derivative, the content is 2 to 5% by mass. Since the amount of the gelling agent is as small as 5% by mass or less, the lubricant G easily becomes oily and flows when a shearing force is applied.

アミノ酸系化合物の種類は、基油中に分散してゲル状物を形成するものであれば特に限定されるものではないが、N−2−エチルヘキサノイル−L−グルタミン酸ジブチルアミドやN−ラウロイル−L−グルタミン酸−α,γ−n−ジブチルアミドが好適である。
ベンジリデンソルビトール誘導体の種類も同様に、基油中に分散してゲル状物を形成するものであれば特に限定されるものではないが、ジベンジリデンソルビトール、ジトリリデンソルビトールの他、非対称のジアルキルベンジリデンソルビトールが好適である。これらのゲル化剤は単独で使用してもよいし、2種以上を併用してもよい。
The type of amino acid compound is not particularly limited as long as it is dispersed in a base oil to form a gel, but N-2-ethylhexanoyl-L-glutamic acid dibutylamide or N-lauroyl -L-glutamic acid-α, γ-n-dibutylamide is preferred.
Similarly, the type of benzylidene sorbitol derivative is not particularly limited as long as it is dispersed in a base oil to form a gel, but dibenzylidene sorbitol, ditrilidene sorbitol, as well as asymmetric dialkyl benzylidene sorbitol Is preferred. These gelling agents may be used alone or in combination of two or more.

ゲル化剤の含有量は、潤滑剤Gの1質量%以上10質量%以下が好ましい。ゲル化剤の含有量が1質量%未満であると、剪断力が付与されていない状態の潤滑剤Gが軟らかすぎるため、軸受内部空間内への封入作業に問題が生じるおそれがある。一方、ゲル化剤の含有量が10質量%超過であると、剪断力が付与されていない状態の潤滑剤Gが硬すぎるため、軸受内部空間内への封入作業に問題が生じるおそれがある。また、剪断力が付与されても十分な流動性を有する油状に変化せず、高速回転条件で回転した際の回転トルクが十分に低くならないおそれがある。このような不都合がより生じにくくするためには、ゲル化剤の含有量は2質量%以上5質量%以下とすることがより好ましい。   The content of the gelling agent is preferably 1% by mass or more and 10% by mass or less of the lubricant G. If the content of the gelling agent is less than 1% by mass, the lubricant G in a state where no shearing force is applied is too soft, and there is a possibility that a problem may occur in the sealing operation in the bearing internal space. On the other hand, if the content of the gelling agent is more than 10% by mass, the lubricant G in a state where no shear force is applied is too hard, which may cause a problem in the sealing operation in the bearing internal space. Further, even when a shearing force is applied, the oil does not change to an oil having sufficient fluidity, and the rotational torque when rotating under high-speed rotation conditions may not be sufficiently low. In order to make such inconvenience more difficult to occur, the content of the gelling agent is more preferably 2% by mass or more and 5% by mass or less.

〔基油について〕
基油の種類は、ゲル化剤によりゲル化されるものであれば特に限定されるものではなく、潤滑油として一般的に使用される油を問題なく使用することができる。例えば、鉱油系潤滑油,合成油系潤滑油,天然油系潤滑油があげられる。
鉱油系潤滑油としては、減圧蒸留,溶剤脱れき,溶剤抽出,水素化分解,溶剤脱ろう,硫酸洗浄,白土精製,水素化精製等を適宜組み合わせて精製した鉱油が好ましい。また、合成油系潤滑油としては、脂肪族系炭化水素油(例えばポリα−オレフィン油),芳香族系炭化水素油,エーテル油,エステル油,グリコール油があげられる。さらに、天然油系潤滑油としては、牛脂,豚脂,大豆油,菜種油,米ぬか油,ヤシ油,パーム油,パーム核油等の油脂系油又はその水素化物などがあげられる。これらは単独で使用してもよいし、2種以上混合して使用してもよい。
[About base oil]
The type of base oil is not particularly limited as long as it is gelled by a gelling agent, and oils generally used as lubricating oils can be used without any problem. For example, mineral oil-based lubricating oil, synthetic oil-based lubricating oil, and natural oil-based lubricating oil can be used.
As the mineral oil-based lubricating oil, preferred is a mineral oil purified by appropriately combining vacuum distillation, solvent removal, solvent extraction, hydrocracking, solvent dewaxing, sulfuric acid washing, white clay purification, hydrorefining, and the like. Synthetic oil-based lubricating oils include aliphatic hydrocarbon oils (for example, poly α-olefin oil), aromatic hydrocarbon oils, ether oils, ester oils, and glycol oils. Furthermore, examples of the natural oil-based lubricating oil include beef fat, pork fat, soybean oil, rapeseed oil, rice bran oil, coconut oil, palm oil, palm kernel oil, and other oils and hydrides thereof. These may be used alone or in combination of two or more.

〔添加剤について〕
さらに、潤滑剤Gには、その各種性能をさらに向上させるために、グリース等の潤滑剤に一般的に使用される添加剤を添加しても差し支えない。例えば、酸化防止剤,防錆剤,耐摩耗剤,極圧剤,油性向上剤,金属不活性化剤等があげられる。
酸化防止剤としては、例えば、アミン系酸化防止剤,フェノール系酸化防止剤,硫黄系酸化防止剤,ジチオリン酸亜鉛,ジチオカルバミン酸亜鉛があげられる。防錆剤としては、例えば、スルホン酸金属塩,エステル系防錆剤,アミン系防錆剤,ナフテン酸金属塩,コハク酸誘導体があげられる。極圧剤としては、例えば、リン系極圧剤,ジチオリン酸亜鉛,有機モリブデンがあげられる。油性向上剤としては、例えば、脂肪酸,動植物油があげられる。金属不活性化剤としては、例えば、ベンゾトリアゾールがあげられる。
[Additives]
Furthermore, in order to further improve various performances of the lubricant G, additives generally used for lubricants such as grease may be added. For example, antioxidants, rust inhibitors, antiwear agents, extreme pressure agents, oiliness improvers, metal deactivators and the like can be mentioned.
Examples of the antioxidant include amine-based antioxidants, phenol-based antioxidants, sulfur-based antioxidants, zinc dithiophosphate, and zinc dithiocarbamate. Examples of the rust preventive include sulfonic acid metal salts, ester-based rust preventives, amine-based rust preventives, naphthenic acid metal salts, and succinic acid derivatives. Examples of extreme pressure agents include phosphorus extreme pressure agents, zinc dithiophosphate, and organic molybdenum. Examples of oiliness improvers include fatty acids and animal and vegetable oils. Examples of the metal deactivator include benzotriazole.

これらの添加剤は単独で用いてもよいし、2種以上を適宜組み合わせて用いてもよい。潤滑剤Gにおける添加剤の合計の含有量は、本発明の目的を損なわない程度であれば特に限定されるものではない。   These additives may be used independently and may be used in combination of 2 or more types as appropriate. The total content of additives in the lubricant G is not particularly limited as long as it does not impair the object of the present invention.

次に、フッ素グリースについて詳細に説明する。フッ素グリースの基油であるフッ素油の種類は特に限定されるものではないが、パーフルオロポリエーテル油(PFPE)等のフルオロポリエーテル油が好ましい。フルオロポリエーテル油には直鎖状のものと分岐鎖状のものとがあるが、いずれか一方を使用してもよいし、両者の混合油を使用してもよい。また、フッ素油の動粘度は特に限定されるものではなく、グリースの基油として一般的な動粘度を有するものを問題なく用いることができる。   Next, the fluorine grease will be described in detail. Although the kind of fluorine oil which is a base oil of fluorine grease is not particularly limited, fluoropolyether oil such as perfluoropolyether oil (PFPE) is preferable. Fluoropolyether oil includes linear and branched ones, either one of which may be used, or a mixture of both. Further, the kinematic viscosity of the fluorine oil is not particularly limited, and those having a general kinematic viscosity as the base oil of the grease can be used without any problem.

また、フッ素グリースの増ちょう剤であるフッ素樹脂の種類は特に限定されるものではないが、ポリテトラフルオロエチレン(PTFE)や、テトラフルオロエチレンと全体又は一部分がフッ素化された他のエチレン系不飽和炭化水素モノマーとの共重合体が好ましい。また、1種類のフッ素樹脂を単独で使用してもよいが、複数種のフッ素樹脂を組み合わせて使用してもよい。   In addition, the type of fluororesin that is a thickener for the fluorine grease is not particularly limited, but polytetrafluoroethylene (PTFE) or other ethylene-based non-polymers that are fluorinated in whole or in part with tetrafluoroethylene. Copolymers with saturated hydrocarbon monomers are preferred. One kind of fluororesin may be used alone, but a plurality of kinds of fluororesins may be used in combination.

粉末状のフッ素樹脂を基油と混合してフッ素グリースとするが、粉末の粒子形状は特に限定されるものではなく、球形,多面体形状(例えば立方体,直方体),針状等があげられる。
このフッ素グリースには、その各種性能をさらに向上させるために、グリース等の潤滑剤に一般的に使用される添加剤を添加しても差し支えない。このようなフッ素グリースの混和ちょう度は、NLGI No.1〜3であることが好ましい。
A powdery fluororesin is mixed with a base oil to form a fluorine grease, but the particle shape of the powder is not particularly limited, and examples thereof include a spherical shape, a polyhedral shape (for example, a cube, a rectangular parallelepiped), and a needle shape.
In order to further improve various performances of the fluorine grease, additives generally used for lubricants such as grease may be added. The blending degree of such fluorine grease is NLGI No. It is preferable that it is 1-3.

なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。例えば、本実施形態においては転がり軸受の例として深溝玉軸受をあげて説明したが、本発明は、他の種類の様々な転がり軸受に対して適用することができる。例えば、アンギュラ玉軸受,自動調心玉軸受,円筒ころ軸受,円すいころ軸受,針状ころ軸受,自動調心ころ軸受等のラジアル形の転がり軸受や、スラスト玉軸受,スラストころ軸受等のスラスト形の転がり軸受である。   In addition, this embodiment shows an example of this invention and this invention is not limited to this embodiment. For example, in the present embodiment, a deep groove ball bearing has been described as an example of a rolling bearing, but the present invention can be applied to various types of rolling bearings. For example, radial rolling bearings such as angular contact ball bearings, self-aligning ball bearings, cylindrical roller bearings, tapered roller bearings, needle roller bearings, and self-aligning roller bearings, and thrust types such as thrust ball bearings and thrust roller bearings This is a rolling bearing.

〔実施例〕
以下に実施例を示して、本発明をさらに具体的に説明する。前述の図1の深溝玉軸受とほぼ同様の構成の軸受(内径25mm、外径62mm、幅17mm)を用いて、グリース漏洩試験及びトルク試験を行った。
下記の4種類の潤滑剤を用意して、軸受内部空間内、並びに、シールドの内周端部と内輪の外周面との間に形成された隙間及びその近傍部分(前述のシールリップ近傍部)に、前記4種類の潤滑剤のうちいずれかを配した(表1,2を参照)。
〔Example〕
The present invention will be described more specifically with reference to the following examples. A grease leakage test and a torque test were performed using a bearing (inner diameter: 25 mm, outer diameter: 62 mm, width: 17 mm) having substantially the same configuration as the deep groove ball bearing shown in FIG.
The following four types of lubricants are prepared, and the clearance formed in the bearing inner space and between the inner peripheral end of the shield and the outer peripheral surface of the inner ring and the vicinity thereof (the aforementioned seal lip vicinity) Any one of the four types of lubricants was disposed (see Tables 1 and 2).

・ゲル状潤滑剤A:基油としてエステル油(40℃における動粘度は31cSt)、ゲル化剤としてN−2−エチルヘキサノイル−L−グルタミン酸ジブチルアミドを用いたもの。ゲル化剤の含有量は、潤滑剤の5質量%である。
・ゲル状潤滑剤B:基油としてモノオール型グリコール油(40℃における動粘度は31cSt)、ゲル化剤としてジベンジリデンソルビトールを用いたもの。ゲル化剤の含有量は、潤滑剤の4質量%である。
Gel lubricant A: ester oil as the base oil (kinematic viscosity at 40 ° C. is 31 cSt) and N-2-ethylhexanoyl-L-glutamic acid dibutylamide as the gelling agent. The content of the gelling agent is 5% by mass of the lubricant.
Gel-like lubricant B: Monool-type glycol oil (kinematic viscosity at 40 ° C. is 31 cSt) as the base oil, and dibenzylidene sorbitol as the gelling agent. The content of the gelling agent is 4% by mass of the lubricant.

・フッ素グリース:基油としてパーフルオロポリエーテル油(40℃における動粘度は60cSt)、増ちょう剤としてPTFEを用いたもの。
・ウレアグリース:基油としてエステル油(40℃における動粘度は31cSt)、増ちょう剤として脂環式炭化水素基を有するウレア化合物を用いたもの。
Fluorine grease: Perfluoropolyether oil as the base oil (kinematic viscosity at 40 ° C. is 60 cSt) and PTFE as the thickener.
Urea grease: A base oil using an ester oil (kinematic viscosity at 40 ° C. is 31 cSt) and a urea compound having an alicyclic hydrocarbon group as a thickener.

Figure 2010156392
Figure 2010156392

Figure 2010156392
Figure 2010156392

試験に使用する深溝玉軸受における標準の潤滑剤使用量は、軸受内部空間の容積の35体積%である。この量を質量で表すと、潤滑剤の密度の違いにより、上記のゲル状潤滑剤A,B及びウレアグリースでは3.4gとなり、フッ素グリースでは7gとなる。今回の試験においては、前記標準の潤滑剤使用量のうち80%の潤滑剤を軸受内部空間内に配し、20%をシールリップ近傍部に配する。   The standard amount of lubricant used in the deep groove ball bearing used for the test is 35% by volume of the volume of the bearing internal space. When this amount is expressed by mass, due to the difference in the density of the lubricant, it becomes 3.4 g for the above-mentioned gel lubricants A and B and urea grease, and 7 g for the fluorine grease. In this test, 80% of the standard amount of lubricant used is disposed in the bearing internal space, and 20% is disposed in the vicinity of the seal lip.

例えば、軸受内部空間内にゲル状潤滑剤A又はBを使用し、シールリップ近傍部にフッ素グリースを使用する場合には、軸受内部空間内にゲル状潤滑剤A又はBを2.72g、シールリップ近傍部にフッ素グリースを1.4g配することとなる。また、両方にフッ素グリースを使用する場合には、軸受内部空間内に5.6g、シールリップ近傍部に1.4g配することとなる。さらに、両方にゲル状潤滑剤A,B又はウレアグリースを使用する場合には、軸受内部空間内に2.72g、シールリップ近傍部に0.68g配することとなる。   For example, when gel lubricant A or B is used in the bearing inner space and fluorine grease is used in the vicinity of the seal lip, 2.72 g of gel lubricant A or B is sealed in the bearing inner space. 1.4 g of fluorine grease is disposed in the vicinity of the lip. When fluorine grease is used for both, 5.6 g is disposed in the bearing internal space and 1.4 g is disposed in the vicinity of the seal lip. Further, when gel lubricant A, B or urea grease is used for both, 2.72 g is disposed in the bearing internal space and 0.68 g is disposed in the vicinity of the seal lip.

次に、グリース漏洩試験について説明する。試験軸受を下記の条件で20時間回転させ、漏洩した潤滑剤の量を測定し、グリース漏洩率を算出した。結果を表1,2に示す。なお、表1,2に記載のグリース漏洩率は、比較例1のグリース漏洩率を1とした場合の相対値で示してある。
回転速度 :10000min-1(グリース潤滑時の深溝玉軸受の許容回転速度の90%の回転速度)
ラジアル荷重 :98N
アキシアル荷重:98N
試験温度 :80℃
Next, the grease leakage test will be described. The test bearing was rotated for 20 hours under the following conditions, the amount of leaked lubricant was measured, and the grease leakage rate was calculated. The results are shown in Tables 1 and 2. The grease leakage rates shown in Tables 1 and 2 are shown as relative values when the grease leakage rate of Comparative Example 1 is 1.
Rotational speed: 10000 min −1 (90% of the allowable rotational speed of deep groove ball bearing during grease lubrication)
Radial load: 98N
Axial load: 98N
Test temperature: 80 ° C

次に、トルク試験について説明する。試験軸受を下記の条件で回転させ、回転開始後295〜305秒の間の10秒間のトルクの平均値を算出してトルク値とした。結果を表1,2に示す。なお、表1,2に記載のトルク値は、比較例1のトルク値を1とした場合の相対値で示してある。   Next, the torque test will be described. The test bearing was rotated under the following conditions, and an average value of torque for 10 seconds between 295 and 305 seconds after the start of rotation was calculated as a torque value. The results are shown in Tables 1 and 2. The torque values shown in Tables 1 and 2 are shown as relative values when the torque value of Comparative Example 1 is 1.

回転速度 :3000min-1
ラジアル荷重 :29.4N
アキシアル荷重:294N
試験温度 :常温
グリース漏洩試験及びトルク試験の結果について説明する。表1,2から分かるように、実施例1,2は、剪断力が付与されると油状に容易に変化するゲル状潤滑剤を軸受内部空間内に備え、前記ゲル状潤滑剤と混ざりにくいフッ素グリースをシールリップ近傍部に備えているので、高速回転条件で使用されてもグリース漏洩率が0.2以下と低く、且つ、トルク値が1.2以下と低トルクである。
Rotational speed: 3000 min -1
Radial load: 29.4N
Axial load: 294N
Test temperature: Room temperature Explains the results of grease leakage test and torque test. As can be seen from Tables 1 and 2, Examples 1 and 2 are provided with a gel-like lubricant that easily changes to oil when a shearing force is applied, in the bearing internal space, and fluorine that is difficult to mix with the gel-like lubricant. Since grease is provided in the vicinity of the seal lip, the grease leakage rate is as low as 0.2 or less and the torque value is as low as 1.2 or less even when used under high-speed rotation conditions.

比較例2は、ゲル状潤滑剤を軸受内部空間内に備えているので、トルク値が1.2以下と低トルクであるが、前記ゲル状潤滑剤と混ざる可能性のあるウレアグリースをシールリップ近傍部に備えているので、実施例1,2と比べるとグリース漏洩率が高く、0.2を超えた。
また、比較例3は、軸受内部空間内とシールリップ近傍部の両方にフッ素グリースを使用しているので、グリース漏洩率は低いがトルク値は高かった。比較例4についても比較例3と同様である。
In Comparative Example 2, the gel-like lubricant is provided in the inner space of the bearing, so that the torque value is as low as 1.2 or less, but urea grease that may be mixed with the gel-like lubricant is used as a seal lip. Since it was provided in the vicinity, the grease leakage rate was higher than in Examples 1 and 2, exceeding 0.2.
In Comparative Example 3, fluorine grease was used both in the bearing internal space and in the vicinity of the seal lip, so the grease leakage rate was low but the torque value was high. Comparative Example 4 is the same as Comparative Example 3.

本発明に係る転がり軸受の一実施形態である深溝玉軸受の構成を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the structure of the deep groove ball bearing which is one Embodiment of the rolling bearing which concerns on this invention.

符号の説明Explanation of symbols

1 内輪
1a 軌道面
2 外輪
2a 軌道面
3 転動体
5 密封装置
5b 内周端部
G 潤滑剤
DESCRIPTION OF SYMBOLS 1 Inner ring 1a Raceway surface 2 Outer ring 2a Raceway surface 3 Rolling element 5 Sealing device 5b Inner peripheral edge G Lubricant

Claims (1)

内輪と、外輪と、前記内輪の軌道面と前記外輪の軌道面との間に転動自在に配された複数の転動体と、前記内輪と前記外輪とのうち一方の軌道輪に取り付けられ他方の軌道輪に隙間を空けて対向する非接触形の密封装置と、を備える転がり軸受において、
前記内輪と前記外輪と前記密封装置とで囲まれた軸受内部空間内に、アミノ酸系化合物又はベンジリデンソルビトール誘導体で基油をゲル化してなる潤滑剤を配するとともに、前記密封装置と前記他方の軌道輪との間に形成された前記隙間及びその近傍部分に、フッ素油とフッ素樹脂とを含有するフッ素グリースを配したことを特徴とする転がり軸受。
An inner ring, an outer ring, a plurality of rolling elements arranged in a freely rolling manner between the raceway surface of the inner ring and the raceway surface of the outer ring, and the other attached to one raceway ring of the inner ring and the outer ring In a rolling bearing provided with a non-contact type sealing device that faces the raceway ring with a gap therebetween,
A lubricant formed by gelling a base oil with an amino acid compound or a benzylidene sorbitol derivative is disposed in a bearing inner space surrounded by the inner ring, the outer ring, and the sealing device, and the sealing device and the other raceway. A rolling bearing characterized in that fluorine grease containing fluorine oil and fluorine resin is disposed in the gap formed between the ring and the vicinity thereof.
JP2008334398A 2008-12-26 2008-12-26 Rolling bearing Pending JP2010156392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008334398A JP2010156392A (en) 2008-12-26 2008-12-26 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008334398A JP2010156392A (en) 2008-12-26 2008-12-26 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2010156392A true JP2010156392A (en) 2010-07-15

Family

ID=42574445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008334398A Pending JP2010156392A (en) 2008-12-26 2008-12-26 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2010156392A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167244A (en) * 2011-01-25 2012-09-06 Nsk Ltd Lubricant composition, and rolling bearing
CN103851072A (en) * 2012-12-04 2014-06-11 株式会社捷太格特 Ball bearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162972A (en) * 1997-08-15 1999-03-05 Nippon Seiko Kk Rolling bearing for oscillation movement
JP2008280476A (en) * 2007-05-14 2008-11-20 Nsk Ltd Lubricant composition and rolling bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162972A (en) * 1997-08-15 1999-03-05 Nippon Seiko Kk Rolling bearing for oscillation movement
JP2008280476A (en) * 2007-05-14 2008-11-20 Nsk Ltd Lubricant composition and rolling bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167244A (en) * 2011-01-25 2012-09-06 Nsk Ltd Lubricant composition, and rolling bearing
CN103851072A (en) * 2012-12-04 2014-06-11 株式会社捷太格特 Ball bearing

Similar Documents

Publication Publication Date Title
EP3293424B1 (en) Sealing apparatus
JP2012140542A (en) Grease composition, grease-enclosed bearing, universal joint, and linear motion device
JP5521320B2 (en) Lubricant composition and rolling device
JP2015206434A (en) Seal member for rolling device
JP2013092249A (en) Ball bearing
JP2010156392A (en) Rolling bearing
JP2005248034A (en) Grease composition, its preparation method, and antifriction bearing filled with the grease composition
JP5347454B2 (en) Lubricant composition and rolling device
JP2002323053A (en) Rolling bearing
JP6722379B2 (en) Grease composition, method for producing the same, and rolling bearing in which the grease composition is enclosed
JP2009121532A (en) Rolling bearing for high speed
JP2008208174A (en) Grease composition and rolling apparatus
JP2011094023A (en) Grease composition for railway axle bearing and roller bearing for railway axle support
JP2017141951A (en) Rolling device
JP2004269580A (en) Grease composition and rolling bearing using he same
JP2010043686A (en) Sintered oil-impregnated bearing
JP2007056939A (en) Bearing for high-speed motor
JP2004108440A (en) Linear drive actuator
JP2005220155A (en) Grease composition and rolling device
JP2007002140A (en) Grease composition and roller bearing
JP2008031254A (en) Grease composition and rolling device
JP2009036222A (en) High-speed rolling bearing
JP2003239986A (en) Ball bearing
JP2003277780A (en) Biodegradable grease composition and rolling device
JP2006045264A (en) Grease composition and rolling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319