JP2010155740A - High-fluidity mortar - Google Patents

High-fluidity mortar Download PDF

Info

Publication number
JP2010155740A
JP2010155740A JP2008334350A JP2008334350A JP2010155740A JP 2010155740 A JP2010155740 A JP 2010155740A JP 2008334350 A JP2008334350 A JP 2008334350A JP 2008334350 A JP2008334350 A JP 2008334350A JP 2010155740 A JP2010155740 A JP 2010155740A
Authority
JP
Japan
Prior art keywords
mortar
mass
particles
fluidity
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008334350A
Other languages
Japanese (ja)
Other versions
JP5161062B2 (en
Inventor
Masao Sekiguchi
昌男 関口
Hirokazu Shoji
広和 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2008334350A priority Critical patent/JP5161062B2/en
Publication of JP2010155740A publication Critical patent/JP2010155740A/en
Application granted granted Critical
Publication of JP5161062B2 publication Critical patent/JP5161062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials
    • C04B2111/62Self-levelling compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-fluidity mortar which is one having a higher fluidity suitable for placement at a temperature as low as about 5°C and suitable for application as e.g., a levelling material and can be applied without encountering troubles of placement workability and the properties of placed mortar because its viscosity does not excessively lower even in a high-temperature environment. <P>SOLUTION: A high-fluidity mortar is provided which comprises calcium carbonate (α) having a particle size constitution in which particles with particle diameters larger than 0.6 mm are not present, the content of particles with particle diameters of 0.3-0.6 mm is 0.1-0.5 mass%, the content of particles with particle diameters of 0.15-0.3 mm is 8-15 mass%, the content of particles with particle diameters of 0.09-0.15 mm is 12-25 mass%, and the particles with particle diameters smaller than 0.09 mm constitute the balance, a fine aggregate (β) other than calcium carbonate, an expanding material, a water-retaining and thickening substance, a water-reducing agent, and a portland cement, wherein (α)/(β) is 0.8-3 in terms of a mass ratio. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えばレベリング調整材や床材等として使用でき、とりわけ建築構造物用レベラー材に適した、低温施工可能な高流動モルタルに関する。   The present invention relates to a high-flowing mortar that can be used as, for example, a leveling adjusting material, a flooring material, etc., and is particularly suitable for a leveler material for a building structure and can be applied at a low temperature.

セメント等を水硬成分とする高流動モルタルは、例えば床版などに流し込むだけで水平な表面を形成できるため、建築用のレベリング材などとして使用されている。高流動モルタルの使用に際しては、施工に適した流動性の設定が重要である。また流動性を操作すると、その影響を受ける諸性状の調整も重要となる。高い流動状態のモルタルを得る上では、概して混練水を多く含む配合になるため、材料分離や乾燥ひび割れ等が発生し易く、水平性は得られるものの、表面状態が良好な施工物は得難かった。このような問題に対処するため、例えば、セメントに次のような様々な混和成分を配合し、水平面を得るのに適した組成物が提案されている。即ち、砂(骨材)、石灰系膨張材、分散剤、フライアッシュ及びセルロース系保水剤を配合したもの(特許文献1参照。)、骨材、分散剤、収縮低減剤、石膏のような凝結促進剤、増粘剤及び消泡剤を配合したもの(特許文献2参照。)、骨材、減水剤、消泡剤、凝結調整剤及び水溶性セルロースエーテルを配合したもの(特許文献3参照。)等が知られている。このような対策がされたモルタルでも、一般に粘度は温度の低下と共に大きく上昇するため、低温で施工使用しようとすると、高粘性となって流動性が低下し、施工作業性が著しく低下する。温度低下による高粘性化の傾向は、増粘成分を含有するモルタルほど顕著である。低温施工に適ったセルフレベリング性のセメント系モルタルも知られているが、その多くは速硬成分を使用したものである。(例えば、特許文献4〜6参照。)これらは低温での凝結・硬化性の改善を主目的としているため、より高い温度での施工には難があるか、そうでないものも低温では高粘性状態で凝結が早く進行する。高粘性のモルタルは混練時に巻き込まれた微細な気泡が抜け難く、これが施工物表面に浮遊残存したり、その破泡痕が残り、荒れた表面になり易かった。低温で低粘性のモルタルを得る方策として、特定のビニル系共重合体を有効成分とする分散剤を使用すると、低温でセルフレベリング材に適した高流動性が得られることが知られている。(例えば、特許文献7参照。)
特開昭56−84358号公報 特開平7−267704号公報 特開2006−56763号公報 特開平7−69704号公報 特開2000−211961号公報 特開2006−16223号公報 特開平8−290955号公報
High-fluid mortar containing hydraulic components such as cement can form a horizontal surface simply by pouring into a floor slab, for example, and is used as a leveling material for construction. When using high-flowing mortar, it is important to set fluidity suitable for construction. When fluidity is manipulated, it is important to adjust the properties that are affected by the fluidity. In order to obtain a mortar with a high fluidity, since it generally contains a large amount of kneaded water, material separation, dry cracking, etc. are likely to occur, and although horizontality can be obtained, it is difficult to obtain a construction with a good surface condition. . In order to deal with such a problem, for example, a composition suitable for obtaining a horizontal plane by blending various admixture components as follows into cement has been proposed. That is, sand (aggregate), lime-based expansion agent, dispersant, fly ash and cellulose-based water retention agent (refer to Patent Document 1), aggregate, dispersant, shrinkage reducing agent, setting like gypsum A blend of an accelerator, a thickener and an antifoaming agent (see Patent Document 2), an aggregate, a water reducing agent, an antifoaming agent, a coagulation regulator, and a water-soluble cellulose ether (see Patent Document 3). ) Etc. are known. Even in mortars for which such measures are taken, the viscosity generally increases greatly with a decrease in temperature. Therefore, when it is intended to be used at a low temperature, the viscosity becomes high and the fluidity is lowered, and the workability of the work is remarkably lowered. The tendency to increase the viscosity due to a decrease in temperature is more remarkable for mortar containing a thickening component. Self-leveling cement-based mortar suitable for low-temperature construction is also known, but most of them use fast-hardening components. (For example, refer to Patent Documents 4 to 6.) Since these are mainly intended to improve the setting / curability at low temperatures, it is difficult to construct at higher temperatures, and those that are not so are highly viscous at low temperatures. Condensation progresses quickly in the state. The highly viscous mortar is difficult to remove fine bubbles entrained at the time of kneading, and this tends to float on the surface of the work or leave a trace of bubble breakage, resulting in a rough surface. As a measure for obtaining a low-viscosity mortar at a low temperature, it is known that a high fluidity suitable for a self-leveling material can be obtained at a low temperature when a dispersant containing a specific vinyl copolymer as an active ingredient is used. (For example, see Patent Document 7)
JP-A-56-84358 JP 7-267704 A JP 2006-56763 A JP-A-7-69704 JP 2000-211961 A JP 2006-16223 A JP-A-8-290955

一般のセメント系高流動モルタルを低温で施工すると、低温時の粘性上昇によって前記のような施工作業や施工物表面の不具合が起きる。また、特殊な分散剤等の使用で低温で高い流動性を発現させたモルタルは、温度が高くなると粘性が低下し過ぎるため施工使用に適さなくなる。一方で、特に建築構造物用レベラー材などのレベリング調整剤では、高精度の自己平滑性を有することが不可欠であるため、このような用途に適合するにはより高い流動性が要求される。本発明は、5℃程度の低温での施工使用に適し、且つレベラー材等への使用にも適したより高い流動性を有する高流動モルタルであって、温度の高い環境下でも粘性が下がり過ぎて施工作業性や施工物の性状に支障を及ぼすことなく施工使用可能な高流動モルタルの提供を課題とする。   When general cement-based high-fluidity mortar is applied at a low temperature, the above-described construction work and defects on the surface of the work occur due to an increase in viscosity at a low temperature. In addition, mortar that exhibits high fluidity at low temperatures by using a special dispersant or the like is not suitable for construction use because its viscosity decreases excessively when the temperature increases. On the other hand, in particular, leveling regulators such as levelers for building structures need to have high-accuracy self-smoothness, so that higher fluidity is required to meet such applications. The present invention is a high-flowing mortar having higher fluidity that is suitable for construction use at a low temperature of about 5 ° C. and suitable for use in a leveler material, etc. The objective is to provide a high-flowing mortar that can be used without affecting the workability and the properties of the work.

本発明者は、前記課題解決のため検討を行った結果、ポルトランドセメントを結合相形成成分とする高流動モルタルにおいて、非結合相の形成成分に特定の粒度構成の炭酸カルシウムを使用すると、滑り性が非常に高まり、その結果より高い流動性を付与することができ、しかも流動性の温度依存性が少なくなることも見出し、また該炭酸カルシウムと炭酸カルシウム以外の材質からなる細骨材を特定の含有比率にすることで低温でのモルタルの粘性増加が抑制されて安定した流動性が得られることも見出し、本発明を完成させるに至った。   As a result of investigations for solving the above problems, the present inventors have found that in high flow mortar containing Portland cement as a binder phase forming component, when calcium carbonate having a specific particle size configuration is used as a component for forming a non-binding phase, slipperiness is achieved. As a result, it has been found that higher fluidity can be imparted, and that temperature dependence of fluidity is reduced, and a fine aggregate made of a material other than calcium carbonate and calcium carbonate is specified. It has also been found that, by setting the content ratio, an increase in viscosity of the mortar at a low temperature is suppressed and stable fluidity can be obtained, and the present invention has been completed.

即ち、本発明は、粒度構成が粒径0.6mmを超える粒子を含有せず、粒径0.3〜0.6mmの粒子含有率0.1〜0.5質量%、粒径0.15〜0.3mmの粒子含有率8〜15質量%、粒径0.09〜0.15mmの粒子含有率12〜25質量%及び残部粒径0.09mm未満の粒子からなる炭酸カルシウム(α)、炭酸カルシウム以外の細骨材(β)、膨張材、保水性及び増粘性物質、減水剤及びポルトランドセメントを含有してなり、質量比で(α)/(β)が0.8〜3であることを特徴とする高流動モルタルである。また、本発明は、さらに消泡剤を含有する前記の高流動モルタルである。また、本発明は前記何れかの高流動モルタルを含有してなる建築用レベラー材である。   That is, the present invention does not contain particles having a particle size configuration exceeding 0.6 mm, the particle content is 0.1 to 0.5% by mass with a particle size of 0.3 to 0.6 mm, and the particle size is 0.15. Calcium carbonate (α) composed of particles having a particle content of 8 to 15% by mass of ~ 0.3 mm, a particle content of 12 to 25% by mass of 0.09 to 0.15 mm and a particle size of less than 0.09 mm. It contains fine aggregate (β) other than calcium carbonate, expansion material, water retention and thickening substance, water reducing agent and Portland cement, and (α) / (β) is 0.8 to 3 in mass ratio. It is a high-flowing mortar characterized by this. Moreover, this invention is the said high fluid mortar which contains an antifoamer further. Moreover, this invention is the leveler material for construction formed by containing one of the said high fluid mortars.

本発明による高流動モルタルは、例えば5℃程度の低温〜常温に至るまで、建築用レベラー材などの高精度の自己平滑性が要求されるような施工用途に適したより高い流動性を有する。また、施工後も材料分離、収縮亀裂及び表面に気泡痕等も実質見られない施工物が得られる。   The high-fluidity mortar according to the present invention has higher fluidity suitable for construction applications that require high-accuracy self-smoothness such as building leveler materials, for example, from a low temperature of about 5 ° C. to room temperature. In addition, a construction with substantially no material separation, shrinkage cracks, or bubble marks on the surface can be obtained after construction.

本発明の高流動モルタルは、結合相形成成分としてポルトランドセメントを使用する。ポルトランドセメントの種類は特に限定されず、例えば、普通、早強、超早強、中庸熱、低熱等の各種ポルトランドセメントの他、該ポルトランドセメントをベースとするものであれば、高炉セメントやフライアッシュセメント等の混合セメントでも良い。また2種類以上のポルトランドセメントを使用しても良い。好ましくは、施工時のシマリが良好になることから、普通ポルトランドセメントと早強又は超早強ポルトランドセメントを併用するのが良い。併用する場合は普通ポルトランドセメント使用量の5〜30質量%に相当する量を早強又は超早強ポルトランドセメントにするのが適当である。   The high flow mortar of the present invention uses Portland cement as a binder phase forming component. The type of Portland cement is not particularly limited. For example, in addition to various Portland cements such as normal, early strength, super early strength, moderate heat, and low heat, blast furnace cement and fly ash can be used as long as they are based on Portland cement. Mixed cement such as cement may be used. Two or more types of Portland cement may be used. Preferably, normal portland cement and early strength or very early strength portland cement are preferably used in combination, since the simminess during construction becomes good. When used in combination, it is appropriate to use an amount corresponding to 5 to 30% by mass of ordinary Portland cement used as early or very early Portland cement.

また、本発明の高流動モルタルは膨張材を含有する。膨張材はモルタルやコンクリートに使用できるものであれば特に限定されない。好ましくは、石灰系やエトリンガイト系のような水和反応で体積膨張を起こすことが可能な膨張材を配合使用する。石灰系の膨張材としては、例えば遊離生石灰を共存生成させたクリンカの粉砕物、石灰石の焼成粉砕物を有効成分とするもの等を挙げることができる。またエトリンガイト系の膨張材とは、水と反応してエトリンガイト相を生成するものなら限定されず、例えばカルシウムサルホアルミネートを有効成分とするものなどを挙げることができる。石灰系とエトリンガイト系の膨張材を併用しても良い。膨張材の使用で硬化〜乾燥期に渡る比較的規模の大きな収縮が抑制され、特に初期ひび割れの発生を防ぐことができる。膨張材の配合量はセメント含有量100質量部に対し、2〜15質量部が好ましい。2質量部未満では硬化時の収縮を十分抑えられず、また15質量部を超えると過膨張による膨張亀裂の虞があるので適当ではない。   Moreover, the high fluidity mortar of this invention contains an expansion | swelling material. The expansion material is not particularly limited as long as it can be used for mortar and concrete. Preferably, an expansion material capable of causing volume expansion by a hydration reaction such as lime or ettringite is used. Examples of the lime-based expansion material include a clinker pulverized product in which free quick lime is co-generated, and a limestone calcined pulverized product as an active ingredient. The ettringite-based expansion material is not limited as long as it reacts with water to produce an ettringite phase, and examples thereof include those containing calcium sulfoaluminate as an active ingredient. Lime-based and ettringite-based expansion materials may be used in combination. The use of the expansion material suppresses a relatively large shrinkage from curing to drying, and can prevent the occurrence of initial cracks. The blending amount of the expansion material is preferably 2 to 15 parts by mass with respect to 100 parts by mass of the cement content. If it is less than 2 parts by mass, shrinkage during curing cannot be sufficiently suppressed, and if it exceeds 15 parts by mass, there is a risk of expansion cracking due to overexpansion, which is not appropriate.

また、本発明の高流動モルタルは、保水性及び増粘性物質を含有する。ここで保水性及び増粘性物質とは、セメント系のモルタルに対し保水性と増粘性を付与できる物質を云い、両性能を兼ね備えた単一成分の物質(例えば、単一の化合物。)であっても、保水性物質と増粘性物質の両者を併用した物(保水性物質と増粘性物質の混合物)でも良い。これら何れかであってモルタルやコンクリートに使用できるものであれば限定されない。前者の例として水溶性セルロースエーテルを挙げることができ、より具体的には、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース等を例示される。水溶性セルロースエーテルは増粘作用により材料分離を抑制する。また保水作用によって、例えば凹凸が見られる床に施工したときに、施工厚が薄くなる部位と厚くなる部位との乾燥期間を整合させ、施工物の乾燥収縮時期の差により生じるひび割れを抑制すると共に乾燥過程での表層部と低層部の水分量の差異低減にも貢献する。水溶性セルロースエーテルの配合量はセメント含有量100質量部に対し、0.08〜0.5質量部が好ましい。0.08質量部未満では材料分離やひび割れを十分抑えられず、また0.5質量部を超えると粘性が上昇し過ぎて所望の流動性が得られないことがあり、施工性が低下する虞があるので適当ではない。   The high flow mortar of the present invention contains water retention and thickening substances. Here, the water retention and thickening substance refers to a substance capable of imparting water retention and thickening to cement-based mortar, and is a single component substance (for example, a single compound) having both performances. Alternatively, a combination of both a water-retaining substance and a thickening substance (a mixture of a water-retaining substance and a thickening substance) may be used. Any of these can be used as long as it can be used for mortar and concrete. Examples of the former include water-soluble cellulose ether, and more specifically, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose and the like are exemplified. Water-soluble cellulose ether suppresses material separation by thickening action. In addition, due to the water retention effect, for example, when applied to floors with unevenness, the drying period of the part where the construction thickness becomes thin and the part where the thickness becomes thick are matched, and cracks caused by the difference in the drying shrinkage time of the construction are suppressed. Contributes to reducing the difference in moisture content between the surface layer and the lower layer during the drying process. The compounding amount of the water-soluble cellulose ether is preferably 0.08 to 0.5 parts by mass with respect to 100 parts by mass of cement. If it is less than 0.08 parts by mass, material separation and cracking cannot be sufficiently suppressed, and if it exceeds 0.5 parts by mass, the viscosity may increase excessively and desired fluidity may not be obtained, which may reduce workability. Because there is, it is not appropriate.

また、本発明の高流動モルタルは減水剤を含有する。減水剤はモルタルやコンクリートに使用できるものであって、減水作用があるものなら、分散剤、高性能減水剤、AE減水剤、高性能AE減水剤又は流動化剤と称されているものの何れでも良く、成分も限定されない。中でも、ポリカルボン酸系の減水剤類を使用すると低温でも良好な流動性が発現できるので好ましい。減水剤の配合量は有効成分毎に適宜定めれば良く、例えばポリカルボン酸系高性能減水剤を使用する場合は、セメント含有量100質量部に対し、0.4〜1質量部が好ましい。この場合、0.4質量部未満では低温で施工に適した流動性を強度を低下させずに確保することが困難になり、また1質量部を超えると粘性が過度に低下して材料分離を起こし易くなるので適当ではない。   The high flow mortar of the present invention contains a water reducing agent. The water reducing agent can be used for mortar and concrete, and if it has a water reducing action, any of the so-called dispersant, high performance water reducing agent, AE water reducing agent, high performance AE water reducing agent or fluidizing agent can be used. Good and the ingredients are not limited. Among these, polycarboxylic acid-based water reducing agents are preferable because good fluidity can be exhibited even at low temperatures. What is necessary is just to determine the compounding quantity of a water reducing agent suitably for every active ingredient, for example, when using a polycarboxylic acid type high performance water reducing agent, 0.4-1 mass part is preferable with respect to 100 mass parts of cement contents. In this case, if it is less than 0.4 parts by mass, it will be difficult to ensure fluidity suitable for construction at low temperature without reducing the strength, and if it exceeds 1 part by mass, the viscosity will be excessively reduced and material separation will occur. It is not appropriate because it is easy to wake up.

また、本発明の高流動モルタルは、好ましくは消泡剤を含有する。消泡剤は、モルタルやコンクリートに使用できるものであれば、何れのものでも配合使用できる。消泡剤の使用により、高流動モルタルの注水後の混練時に巻き込まれた空気によって施工物表面に見られ易い気泡あばたの出現を防ぎ、平滑面が得易やすくなることからレベラー材の適用には好適である。消泡剤の配合量は、セメント含有量100質量部に対し、固形分換算で0.05〜1質量部が好ましい。0.05質量部未満では気泡除去が困難であり、また1質量部を超える量の消泡剤を使用しても配合効果が向上せず、コストのみが上昇するので適当ではない。   The high flow mortar of the present invention preferably contains an antifoaming agent. Any antifoaming agent can be used as long as it can be used for mortar and concrete. The use of antifoaming agent prevents the appearance of air bubbles that can easily be seen on the surface of the work due to the air entrained after water injection of high-flowing mortar, making it easier to obtain a smooth surface. Is preferred. As for the compounding quantity of an antifoamer, 0.05-1 mass part is preferable in conversion of solid content with respect to 100 mass parts of cement contents. If the amount is less than 0.05 parts by mass, it is difficult to remove the bubbles, and even if an amount of the antifoaming agent exceeding 1 part by mass is used, the blending effect is not improved and only the cost is increased, which is not appropriate.

また、本発明の高流動モルタルは次の粒度構成からなる炭酸カルシウムを含有する。即ち、粒径0.6mmを超える粒子の含有は無く、粒径0.3〜0.6mmの粒子含有率0.1〜0.5質量%、粒径0.15〜0.3mmの粒子含有率8〜15質量%、粒径0.09〜0.15mmの粒子含有率12〜25質量%、残りが粒径0.09mm未満の粒子からなる粒度構成の炭酸カルシウムとする。炭酸カルシウムを使用することにより結合相非形成成分に滑り性を付与でき、当該粒度構成にすることによって特に高い滑り性が見られ、その結果より高い流動性が得られる。さらにこのようにして得られた流動性は温度依存性が少ないため、低温で高い流動性が得られるだけでなく、常温やそれ以上の温度でも高い流動性が発現できる。また、該粒度構成にすることで材料分離の抑止作用も得易くなる。該粒度構成から外れる粒度の炭酸カルシウムを使用すると、低温でのより高い流動性が得難くなるので好ましくない。特に粒径0.6mmを超える粒子の含有は強度低下をもたらし、また微粒子の含有が該粒度構成で定めたものよりも多くなり過ぎると、炭酸カルシウムの滑り性が著しく低下したり、材料分離が生じ易くなるので好ましくない。   Moreover, the high fluidity mortar of this invention contains the calcium carbonate which consists of the following particle size structure. That is, there is no inclusion of particles exceeding a particle size of 0.6 mm, a particle content of 0.1 to 0.5% by mass with a particle size of 0.3 to 0.6 mm, and a particle content of 0.15 to 0.3 mm. The calcium carbonate has a particle size composition of 8 to 15% by mass, a particle content of 12 to 25% by mass with a particle size of 0.09 to 0.15 mm, and the remainder consisting of particles with a particle size of less than 0.09 mm. By using calcium carbonate, slipperiness can be imparted to the binder phase non-forming component, and by using the particle size constitution, particularly high slipperiness is seen, resulting in higher fluidity. Furthermore, since the fluidity obtained in this manner has little temperature dependence, not only high fluidity can be obtained at low temperatures, but also high fluidity can be exhibited at room temperature or higher. Moreover, it becomes easy to obtain the suppression effect | action of material separation by setting it as this particle size structure. Use of calcium carbonate having a particle size deviating from the particle size constitution is not preferable because it is difficult to obtain higher fluidity at a low temperature. In particular, the inclusion of particles having a particle size exceeding 0.6 mm results in a decrease in strength, and if the content of fine particles is excessively greater than that determined by the particle size configuration, the slipping property of calcium carbonate is remarkably reduced or material separation is reduced. Since it becomes easy to produce, it is not preferable.

また、本発明の高流動モルタルは、炭酸カルシウム以外の細骨材を含有する。炭酸カルシウム以外の細骨材は、モルタルやコンクリートに使用できるものであれば特に限定されない。具体的には例えば、山砂、川砂、海砂、砕砂の天然細骨材、鉱物粉等を主体とする原料を焼成してなる人工細骨材等を挙げることができるが、構造的に緻密な骨材の方がより高い強度発現性を得る上では望ましい。細骨材の最大粒子径は2.5mm以下が好ましく、より好ましくは最大粒子径が1.2mm以下の細骨材を使用するが、何れの場合も特定の粒度構成とするものではない。炭酸カルシウム以外の細骨材の本発明のモルタル中の含有量は、セメント100質量部に対し1.3〜2.5質量部が好ましい。1.3質量部未満では収縮が大きくなってひび割れが発生しやすくなるので適当ではない。また、2.5質量部を超えると施工物の強度が低下することがあるので適当ではない。   Moreover, the high flow mortar of this invention contains fine aggregates other than calcium carbonate. The fine aggregate other than calcium carbonate is not particularly limited as long as it can be used for mortar and concrete. Specific examples include natural fine aggregates such as mountain sand, river sand, sea sand, crushed sand, and artificial fine aggregates obtained by firing raw materials mainly composed of mineral powder. A new aggregate is desirable for obtaining higher strength. The maximum particle diameter of the fine aggregate is preferably 2.5 mm or less, and more preferably a fine aggregate having a maximum particle diameter of 1.2 mm or less is used, but in any case, a specific particle size configuration is not used. The content of fine aggregates other than calcium carbonate in the mortar of the present invention is preferably 1.3 to 2.5 parts by mass with respect to 100 parts by mass of cement. If the amount is less than 1.3 parts by mass, the shrinkage increases and cracks are likely to occur, which is not suitable. Moreover, since the intensity | strength of a construction material may fall when it exceeds 2.5 mass parts, it is not suitable.

また、本発明の高流動モルタルは、前記炭酸カルシウム(α)と炭酸カルシウム以外の細骨材(β)の含有質量比を(α)/(β)で0.8〜3.0のものとする。当該質量比とすることでモルタルの粘性上昇を抑制し、低温下でも安定した流動性を発現することができる。質量比で(α)/(β)が0.8未満では細骨材の配合効果が実質得られず、施工性の良い流動性を安定して得ることが困難になる。また、質量比で(α)/(β)が3を超えると、モルタルの粘性が特に低温下で大きくなり過ぎて流動性が得難くなるので好ましくない。   The high flow mortar of the present invention has a mass ratio of the calcium carbonate (α) and fine aggregate (β) other than calcium carbonate of 0.8 to 3.0 in terms of (α) / (β). To do. By setting it as the said mass ratio, the viscosity rise of a mortar can be suppressed and the stable fluidity | liquidity can be expressed even at low temperature. If the mass ratio (α) / (β) is less than 0.8, the effect of blending fine aggregates cannot be obtained substantially, and it becomes difficult to stably obtain fluidity with good workability. On the other hand, if the mass ratio (α) / (β) exceeds 3, the viscosity of the mortar becomes too large particularly at low temperatures, and it becomes difficult to obtain fluidity.

また、本発明の高流動モルタルは、本発明の効果を実質喪失させない範囲で、前記以外の成分を含有するものであっても良い。このような成分として、例えばモルタルやコンクリートに使用できる収縮低減材、白華防止剤、繊維、凝結調整剤、撥水剤、ポゾラン反応性物質、石膏、粘土鉱物、顔料等を挙げることができる。また、本発明の高流動モルタルの混練水の配合量は、特に制限されるものではない。20℃での施工する場合の好適例示として、高流動モルタル100質量部に対し、混練水量は概ね23〜28質量部とする。この場合、概ね23質量部未満では良好な施工性に適した流動性が得られないことがあり、概ね28質量部を超えると、施工物の表層強度向上が得難くなる。   Moreover, the high flow mortar of this invention may contain a component other than the above in the range which does not lose the effect of this invention substantially. Examples of such components include shrinkage reducing materials that can be used in mortar and concrete, anti-whitening agents, fibers, setting modifiers, water repellents, pozzolanic reactive substances, gypsum, clay minerals, pigments, and the like. Moreover, the compounding quantity of the kneading | mixing water of the high fluid mortar of this invention is not restrict | limited in particular. As a suitable example in the case of construction at 20 ° C., the amount of kneading water is generally 23 to 28 parts by mass with respect to 100 parts by mass of the high flow mortar. In this case, if it is less than about 23 parts by mass, fluidity suitable for good workability may not be obtained, and if it exceeds about 28 parts by mass, it will be difficult to improve the surface layer strength of the construction.

また、本発明は、前記高流動モルタルを含有してなる建築用レベラー材である。前記高流動モルタル以外の成分の含有は本発明の効果を実質喪失させない限り、特に制限されないが、消泡剤が含まれない高流動モルタルを使用する場合は、消泡剤を併用するのがより良好な表面平滑性が得られるので好ましい。また、混練水を除き前記高流動モルタル以外の成分を含まないものであっても良い。   Moreover, this invention is the leveler material for construction formed by containing the said high fluid mortar. The content of components other than the high flow mortar is not particularly limited as long as the effect of the present invention is not substantially lost, but when using a high flow mortar that does not contain an antifoaming agent, it is more preferable to use an antifoaming agent in combination. Since favorable surface smoothness is obtained, it is preferable. Further, it may be one that does not contain components other than the high fluidity mortar except for the kneaded water.

以下、実施例により本発明を具体的に詳しく説明する。
次に表すA1〜Gから選定される材料を用い、表1の配合量となるよう、まず混練水を混練容器に投入し、次いで他の材料を一括投入し、約90秒間混練を行い、高流動モルタルを作製した。このモルタルの作製は温度20℃と温度5℃の両環境下で同様に作製した。但し、混練水の配合量のみ温度によって変更した。尚、炭酸カルシウム(F1〜F3)の粒度は市販の炭酸カルシウムを粉砕・篩い分けを行って調整した。
A1;普通ポルトランドセメント(太平洋セメント株式会社製)
A2;早強ポルトランドセメント(太平洋セメント株式会社製)
B;石灰系膨張材(商品名;太平洋エクスパン、太平洋マテリアル株式会社製)
C;水溶性メチルセルロース系増粘剤(商品名;メトローズ90SH−4000、信越化学工業株式会社製)
D;ポリカルボン酸系高性能減水剤(商品名;マイティ21P、花王株式会社製)
E;細骨材(山形珪砂6・7号)
F1;炭酸カルシウム(0.6mmを超える粒子含有率0%、粒径0.3〜0.6mmの粒子含有率0.3質量%、粒径0.15〜0.3mmの粒子含有率13.2質量%、粒径0.09〜0.15mmの粒子含有率19.5質量%、粒径0.09mm未満の粒子含有率67質量%)
F2;炭酸カルシウム(0.6mmを超える粒子含有率0%、粒径0.3〜0.6mmの粒子含有率0.3質量%、粒径0.15〜0.3mmの粒子含有率5.3質量%、粒径0.09〜0.15mmの粒子含有率8.1質量%、粒径0.09mm未満の粒子含有率86.3質量%)
F3;炭酸カルシウム(0.6mmを超える粒子含有率1%、粒径0.3〜0.6mmの粒子含有率5.9質量%、粒径0.15〜0.3mmの粒子含有率28.1質量%、粒径0.09〜0.15mmの粒子含有率27.6質量%、粒径0.09mm未満の粒子含有率37.4質量%)
G;消泡剤(商品名;SNディフォーマーAHP、サンノプコ株式会社製)
Hereinafter, the present invention will be described in detail by way of examples.
Next, using materials selected from A1 to G shown below, kneading water is first put into a kneading container so that the blending amount shown in Table 1 is reached, then other materials are put together and kneaded for about 90 seconds. A fluid mortar was made. This mortar was prepared in the same manner in both environments of a temperature of 20 ° C. and a temperature of 5 ° C. However, only the amount of the kneaded water was changed depending on the temperature. The particle size of calcium carbonate (F1 to F3) was adjusted by pulverizing and sieving commercially available calcium carbonate.
A1: Normal Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
A2: Early strong Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
B: Lime-based expansion material (trade name: Taiheiyo Expan, manufactured by Taiheiyo Materials Co., Ltd.)
C: Water-soluble methylcellulose thickener (trade name; Metroles 90SH-4000, manufactured by Shin-Etsu Chemical Co., Ltd.)
D: Polycarboxylic acid-based high-performance water reducing agent (trade name; Mighty 21P, manufactured by Kao Corporation)
E: Fine aggregate (Yamagata Silica Sand No. 6-7)
F1: Calcium carbonate (particle content exceeding 0.6 mm 0%, particle content 0.3 to 0.6 mm particle size 0.3 mass%, particle content 0.15 to 0.3 mm particle content 13. 2% by mass, particle content of 0.09 to 0.15 mm, particle content 19.5% by mass, particle content of less than 0.09 mm particle size 67% by mass)
F2: Calcium carbonate (particle content exceeding 0.6 mm 0%, particle content 0.3 to 0.6 mm, 0.3% by mass, particle content 0.15 to 0.3 mm) 3% by mass, particle content of 0.09 to 0.15 mm, 8.1% by mass, particle content of less than 0.09 mm, 86.3% by mass)
F3; calcium carbonate (particle content exceeding 0.6 mm 1%, particle content 0.3 to 0.6 mm, particle content 5.9% by mass, particle size 0.15 to 0.3 mm, particle content 28. 1 mass%, particle content 27.6 mass% with a particle size of 0.09 to 0.15 mm, particle content 37.4 mass% with a particle size of less than 0.09 mm)
G: Antifoaming agent (trade name; SN deformer AHP, manufactured by San Nopco)

Figure 2010155740
Figure 2010155740

作製した高流動モルタルについて、流動性の評価として、日本建築学会規格JASS 15M−103のフロー試験方法に準じてフローを測定した。フローは、混練終了直後(注水から約2分経過時点)の高流動モルタルに対し、温度20℃で作製したモルタルは20℃の温度下で、また温度5℃で作製したモルタルは5℃の温度下でそれぞれ測定した。また、作製した高流動モルタルを内寸縦13cm、横8.5cm、高さ1.8cmのブラスチック製容器に、厚さ約1cmとなるように、5℃で作製したモルタルは5℃で、20℃で作製したモルタルは20℃の温度下でそれぞれ流し込んだ。材料分離性の評価として、30分間放置した施工物表面のブリーディング水発生有無を目視で観察した。またさらに、施工から5℃と20℃でそれぞれ1日経過後の各施工物表面状態の評価として、表面に気泡膨れ、ピンホール又は浮遊成膜の存在があるか否かを目視で確認し、何れの発生も全く見られなかったものを表面状態「良好」と判断し、それ以外は「不良」と判断した。さらに、作製した高流動モルタルを、水平に設置した内寸で長さ180×幅20×深さ2cmの上面開口の木製容器に厚さ1cmとなるよう容器の片側から約3.6リットル流し込んだ。流し込み後1日経過したモルタル表面に満遍なく水準器をあて、水平面が得られているか否かを調べ、モルタルに建築用レベラー材としての平滑性が備わっているかを評価した。表面全体に水平面が得られたものを自己平滑性「有」とし、それ以外は自己平滑性「無」と判断した。この評価も温度5℃で作製したモルタルに対しては5℃下での流し込みを、温度20℃で作製したモルタルに対しては20℃下での流し込みによる自己平滑性評価とした。以上の測定及び評価結果は表2に表す。   About the produced high fluidity mortar, the flow was measured according to the flow test method of the Architectural Institute of Japan standard JASS 15M-103 as fluidity | liquidity evaluation. As for the flow, the mortar prepared at a temperature of 20 ° C. is 20 ° C., and the mortar prepared at a temperature of 5 ° C. is 5 ° C. with respect to the high-flowing mortar immediately after the end of the kneading (when about 2 minutes have passed since water injection) Each was measured below. Moreover, the mortar produced at 5 ° C. was 5 ° C. so that the produced high-flowing mortar had a thickness of about 1 cm in a plastic container having an inner dimension of 13 cm, a width of 8.5 cm, and a height of 1.8 cm. The mortar produced at 20 ° C. was poured at a temperature of 20 ° C., respectively. As evaluation of material separability, the presence or absence of bleeding water generation on the surface of the construction left for 30 minutes was visually observed. Furthermore, as an evaluation of the surface condition of each construction after 1 day at 5 ° C. and 20 ° C. from the construction, it is visually confirmed whether or not there are bubbles bulging, pinholes or floating film formation on the surface. In the case where no occurrence of odor was observed, the surface condition was judged as “good”, and other cases were judged as “bad”. Further, about 3.6 liters of the high-flow mortar thus prepared was poured from one side of the container so as to have a thickness of 1 cm into a wooden container having an internal size horizontally installed and having a length of 180 × width of 20 × depth of 2 cm. . A level was applied evenly to the surface of the mortar that had passed one day after pouring, and it was examined whether or not a horizontal surface was obtained, and it was evaluated whether the mortar had smoothness as an architectural leveler. When the horizontal surface was obtained on the entire surface, the self-smoothness was “present”, and the others were judged as “no”. In this evaluation, the mortar produced at a temperature of 5 ° C. was cast at 5 ° C., and the mortar produced at a temperature of 20 ° C. was evaluated as self-smoothness by casting at 20 ° C. The above measurement and evaluation results are shown in Table 2.

Figure 2010155740
Figure 2010155740

表2から、本発明による高流動モルタルは低温(5℃)でも、また常温(20℃)でも施工に適した非常に高い流動性を安定して示し、施工後も表面状態が良好で材料分離等も実質発生していないことがわかる。さらに、建築用レベラー材に適した自己平滑性も備わっていることがわかる。   From Table 2, the high fluidity mortar according to the present invention stably exhibits very high fluidity suitable for construction even at low temperature (5 ° C) or at ordinary temperature (20 ° C), and the surface condition is good after construction and material separation. It can be seen that there is no substantial occurrence. Furthermore, it turns out that the self-smoothness suitable for the leveler material for construction is also provided.

Claims (3)

粒度構成が粒径0.6mmを超える粒子を含有せず、粒径0.3〜0.6mmの粒子含有率0.1〜0.5質量%、粒径0.15〜0.3mmの粒子含有率8〜15質量%、粒径0.09〜0.15mmの粒子含有率12〜25質量%及び残部粒径0.09mm未満の粒子からなる炭酸カルシウム(α)、炭酸カルシウム以外の細骨材(β)、膨張材、保水性及び増粘性物質、減水剤及びポルトランドセメントを含有してなり、質量比で(α)/(β)が0.8〜3であることを特徴とする高流動モルタル。 Particles whose particle size composition does not contain particles with a particle size exceeding 0.6 mm, particles with a particle size of 0.3 to 0.6 mm, 0.1 to 0.5% by mass, particles with a particle size of 0.15 to 0.3 mm Calcium carbonate (α) composed of particles having a content of 8 to 15% by mass, a particle content of 12 to 25% by mass and a remaining particle size of less than 0.09 mm, and fine bones other than calcium carbonate It contains a material (β), an expansion material, a water retention and thickening substance, a water reducing agent and Portland cement, and (α) / (β) is 0.8 to 3 in mass ratio. Flowing mortar. さらに、消泡剤を含有する請求項1記載の高流動モルタル。 Furthermore, the high fluid mortar of Claim 1 containing an antifoamer. 請求項1又は2記載の高流動モルタルを含有してなる建築用レベラー材。 An architectural leveler material comprising the high fluidity mortar according to claim 1.
JP2008334350A 2008-12-26 2008-12-26 High flow mortar Active JP5161062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008334350A JP5161062B2 (en) 2008-12-26 2008-12-26 High flow mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008334350A JP5161062B2 (en) 2008-12-26 2008-12-26 High flow mortar

Publications (2)

Publication Number Publication Date
JP2010155740A true JP2010155740A (en) 2010-07-15
JP5161062B2 JP5161062B2 (en) 2013-03-13

Family

ID=42573951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008334350A Active JP5161062B2 (en) 2008-12-26 2008-12-26 High flow mortar

Country Status (1)

Country Link
JP (1) JP5161062B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035701A (en) * 2011-08-04 2013-02-21 Kizai Tecto Corp Foam mortar kneaded product and infilling method
JP2014129208A (en) * 2012-12-28 2014-07-10 Taiheiyo Material Kk Adhesive for tile
JP2015000815A (en) * 2013-06-13 2015-01-05 宇部興産株式会社 Base adjusting material
JP2015000816A (en) * 2013-06-13 2015-01-05 宇部興産株式会社 Waterproof structure construction method
JP2015163589A (en) * 2015-06-16 2015-09-10 株式会社大林組 high-strength mortar composition
JP2017149599A (en) * 2016-02-24 2017-08-31 太平洋マテリアル株式会社 Non-shrink grout composition
JP2019167272A (en) * 2018-03-23 2019-10-03 太平洋マテリアル株式会社 Self-smoothing hydraulic composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230900A (en) * 2007-03-20 2008-10-02 Ube Ind Ltd Leveling hydraulic composition capable of being thinly applied and mortar capable of being thinly apllied formed from the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230900A (en) * 2007-03-20 2008-10-02 Ube Ind Ltd Leveling hydraulic composition capable of being thinly applied and mortar capable of being thinly apllied formed from the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012063703; 馬場政教 他: '石灰石微粉末の粒度が自己充填コンクリートの充填性能に及ぼす影響' The Society of Materials Science, Japan Vol.52, No.10, 200210, pp.1099-1104 *
JPN6012063705; 岩城一郎 他: '寒冷地における石灰石微粉末を添加したコンクリートの強度発現性' コンクリート工学年次論文報告集 Vol.21, No.2, 1999, pp.169-174 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035701A (en) * 2011-08-04 2013-02-21 Kizai Tecto Corp Foam mortar kneaded product and infilling method
JP2014129208A (en) * 2012-12-28 2014-07-10 Taiheiyo Material Kk Adhesive for tile
JP2015000815A (en) * 2013-06-13 2015-01-05 宇部興産株式会社 Base adjusting material
JP2015000816A (en) * 2013-06-13 2015-01-05 宇部興産株式会社 Waterproof structure construction method
JP2015163589A (en) * 2015-06-16 2015-09-10 株式会社大林組 high-strength mortar composition
JP2017149599A (en) * 2016-02-24 2017-08-31 太平洋マテリアル株式会社 Non-shrink grout composition
JP2019167272A (en) * 2018-03-23 2019-10-03 太平洋マテリアル株式会社 Self-smoothing hydraulic composition

Also Published As

Publication number Publication date
JP5161062B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5939776B2 (en) Repair mortar composition
JP5161062B2 (en) High flow mortar
JP4740785B2 (en) Polymer cement grout material composition and grout material
JP6674307B2 (en) Self-leveling mortar
JP2008094674A (en) Filler for reinforcement and method of filling reinforcement using the same
JP5333430B2 (en) Polymer cement grout material composition and grout material
JP6830826B2 (en) Self-smooth mortar
WO2023213065A1 (en) Gypsum-based ground tile bonding mortar and preparation method therefor
JP5004294B2 (en) High flow mortar
JP2003313069A (en) High fluidity mortar composition for floor face application
ES2807188T3 (en) Castable material based on a cementitious binder with resistance to shrinkage
JP2008273811A (en) Hydraulic composition
JP7034573B2 (en) Fast-curing polymer cement composition and fast-curing polymer cement mortar
JP2009149457A (en) Antiwashout underwater cement-based packing composition and antiwashout underwater cement mortar
JP5035721B2 (en) High fluidity lightweight mortar
JP2701028B2 (en) Cement-based self-leveling material
JP2010155757A (en) Admixture for grout and grout composition
JP2010100457A (en) Grout composition for use at elevated temperature
JP2019167272A (en) Self-smoothing hydraulic composition
JPS60195046A (en) Cementitious self leveling material composition
JP2007176742A (en) Shearing strength-reinforced type lightweight concrete
JP2008056541A (en) Self-leveling composition
JP2018123025A (en) Self-leveling mortar
JP7403342B2 (en) Cement composition and its manufacturing method, and mortar
JP2002249357A (en) Antiwashout mortar composition for stiff consistency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121213

R150 Certificate of patent or registration of utility model

Ref document number: 5161062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250