JP2010156024A - Method for producing aluminum alloy sheet for cold press forming, and cold press forming method - Google Patents

Method for producing aluminum alloy sheet for cold press forming, and cold press forming method Download PDF

Info

Publication number
JP2010156024A
JP2010156024A JP2008335624A JP2008335624A JP2010156024A JP 2010156024 A JP2010156024 A JP 2010156024A JP 2008335624 A JP2008335624 A JP 2008335624A JP 2008335624 A JP2008335624 A JP 2008335624A JP 2010156024 A JP2010156024 A JP 2010156024A
Authority
JP
Japan
Prior art keywords
aluminum alloy
solution treatment
press forming
cold press
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008335624A
Other languages
Japanese (ja)
Other versions
JP5379471B2 (en
Inventor
Koji Ichitani
幸司 一谷
Akira Hibino
旭 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2008335624A priority Critical patent/JP5379471B2/en
Publication of JP2010156024A publication Critical patent/JP2010156024A/en
Application granted granted Critical
Publication of JP5379471B2 publication Critical patent/JP5379471B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve both of securement of high formability of an Al-Mg-Si-based aluminum alloy sheet mainly used as an automotive body sheet and keeping of high productivity in the forming. <P>SOLUTION: Regarding the Al-Mg-Si-based aluminum alloy sheet lying in a sub-aged state by age hardening or in a worked and hardened state by rolling, before cold press forming therefor, solution heat treatment is partially performed, a strength difference is imparted to a heated part and a non-heated part, and the heated part having low strength is made to abut on the pressure pad part, and the non-heated part having high strength is made to abut on a punch shoulder part, thus cold press forming is performed. In the partial solution heat treatment, rapid cooling is performed at ≥50°C/min in such a manner that the heating arrival temperature of the heated part is controlled to 480 to <580°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、成形加工、特に冷間プレス成形や塗装焼付を施して使用されるAl−Mg−Si系アルミニウム合金板の製造方法、およびそれにより得られた冷間プレス成形用アルミニウム合金板を用いた冷間プレス成形方法に関し、具体的には、自動車、船舶、航空機等の各種部材・部品、あるいは建築材料、構造材料、そのほか各種機械器具、家電製品やその部品等、特に自動車ボディシート、ボディパネルに好適に用いられるAl−Mg−Si系アルミニウム合金板についての製造方法および冷間プレス成形方法に関するものである。   The present invention uses a method for producing an Al—Mg—Si-based aluminum alloy plate used by forming, particularly cold press forming and paint baking, and an aluminum alloy plate for cold press forming obtained thereby. In particular, various parts and parts of automobiles, ships, airplanes, etc., or building materials, structural materials, other machinery and appliances, home appliances and parts thereof, especially automobile body sheets and bodies The present invention relates to a manufacturing method and a cold press forming method for an Al—Mg—Si-based aluminum alloy plate suitably used for a panel.

従来自動車のボディシートとしては、主として冷延鋼板を使用することが多かったが、最近では、地球温暖化抑制の視点からCO排出量の削減が求められ、そのため車体軽量化の重要性が広く認識された結果、アルミニウム合金圧延板を使用することが多くなっている。ところでアルミニウム合金圧延板の成形加工性は、一般に冷延鋼板と比べて劣るため、その使用拡大の障害となっている。アルミニウム合金圧延板の成形加工性向上のためには、素材自身の成形性改善と成形加工方法の工夫が強く求められている。 Conventionally, cold rolled steel sheets have been mainly used as body seats for automobiles. Recently, however, reduction of CO 2 emissions has been demanded from the viewpoint of global warming suppression. As a result of recognition, the use of rolled aluminum alloy sheets is increasing. By the way, since the formability of an aluminum alloy rolled sheet is generally inferior to that of a cold-rolled steel sheet, it is an obstacle to expanding its use. In order to improve the formability of the rolled aluminum alloy sheet, improvement of the formability of the material itself and a device for the forming method are strongly demanded.

ところで特許文献1、2では、アルミニウム合金板の成形性を向上させるために温間深絞り成形法を適用することが提案されている。確かに温間成形法は、アルミニウム合金板の深絞り成形性を向上させることが可能であるが、大規模な工業生産を前提にすれば、いくつかの問題点がある。   Patent Documents 1 and 2 propose applying a warm deep drawing method in order to improve the formability of an aluminum alloy plate. Certainly, the warm forming method can improve the deep drawability of the aluminum alloy sheet, but there are some problems if large-scale industrial production is assumed.

すなわち温間深絞り成形法の特徴として、フランジ部の加熱やパンチ部の冷却をしたままの状態で深絞り成形を行なうことが求められ、そのため、
1.プレス機械に、アルミニウム合金板の加熱、冷却機能を付与することが必要であって、冷間プレス成形と比べてトータルの成形時間に長時間を要して、生産効率が低下し、成形コストが増加する。
2.温間で成形を行なうため、通常の冷間成形用の潤滑油が使えず、そのため新たな潤滑油の開発が必要となる。
3.プレス機械の構成が複雑となり、高い設備コストを要する。
4.プレス機械の複雑化に伴い、品質管理上に不安が生じる。
などの問題がある。
That is, as a feature of the warm deep drawing method, it is required to perform deep drawing while the flange portion is heated and the punch portion is cooled.
1. It is necessary to provide the press machine with heating and cooling functions for the aluminum alloy sheet. Compared with cold press forming, the total forming time is longer, resulting in lower production efficiency and lower forming costs. To increase.
2. Since the molding is performed warmly, the usual cold forming lubricating oil cannot be used, and therefore, it is necessary to develop a new lubricating oil.
3. The configuration of the press machine becomes complicated and requires high equipment costs.
4). As press machines become more complex, concerns about quality control arise.
There are problems such as.

ところで温間深絞り成形法は、成形時にアルミニウム合金板ブランクに対して加工度の大きい部分を局部的に加熱して軟化させ、成形するものであるから、成形時でとらえれば、アルミニウム合金板ブランクに部分的に強度差を付与して成形性の向上を図ろうとするもの、と言うことができるが、同様にアルミニウム合金板ブランクに強度差を付与して成形性の向上を図ろうとする他の方法として、ブランクにあらかじめ局部的な熱処理を施しておく方法が知られている(例えば特許文献3)。この方法は、自動車ボディシート用として主に用いられているAl−Mg−Si系合金の如く、熱処理によりマトリクス中で固溶析出が生じ、強度が大幅に変化する時効硬化型合金に対して特に有効と考えられる。   By the way, the warm deep drawing method is to locally heat and soften a portion having a high degree of processing with respect to the aluminum alloy plate blank at the time of forming, so if it is caught at the time of forming, the aluminum alloy plate blank It can be said that it is intended to improve the formability by partially imparting a strength difference to the other, but in the same way, other strengths that are intended to improve the formability by giving a strength difference to the aluminum alloy sheet blank. As a method, a method in which a blank is subjected to local heat treatment in advance is known (for example, Patent Document 3). This method is particularly suitable for age-hardening alloys such as Al-Mg-Si alloys, which are mainly used for automobile body sheets, in which solid solution precipitation occurs in the matrix due to heat treatment and the strength changes greatly. It is considered effective.

ここで、特許文献3で開示されている技術では、アルミ圧延メーカーで溶体化処理されて出荷されるAl−Mg−Si系合金板が室温で保持されている間に、常温時効によりMgとSiからなる極めて微細な析出物がマトリクス中に均一微細に析出することにより、溶体化処理直後と比較して強度が向上した状態になることを利用して、ブランク内に強度差を付与することを行っている。すなわちこの特許文献3の技術では、室温で形成された前述の析出物が、比較的低温の250℃以上の温度での短時間加熱により容易に再固溶して、加熱した部分の強度が低下することを利用することにより、比較的低コストかつ短時間の処理によってアルミニウム合金板に部分的な強度差を付与することができる、とされている。   Here, in the technique disclosed in Patent Document 3, while an Al—Mg—Si based alloy sheet that is shipped after being solution-treated by an aluminum rolling manufacturer is held at room temperature, Mg and Si can be obtained by aging at room temperature. It is possible to give a strength difference in the blank by utilizing the fact that extremely fine precipitates consisting of uniform precipitates in the matrix and the strength is improved compared to immediately after the solution treatment. Is going. That is, in the technique of Patent Document 3, the above-described precipitate formed at room temperature is easily re-solidified by short-time heating at a relatively low temperature of 250 ° C. or more, and the strength of the heated portion is reduced. By utilizing this, it is said that a partial strength difference can be imparted to the aluminum alloy plate by a relatively low-cost and short-time treatment.

ところでこの特許文献3で開示されている技術では、アルミニウム合金板のブランクを、その周囲をクランプして完全に周囲を固定した状態でプレス成形することを前提として成形性を向上させる技術であって、ブランク面内においてプレス成形時にパンチがあたるパンチ直下領域を、パンチの肩部があたる領域を除いて加熱して軟化させることによって成形性の向上を図っている。しかしながらこの場合、軟化したパンチ直下領域にひずみが集中するようになり、この部分での局所的な板厚減が著しくなって、成形品の剛性が不足するという問題があることが判明した。また周囲をクランプにより完全に固定してプレス成形を行うため、周囲のしわ押さえ部からの材料流入が全く許容されず、そのため成形性の向上幅が制限されるという欠点もあった。さらに自動車用ボディシートを対象とする場合、プレス成形後には、成形品の周辺部おいて苛酷な曲げ加工(ヘム加工)が行われることが多いが、この特許文献3の技術は、板のパンチ直下領域、すなわち板中央部を加熱するものであって、板周辺部については、常温時効により時効析出した状態のままとなり、その部分では曲げ加工性が著しく悪くなって、曲げ加工部で割れが発生するという問題があった。
特開平4−351229号公報 特開2006−205244号公報 特開2000−117338号公報
By the way, the technique disclosed in Patent Document 3 is a technique for improving formability on the premise that a blank of an aluminum alloy plate is press-molded in a state where the periphery is clamped and the periphery is completely fixed. In the blank surface, the area directly under the punch to which the punch hits during press molding is heated and softened except for the area to which the shoulder of the punch hits to improve the formability. However, in this case, the strain is concentrated in the region immediately below the softened punch, and it has been found that there is a problem in that the thickness of the molded product is insufficient due to significant local thickness reduction in this portion. Further, since press molding is performed with the periphery completely fixed by a clamp, there is a disadvantage in that material inflow from the peripheral wrinkle pressing portion is not allowed at all, and thus the width of improvement in formability is limited. Further, when a body sheet for an automobile is targeted, severe press working (hem processing) is often performed at the periphery of the molded product after press molding. The area directly underneath, that is, the center part of the plate is heated, and the peripheral part of the plate remains in an aging-precipitated state due to normal temperature aging. There was a problem that occurred.
JP-A-4-351229 JP 2006-205244 A JP 2000-117338 A

前述のような従来の技術によるAl−Mg−Si系合金板の成形においては、最近の自動車用ボディシートに要求される成形性やそのほかの性能を充分に満足させることは困難であった。   In forming the Al—Mg—Si based alloy plate according to the conventional technique as described above, it has been difficult to sufficiently satisfy the formability and other performances required for the recent automobile body sheet.

すなわち最近では、自動車パネル形状について高い意匠性が求められるようになり、それに伴って材料に対しても従来よりもいっそう高い成形性が要求され、特に絞り性の高いものが要求されるようになっており、また勿論、絞り性のような成形性指標だけではなく、曲げ加工性(ヘム加工性)、強度などの低化も防いだ上での絞り性の向上であることが求められ、さらには成形加工の生産性も高いことが要求されるが、これらの点で、従来のAl−Mg−Si系合金板の成形方法では未だ不充分であった。   That is, recently, a high designability is required for the shape of an automobile panel, and accordingly, a material having a higher formability than that of a conventional material is required, and a material having a particularly high drawability is required. Of course, not only the formability index such as squeezability but also the improvement of squeezability while preventing the bending workability (hem workability), strength and the like from being reduced, However, in these respects, the conventional Al—Mg—Si alloy plate forming method is still insufficient.

この発明は以上の事情を背景としてなされたもので、Al−Mg−Si系アルミニウム合金板の高成形性の確保と成形加工の高生産性維持の両立を図ることができ、かつ他の要求特性の劣化を伴なうことなく、材料の強度差を巧妙に利用できるようにした、成形性に優れた冷間プレス成形用アルミニウム合金板の製造方法、および冷間プレス成形用アルミニウム合金板、冷間プレス成形方法、冷間プレス成形品を提供することを目的とするものである。   The present invention has been made against the background of the above circumstances, and it is possible to achieve both the securing of the high formability of the Al-Mg-Si based aluminum alloy sheet and the maintenance of the high productivity of the forming process, and other required characteristics. The manufacturing method of an aluminum alloy plate for cold press forming excellent in formability, which can skillfully utilize the difference in material strength without deterioration of the material, and the aluminum alloy plate for cold press forming, An object of the present invention is to provide a cold press-molding method and a cold press-molded product.

具体的には、アルミニウム合金板ブランクに対して、事前に部分的に熱処理(部分的溶体化処理)を行うことにより面内に強度差を付与する技術を基本とし、冷間プレス成形(冷間絞り成形)における絞り周囲の押さえ部からの材料流入を許容するべく、部分的な溶体化処理による加熱部位を適切に調整して強度分布を最適化したブランクについて冷間プレス成形を行うことにより、ブランク周囲からの材料流入を促進して、板厚が均一でかつ深い絞りの成形品を製造することを可能とし、また同時に成形品の周辺部について行われる曲げ加工をも容易にするともに、事前に行う加熱処理を短時間の処理として、従来の冷間プレス成形の高い生産効率を損なわないようにすることを課題とする。   Specifically, cold press forming (cold forming) based on a technology that gives an in-plane strength difference by performing partial heat treatment (partial solution treatment) in advance on an aluminum alloy sheet blank. In order to allow the material inflow from the pressing portion around the drawing in the drawing forming), by performing the cold press forming on the blank whose strength distribution is optimized by appropriately adjusting the heating site by the partial solution treatment, The material flow from the periphery of the blank is promoted, and it is possible to produce a molded product with a uniform thickness and a deep drawing, and at the same time, it is easy to bend the peripheral part of the molded product. It is an object of the present invention to make the heat treatment performed in a short time a process so as not to impair the high production efficiency of the conventional cold press forming.

本発明者らは、前述の課題を解決するべく種々の実験・検討を重ねた結果、時効硬化して亜時効状態にあるアルミニウム合金板、すなわち板全体に対する溶体化処理の後に常温時効や人工時効を施したアルミニウム合金板、もしくは圧延加工されて加工硬化された状態となっているアルミニウム合金板について、絞り成形性および曲げ加工性が向上するように部分的溶体化処理における加熱部を最適に選択することが重要であり、またこの部分的溶体化処理における加熱到達温度、加熱後の冷却速度を最適化することによって、その部分を溶体化処理に伴なう回復、再結晶により極めて短時間で効率的に軟化させることができ、かつ曲げ性をも向上できることを見出し、この発明をなすに至ったのである。   As a result of repeated experiments and studies to solve the above-mentioned problems, the present inventors have found that an aluminum alloy plate that is age-hardened and is in a sub-aged state, i.e., room temperature aging or artificial aging after solution treatment on the entire plate. For aluminum alloy sheets that have been subjected to heat treatment or aluminum alloy sheets that have been rolled and work hardened, the heating section in the partial solution treatment is optimally selected so as to improve drawability and bending workability In addition, by optimizing the temperature to reach the heating in the partial solution treatment and the cooling rate after heating, the portion can be recovered in a very short time by recovery and recrystallization during the solution treatment. The present inventors have found that it can be efficiently softened and bendability can be improved, and the present invention has been made.

なおここで溶体化処理とは、析出硬化型合金であるAl−Mg−Si系合金の亜時効状態のものを高温に加熱することによって、マトリクス中に析出しているMgとSiからなる析出物を固溶させる処理であり、この処理直後の冷却中に析出が生じないように急速に室温もしくは室温近くまで冷却することにより、マトリクス中に析出物が実質的に存在せず、軟化したアルミニウム合金が得られる。また、冷間圧延等の圧延加工を施して、加工硬化した状態(加工組織を有する状態)にあるアルミニウム合金の場合には溶体化による加熱と同時に加工組織の回復・再結晶が生じて、この場合も圧延により硬化していたアルミニウム合金板が軟化する。またここで「部分的」な溶体化処理とは、成形性および曲げ性の向上を目的として、予め定めた所定の部位について選択的に加熱してその部位のみを局部的に溶体化もしくは回復・再結晶させ、所定部位を軟化させる処理を意味している。   Here, the solution treatment is a precipitate composed of Mg and Si precipitated in a matrix by heating a sub-aged Al—Mg—Si alloy, which is a precipitation hardening type alloy, to a high temperature. The aluminum alloy is a softened aluminum alloy that is substantially free of precipitates in the matrix by rapidly cooling to room temperature or near room temperature so that precipitation does not occur during cooling immediately after this treatment. Is obtained. In the case of an aluminum alloy that has been subjected to a rolling process such as cold rolling and is in a work-hardened state (having a work structure), the work structure is recovered and recrystallized simultaneously with heating due to solution treatment. Even in this case, the aluminum alloy plate that has been hardened by rolling softens. In addition, the “partial” solution treatment here refers to selective heating of a predetermined portion for the purpose of improving moldability and bendability, so that only that portion is locally solutionized or recovered. It means a process of recrystallizing and softening a predetermined part.

具体的には、請求項1の発明の冷間プレス成形用アルミニウム合金板の製造方法は、所定の板厚まで圧延されたAl−Mg−Si系合金圧延板の全体に溶体化処理を施した後、時効硬化させて亜時効状態とし、さらに板全体のうち、予めある領域を加熱部と定めるとともにその加熱部以外の領域を非加熱部と定めて、前記加熱部に部分的に溶体化処理を施して時効析出物を固溶させた後急冷することにより、溶体化処理後の室温における加熱部の強度を非加熱部の強度よりも低下させることを特徴とするものである。   Specifically, in the manufacturing method of the aluminum alloy plate for cold press forming according to the first aspect of the invention, the entire Al—Mg—Si alloy rolled plate rolled to a predetermined plate thickness is subjected to a solution treatment. Then, it is age-hardened to be in a sub-aged state, and further, a predetermined region of the whole plate is defined as a heating portion and a region other than the heating portion is defined as a non-heating portion, and a solution treatment is partially performed on the heating portion. The strength of the heated portion at room temperature after the solution treatment is lowered from the strength of the non-heated portion by rapidly cooling after solidifying the aging precipitate.

また請求項2の発明の冷間プレス成形用アルミニウム合金板の製造方法は、請求項1に記載の冷間プレス成形用アルミニウム合金板の製造方法において、圧延板全体に溶体化処理を施した後における亜時効状態とするための処理として、0℃以上40℃未満の範囲内の温度で保持する常温時効処理と、40℃以上180℃未満の範囲内の温度で保持する人工時効処理とのうち、いずれか一方の処理、もしくは双方を組合わせた処理を施すことを特徴とするものである。   The method for producing an aluminum alloy sheet for cold press forming according to the invention of claim 2 is the method for producing an aluminum alloy sheet for cold press forming according to claim 1, wherein the whole rolled plate is subjected to a solution treatment. As a treatment for obtaining a sub-aging state in the above, a normal temperature aging treatment that is maintained at a temperature within a range of 0 ° C. or more and less than 40 ° C. and an artificial aging treatment that is maintained at a temperature within a range of 40 ° C. or more and less than 180 ° C. , One of the processes or a combination of both processes is performed.

さらに請求項3の発明の冷間プレス成形用アルミニウム合金板の製造方法は、所定の板厚まで圧延して加工硬化した状態にあるAl−Mg−Si系合金圧延板の板全体のうち、予めある領域を加熱部と定めるとともにその加熱部以外の領域を非加熱部と定めて、前記加熱部に部分的に溶体化処理を施して加工組織を回復もしくは再結晶させた後急冷することにより、溶体化処理後の室温における加熱部の強度を非加熱部の強度よりも低下させることを特徴とするものである。   Furthermore, the manufacturing method of the aluminum alloy plate for cold press forming of the invention of claim 3 is preliminarily made out of the whole plate of the Al—Mg—Si alloy rolled plate in a state of being rolled and hardened to a predetermined plate thickness. By defining a certain region as a heating part and defining a region other than the heating part as a non-heating part, by subjecting the heating part to a partial solution treatment to recover or recrystallize the processed structure, The strength of the heated portion at room temperature after the solution treatment is lower than the strength of the non-heated portion.

そしてまた請求項4の発明は、請求項1〜3のいずれかの請求項に記載の冷間プレス成形用アルミニウム合金板の製造方法において、冷間プレス成形時にパンチ肩部が接触することになる領域よりも外側の部分のうち全部または一部を前記加熱部と定めておくとともに、その加熱部以外の領域のうち、少なくともパンチ肩部が押し当てられるべき部分を前記非加熱部と定めておくことを特徴とするものである。   According to a fourth aspect of the present invention, in the method for manufacturing an aluminum alloy sheet for cold press forming according to any one of the first to third aspects, the punch shoulder is brought into contact during cold press forming. All or a part of the portion outside the region is defined as the heating portion, and at least a portion to which the punch shoulder portion is to be pressed is defined as the non-heating portion in the region other than the heating portion. It is characterized by this.

さらに請求項5の発明は、請求項1〜4のいずれかの請求項に記載の冷間プレス成形用アルミニウム合金板の製造方法において、前記部分的溶体化処理として、非加熱部を除いて加熱部のみを480℃以上580℃未満の範囲内の温度に加熱して50℃/min以上の冷却速度で50℃以下の温度域まで冷却することを特徴とするものである。   Further, the invention according to claim 5 is the method for producing an aluminum alloy sheet for cold press forming according to any one of claims 1 to 4, wherein the partial solution treatment is performed except for a non-heated portion. Only the part is heated to a temperature in the range of 480 ° C. or more and less than 580 ° C., and cooled to a temperature range of 50 ° C. or less at a cooling rate of 50 ° C./min or more.

また請求項6の発明は、請求項1〜5のいずれかの請求項に記載の冷間プレス成形用アルミニウム合金板の製造方法において、前記部分的溶体化処理後の室温における非加熱部の引張強さと加熱部の0.2%耐力との差を、部分的溶体化処理後で20MPa以上増大させることを特徴とするものである。   Further, the invention of claim 6 is the method for producing an aluminum alloy sheet for cold press forming according to any one of claims 1 to 5, wherein the unheated part is pulled at room temperature after the partial solution treatment. The difference between the strength and the 0.2% proof stress of the heated portion is increased by 20 MPa or more after the partial solution treatment.

さらに請求項7の発明は、請求項1〜請求項6のいずれかの請求項に記載の冷間プレス成形用アルミニウム合金板の製造方法において、部分的溶体化処理における加熱部に、アルミニウム合金板ブランクのうち、プレス成形時にパンチ肩部が接触することになる領域より外側の部分のうち、成形後に曲げ加工されることになる部分を含めることを特徴とするものである。   Furthermore, the invention of claim 7 is the method for producing an aluminum alloy plate for cold press forming according to any one of claims 1 to 6, wherein the aluminum alloy plate is used as a heating part in the partial solution treatment. Of the blank, the portion outside the region where the punch shoulder is in contact during press molding is included, and the portion to be bent after molding is included.

そして請求項8の発明は、請求項1〜請求項6のいずれかの請求項に記載の冷間プレス成形用アルミニウム合金板の製造方法において、部分的溶体化処理における加熱部に、プレス成形時にアルミニウム合金板ブランクのうちパンチ肩部が接触することになる領域よりも内側の全ての領域またはこの領域内の任意形状の一領域もしくは二領域以上を含めることを特徴とするものである。   The invention of claim 8 is the method for producing an aluminum alloy plate for cold press forming according to any one of claims 1 to 6, wherein the heating part in the partial solution treatment is subjected to press forming. Of the aluminum alloy plate blank, all the regions inside the region where the punch shoulder is in contact or one region or two regions or more in any shape within this region are included.

さらに請求項9の発明は、請求項1〜請求項8のいずれかの請求項に記載の冷間プレス成形用アルミニウム合金板の製造方法において、Al−Mg−Si系アルミニウム合金板として、Mg0.2〜1.5%(mass%、以下同じ)、Si0.3〜2.0%を含有し、かつFe0.03〜1.0%、Mn0.03〜0.6%、Cr0.01〜0.4%、Zr0.01〜0.4%、V0.01〜0.4%、Ti0.005〜0.3%、Zn0.03〜2.5%、Cu0.01〜1.5%のうちから選ばれた1種または2種以上を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金板を用いることを特徴とするものである。   Furthermore, the invention of claim 9 is the method for producing an aluminum alloy sheet for cold press forming according to any one of claims 1 to 8, wherein the MgO. 2 to 1.5% (mass%, the same shall apply hereinafter), Si 0.3 to 2.0%, and Fe 0.03 to 1.0%, Mn 0.03 to 0.6%, Cr 0.01 to 0 .4%, Zr 0.01-0.4%, V 0.01-0.4%, Ti 0.005-0.3%, Zn 0.03-2.5%, Cu 0.01-1.5% It is characterized by using an aluminum alloy plate containing one or more selected from the group consisting of Al and inevitable impurities.

一方請求項10の発明の冷間プレス成形方法は、請求項1〜請求項9のいずれかの請求項に記載の製造方法により得られたアルミニウム合金板を用いて、冷間プレス成形を行なうことを特徴とするものである。   On the other hand, the cold press forming method of the invention of claim 10 performs cold press forming using the aluminum alloy plate obtained by the manufacturing method according to any one of claims 1 to 9. It is characterized by.

この発明によれば、板全体に対する溶体化処理後の時効硬化させて亜時効状態にあるAl−Mg−Si系アルミニウム合金板、あるいは圧延加工により加工硬化した状態にあるAl−Mg−Si系アルミニウム合金板の一部、特に冷間プレス成形時にシワ押さえ部分となるべき部位を局部的に加熱(部分的溶体化処理)して、析出元素の固溶もしくは回復・再結晶によりその部分を低強度部とし、非加熱部であるパンチ肩部との間で強度差を付与することによって、プレス成形性を向上させることが可能である。しかも、このような部分的溶体化処理は、冷間プレス成形よりも前に、別の工程として行なわれるため、プレス成形自体は従来の冷間プレス機により高速で行なうことができ、そのため温間成形を適用した場合のような、プレス機械の設備コストの増大や生産効率の低下がなく、しかも特殊な潤滑油の必要性もなくなる。さらには、局部的溶体化処理を行なう加熱領域を最適に選択することにより、成形品の曲げ加工性を向上させることも可能となる。   According to the present invention, an Al—Mg—Si-based aluminum alloy plate that is age-hardened after solution treatment of the entire plate and is in a sub-aged state, or an Al—Mg—Si-based aluminum that is work-hardened by rolling. Part of the alloy plate, especially the part that should become the wrinkle holding part during cold press forming, is locally heated (partial solution treatment), and the part is reduced in strength by solid solution or recovery / recrystallization of the precipitated elements. It is possible to improve press formability by providing a difference in strength between the punch shoulder portion which is a non-heated portion. Moreover, since such a partial solution treatment is performed as a separate process prior to cold press forming, the press forming itself can be performed at a high speed by a conventional cold press machine, so There is no increase in equipment cost or reduction in production efficiency of the press machine as in the case of forming, and there is no need for special lubricating oil. Furthermore, it becomes possible to improve the bending workability of the molded product by optimally selecting the heating region for performing the local solution treatment.

この発明で使用するアルミニウム合金板の素材は、基本的には、Al−Mg−Si系のアルミニウム合金板であって、高温で板全体に溶体化処理が施された後に常温時効もしくは人工時効または常温時効と人工時効との組み合わせによる時効処理を施して、亜時効状態にあるもの、あるいは圧延加工されて加工硬化された状態となっているものとする。そこで以下この発明について、主要な項目ごとに項を分けて詳細に説明する。   The material of the aluminum alloy plate used in the present invention is basically an Al-Mg-Si aluminum alloy plate, and after the solution treatment is applied to the entire plate at a high temperature, normal temperature aging or artificial aging or It is assumed that it has been subjected to an aging treatment by a combination of normal temperature aging and artificial aging and is in a sub-aged state, or has been rolled and work hardened. Therefore, the present invention will be described in detail with the main items divided into items.

<冷間プレス成形用アルミニウム合金板素材の製造方法>
先ず冷間プレス成形用アルミニウム合金板素材の製造方法について説明すれば、基本的には、アルミニウム合金製造業で通常一般に採用されている方法により製造することが可能である。
<Method for producing aluminum alloy sheet material for cold press forming>
First, the production method of the aluminum alloy sheet material for cold press forming will be explained. Basically, it can be produced by a method generally adopted in the aluminum alloy manufacturing industry.

すなわち、所定の成分に溶解調整されたアルミニウム合金溶湯を、通常の溶解鋳造法を適宜選択して鋳造する。ここで通常の溶解鋳造法としては、例えば半連続鋳造法(DC鋳造法)や薄板連続鋳造法(ロールキャスト法等)などを含む。次いでこのアルミニウム合金鋳塊に480℃以上の温度で均質化処理を施す。均質化処理は溶湯凝固時の合金元素のミクロ偏析を緩和し、併せてMn・Crをはじめとする各種の遷移元素を含む場合には、これらを主成分とする金属間化合物の分散粒子を、マトリクス中に均一かつ高密度に析出させるために必要な工程である。均質化処理の加熱時間は、通常は1時間以上とし、また経済的な理由から48時間以内に終了させるのが通常である。但しこの均質化処理における加熱温度は、熱延前に熱延開始温度まで加熱する加熱処理温度に近いことから、熱延前加熱処理を兼ねて均質化処理を行なうことも可能である。この均質化処理工程の前もしくは後に適宜面削を施した後、300〜590℃程度の温度範囲内で熱間圧延を開始し、その後冷間圧延を施すことにより、所定の板厚のアルミニウム合金板を製造する。熱間圧延の途中、熱間圧延と冷間圧延の途中または冷間圧延の途中において、必要に応じて中間焼鈍や溶体化処理を行っても良い。   That is, an aluminum alloy melt adjusted to a predetermined component is cast by appropriately selecting a normal melting casting method. Here, the normal melt casting method includes, for example, a semi-continuous casting method (DC casting method), a thin plate continuous casting method (roll casting method, etc.) and the like. Next, the aluminum alloy ingot is subjected to homogenization at a temperature of 480 ° C. or higher. Homogenization treatment mitigates microsegregation of alloying elements during solidification of molten metal, and in the case of containing various transition elements including Mn / Cr, dispersed particles of intermetallic compounds mainly composed of these, This is a process necessary for uniformly and densely depositing in the matrix. The heating time for the homogenization treatment is usually 1 hour or more, and is usually terminated within 48 hours for economic reasons. However, since the heating temperature in this homogenization treatment is close to the heat treatment temperature for heating to the hot rolling start temperature before hot rolling, it is also possible to perform the homogenization processing together with the heat treatment before hot rolling. Before or after this homogenization treatment step, chamfering is performed as appropriate, hot rolling is started within a temperature range of about 300 to 590 ° C., and then cold rolling is performed, whereby an aluminum alloy having a predetermined plate thickness is obtained. Manufacture a board. In the course of hot rolling, in the middle of hot rolling and cold rolling, or in the middle of cold rolling, intermediate annealing or solution treatment may be performed as necessary.

このようにして所定の板厚まで圧延された板(冷間圧延板)については、その冷間圧延板の全体に対して溶体化処理を行ってから時効硬化させた後に部分的溶体化処理を施す場合(請求項1、請求項2)と、冷間加工により加工硬化された状態のまま(但し最終冷間圧延後の常温放置期間中に若干常温時効された場合を含む)部分的溶体化処理に供する場合(請求項3)とがある。   Thus, about the board (cold-rolled board) rolled to the predetermined sheet thickness, after performing the solution treatment to the whole cold-rolled sheet, it is age-hardened, and then the partial solution treatment is performed. When applied (Claims 1 and 2) and in the state of being work hardened by cold working (including the case of being slightly aged at room temperature during the room temperature standing period after the final cold rolling) There is a case (Claim 3) for use in processing.

上述の溶体化処理は、MgSi、単体Si等をマトリックスに固溶させるための工程であり、板全体にわたって行なう点で、後の部分的溶体化処理とは異なる。この溶体化処理は、通常は480℃以上の高温で行なう。なお、溶体化処理温度が590℃を越えると共晶融解が生じる恐れがあるため通常は590℃以下とし、加熱温度に到達後、保持なしもしくは5分程度以下の短時間保持の後、50℃/min程度以上の冷却速度で室温もしくは室温近くまで(通常は50℃程度以下まで)急冷する。 The solution treatment described above is a step for dissolving Mg 2 Si, elemental Si, etc. in the matrix, and differs from the subsequent partial solution treatment in that it is performed over the entire plate. This solution treatment is usually performed at a high temperature of 480 ° C. or higher. Since eutectic melting may occur when the solution treatment temperature exceeds 590 ° C., it is usually set to 590 ° C. or less, and after reaching the heating temperature, it is not held or is held for a short time of about 5 minutes or less and then 50 ° C. Rapid cooling to room temperature or near room temperature (usually to about 50 ° C. or less) at a cooling rate of about / min or more.

ここで、板全体にわたっての前記溶体化処理は、コイル状に巻き取った冷間圧延板を、加熱帯と冷却帯を有する連続焼鈍炉に連続的に通過させることによって、効率的に行うことができる。このような連続焼鈍炉による処理では、アルミニウム合金板は加熱帯を通過する際に480℃以上、590℃以下の高温に昇温され、その後冷却帯を通過する際に急冷される。このような一連の処理により、この発明で対象とする合金の主要合金元素であるMgとSiは、高温で一旦マトリクス中に固溶し、続いて急冷することによって、室温において過飽和に固溶した状態となる。   Here, the solution treatment over the entire plate can be efficiently performed by continuously passing the cold rolled plate wound in a coil shape through a continuous annealing furnace having a heating zone and a cooling zone. it can. In such a continuous annealing furnace, the aluminum alloy sheet is heated to a high temperature of 480 ° C. or more and 590 ° C. or less when passing through the heating zone, and then rapidly cooled when passing through the cooling zone. Through such a series of treatments, Mg and Si, which are the main alloying elements of the alloy targeted by the present invention, were once dissolved in the matrix at a high temperature, and then rapidly cooled, thereby becoming supersaturated at room temperature. It becomes a state.

<亜時効状態とするための時効硬化>
前述のように板全体にわたる溶体化処理を行なった合金に対して、部分的溶体化処理により板の加熱部と非加熱部での強度差を付与するためには、予め時効処理によって亜時効状態、すなわちマトリクス中にMgとSiからなるクラスタもしくは微細析出物(通常β’’相と称される)を生成させた状態として、合金板の全体的な強度を高めておく必要がある。このような状態でなければ、その後に部分的溶体化処理を行っても、加熱部での強度の低下がないため、合金板に強度差を付与することができない。
<Age hardening for sub-aging state>
In order to give a difference in strength between the heated part and non-heated part of the plate by partial solution treatment, the sub-aging state is preliminarily applied by aging treatment to the alloy that has been solution-treated over the entire plate as described above. That is, it is necessary to increase the overall strength of the alloy plate in a state where clusters or fine precipitates (usually called β ″ phase) made of Mg and Si are generated in the matrix. If it is not in such a state, even if a partial solution treatment is subsequently performed, the strength difference cannot be imparted to the alloy plate because there is no decrease in strength in the heating section.

亜時効状態とするための時効処理としては、0℃以上40℃未満の温度範囲内で材料を保持する常温時効を行なう。この常温時効では、主にMgとSiからなるクラスタのうち低温クラスタと称されるクラスタが析出して亜時効が進み、強度が向上する。このような常温時効を行なえば、時効温度が低いために、通常の工業生産で想定される長期の保持時間である1年が経過しても、最高強度となるピーク時効またはこの状態を越えて強度が低下する過時効状態となることはありえず、常に亜時効状態を保つことができる。   As an aging treatment for obtaining a sub-aging state, normal temperature aging is performed in which the material is held within a temperature range of 0 ° C. or more and less than 40 ° C. In this normal temperature aging, a cluster called a low temperature cluster out of clusters mainly composed of Mg and Si precipitates and sub-aging progresses, thereby improving the strength. If such normal temperature aging is performed, the aging temperature is low, so even if one year, which is a long-term holding time assumed in normal industrial production, has passed, the peak aging that gives the maximum strength or exceeds this state An overaged state in which the strength decreases cannot be achieved, and the subaged state can always be maintained.

また加熱部と非加熱部の強度差をより大きくして、成形性の向上幅を大きくしたい場合には、亜時効状態とするための時効処理として、40℃以上180℃未満の温度範囲内で材料を保持する人工時効を行なっても良い。この場合の保持時間は特に限定されるものでないが、通常はAl−Mg−Si系合金のピーク時効が180℃における8h以上の保持時間で達せられることを考慮して、この発明の場合は亜時効状態とするための人工時効処理の条件を、40℃以上180℃未満の温度範囲のうち40℃以上110℃未満の範囲での保持時間を24時間以内、110℃以上180℃未満の範囲での保持時間を6時間以内とすることが好ましい。   Moreover, when it is desired to increase the difference in strength between the heated part and the non-heated part to increase the range of improvement in formability, as an aging treatment for making the sub-aged state, within a temperature range of 40 ° C. or higher and lower than 180 ° C. Artificial aging to hold the material may be performed. The holding time in this case is not particularly limited. However, in consideration of the fact that the peak aging of the Al—Mg—Si alloy is usually achieved at a holding time of 8 hours or more at 180 ° C. The condition of the artificial aging treatment for setting the aging state is that the holding time in the range of 40 ° C. or more and less than 110 ° C. within the temperature range of 40 ° C. or more and less than 180 ° C. is within 24 hours, and the range of 110 ° C. or more and less than 180 ° C. The holding time is preferably within 6 hours.

ここで、亜時効を越えて時効処理を行い、最高強度が得られるピーク時効とした場合、部分的溶体化処理で非加熱部となる領域はプレス成形時にピーク時効の状態となってしまう。このようなピーク時効の状態では伸びが大幅に低下し、プレス成形の際に極めて割れやすくなる。これは、最高強度が得られるピーク時効を越えて、強度が低下する過時効状態となるまで時効した場合でも同じであって、部分的溶体化処理で非加熱部となる領域での伸びが低く、極めて割れやすくなる。一方、この発明のように亜時効状態とした場合には、非加熱部の伸びがピーク時効の状態に比較して大きな状態となるため、プレス成形の際に割れが生じにくい。したがって成形時の非加熱領域の割れ発生を防止する観点からは、40℃以上180℃未満の温度範囲で行なわれる人工時効については、できるだけ低温短時間(望ましくは、40℃以上110℃未満の温度範囲での保持時間は14時間以下、110℃以上180℃以下の温度範囲での保持時間は4時間以下)として、亜時効の範囲内であってもできるだけ初期の状態のほうが、材料の伸びが大きくなって好ましいものとなる。これは、部分的溶体化処理の前に、亜時効範囲内で時効を進めて強度を高めておく方が、部分的溶体化処理後における加熱部と非加熱部の強度差をより大きくすることによる成形性向上効果とはトレードオフの関係にあることを意味する。このため実際上は、成形品の形状に応じて亜時効の範囲内で最適な時効状態に調整することが必要である。   Here, when the aging treatment is performed beyond the sub-aging and the peak aging is obtained to obtain the maximum strength, the region that becomes the non-heated portion in the partial solution treatment is in a state of peak aging at the time of press molding. In such a peak aging state, the elongation is greatly reduced, and it becomes extremely easy to crack during press molding. This is the same even when it is aged beyond the peak aging at which the maximum strength is obtained and until it reaches an overaging state in which the strength decreases, and the elongation in the region that becomes the non-heated part in the partial solution treatment is low. , Very easy to break. On the other hand, when the sub-aged state is set as in the present invention, the elongation of the non-heated portion is larger than the peak-aged state, so that cracking hardly occurs during press molding. Therefore, from the viewpoint of preventing the occurrence of cracks in the non-heated region at the time of molding, the artificial aging performed in the temperature range of 40 ° C. or higher and lower than 180 ° C. is as low as possible for a short time (preferably a temperature of 40 ° C. or higher and lower than 110 ° C. The holding time in the range is 14 hours or less, the holding time in the temperature range of 110 ° C. to 180 ° C. is 4 hours or less), and even in the sub-aging range, the material is stretched in the initial state as much as possible. It becomes large and preferable. This is because the strength difference between the heated and non-heated parts after the partial solution treatment is larger when the strength is increased by promoting aging within the sub-aging range before the partial solution treatment. The moldability improvement effect by means that there is a trade-off relationship. Therefore, in practice, it is necessary to adjust to an optimum aging state within the sub-aging range according to the shape of the molded product.

<圧延加工による加工硬化>
部分的溶体化処理によって板の加熱部と非加熱部とに強度差を付与するためには、部分的溶体化処理に供される合金板の状態が、上述のような亜時効状態にあることの他に、圧延加工により加工硬化された状態(加工用組織を有する状態)であってもよい。これは、この発明で規定する部分的溶体化処理の条件で加熱処理することによって、圧延加工によって硬化していた加工組織が回復・再結晶により軟化し、加熱部と非加熱部との強度差を付与するという目的を達することができるためである。通常、合金板の製造では最終的な圧延加工は冷間圧延によって行われ、合金板の冷間圧延による硬化の程度は、以下の式で定義される冷間圧延率に依存する。
冷間圧延率=(冷間圧延前の板厚−冷間圧延後の板厚)/(冷間圧延前の板厚)×100
なおここで冷間圧延前の板厚とは、通常、熱間圧延が終了して冷間圧延を開始する前の板厚であるが、後述するように熱間圧延後の冷間圧延の途中で板全体について溶体化処理(中間溶体化処理)を行う場合は、その中間溶体化処理後の最終冷間圧延を開始する前の板厚である。
<Work hardening by rolling>
In order to give a difference in strength between the heated part and non-heated part of the plate by the partial solution treatment, the state of the alloy plate subjected to the partial solution treatment is in the sub-aging state as described above. In addition, it may be in a state of being work hardened by rolling (a state having a working structure). This is because heat treatment is performed under the conditions of the partial solution treatment specified in the present invention, and the work structure that has been hardened by rolling is softened by recovery and recrystallization, and the strength difference between the heated part and the non-heated part. This is because the purpose of granting can be achieved. Usually, in the production of an alloy plate, the final rolling process is performed by cold rolling, and the degree of hardening by cold rolling of the alloy plate depends on the cold rolling rate defined by the following equation.
Cold rolling rate = (sheet thickness before cold rolling−sheet thickness after cold rolling) / (sheet thickness before cold rolling) × 100
Here, the plate thickness before cold rolling is usually the plate thickness before hot rolling is finished and cold rolling is started, but as described later, in the middle of cold rolling after hot rolling. When the solution treatment (intermediate solution treatment) is performed on the entire plate, the thickness is the plate thickness before starting the final cold rolling after the intermediate solution treatment.

この発明では、この冷間圧延率(最終冷間圧延率)については特に限定しないが、20%以上であることが好ましい。冷間圧延率が20%未満の場合には、冷間圧延での加工硬化による合金板全体の強度の上昇幅が小さいため、引続いて行われる部分的溶体化処理において加熱部での軟化の程度が小さいため、充分な強度差が付与できなくなることに加え、部分的溶体化処理における加熱部での再結晶により生じる結晶粒が粗大となり、肌荒れと称される外観不良が発生するおそれがある。   In the present invention, the cold rolling rate (final cold rolling rate) is not particularly limited, but is preferably 20% or more. When the cold rolling rate is less than 20%, the increase in the strength of the entire alloy sheet due to work hardening in cold rolling is small, so that in the subsequent partial solution treatment, softening in the heating part is caused. Since the degree is small, it becomes impossible to give a sufficient strength difference, and the crystal grains generated by recrystallization in the heating part in the partial solution treatment process become coarse, which may cause an appearance defect called rough skin. .

このような最終的な冷間圧延の前に、板全体について溶体化処理(中間溶体化処理)を行っておけば、より少ない冷間圧延率で大きな強度差を付与することが可能となる。この中間溶体化処理は、前述の亜時効処理前の溶体化処理と同様に、通常はコイル状に巻き取った圧延板を、加熱帯と冷却帯を有する連続焼鈍炉に通過させることによって行われるものであって、板全体に行われるものであり、既に述べた亜時効処理前の溶体化処理と同様の条件で行なえば良い。このような中間溶体化処理によってMgとSiを一旦固溶させた後、最終の冷間圧延を行うことにより、冷間圧延板を室温に保持している間に常温時効による硬化が加工硬化に重畳する。すなわち、実際の量産的な製造過程では、最終冷間圧延の後、部分的溶体化処理を施すまでの間に、ある程度の期間は常温に放置されるのが通常であり、この常温放置期間中にはある程度常温時効が進行するが、このような常温放置期間中における時効硬化が加工硬化に重畳されるのが通常である。そしてこのような合金板を部分的溶体化処理に供すれば、析出物の溶体化とともに、加工組織の回復・再結晶が同時に生じて軟化する。そのため、より少ない冷間圧延率であっても部分的溶体化処理によって大きな強度差を付与することができるのである。   If a solution treatment (intermediate solution treatment) is performed on the entire plate before such final cold rolling, a large strength difference can be imparted with a smaller cold rolling rate. This intermediate solution treatment is usually performed by passing the rolled sheet wound in a coil shape through a continuous annealing furnace having a heating zone and a cooling zone, as in the solution treatment before the sub-aging treatment. This is performed on the entire plate and may be performed under the same conditions as the solution treatment before the sub-aging treatment already described. After solid solution of Mg and Si once by such an intermediate solution treatment, the final cold rolling is performed, so that the hardening by normal temperature aging becomes work hardening while keeping the cold rolled sheet at room temperature. Superimpose. That is, in the actual mass production process, after the final cold rolling, it is usually left at room temperature for a certain period of time until the partial solution treatment is performed. Although normal temperature aging progresses to a certain extent, it is normal that such age hardening during normal temperature standing is superimposed on work hardening. If such an alloy plate is subjected to a partial solution treatment, the precipitate is formed into a solution, and the recovery and recrystallization of the processed structure are simultaneously generated and softened. Therefore, a large strength difference can be imparted by the partial solution treatment even at a lower cold rolling rate.

<部分的溶体化処理>
この発明における最も重要な特徴は、亜時効状態もしくは加工硬化状態にあるAl−Mg−Si系アルミニウム合金板について、冷間プレス成形を実施する前に部分的(2次元的な面内の場所として部分的という意味であり、程度の意味ではない)に溶体化処理を行い、常温冷却後におけるその部分的溶体化処理による加熱部と非加熱部との間に強度差を付与することである。
<Partial solution treatment>
The most important feature of the present invention is that the Al—Mg—Si based aluminum alloy sheet in the sub-aged state or work hardened state is partially (as a place in a two-dimensional plane) before cold press forming. This means that the solution treatment is performed partially and not the degree), and a strength difference is imparted between the heated portion and the non-heated portion by the partial solution treatment after cooling at room temperature.

ここで、深絞り成形限界は、パンチ肩部の破断強度とシワ押さえ部分(フランジ部)の流入抵抗との大小関係によって決まることが知られている。自動車ボディシート用アルミニウム合金板は、製造メーカーでの素材溶体化処理からユーザーでのプレス成形まで、通常は常温での放置となるが、Al−Mg−Si系合金は時効析出硬化型合金であるため、常温放置期間が長ければ、その常温放置期間中における常温時効によって、材料強度が高くなってしまう。これをそのまま冷間プレス成形しようとすれば、シワ押さえ部分の流入抵抗が大きいため、プレス成形性が低下してしまう。   Here, it is known that the deep drawing forming limit is determined by the magnitude relationship between the breaking strength of the punch shoulder and the inflow resistance of the wrinkle holding portion (flange). Aluminum alloy sheets for automobile body sheets are usually left at room temperature from material solution treatment at the manufacturer to press forming by the user, but Al-Mg-Si alloys are age-precipitation hardening type alloys. Therefore, if the room temperature storage period is long, the material strength increases due to room temperature aging during the room temperature storage period. If it is going to be cold press-molded as it is, the inflow resistance of the wrinkle holding part is large, and the press formability is lowered.

しかしながら、前述のような亜時効状態にあるか、または加工硬化された状態にあるAl−Mg−Si系アルミニウム合金板について、冷間プレス成形前に部分的に溶体化処理を施すことによってその部分の強度が局部的に低下する。この発明は、このような部分的な合金板の軟化を利用したものであり、強度低下した加熱部をシワ押さえ部分に、高強度のままの非加熱部をパンチ肩部に当てて、冷間プレス成形することにより、プレス成形性を大幅に向上させることができる。   However, the Al-Mg-Si-based aluminum alloy plate in the sub-aged state or the work-hardened state as described above is partially subjected to solution treatment before cold press forming. The strength of the is reduced locally. The present invention utilizes such partial softening of the alloy plate, with the heated portion having reduced strength applied to the wrinkle holding portion and the non-heated portion remaining high in strength to the shoulder portion of the punch. By press molding, press moldability can be greatly improved.

ここで、本発明者等が詳細な検討を加えた結果、室温における非加熱部の引張強度と加熱部の耐力(0.2%耐力)との差を、部分的な復元加熱前後で20MPa以上拡大させることが本質的に有効であることが明らかになった。これは、このような大きな強度差を付与することによって、絞り加工時に強度が相対的に低下したシワ押さえ部からの材料流入抵抗(シワ押さえ部の耐力)が低下することにより、相対的に高強度のパンチ肩部にあたる部分の材料強度(引張強さ)が、より大きな材料流入に耐えることができるようになり、その結果深い絞りが可能となるからである。このように、絞り成形性を向上する上でより本質的に重要な非加熱部における引張強さと加熱部における耐力値の差を指標として、これを部分的な溶体化処理前後で拡大させることが、合金板の深絞り成形性の向上に有効であることを見出したのである。なお、室温における非加熱部の引張強さと加熱部の耐力の差の部分的溶体化処理前後での増大分が20MPa未満の場合には、成形性の向上が充分に得られなくなる。   Here, as a result of detailed studies by the present inventors, the difference between the tensile strength of the non-heated part and the proof stress of the heated part (0.2% proof stress) at room temperature is 20 MPa or more before and after partial recovery heating. It became clear that the expansion was essentially effective. This is because, by giving such a large difference in strength, the material inflow resistance (the proof strength of the wrinkle holding portion) from the wrinkle holding portion, whose strength has been relatively reduced during the drawing process, is reduced. This is because the material strength (tensile strength) of the portion corresponding to the strong punch shoulder can withstand a larger inflow of material, and as a result, deep drawing is possible. As described above, the difference between the tensile strength in the non-heated part and the proof stress value in the heated part, which is more important in improving the drawability, can be expanded before and after the partial solution treatment. They have found that it is effective in improving the deep drawability of the alloy plate. When the increase in the difference between the tensile strength of the non-heated part at room temperature and the proof stress of the heated part before and after the partial solution treatment is less than 20 MPa, sufficient improvement in moldability cannot be obtained.

ここで、部分的溶体化処理前の状態における引張強さと耐力については、通常合金ブランク内でほぼ均一とみなすことができ、そこで合金板ブランクの任意の位置から引張試験片をサンプリングして引張試験を行なって得られた引張強さと耐力とを、それぞれ部分的溶体化処理前の非加熱部の引張強さおよび加熱部の耐力とみなすことができる。一方、部分的溶体化処理後の状態においては、加熱部と非加熱部とで強度が異なるため、各部位から引張試験片を採取して、それぞれ引張試験を行う必要がある。ここで非加熱部とは、あくまで部分的溶体化処理による強度の低下を意図していない部位(領域)を意味するが、部分的溶体化処理装置の性能や部分的溶体化処理での到達温度によっては、加熱部からの伝熱・余熱により、非加熱部がある程度温度上昇することもあり得る。非加熱部において実質的に温度上昇しない理想的な態様で部分的溶体化処理が行われた場合には、非加熱部の引張強さは部分的な溶体化処理前と同等であり、したがってこの場合は加熱部における耐力の減少幅が、室温における非加熱部の引張強さと加熱部の耐力との差の部分的溶体化処理前後の増分となる。これに対し、部分的な溶体化の方法および条件に依存して、部分的溶体化処理において非加熱部の温度がある程度上昇して、わずかながらも析出物の固溶および加工組織の回復・再結晶が生じて、非加熱部の引張強さが若干低下する場合もある。しかしながらこのような場合でも、この発明で規定しているように、室温における非加熱部の引張強さと加熱部の耐力の差についての部分的溶体化処理前後の増大分が20MPa以上であれば、部分的溶体化処理により実質的に合金板ブランクのプレス成形性を向上させることができる。これがこの発明において室温における非加熱部の引張強さと加熱部の耐力差の部分的溶体化処理前後の増分を指標とした理由である。   Here, the tensile strength and the proof strength in the state before the partial solution treatment can be considered to be almost uniform in the alloy blank, and the tensile test piece is sampled from an arbitrary position of the alloy plate blank. The tensile strength and the proof strength obtained by performing the above can be regarded as the tensile strength of the non-heated portion and the proof strength of the heated portion before partial solution treatment, respectively. On the other hand, in the state after the partial solution treatment, the strength is different between the heated part and the non-heated part. Therefore, it is necessary to collect a tensile test piece from each part and perform a tensile test. Here, the non-heated part means a part (region) that is not intended to decrease the strength due to the partial solution treatment, but the performance of the partial solution treatment apparatus and the reached temperature in the partial solution treatment. Depending on the temperature, the temperature of the non-heated part may rise to some extent due to heat transfer and residual heat from the heating part. When the partial solution treatment is performed in an ideal manner in which the temperature does not substantially increase in the non-heated part, the tensile strength of the non-heated part is the same as that before the partial solution treatment. In this case, the decrease in the yield strength in the heated portion is an increment before and after the partial solution treatment of the difference between the tensile strength of the non-heated portion and the yield strength of the heated portion at room temperature. On the other hand, depending on the method and conditions of partial solution treatment, the temperature of the non-heated part rises to some extent in the partial solution treatment, and the solid solution of precipitates and the recovery / re-working of the processed structure are slight. Crystals may be generated, and the tensile strength of the non-heated part may be slightly reduced. However, even in such a case, as defined in the present invention, if the increase before and after the partial solution treatment about the difference between the tensile strength of the non-heated part at room temperature and the proof stress of the heated part is 20 MPa or more, The press formability of the alloy plate blank can be substantially improved by the partial solution treatment. This is the reason why the increase in the tensile strength of the non-heated part and the difference in yield strength of the heated part before and after the partial solution treatment in the present invention was used as an index.

<部分的溶体化処理を行う部位についての詳細>
次に部分的溶体化処理において加熱する部位、加熱しない部位について、より詳細に説明する。
<Details about the site for partial solution treatment>
Next, the part heated in the partial solution treatment and the part not heated will be described in more detail.

基本的には、前述のように強度の低い加熱部をシワ押さえ部分に、強度の高い非加熱部をパンチ肩部に当たるように、加熱部位を選択するのであるが、深絞りのためのプレス成形の進行状況を図1に模式的に示し、この図1を参照して部分的溶体化処理を行なう部位について説明する。なお図1において、符号1はダイ、2はパンチ、3はパンチ2の肩部、4はシワ押さえ、5はアルミニウム合金板ブランクである。   Basically, as described above, the heating part is selected so that the heated part with low strength hits the wrinkle holding part and the non-heated part with high strength hits the shoulder of the punch, but press forming for deep drawing 1 is schematically shown in FIG. 1, and a portion where the partial solution treatment is performed will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes a die, 2 denotes a punch, 3 denotes a shoulder of the punch 2, 4 denotes a wrinkle presser, and 5 denotes an aluminum alloy plate blank.

図1において、部分的溶体化処理においては、プレス成形の際にアルミニウム合金板ブランク5のうち、パンチ肩部3が接触することになる領域Bよりも外側の部分である領域A(シワ押さえ4の側の領域)のうちの全部またはこれより小さい一部を加熱部として軟化させることが効果的である。また特殊な場合として、パンチ肩部3が接触することになる領域Bよりも内側の領域Cの中に、部分的にさらに深く絞った形状が一つまたは二つ以上存在する場合(例えば後述する実施例3、および図6参照)は、請求項8で規定しているように、その領域C内の形状に対応して最適化した任意形状の一領域または二領域以上を加熱部として加えることが、プレス成形で良好な成形品を得るために効果的である。   In FIG. 1, in the partial solution treatment, a region A (wrinkle presser 4) that is a portion of the aluminum alloy plate blank 5 that is outside the region B with which the punch shoulder 3 comes into contact during press forming. It is effective to soften all or a smaller part of the region on the other side as a heating part. As a special case, one or two or more shapes that are partially deepened in the region C inside the region B with which the punch shoulder 3 is in contact (for example, described later) In Example 3 and FIG. 6), as defined in claim 8, one region or two regions or more of an arbitrary shape optimized corresponding to the shape in the region C is added as a heating unit. However, it is effective for obtaining a good molded product by press molding.

またこの発明では、常温時効した合金板ブランクについて部分的な加熱処理を適用して成形性向上を図った従来技術で問題となっていた成形品の曲げ加工性が低いという点についても同時に解決される。すなわち、これは成形後に曲げ加工が必要となるパネルにおいて問題となることであるが、プレス成形後の曲げ加工は、多くの場合、パンチ肩部が接触することになる領域Bよりも外側の部分である領域Aのうちの一部に施されることから、この発明の場合、プレス成形後に曲げ加工される部位をも選択的に加熱部として加えておくことにより、解決可能となるのであり、これを請求項8において規定している。ここで、部分的溶体化処理は、常温時効や人工時効、圧延加工により劣化した曲げ加工性を大幅に向上させる効果も合わせ持つため、上述の効果も得ることができるのである。   In addition, the present invention solves the problem of low bending workability of molded products, which has been a problem in the prior art, in which a partial heat treatment is applied to an alloy plate blank that is aged at room temperature to improve formability. The In other words, this is a problem in panels that require bending after forming, but bending after press forming is often a part outside the region B where the punch shoulder is in contact. In the case of this invention, it can be solved by selectively adding a part to be bent after press molding as a heating part. This is defined in claim 8. Here, since the partial solution treatment has the effect of greatly improving the bending workability deteriorated by normal temperature aging, artificial aging, and rolling, the above-described effects can be obtained.

<部分的溶体化処理の詳細な条件>
部分的溶体化処理の条件としては、請求項5においては、480℃以上、590℃未満の範囲内の温度に加熱した後、50℃/分以上の冷却速度で50℃以下の温度に冷却することと規定しており、このような条件を規定した理由を次に説明する。
<Detailed conditions for partial solution treatment>
As a condition for the partial solution treatment, in claim 5, after heating to a temperature in the range of 480 ° C. or more and less than 590 ° C., the solution is cooled to a temperature of 50 ° C. or less at a cooling rate of 50 ° C./min or more. The reason why such conditions are specified will be described next.

室温における非加熱部の引張強さと加熱部の耐力の差を、部分的溶体化処理の前後で20MPa以上増大させてプレス成形性を向上させるためには、部分的溶体化処理によって加熱する領域の加熱到達温度が480℃以上590℃未満の範囲内であることが好ましい。加熱到達温度がこの温度範囲内にあれば、亜時効状態にあってマトリクス中に存在しているクラスタや微細析出物からMgとSiを完全に固溶させることができ、また圧延加工によって加工硬化した状態にある加工組織を回復・再結晶させることが可能となる。亜時効状態におけるAl−Mg−Si系合金を加熱によって軟化させるための手段としては、請求項5で規定する加熱到達温度よりも低目の温度(150℃以上350℃未満程度)範囲内に加熱保持する方法も考えられる。しかしながら、このような比較的低温の加熱によって再固溶するのは、常温時効の際に形成されるMgとSiからなる低温クラスタと称されるものだけである。常温よりもやや高い温度で形成される高温クラスタやβ’’と呼ばれる析出物は、このような比較的低温の温度範囲内での加熱処理では固溶せずに、かえってこれらの析出物のサイズが大きくなって時効が進み、硬化してしまうおそれがある。これに対し、この発明で規定する温度範囲内で行う溶体化処理では、これらのいずれのタイプのクラスタおよび析出物も容易に固溶して軟化させることができるため、部分的溶体化処理前に亜時効状態とするための時効条件の自由度が高い。また析出強化に大きく寄与するβ’’が析出するような条件で亜時効処理を行って、合金板強度を比較的高い状態にしておくことにより、部分的溶体化処理によって加熱部と非加熱部の強度差を大きくすることが容易となる。   In order to improve the press formability by increasing the difference between the tensile strength of the non-heated part at room temperature and the proof stress of the heated part by 20 MPa or more before and after the partial solution treatment, in the region heated by the partial solution treatment It is preferable that the heating attainment temperature is within a range of 480 ° C. or more and less than 590 ° C. If the heating temperature is within this temperature range, it is possible to completely dissolve Mg and Si from the clusters and fine precipitates that are in the sub-aging state and exist in the matrix, and work hardening by rolling. It becomes possible to recover and recrystallize the processed structure in the finished state. As a means for softening the Al—Mg—Si alloy in the sub-aged state by heating, heating within a temperature range lower than the temperature reached by heating (about 150 ° C. or more and less than about 350 ° C.) defined in claim 5 A holding method is also conceivable. However, only the so-called low-temperature cluster composed of Mg and Si formed during normal temperature aging is re-dissolved by such relatively low-temperature heating. High-temperature clusters formed at temperatures slightly higher than normal temperature and precipitates called β '' do not dissolve in such heat treatment within a relatively low temperature range, but rather the size of these precipitates. There is a risk that aging will increase and curing will occur. On the other hand, in the solution treatment performed within the temperature range defined in the present invention, any of these types of clusters and precipitates can be easily solid-solved and softened, so before the partial solution treatment. High degree of freedom in aging conditions to achieve sub-aging state. In addition, by performing sub-aging treatment under conditions where β '', which greatly contributes to precipitation strengthening, is set to a relatively high state of the alloy sheet, a heated part and a non-heated part are obtained by partial solution treatment. It is easy to increase the difference in strength.

ここで、部分的溶体化処理における加熱部の加熱到達温度が480℃未満の場合には、温度が低いためにMgとSiの固溶限が小さく、MgとSiを完全に溶体化することができず、そのため固溶しなかった分のMgとSiが粗大なMgSi粒子として結晶粒界上に多数析出してしまう。このため粒界割れが生じやすくなり、材料の伸びが大幅に低下して、プレス成形時に極めて割れやすくなってしまい、実質的にプレス成形性が向上しない。また加熱到達温度が590℃以上の場合は、マトリクス中の一部で合金が溶融して、室温まで冷却した後の材料の伸びが著しく低下してしまい、そのためプレス成形の際にこの加熱部で極めて割れが発生しやすくなり、実質的にプレス成形性が向上しない。 Here, when the heating attainment temperature of the heating part in the partial solution treatment is less than 480 ° C., since the temperature is low, the solid solubility limit of Mg and Si is small, and Mg and Si can be completely solutionized. As a result, a large amount of Mg and Si, which are not dissolved, are precipitated on the grain boundaries as coarse Mg 2 Si particles. For this reason, intergranular cracking is likely to occur, the elongation of the material is greatly reduced, and it becomes extremely susceptible to cracking during press molding, and the press moldability is not substantially improved. When the temperature reached by heating is 590 ° C. or higher, the alloy melts in a part of the matrix, and the elongation of the material after cooling to room temperature is significantly reduced. Cracks are very likely to occur, and the press formability is not substantially improved.

また、室温における非加熱部の引張強さと加熱部の耐力の差を部分的溶体化処理の前後で20MPa以上増大させて、プレス成形性を向上させるための部分的溶体化処理後の加熱部の冷却速度は、50℃/min以上とする。冷却速度が50℃/min未満の場合には冷却中にMgとSiからなる粗大なMgSi結晶粒界上に多数析出し、そのため粒界割れが生じやすく、材料の伸びが低下して、プレス成形時に極めて割れやすくなってしまい、実質的にプレス成形性が向上しない。 Further, the difference between the tensile strength of the non-heated part at room temperature and the proof stress of the heated part is increased by 20 MPa or more before and after the partial solution treatment, and the heating part after the partial solution treatment for improving the press formability is obtained. A cooling rate shall be 50 degrees C / min or more. When the cooling rate is less than 50 ° C./min, many precipitates on the coarse Mg 2 Si crystal grain boundary composed of Mg and Si during cooling, so that intergranular cracking easily occurs, and the elongation of the material decreases, It becomes extremely fragile during press molding, and the press moldability is not substantially improved.

また50℃/min以上の冷却速度による冷却は、50℃以下まで行なう必要がある。50℃以下まで冷却が行なわれない場合は、冷却終了後に50℃より高い温度から50℃以下の温度まで自然冷却されるまでの間に、部分的溶体化処理を行った領域で再度時効硬化が進み、軟化の効果が減少してしまう。   Further, cooling at a cooling rate of 50 ° C./min or more needs to be performed to 50 ° C. or less. When the cooling is not performed to 50 ° C. or lower, age hardening is again performed in the region where the partial solution treatment is performed until the natural cooling is performed from the temperature higher than 50 ° C. to the temperature of 50 ° C. or lower after the cooling is completed. As a result, the softening effect decreases.

なお部分的溶体化処理における加熱部に対する加熱到達温度までの加熱昇温速度は特に限定しないが、通常は50℃/min以上とする。また同じく部分的溶体化処理における加熱到達温度での保持時間は特に規定しないが、保持なしでも、あるいは10分程度以下の保持を行なっても良い。   In addition, although the heating temperature increase rate to the heating ultimate temperature with respect to the heating part in a partial solution treatment is not specifically limited, Usually, it shall be 50 degrees C / min or more. Similarly, the holding time at the heating temperature in the partial solution treatment is not particularly defined, but it may be held for about 10 minutes or less without holding.

なおまた、部分的溶体化処理として、予め定めた箇所(加熱部)を局部的に加熱するための具体的な手段は特に限定しないが、例えばプレス成形時のシワ押さえ部分に対応する部分に加熱した金属塊を接触させたり、その部分だけ熱風で加熱したりする等の方法を適用することができる。   In addition, as a partial solution treatment, a specific means for locally heating a predetermined portion (heating portion) is not particularly limited. For example, a portion corresponding to a wrinkle holding portion during press molding is heated. It is possible to apply a method such as bringing a metal lump into contact with each other or heating only that portion with hot air.

<部分的溶体化処理から冷間プレス成形加工までの常温放置期間>
この発明では特に限定するものではないが、部分的溶体化処理から冷間プレス成形までに常温放置される期間としては、部分的溶体化処理によって軟化した部分の強度が常温時効によってもとの強度まで戻るより前に冷間プレス成形が行われるように定めることが望ましい。さらに実質的に好ましい状態としては、部分的溶体化処理を行う前の非加熱部の引張強さと加熱部の耐力の差が溶体化処理後において20MPa以上増大した状態を維持しているうちに冷間プレス成形を行なうことである。しかしながら、部分的溶体化処理の前に亜時効状態とするために、常温時効に加えて所定の温度条件で人工時効を行って合金板全体の強度を充分に高めておいた場合や、圧延加工によって硬化している場合には、室温保持中において、部分的溶体化処理により付与した強度差が大幅に低下することはほとんどなく、効果は半永久的に持続することが判明している。
<Normal temperature standing period from partial solution treatment to cold press forming>
Although it is not particularly limited in this invention, as the period of standing at room temperature from the partial solution treatment to cold press forming, the strength of the portion softened by the partial solution treatment is the original strength due to normal temperature aging It is desirable to determine that cold press forming is performed before returning to the upper limit. Further, a substantially preferable state is that while the difference between the tensile strength of the non-heated portion before the partial solution treatment and the yield strength of the heated portion is maintained at 20 MPa or more after the solution treatment, the cooling is maintained. It is to perform press forming. However, in order to obtain a sub-aging state before partial solution treatment, artificial aging is performed at a predetermined temperature condition in addition to normal temperature aging, and the strength of the entire alloy plate is sufficiently increased, or rolling processing It has been found that the strength difference imparted by the partial solution treatment is hardly lowered during the holding at room temperature, and the effect is maintained semipermanently.

なお通常のプレス成形に必要な塗油工程は、この放置期間中、もしくは冷間プレス成形を行う直前に実施することが望ましい。   The oiling process necessary for normal press molding is desirably performed during this standing period or immediately before performing cold press molding.

<アルミニウム合金板の成分組成>
この発明の成形加工用アルミニウム合金板は、基本的にはAl−Mg−Si系合金であれば良く、その具体的な成分組成は特に制約されるものではないが、通常は請求項9で規定するような成分組成の合金、すなわちMg0.2〜1.5%、Si0.3〜2.0%を含有し、かつFe0.03〜1.0%、Mn0.03〜0.6%、Cr0.01〜0.4%、Zr0.01〜0.4%、V0.01〜0.4%、Ti0.005〜0.3%、Zn0.03〜2.5%、Cu0.01〜1.5%のうちから選ばれた1種または2種以上を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金を素材とすることが好ましい。
<Component composition of aluminum alloy plate>
The aluminum alloy plate for forming according to the present invention may basically be an Al—Mg—Si alloy, and its specific composition is not particularly limited, but is usually specified in claim 9. An alloy having such a component composition, that is, Mg 0.2 to 1.5%, Si 0.3 to 2.0%, Fe 0.03 to 1.0%, Mn 0.03 to 0.6%, Cr0 0.01-0.4%, Zr 0.01-0.4%, V 0.01-0.4%, Ti 0.005-0.3%, Zn 0.03-2.5%, Cu 0.01-1. It is preferable to use an aluminum alloy containing one or two or more selected from 5%, with the balance being Al and inevitable impurities.

このような請求項9で規定する素材合金の成分組成の限定理由について以下に説明する。   The reason for limiting the component composition of the material alloy defined in claim 9 will be described below.

Mg:
Mgはこの発明で対象としている系の合金で基本となる合金元素であって、Siと共同して強度向上に寄与する。Mg量が0.2%未満では塗装焼付時に析出硬化によって強度向上に寄与するβ”相の生成量が少なくなるため、充分な強度向上が得られず、一方1.5%を越えれば、粗大なMg−Si系の金属間化合物が生成され、成形性、特に曲げ加工性が低下するから、Mg量は0.2〜1.5%の範囲内とした。最終板の成形性、特に曲げ加工性をより良好にするためには、Mg量は0.3〜0.9%の範囲内が好ましい。
Mg:
Mg is an alloy element that is a basic alloy of the system targeted by the present invention, and contributes to strength improvement in cooperation with Si. If the Mg content is less than 0.2%, the amount of β "phase that contributes to strength improvement by precipitation hardening during baking is reduced, so that sufficient strength improvement cannot be obtained, while if it exceeds 1.5%, it is coarse. Mg-Si based intermetallic compounds are produced, and the formability, particularly bending workability, is reduced, so the Mg content is within the range of 0.2 to 1.5%. In order to improve the workability, the Mg content is preferably in the range of 0.3 to 0.9%.

Si:
Siもこの発明の系の合金で基本となる合金元素であって、Mgと共同して強度向上に寄与する。またSiは、鋳造時に金属Siの晶出物として生成され、その金属Si粒子の周囲が加工によって変形されて、溶体化処理の際に再結晶核の生成サイトとなるため、再結晶組織の微細化にも寄与する。Si量が0.3%未満では上記の効果が充分に得られず、一方2.0%を越えれば粗大なSi粒子や粗大なMg−Si系の金属間化合物が生じて、成形性、特に曲げ加工性の低下を招く。したがってSi量は0.3〜2.0%の範囲内とした。プレス成形性と曲げ加工性とのより良好なバランスを得るためには、Si量は0.5〜1.4%の範囲内が好ましい。
Si:
Si is also an alloy element that is fundamental in the alloy of the present invention, and contributes to strength improvement in cooperation with Mg. In addition, Si is produced as a crystallized product of metal Si at the time of casting, and the periphery of the metal Si particles is deformed by processing and becomes a recrystallization nucleus generation site during solution treatment. It also contributes to If the amount of Si is less than 0.3%, the above effect cannot be obtained sufficiently. On the other hand, if it exceeds 2.0%, coarse Si particles and coarse Mg-Si based intermetallic compounds are produced, and formability, particularly This causes a decrease in bending workability. Therefore, the Si amount is set in the range of 0.3 to 2.0%. In order to obtain a better balance between press formability and bending workability, the Si content is preferably in the range of 0.5 to 1.4%.

以上のMgおよびSiが、Al−Mg−Si系アルミニウム合金として基本となる合金元素であるが、それ以外にFe0.03〜1.0%、Mn0.03〜0.6%、Cr0.01〜0.4%、Zr0.01〜0.4%、V0.01〜0.4%、Ti0.005〜0.3%、Zn0.03〜2.5%、Cu0.01〜1.5%のうちから選ばれた1種または2種以上を含有させることとする。これらの添加理由およびその添加量限定理由はつぎのとおりである。   The above Mg and Si are basic alloy elements as an Al—Mg—Si-based aluminum alloy, but Fe 0.03 to 1.0%, Mn 0.03 to 0.6%, Cr 0.01 to 0.4%, Zr 0.01-0.4%, V 0.01-0.4%, Ti 0.005-0.3%, Zn 0.03-2.5%, Cu 0.01-1.5% One or two or more selected from among them are included. The reason for these additions and the reason for limiting the addition amount are as follows.

Ti、V:
Tiは鋳塊組織の微細化による強度向上や防食に有効な元素であり、またVは強度向上や防食に有効な元素である。Tiの含有量が0.005%未満では充分な効果が得られず、一方0.3%を越えればTi添加による鋳塊組織微細化と防食の効果が飽和する。Vは0.01%未満では充分な効果が得られず、一方0.4%を越えればV添加による防食の効果が飽和する。さらに上限を越えれば粗大なTiまたはV系金属間化合物が多くなり、成形性、ヘム加工性の低下を招く。
Ti, V:
Ti is an element effective for improving the strength and preventing corrosion by refining the ingot structure, and V is an element effective for improving the strength and preventing corrosion. If the Ti content is less than 0.005%, a sufficient effect cannot be obtained. On the other hand, if the Ti content exceeds 0.3%, the effects of refinement of the ingot structure and corrosion protection due to the addition of Ti are saturated. If V is less than 0.01%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.4%, the anticorrosive effect by addition of V is saturated. If the upper limit is exceeded, coarse Ti or V-based intermetallic compounds increase, which leads to a decrease in formability and hemmability.

Mn、Cr、Zr:
これらの元素は、強度向上や結晶粒微細化、あるいは時効性(焼付硬化性)の向上に有効である。Mnの含有量が0.03%未満、もしくはCr、Zrの含有量がそれぞれ0.01%未満では、上記の効果が充分に得られず、一方Mnの含有量が0.6%を越えるか、あるいはCr、Zr、の含有量がそれぞれ0.4%を越えれば、上記の効果が飽和するばかりでなく、多数の金属間化合物が生成されて成形性、特にヘム曲げ性に悪影響を及ぼすおそれがあり、したがってMnは0.03〜0.6%の範囲内、Cr、Zrはそれぞれ0.01〜0.4%の範囲内とした。
Mn, Cr, Zr:
These elements are effective for improving the strength, refining crystal grains, or improving aging (bake hardenability). If the Mn content is less than 0.03% or the Cr and Zr contents are each less than 0.01%, the above effect cannot be obtained sufficiently, while the Mn content exceeds 0.6%. If the Cr, Zr content exceeds 0.4%, not only the above effects will be saturated, but also a large number of intermetallic compounds may be produced, which may adversely affect the formability, particularly hem bendability. Therefore, Mn is in the range of 0.03 to 0.6%, and Cr and Zr are in the range of 0.01 to 0.4%, respectively.

Fe:
Feは、一般のアルミニウム合金において通常は0.03%未満は不可避的不純物として含有される。一方、Feは強度向上と結晶粒微細化に有効な元素であり、これらの効果を発揮させるためにFeを0.03%以上積極的に添加しても良い。但し、その含有量が0.03%未満では充分な効果が得られず、一方1.0%を越えれば、成形性、特に曲げ加工性が低下するおそれがあり、したがってFeを積極的に添加する場合のFe量は0.03〜1.0%の範囲内とした。
Fe:
In general aluminum alloys, Fe is usually contained as an inevitable impurity in an amount of less than 0.03%. On the other hand, Fe is an element effective for strength improvement and crystal grain refinement, and in order to exert these effects, Fe may be positively added by 0.03% or more. However, if the content is less than 0.03%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 1.0%, the formability, particularly the bending workability, may be lowered. Therefore, Fe is actively added. In this case, the amount of Fe was set in the range of 0.03 to 1.0%.

Zn:
Znは時効性向上を通じて強度向上に寄与するとともに表面処理性の向上に有効な元素であるが、Znの添加量が0.03%未満では上記の効果が充分に得られず、一方2.5%を越えれば成形性と耐食性が低下するから、Zn量は0.03〜2.5%の範囲内とした。
Zn:
Zn is an element that contributes to strength improvement through aging improvement and is effective in improving surface treatment properties. However, if the amount of Zn is less than 0.03%, the above effect cannot be obtained sufficiently, while 2.5 If it exceeds 50%, the moldability and the corrosion resistance decrease, so the Zn content is set in the range of 0.03 to 2.5%.

Cu:
Cuは成形性向上および強度向上のために添加される元素であり、このような成形性向上および強度向上の目的から0.01%以上添加される。しかしながら、Cu量が1.5%を越えれば耐食性(耐粒界腐食性、耐糸錆性)が劣化するから、Cuの含有量は1.5%以下に規制することとした。なお、強度向上を重視する場合は、Cu量は0.4%以上が好ましく、またより耐食性の改善を図りたい場合は、Cu量は1.0%以下が好ましい。
Cu:
Cu is an element added for improving formability and strength, and 0.01% or more is added for the purpose of improving formability and strength. However, if the Cu content exceeds 1.5%, the corrosion resistance (intergranular corrosion resistance, yarn rust resistance) deteriorates, so the Cu content is restricted to 1.5% or less. In addition, when importance is attached to strength improvement, the Cu content is preferably 0.4% or more, and when it is desired to further improve the corrosion resistance, the Cu content is preferably 1.0% or less.

また、一般のAl合金においては、鋳塊組織の微細化のために前述のTiと同時にBを添加することもあり、BをTiとともに添加することによって、鋳塊組織の微細化と安定化の効果が一層顕著となる。そしてこの発明の場合、Tiとともに500ppm以下のBを添加することは許容される。   Moreover, in general Al alloy, B may be added simultaneously with the above-mentioned Ti for refining the ingot structure. By adding B together with Ti, the ingot structure can be refined and stabilized. The effect becomes more remarkable. In the case of this invention, it is permissible to add 500 ppm or less of B together with Ti.

以下にこの発明の実施例を比較例とともに記す。なお以下の実施例は、この発明の効果を説明するためのものであり、実施例記載のプロセスおよび条件がこの発明の技術的範囲を制限するものではない。   Examples of the present invention will be described below together with comparative examples. The following examples are for explaining the effects of the present invention, and the processes and conditions described in the examples do not limit the technical scope of the present invention.

[実施例1]
アルミニウム合金を溶解して成分調整を行なった後、DC鋳造法により鋳造することにより、表1の合金No.1〜No.4に示す化学成分のアルミニウム合金鋳塊を作製した。鋳塊に530℃で10時間の均熱処理を行なった後、常法にしたがって熱間圧延を行なって厚さ4mmの圧延板を作製した。その後、表2に示す工程順序および条件にて冷間圧延・溶体化処理・時効処理を行い、厚さ1mmのアルミニウム合金板を作製し、以下の実験の供試材とした。なお上記の溶体化処理とは、板全体に対して、急速加熱・短時間保持・急速冷却を連続的に行なうもので、ここではこの処理での到達温度をいずれも530℃とし、冷却速度200℃/minにより室温まで冷却した。
[Example 1]
After the aluminum alloy was dissolved and the components were adjusted, the alloy No. 1 in Table 1 was cast by DC casting. 1-No. An aluminum alloy ingot having the chemical composition shown in 4 was produced. The ingot was subjected to soaking for 10 hours at 530 ° C., and then hot rolled according to a conventional method to produce a rolled plate having a thickness of 4 mm. Thereafter, cold rolling, solution treatment, and aging treatment were performed in the process sequence and conditions shown in Table 2 to produce an aluminum alloy plate having a thickness of 1 mm, which was used as a test material for the following experiments. The solution treatment described above is a method in which rapid heating, short-time holding, and rapid cooling are continuously performed on the entire plate. Here, the ultimate temperature in this treatment is 530 ° C., and the cooling rate is 200. Cooled to room temperature at a temperature of ° C / min.

これらの合金板から、引張試験片(JIS5号試験片形状)を引張方向が圧延方向と直角となるように採取して、引張試験を行なって、機械的性質引張強さ、耐力、伸び)を調べ、その結果を部分的溶体化処理前の機械的性質として表2に示した。またこの合金板を以下に述べる方法による部分的溶体化処理に供した後、成形性評価試験に供した。   From these alloy sheets, a tensile test piece (JIS No. 5 test piece shape) is taken so that the tensile direction is perpendicular to the rolling direction, and a tensile test is performed to obtain mechanical properties (tensile strength, yield strength, elongation). The results are shown in Table 2 as the mechanical properties before the partial solution treatment. The alloy plate was subjected to a partial solution treatment by the method described below and then subjected to a formability evaluation test.

すなわち、各合金板より所定サイズの成形性評価用の円板ブランクを作製した。図2に示すように、この円板サンプル5の中心部55.7mmφの領域を非加熱部Qとして、その周囲の領域を加熱部Pとして部分的な溶体化処理を行った。この加熱部Pは、プレス成形時にパンチ2の肩部3が接触することになる領域より外側の部分の全てである。部分的溶体化処理の具体的な方法としては、図3に模式的に示す形状の部分的溶体化処理装置の上盤6および下盤7の間に円板ブランク5を挟み込むことにより行なった。図3において、上盤6および下盤7は、それぞれ中央部を水冷により冷却した非加熱部8とし、その周囲の部分を、ヒーターを組込んだ加熱部9とした。このときの加熱部での加熱到達温度と冷却速度条件を表2中に示す。なお、いずれの場合も加熱到達温度での保持時間は1秒とした。   That is, a disc blank for formability evaluation of a predetermined size was produced from each alloy plate. As shown in FIG. 2, a partial solution treatment was performed by setting the region of 55.7 mmφ at the center of the disk sample 5 as a non-heating portion Q and the surrounding region as a heating portion P. This heating part P is all the part outside the area where the shoulder part 3 of the punch 2 comes into contact during press molding. As a specific method of the partial solution treatment, the disc blank 5 was sandwiched between the upper board 6 and the lower board 7 of the partial solution treatment apparatus having a shape schematically shown in FIG. In FIG. 3, each of the upper board 6 and the lower board 7 is a non-heating part 8 whose central part is cooled by water cooling, and the surrounding part is a heating part 9 incorporating a heater. Table 2 shows the heating temperature and cooling rate conditions in the heating section at this time. In any case, the holding time at the heating temperature was 1 second.

これらの条件で部分的溶体化処理を行った円板ブランクを以下で説明する成形性評価試験に供するとともに、各条件の円板ブランクについて、図4に示す形状の小型の引張試験片10を加熱部Pと非加熱部Qの両方から採取して(採取位置を図5に示す)、引張試験に供し、非加熱部Qの引張強さと加熱部Pの耐力とを調べ、その結果を表3に示した。なおこの部分的溶体化処理後の各部位の強度評価は、部分的溶体化処理を行ってから1日後に行った。また、部分的溶体化処理を行ってから1日後に、円板の加熱部から小型の引張試験片を採取して、5%の引張変形を加えた後に試験片平行部を切り出し、以下の方法により曲げ性評価試験を行った。   The disc blank subjected to the partial solution treatment under these conditions is subjected to the formability evaluation test described below, and the small tensile test piece 10 having the shape shown in FIG. Samples were taken from both the part P and the non-heated part Q (the collection position is shown in FIG. 5), and subjected to a tensile test to examine the tensile strength of the non-heated part Q and the proof stress of the heated part P. It was shown to. The strength evaluation of each part after the partial solution treatment was performed one day after the partial solution treatment. Also, one day after the partial solution treatment, a small tensile test piece was taken from the heated part of the disk, and after applying 5% tensile deformation, the parallel part of the test piece was cut out. The bendability evaluation test was conducted.

すなわち、試験片平行部の中央部に位置する引張方向と直角方向の線を折り曲げ線として、90°の角度となるまで、曲げ半径0.8mmで折り曲げ、さらに135°の角度まで折り曲げた後、内側にインナーパネル挿入することを想定して板厚1.0mmの板を挿入し、この板を挟み込むように180°の角度まで折り曲げて密着させた。曲げ加工部の外側をルーペで確認して、割れが発生していない場合に曲げ加工性が良好と判断し、割れが発生している場合に曲げ加工性が不良であると判断した。このようにして評価した曲げ性を表3に示す。   That is, after bending at a bending radius of 0.8 mm until the angle is 90 °, a line perpendicular to the tensile direction located at the center of the parallel part of the test piece is bent, and further bent to an angle of 135 °, A plate having a thickness of 1.0 mm was inserted on the assumption that the inner panel was to be inserted inside, and the plate was folded to an angle of 180 ° so as to sandwich the plate and adhered. The outside of the bent portion was confirmed with a loupe, and it was judged that the bending workability was good when no cracks occurred, and the bending workability was judged poor when the cracks occurred. The bendability evaluated in this way is shown in Table 3.

成形性評価試験については、部分的溶体化処理を行ってから1日後に円筒深絞り試験により行った。本試験で用いたパンチの形状は、パンチの直径50mmおよびパンチ角半径5.0mmであり、ダイス形状はダイス内径53.64mm、ダイス肩半径13.0mmであった。深絞り試験の条件としては、パンチ速度は180mm/minとし、シワ押さえ力150kgとし、潤滑剤としてジョンソンワックス(商標)をブランクの両面に塗布した。部分的溶体化処理を行った合金板ブランクについて深絞り試験を行い、5枚のうち3枚以上絞り成形が可能であった場合は円板の直径を0.5mm増して、再度深絞り試験を行った。これを繰り返して、絞り成形が可能である最大の円板の直径を求め、この数値をパンチ径50mmで割り算して、限界絞り比LDRを求めた。また、比較のため部分的溶体化処理を行わない供試合金板についてもLDRを求め、これらの円筒深絞り試験の結果を表3に示した。ここで、部分的溶体化処理を行うことによって、この処理を行わない場合と比較してLDRが0.1以上増大した場合に、部分的溶体化処理により実質的に成形性向上があったものと判断した。   The moldability evaluation test was conducted by a cylindrical deep drawing test one day after the partial solution treatment. The punch used in this test had a punch diameter of 50 mm and a punch angle radius of 5.0 mm, and the die had a die inner diameter of 53.64 mm and a die shoulder radius of 13.0 mm. As conditions for the deep drawing test, the punching speed was 180 mm / min, the wrinkle pressing force was 150 kg, and Johnson Wax (trademark) was applied to both sides of the blank as a lubricant. A deep drawing test was performed on a partially blanked alloy sheet blank. If three or more of the five sheets could be drawn, the diameter of the disk was increased by 0.5 mm and the deep drawing test was performed again. went. By repeating this, the diameter of the maximum disk that can be drawn was determined, and this numerical value was divided by the punch diameter of 50 mm to determine the limit drawing ratio LDR. For comparison, LDR was also obtained for a game metal plate not subjected to partial solution treatment, and the results of these cylindrical deep drawing tests are shown in Table 3. Here, when the partial solution treatment is performed, when the LDR is increased by 0.1 or more compared to the case where this treatment is not performed, the partial solution treatment has substantially improved the moldability. It was judged.

Figure 2010156024
Figure 2010156024

Figure 2010156024
Figure 2010156024

Figure 2010156024
Figure 2010156024

条件1〜6は、この発明で規定する成分組成範囲内の合金1について、表2に示すようなこの発明の範囲内のプロセス条件で熱延後の冷間圧延・溶体化処理・時効処理(常温時効)を行うことによって亜時効状態とした供試合金について、各々異なる条件で部分的溶体化処理を行ったものである。   Conditions 1 to 6 are cold rolling, solution treatment, and aging treatment after hot rolling under the process conditions within the range of the present invention as shown in Table 2 for Alloy 1 within the component composition range defined in the present invention ( A match solution that has been sub-aged by performing normal temperature aging) is subjected to partial solution treatment under different conditions.

このうち条件1〜3は部分的溶体化処理の加熱到達温度および冷却速度がいずれもこの発明の条件範囲内であり、そのためいずれの場合も室温における非加熱部の引張強度と加熱部の耐力差が部分的な溶体化処理前後で20MPa以上増加していた。そしてこれらの例では、成形性評価試験でのLDRが部分的溶体化処理を行わない場合と比較して0.1以上向上し、実質的な成形性向上があることが確認された。またこれらの例では、加熱した部分の曲げ加工性も良好であった。   Among these, conditions 1 to 3 are that the temperature reached by heating and the cooling rate of the partial solution treatment are both within the condition range of the present invention. Therefore, in each case, the tensile strength of the non-heated part and the proof stress difference of the heated part at room temperature. However, it increased by 20 MPa or more before and after the partial solution treatment. In these examples, the LDR in the moldability evaluation test was improved by 0.1 or more compared with the case where the partial solution treatment was not performed, and it was confirmed that there was a substantial improvement in moldability. In these examples, the bendability of the heated portion was also good.

これに対し条件4は、部分的溶体化処理の加熱到達温度がこの発明で規定するプロセス条件範囲よりも低い例であり、この場合はMgとSiの固溶限が小さく、MgとSiを完全に溶体化することがでず、固溶しなかった分のMgとSiが粗大なMgSi粒子として結晶粒界上に多数析出し、そのため部分的溶体化処理の加熱部での粒界割れが生じやすく、材料の伸びが大幅に低下して、プレス成形時に非常に割れやすくなってしまった。そのため成形性評価試験でのLDRは、部分的溶体化処理を行わない場合と比較して0.1以上向上せず、成形性は実質的に向上しないと判定された。またこの場合、加熱部での曲げ加工時にも割れが発生しやすく、曲げ性が不良であることが判明した。 On the other hand, Condition 4 is an example in which the temperature reached by heating in the partial solution treatment is lower than the process condition range defined in the present invention. In this case, the solid solubility limit of Mg and Si is small, and Mg and Si are completely contained. A large amount of Mg and Si that could not be dissolved in the solution and precipitated as coarse Mg 2 Si particles on the grain boundaries, and therefore, grain boundary cracking in the heating part of the partial solution treatment And the elongation of the material was greatly reduced, making it very easy to crack during press molding. Therefore, the LDR in the moldability evaluation test was determined not to improve by 0.1 or more compared to the case where the partial solution treatment was not performed, and it was determined that the moldability was not substantially improved. Further, in this case, it was found that cracking is likely to occur during bending in the heating section, and the bendability is poor.

また条件5は、部分的溶体化処理における加熱到達温度がこの発明で規定する範囲よりも高い例であり、この場合は、マトリクス中の一部で合金が溶融して、室温まで冷却した後の材料の伸びが著しく低下してしまい、プレス成形の際にこの加熱部で割れが極めて発生しやすくなってしまった。そして成形性評価試験でのLDRは、部分的溶体化処理を行わない場合に比較して0.1以上向上せず、成形性は実質的に向上しないことが判明した。またこの例では、加熱した部分での曲げ加工時にも割れが発生しやすく、曲げ性が不良であることが確認された。   Condition 5 is an example in which the temperature reached by heating in the partial solution treatment is higher than the range specified in the present invention. In this case, the alloy melts in a part of the matrix and is cooled to room temperature. The elongation of the material was remarkably reduced, and cracking was very likely to occur in this heated portion during press molding. And it turned out that LDR in a moldability evaluation test does not improve 0.1 or more compared with the case where a partial solution treatment is not performed, and the moldability does not substantially improve. Further, in this example, it was confirmed that cracking was likely to occur during bending at the heated portion, and the bendability was poor.

また条件6は、部分的溶体化処理における加熱後の冷却速度がこの発明で規定する範囲よりも低い例であり、この場合は冷却中にMgとSiからなる粗大なMgSi結晶粒界上に多数析出し、そのため加熱した部分では、粒界割れが生じやすく、材料の伸びが低下して、プレス成形時に非常に割れやすくなってしまった。そして成形性評価試験でのLDRは、部分的溶体化処理を行わない場合に比較して0.1以上向上せず、成形性は実質的に向上しないことが判明した。またこの場合、加熱した部分での曲げ加工時にも割れが発生しやすく、曲げ性が不良であることが確認された。 Condition 6 is an example in which the cooling rate after heating in the partial solution treatment is lower than the range defined in the present invention. In this case, on the coarse Mg 2 Si crystal grain boundary composed of Mg and Si during cooling. In the heated portion, grain boundary cracking was likely to occur, and the elongation of the material was reduced, making it very easy to crack during press molding. And it turned out that LDR in a moldability evaluation test does not improve 0.1 or more compared with the case where a partial solution treatment is not performed, and the moldability does not substantially improve. Further, in this case, it was confirmed that cracking was likely to occur during bending at the heated portion, and the bendability was poor.

一方条件7は、この発明の成分組成板内の合金1について、表2に示すようなこの発明のプロセス条件範囲内の条件で熱延後の冷間圧延・溶体化処理・時効処理(人工時効+常温時効)を行うことによって亜時効状態とした供試合金について、この発明の範囲内の条件で部分的溶体化処理を行った例である。この場合、室温における非加熱部の引張強度と加熱部の耐力差が部分的溶体化処理前後で20MPa以上増加しており、そのため成形性評価試験でのLDRが、部分的溶体化処理を行わない場合に比較して0.1以上向上し、成形性が実質的に向上したことが確認された。   On the other hand, the condition 7 is the cold rolling, solution treatment, aging treatment (artificial aging) after hot rolling on the alloy 1 in the component composition plate of the present invention under the conditions within the process condition range of the present invention as shown in Table 2. It is an example in which a partial solution treatment was performed under conditions within the scope of the present invention for match money that was sub-aged by performing (+ normal temperature aging). In this case, the difference in tensile strength between the non-heated part at room temperature and the proof stress of the heated part is increased by 20 MPa or more before and after the partial solution treatment, and therefore LDR in the moldability evaluation test does not perform the partial solution treatment. Compared to the case, it was confirmed that the moldability was substantially improved by 0.1 or more.

また条件8および条件9は、この発明の成分組成範囲内の合金1について、表2に示すようなこの発明のプロセス条件範囲内にある条件で熱延後の冷間圧延・溶体化処理・常温放置(亜時効状態とならない程度の常温時効)を行うことによって、実質的に圧延加工のままの状態(加工硬化状態)にある供試合金について、この発明の範囲内の条件で部分的溶体化処理を行った例である。これらの場合も、室温における非加熱部の引張強度と加熱部の耐力差が部分的溶体化処理前後で20MPa以上増加している。このため、成形性評価試験でのLDRが部分的溶体化処理を行わない場合に比較して0.1以上向上し、成形性が実質的に向上することが判明した。   Condition 8 and Condition 9 are for the alloy 1 within the composition range of the present invention, cold rolling / solution treatment / room temperature after hot rolling under the conditions within the process condition range of the present invention as shown in Table 2. By performing neglect (normal temperature aging that does not become sub-aged), game solution in a state of being substantially rolled (work hardened) is partially solutionized under conditions within the scope of the present invention. This is an example of processing. Also in these cases, the difference in tensile strength between the non-heated part and the proof stress of the heated part at room temperature increases by 20 MPa or more before and after the partial solution treatment. For this reason, it was found that the LDR in the moldability evaluation test was improved by 0.1 or more compared to the case where the partial solution treatment was not performed, and the moldability was substantially improved.

これらに対して、条件10は、この発明の成分組成範囲内の合金1について、表2に示すようなこの発明のプロセス条件範囲外の条件で熱延後の冷間圧延・溶体化処理・時効処理を行った例である。具体的には、時効処理が人工時効(185℃×7h)と常温時効(20℃×10日間)の組み合わせで行われ、人工時効の温度がこの発明で規定する範囲よりも高く、かつ時間も長い例である。この例では、合金板は最適な状態である亜時効状態を超えて、最高強度が得られるピーク時効または過時効の状態に達して、材料の伸びが小さく、割れやすい状態となっている。このため、部分的溶体化処理で非加熱部となる領域はプレス成形時に非常に割れやすくなり、成形性評価試験でのLDRは、部分的溶体化処理を行わない場合に比較して0.1以上向上せず、成形性は実質的に向上しないことが確認された。   On the other hand, the condition 10 is the cold rolling / solution treatment / aging after hot rolling under the conditions outside the process condition range of the present invention as shown in Table 2 for the alloy 1 within the component composition range of the present invention. This is an example of processing. Specifically, the aging treatment is performed by a combination of artificial aging (185 ° C. × 7 h) and normal temperature aging (20 ° C. × 10 days), the temperature of the artificial aging is higher than the range specified in the present invention, and the time is This is a long example. In this example, the alloy plate exceeds the sub-aging state, which is an optimum state, reaches a peak aging state or an over-aging state where the maximum strength is obtained, and the material has a small elongation and is easily cracked. For this reason, the region that becomes the non-heated portion in the partial solution treatment is very easily cracked during press molding, and the LDR in the moldability evaluation test is 0.1 as compared with the case where the partial solution treatment is not performed. It was confirmed that the moldability was not substantially improved without improvement.

一方、条件11、条件12、条件13は、それぞれこの発明の成分組成範囲内にある合金2、3、4について、それぞれ表2に示すようなこの発明のプロセス条件範囲内の条件で熱延後の冷間圧延・溶体化処理・時効処理(常温時効または常温時効と人工時効を組み合わせた時効処理)を行うことによって亜時効状態とした供試合金について、それぞれ同じく表2に示すようなこの発明の範囲内の条件で部分的溶体化処理を行った例であり、いずれの場合も室温における非加熱部の引張強度と加熱部の耐力差が、部分的溶体化処理前後で20Mpa以上増加している。このため、いずれの場合も成形性評価試験でのLDRが部分的溶体化処理を行わない場合に比較して0.1以上向上し、実質的に成形性が向上していることが確認され、また加熱した部分の曲げ加工性も良好であることが確認された。   On the other hand, Condition 11, Condition 12, and Condition 13 are those after hot rolling under the conditions within the process condition range of the present invention as shown in Table 2 for Alloys 2, 3, and 4 within the component composition range of the present invention, respectively. This invention is also shown in Table 2 for the match money that was sub-aged by performing cold rolling, solution treatment and aging treatment (normal temperature aging or aging treatment combining normal temperature aging and artificial aging). In any case, the difference in tensile strength of the non-heated part at room temperature and the difference in yield strength of the heated part increased by 20 Mpa or more before and after the partial solution treatment. Yes. For this reason, in any case, it was confirmed that the LDR in the moldability evaluation test was improved by 0.1 or more compared to the case where the partial solution treatment was not performed, and the moldability was substantially improved. Moreover, it was confirmed that the bendability of the heated part is also good.

[実施例2]
実施例1で用いたこの発明の成分組成範囲内にある合金1の熱延板を供試材として用いた。この合金板について表2に示した条件3と同じ条件で冷間圧延・溶体化処理・時効処理を行い、この合金板について同様に条件3と同じ条件で部分的溶体化処理を行った。但しこの実施例2では、部分的溶体化処理における加熱部と非加熱部の各領域を、表4に示すように種々変化させて部分的溶体化処理を行った。各領域条件で部分的溶体化処理したブランクを、1日後に実施例1と同じ条件での円筒深絞り試験に供して、LDRを求め、結果を表4中に示した。
[Example 2]
The hot rolled sheet of alloy 1 in the component composition range of the present invention used in Example 1 was used as a test material. This alloy sheet was subjected to cold rolling, solution treatment and aging treatment under the same conditions as condition 3 shown in Table 2, and this alloy sheet was similarly subjected to partial solution treatment under the same conditions as condition 3. However, in Example 2, the partial solution treatment was performed by changing each region of the heated portion and the non-heated portion in the partial solution treatment as shown in Table 4. A blank subjected to partial solution treatment under each region condition was subjected to a cylindrical deep drawing test under the same conditions as in Example 1 after 1 day to obtain LDR, and the results are shown in Table 4.

Figure 2010156024
Figure 2010156024

比較例である条件1は加熱領域がない、すなわち実質的に部分的溶体化処理を行わない例であり、この場合はLDRは2.01であった。また比較例である条件2は、全面を加熱部とした例であり、LDRは2.02へと微増するのみで、充分な成形性向上効果は得られなかった。また比較例である条件3は、成形時にパンチ肩部に接触することになる部分の全部(図2の領域B)とその外側の部分全部(図2の領域A)を加熱部とした例であり、このためパンチ肩部の強度が低下して、この部分で破断が生じやすく、LDRは2.01であって効果的に増加せず、成形性は向上しないことが判明した。また比較例である条件4は、成形時にパンチ肩部に接触することになる部分(図2の領域B)の一部とその外側の部分全部(図2の領域A)を加熱部とした例であり、このためパンチ肩部の強度が低下して、この部分で破断が生じやすく、LDRは2.02であって効果的に増加せず、成形性は向上しないことが判明した。   Condition 1, which is a comparative example, is an example in which there is no heating region, that is, a partial solution treatment is not substantially performed. In this case, the LDR was 2.01. Further, Condition 2 as a comparative example is an example in which the entire surface is a heated portion, and the LDR is only slightly increased to 2.02, and a sufficient moldability improvement effect cannot be obtained. Further, Condition 3 as a comparative example is an example in which all of the portions that contact the punch shoulder at the time of molding (region B in FIG. 2) and all of the outer portions (region A in FIG. 2) are heating portions. For this reason, it was found that the strength of the punch shoulder portion was lowered and breakage was likely to occur at this portion, the LDR was 2.01, and it did not increase effectively, and the moldability was not improved. Further, Condition 4 as a comparative example is an example in which a part (region B in FIG. 2) that contacts the punch shoulder at the time of molding and the entire outer part (region A in FIG. 2) are used as a heating unit. For this reason, it was found that the strength of the punch shoulder portion was lowered and breakage was likely to occur at this portion, the LDR was 2.02, and it did not increase effectively, and the moldability was not improved.

一方本発明例である条件5は、成形時にパンチ肩部に接触することになる部分(図2の領域B)の外側部分全部(図2の領域A)を加熱部とした例であり、この場合はパンチ肩部に接触することになるブランクの強度はその外側の部分に比べて高く、そのためLDRは2.21となり、部分的溶体化処理を行わない場合に比較して0.1以上効果的に増加して、成形性が向上することが判明した。また本発明例である条件6、条件7は、成形時にパンチ肩部に接触することになる部分(図2の領域B)の外側部分の一部を加熱部とした例であり、この場合パンチ肩部接触することになるブランクの強度は、その外側部分の一部の領域に比べて高く、そのためLDRは各々2.20、2.18となり、部分的溶体化処理を行わない場合に比較して0.1以上効果的に増加して、成形性が向上することが確認された。   On the other hand, Condition 5, which is an example of the present invention, is an example in which the entire outer portion (region A in FIG. 2) of the portion (region B in FIG. 2) that comes into contact with the punch shoulder during molding is used as the heating portion. In this case, the strength of the blank that comes in contact with the shoulder of the punch is higher than that of the outer portion, so that the LDR is 2.21, which is an effect of 0.1 or more compared with the case where the partial solution treatment is not performed. As a result, it was found that the moldability was improved. Further, Condition 6 and Condition 7, which are examples of the present invention, are examples in which a part of the outer portion of the portion (region B in FIG. 2) that comes into contact with the punch shoulder during molding is used as a heating portion. The strength of the blank that comes into contact with the shoulder is higher than that of a part of the outer portion, so that the LDR is 2.20 and 2.18, respectively, compared to the case where the partial solution treatment is not performed. It was confirmed that the moldability was effectively increased by 0.1 or more and the moldability was improved.

[実施例3]
実施例1で用いたこの発明の成分組成範囲内の合金1の熱延板を供試材として用いた。この合金板について、表2に示した条件3と同じ条件で冷間圧延・溶体化処理・時効処理を行い、さらに条件3と同じ条件で部分的溶体化処理を行った。但し、この実施例3では、プレス成形に用いるパンチの形状を、前記各実施例とは異ならしめた。すなわち、図6に示すように、2段のパンチ肩部3A、3Bを有する2段の円筒パンチ2を用いることとした。ここで、パンチ2の一段目は、φ50mmの大きさで5mmRのパンチ肩部3Aを有し、パンチ2の二段目は、φ25mmの大きさで5mmRのパンチ肩部3Bを有するものとした。さらにダイとしては、この2段パンチ2の形状に対応するものとし、円板ブランク5について、このような2段形状のパンチ2とダイでプレス成形することとした。
[Example 3]
The hot rolled sheet of alloy 1 in the component composition range of the present invention used in Example 1 was used as a test material. The alloy sheet was subjected to cold rolling, solution treatment, and aging treatment under the same conditions as condition 3 shown in Table 2, and further subjected to partial solution treatment under the same conditions as condition 3. However, in Example 3, the shape of the punch used for press molding was made different from that in each of the above examples. That is, as shown in FIG. 6, a two-stage cylindrical punch 2 having two-stage punch shoulder portions 3A and 3B is used. Here, the first stage of the punch 2 has a punch shoulder portion 3A having a size of φ50 mm and 5 mmR, and the second step of the punch 2 has a punch shoulder portion 3B having a size of φ25 mm and 5 mmR. Further, the die corresponds to the shape of the two-stage punch 2, and the disc blank 5 is press-formed with such a two-stage punch 2 and a die.

この際、本発明例としては、成形時に一段面のパンチ肩部3Aに接触することになる領域Bの外側の領域Aを部分的溶体化処理における加熱部とし、さらに領域Bの内側の領域Cのうち、パンチ肩部3Bに接触することになる領域B’の外側領域A’も加熱部として加えて部分的溶体化処理を行った。一方、比較例としては、成形時に一段面のパンチ肩部3Aに接触することになる領域Bの外側の領域Aのみを部分的溶体化処理における加熱部として、部分的溶体化処理を行った。これら本発明例と比較例の2種の部分的溶体化処理を施したブランクについて、部分的溶体化処理後の3日後に、これらのパンチとダイを用いてプレス成形をおこなった。その結果、本発明例では、途中で破断することなく2段の円筒形状の成形品を作製することができたが、比較例では成形品のパンチ肩部3Bに相当する部位で破断が生じてしまった。   At this time, as an example of the present invention, the region A outside the region B that will be in contact with the punch shoulder portion 3A on the one-step surface at the time of molding is used as the heating portion in the partial solution treatment, and further the region C inside the region B Of these, the outer region A ′ of the region B ′ that would be in contact with the punch shoulder 3B was also added as a heating portion to perform partial solution treatment. On the other hand, as a comparative example, the partial solution treatment was performed using only the region A outside the region B that would be in contact with the punch shoulder portion 3A on the one-step surface during molding as a heating part in the partial solution treatment. About the blank which performed these 2 types of partial solution treatment of this invention example and a comparative example, the press molding was performed using these punches and die | dyes 3 days after the partial solution treatment. As a result, in the example of the present invention, it was possible to produce a two-stage cylindrical molded product without breaking in the middle, but in the comparative example, the fracture occurred at a site corresponding to the punch shoulder 3B of the molded product. Oops.

この発明に従って部分的溶体化処理を行なう際の加熱部と非加熱部とを説明するために、アルミニウム合金板のプレス成形の状況を段階的に示す、模式的な断面図である。In order to demonstrate the heating part and non-heating part at the time of performing a partial solution treatment according to the present invention, it is a schematic cross-sectional view showing the state of press forming of an aluminum alloy plate step by step. 実施例1における部分的溶体化処理時の加熱部と非加熱部を示すための模式図である。It is a schematic diagram for showing the heating part and the non-heating part at the time of the partial solution treatment in Example 1. 実施例1において用いた部分的溶体化処理装置の模式的な斜視図である。1 is a schematic perspective view of a partial solution treatment apparatus used in Example 1. FIG. 実施例1において採取した引張試験片の形状、寸法を示す平面図である。2 is a plan view showing the shape and dimensions of a tensile test piece collected in Example 1. FIG. 実施例1において、部分的溶体化処理を行なったブランクの加熱部および非加熱部からの引張試験片採取位置を示す平面図である。In Example 1, it is a top view which shows the tensile test piece collection position from the heating part and non-heating part of the blank which performed the partial solution treatment. 実施例3において用いたプレスの2段形状のパンチおよびその場合のブランクに対する部分的溶体化処理における加熱部及び非加熱部の位置を示す模式的な断面図である。It is typical sectional drawing which shows the position of the heating part and non-heating part in the partial solution treatment with respect to the punch of 2 steps | paragraphs of the press used in Example 3, and the blank in that case.

符号の説明Explanation of symbols

1 ダイ
2 パンチ
3、3A、3B パンチ肩部
4 シワ押さえ
5 ブランク
P 加熱部
Q 非加熱部
1 Die 2 Punch 3, 3A, 3B Punch shoulder 4 Wrinkle presser 5 Blank P Heating part Q Non-heating part

Claims (10)

所定の板厚まで圧延されたAl−Mg−Si系合金圧延板の全体に溶体化処理を施した後、時効硬化させて亜時効状態とし、さらに板全体のうち、予めある領域を加熱部と定めるとともにその加熱部以外の領域を非加熱部と定めて、前記加熱部に部分的に溶体化処理を施して時効析出物を固溶させた後急冷することにより、溶体化処理後の室温における加熱部の強度を非加熱部の強度よりも低下させることを特徴とする、冷間プレス成形用アルミニウム合金板の製造方法。   After subjecting the whole Al-Mg-Si alloy rolled sheet rolled to a predetermined sheet thickness to solution treatment, it is age-hardened to a sub-aged state. At the room temperature after solution treatment, the region other than the heating portion is determined as a non-heating portion, and the heating portion is partially subjected to a solution treatment to dissolve the aging precipitate and then rapidly cooled. The manufacturing method of the aluminum alloy plate for cold press forming characterized by making the intensity | strength of a heating part lower than the intensity | strength of a non-heating part. 請求項1に記載の冷間プレス成形用アルミニウム合金板の製造方法において、
圧延板全体に溶体化処理を施した後における亜時効状態とするための処理として、0℃以上40℃未満の範囲内の温度で保持する常温時効処理と、40℃以上180℃未満の範囲内の温度で保持する人工時効処理とのうち、いずれか一方の処理、もしくは双方を組合わせた処理を施すことを特徴とする、冷間プレス成形用アルミニウム合金板の製造方法。
In the manufacturing method of the aluminum alloy plate for cold press forming of Claim 1,
As a treatment for obtaining a sub-aging state after subjecting the whole rolled sheet to a solution treatment, a normal temperature aging treatment for holding at a temperature within a range of 0 ° C. or higher and lower than 40 ° C. and a range of 40 ° C. or higher and lower than 180 ° C. A process for producing an aluminum alloy sheet for cold press forming, characterized in that either one of the artificial aging treatments held at a temperature of or a combination of both of them is performed.
所定の板厚まで圧延して加工硬化した状態にあるAl−Mg−Si系合金圧延板の板全体のうち、予めある領域を加熱部と定めるとともにその加熱部以外の領域を非加熱部と定めて、前記加熱部に部分的に溶体化処理を施して加工組織を回復もしくは再結晶させた後急冷することにより、溶体化処理後の室温における加熱部の強度を非加熱部の強度よりも低下させることを特徴とする、冷間プレス成形用アルミニウム合金板の製造方法。   Of the entire plate of the Al-Mg-Si alloy rolled plate that has been rolled to a predetermined plate thickness and is work hardened, a predetermined region is defined as a heating portion and a region other than the heating portion is defined as a non-heating portion. The strength of the heated portion at room temperature after solution treatment is lower than the strength of the non-heated portion by subjecting the heated portion to solution treatment partially to recover or recrystallize the processed structure and then rapidly cooling. A method for producing an aluminum alloy sheet for cold press forming, characterized by comprising: 請求項1〜3のいずれかの請求項に記載の冷間プレス成形用アルミニウム合金板の製造方法において、
冷間プレス成形時にパンチ肩部が接触することになる領域よりも外側の部分のうち全部または一部を前記加熱部と定めておくとともに、その加熱部以外の領域のうち、少なくともパンチ肩部が押し当てられるべき部分を前記非加熱部と定めておくことを特徴とする、冷間プレス成形用アルミニウム合金板の製造方法。
In the manufacturing method of the aluminum alloy plate for cold press forming in any one of Claims 1-3,
All or part of the portion outside the region where the punch shoulder is in contact during cold press forming is defined as the heating portion, and at least the punch shoulder portion is in the region other than the heating portion. A method for producing an aluminum alloy plate for cold press forming, wherein a portion to be pressed is defined as the non-heated portion.
請求項1〜4のいずれかの請求項に記載の冷間プレス成形用アルミニウム合金板の製造方法において、
前記部分的溶体化処理として、非加熱部を除いて加熱部のみを480℃以上580℃未満の範囲内の温度に加熱して50℃/min以上の冷却速度で50℃以下の温度域まで冷却することを特徴とする、冷間プレス成形用アルミニウム合金板の製造方法。
In the manufacturing method of the aluminum alloy plate for cold press forming in any one of Claims 1-4,
As the partial solution treatment, only the heating part except the non-heating part is heated to a temperature in the range of 480 ° C. or more and less than 580 ° C. and cooled to a temperature range of 50 ° C. or less at a cooling rate of 50 ° C./min or more. A method for producing an aluminum alloy plate for cold press forming.
請求項1〜5のいずれかの請求項に記載の冷間プレス成形用アルミニウム合金板の製造方法において、
前記部分的溶体化処理後の室温における非加熱部の引張強さと加熱部の0.2%耐力との差を、部分的溶体化処理後で20MPa以上増大させることを特徴とする、冷間プレス成形用アルミニウム合金板の製造方法。
In the manufacturing method of the aluminum alloy plate for cold press forming according to any one of claims 1 to 5,
Cold press characterized in that the difference between the tensile strength of the non-heated part at room temperature after the partial solution treatment and the 0.2% proof stress of the heated part is increased by 20 MPa or more after the partial solution treatment. A method for producing an aluminum alloy sheet for forming.
請求項1〜請求項6のいずれかの請求項に記載の冷間プレス成形用アルミニウム合金板の製造方法において、
部分的溶体化処理における加熱部に、アルミニウム合金板ブランクのうち、プレス成形時にパンチ肩部が接触することになる領域より外側の部分のうち、成形後に曲げ加工されることになる部分を含めることを特徴とする、冷間プレス成形用アルミニウム合金板の製造方法。
In the manufacturing method of the aluminum alloy plate for cold press forming of any one of Claims 1-6,
The heating part in the partial solution treatment includes a part of the aluminum alloy plate blank that is to be bent after forming out of the part outside the region where the punch shoulder is in contact during press forming. A method for producing an aluminum alloy plate for cold press forming.
請求項1〜請求項6のいずれかの請求項に記載の冷間プレス成形用アルミニウム合金板の製造方法において、
部分的溶体化処理における加熱部に、プレス成形時にアルミニウム合金板ブランクのうちパンチ肩部が接触することになる領域よりも内側の全ての領域またはこの領域内の任意形状の一領域もしくは二領域以上を含めることを特徴とする、冷間プレス成形用アルミニウム合金板の製造方法。
In the manufacturing method of the aluminum alloy plate for cold press forming of any one of Claims 1-6,
All regions inside the region where the punch shoulder portion of the aluminum alloy plate blank comes into contact with the heating portion in the partial solution treatment at the time of press forming, or one region or two regions or more in any shape in this region The manufacturing method of the aluminum alloy plate for cold press forming characterized by including these.
請求項1〜請求項8のいずれかの請求項に記載の冷間プレス成形用アルミニウム合金板の製造方法において、
Al−Mg−Si系アルミニウム合金板として、Mg0.2〜1.5%(mass%、以下同じ)、Si0.3〜2.0%を含有し、かつFe0.03〜1.0%、Mn0.03〜0.6%、Cr0.01〜0.4%、Zr0.01〜0.4%、V0.01〜0.4%、Ti0.005〜0.3%、Zn0.03〜2.5%、Cu0.01〜1.5%のうちから選ばれた1種または2種以上を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金板を用いることを特徴とする、冷間プレス成形用アルミニウム合金板の製造方法。
In the manufacturing method of the aluminum alloy plate for cold press forming according to any one of claims 1 to 8,
As an Al-Mg-Si-based aluminum alloy plate, Mg 0.2-1.5% (mass%, the same shall apply hereinafter), Si 0.3-2.0%, and Fe 0.03-1.0%, Mn0 0.03-0.6%, Cr 0.01-0.4%, Zr 0.01-0.4%, V 0.01-0.4%, Ti 0.005-0.3%, Zn 0.03-2. A cold press characterized by using an aluminum alloy plate containing 5%, one or more selected from 0.01 to 1.5% of Cu and the balance being Al and inevitable impurities A method for producing an aluminum alloy sheet for forming.
請求項1〜請求項9のいずれかの請求項に記載の製造方法により得られたアルミニウム合金板を用いて、冷間プレス成形を行なうことを特徴とする、冷間プレス成形方法。   A cold press forming method, wherein cold press forming is performed using the aluminum alloy plate obtained by the manufacturing method according to any one of claims 1 to 9.
JP2008335624A 2008-12-29 2008-12-29 Method for producing aluminum alloy plate for cold press forming and cold press forming method Expired - Fee Related JP5379471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335624A JP5379471B2 (en) 2008-12-29 2008-12-29 Method for producing aluminum alloy plate for cold press forming and cold press forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335624A JP5379471B2 (en) 2008-12-29 2008-12-29 Method for producing aluminum alloy plate for cold press forming and cold press forming method

Publications (2)

Publication Number Publication Date
JP2010156024A true JP2010156024A (en) 2010-07-15
JP5379471B2 JP5379471B2 (en) 2013-12-25

Family

ID=42574150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335624A Expired - Fee Related JP5379471B2 (en) 2008-12-29 2008-12-29 Method for producing aluminum alloy plate for cold press forming and cold press forming method

Country Status (1)

Country Link
JP (1) JP5379471B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015123663A1 (en) * 2014-02-17 2015-08-20 GM Global Technology Operations LLC Warm forming of work-hardened sheet alloys
CN113414267A (en) * 2021-06-17 2021-09-21 上海交通大学 Pre-rolling shaping method for work-hardening metal plate
WO2022014743A1 (en) * 2020-07-15 2022-01-20 엘지전자 주식회사 Secondary battery pouch press mold
CN114214580A (en) * 2021-12-22 2022-03-22 西南铝业(集团)有限责任公司 Pre-aging method of 6016 aluminum alloy automobile body plate
CN115945571A (en) * 2023-01-18 2023-04-11 上海新顿长菁科技有限公司 Hot forming process of 6XXX series aluminum alloy, parts made by hot forming process and application of hot forming process
FR3129408A1 (en) * 2021-11-25 2023-05-26 Constellium Muscle Shoals Llc 6xxx alloy strip and manufacturing process
CN117286376A (en) * 2023-11-27 2023-12-26 中国第一汽车股份有限公司 Variable yield strength aluminum alloy and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515432A (en) * 1997-05-01 2000-11-21 ゼネラル・モーターズ・コーポレーション Method for improving the hem formability of age hardenable aluminum sheet
JP2008207212A (en) * 2007-02-27 2008-09-11 Kobe Steel Ltd Aluminum alloy sheet blank excellent in press-formability
JP2008241856A (en) * 2007-03-26 2008-10-09 Epson Imaging Devices Corp Liquid crystal device and electronic equipment
JP2008248342A (en) * 2007-03-30 2008-10-16 Kobe Steel Ltd Respective manufacturing methods of aluminum-alloy sheet material, sheet and formed member
JP2009148822A (en) * 2007-11-27 2009-07-09 Nippon Steel Corp Warm press-forming method for high-strength aluminum alloy sheet
JP2009161851A (en) * 2007-12-11 2009-07-23 Furukawa-Sky Aluminum Corp Aluminum alloy sheet for cold press forming, method for manufacturing the same, and cold press forming method for aluminum alloy sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515432A (en) * 1997-05-01 2000-11-21 ゼネラル・モーターズ・コーポレーション Method for improving the hem formability of age hardenable aluminum sheet
JP2008207212A (en) * 2007-02-27 2008-09-11 Kobe Steel Ltd Aluminum alloy sheet blank excellent in press-formability
JP2008241856A (en) * 2007-03-26 2008-10-09 Epson Imaging Devices Corp Liquid crystal device and electronic equipment
JP2008248342A (en) * 2007-03-30 2008-10-16 Kobe Steel Ltd Respective manufacturing methods of aluminum-alloy sheet material, sheet and formed member
JP2009148822A (en) * 2007-11-27 2009-07-09 Nippon Steel Corp Warm press-forming method for high-strength aluminum alloy sheet
JP2009161851A (en) * 2007-12-11 2009-07-23 Furukawa-Sky Aluminum Corp Aluminum alloy sheet for cold press forming, method for manufacturing the same, and cold press forming method for aluminum alloy sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015123663A1 (en) * 2014-02-17 2015-08-20 GM Global Technology Operations LLC Warm forming of work-hardened sheet alloys
CN105960294A (en) * 2014-02-17 2016-09-21 通用汽车环球科技运作有限责任公司 Warm forming of work-hardened sheet alloys
US10384252B2 (en) 2014-02-17 2019-08-20 GM Global Technology Operations LLC Warm forming of work-hardened sheet alloys
DE112015000385B4 (en) 2014-02-17 2024-05-08 Gm Global Technology Operations, Llc Warm forming of cold-worked sheet alloys
WO2022014743A1 (en) * 2020-07-15 2022-01-20 엘지전자 주식회사 Secondary battery pouch press mold
CN113414267A (en) * 2021-06-17 2021-09-21 上海交通大学 Pre-rolling shaping method for work-hardening metal plate
FR3129408A1 (en) * 2021-11-25 2023-05-26 Constellium Muscle Shoals Llc 6xxx alloy strip and manufacturing process
WO2023094773A1 (en) * 2021-11-25 2023-06-01 Constellium Muscle Shoals Llc Strip made of 6xxx alloy and manufacturing process
CN114214580A (en) * 2021-12-22 2022-03-22 西南铝业(集团)有限责任公司 Pre-aging method of 6016 aluminum alloy automobile body plate
CN115945571A (en) * 2023-01-18 2023-04-11 上海新顿长菁科技有限公司 Hot forming process of 6XXX series aluminum alloy, parts made by hot forming process and application of hot forming process
CN117286376A (en) * 2023-11-27 2023-12-26 中国第一汽车股份有限公司 Variable yield strength aluminum alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JP5379471B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5435914B2 (en) Method for producing aluminum alloy plate for cold press forming, method for cold press forming aluminum alloy plate, and aluminum alloy cold press formed product
JP5498069B2 (en) Method for producing aluminum alloy sheet blank for cold press forming, and cold press forming method and molded product thereby
US8273196B2 (en) Aluminum alloy sheet for cold press forming, method of manufacturing the same, and cold press forming method for aluminum alloy sheet
JP4939093B2 (en) Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness
JP2011111657A (en) Method for producing aluminum alloy sheet blank for cold press forming having coating/baking hardenability, cold press forming method using the blank, and formed part
JP5379471B2 (en) Method for producing aluminum alloy plate for cold press forming and cold press forming method
JP5789150B2 (en) Method for manufacturing press-molded aluminum alloy blank, and method for manufacturing aluminum alloy press-formed body using the blank
JP5671422B2 (en) Method for producing high strength 7000 series aluminum alloy member and high strength 7000 series aluminum alloy member
JP6429519B2 (en) Warm forming method of Al-Mg-Si alloy rolled sheet
JP2008045192A (en) Aluminum alloy sheet showing excellent ridging-mark resistance at molding
JP5148896B2 (en) Aluminum alloy blank with excellent press forming
JP2010227954A (en) Method of press-forming aluminum alloy sheet
JP5789138B2 (en) Method for manufacturing press-molded aluminum alloy blank, and method for manufacturing aluminum alloy press-formed body using the blank
JP4944474B2 (en) Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof
JP2009148823A (en) Warm press-forming method for aluminum alloy cold-rolled sheet
JP2006257505A (en) Aluminum alloy sheet having excellent extension flange formability
JP2009242905A (en) Method for producing automobile panel member made of aluminum alloy
JP4164453B2 (en) Forming method of aluminum alloy material
JP6581347B2 (en) Method for producing aluminum alloy plate
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP6005539B2 (en) Method for producing high strength 7000 series aluminum alloy member
JP2003321754A (en) Method for manufacturing aluminum alloy sheet with excellent bendability
JP2009242907A (en) Method for producing aluminum alloy blank for press forming
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2012152780A (en) Molding working method for aluminum alloy plate

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130927

R150 Certificate of patent or registration of utility model

Ref document number: 5379471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees