JP2010155393A - Flow molding of lumber using solvent - Google Patents

Flow molding of lumber using solvent Download PDF

Info

Publication number
JP2010155393A
JP2010155393A JP2008335353A JP2008335353A JP2010155393A JP 2010155393 A JP2010155393 A JP 2010155393A JP 2008335353 A JP2008335353 A JP 2008335353A JP 2008335353 A JP2008335353 A JP 2008335353A JP 2010155393 A JP2010155393 A JP 2010155393A
Authority
JP
Japan
Prior art keywords
molded body
plant
mold
molding
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008335353A
Other languages
Japanese (ja)
Other versions
JP5327790B2 (en
Inventor
Hiroyuki Sugimoto
宏行 杉元
Tsunehisa Miki
恒久 三木
Kozo Kanayama
公三 金山
Hideyuki Yokochi
秀行 横地
Satoru Tsuchikawa
覚 土川
Osamu Yamashita
修 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008335353A priority Critical patent/JP5327790B2/en
Publication of JP2010155393A publication Critical patent/JP2010155393A/en
Application granted granted Critical
Publication of JP5327790B2 publication Critical patent/JP5327790B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a flow-molded article of lumber, using a solvent having a hydrogen bond capability and the flow-molded article obtained by the method. <P>SOLUTION: In the method for manufacturing the flow-molded article of a vegetable material, the vegetable material impregnated with the solvent having a weak self-cohesive force and the hydrogen bond capability is charged in a mold and pressurized at room temperature or while being heated, so that the mutual positional relationship of component cells is changed, and the material is fluidized, packed in the mold by being fluidized/deformed, compressed, and consolidation-molded to be molded into the molded article having a three-dimensional shape. The flow-molded article of the vegetable material having a cup-shaped deep bottom structure which is manufactured by the method is provided. The vegetable material is added with the solvent, deformed by being pressurized, packed in the mold, compressed to obtain the flow-molded article with a complicated three-dimensional shape molded. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、植物系材料の流動成形体の作製方法に関するものであり、更に詳しくは、自己凝集力が小さく、かつ水素結合能を持つ溶媒を注入した植物系材料を、型内に投入し、加圧して変形させることで型内に流動充填させ、圧縮力を加えて圧密成形して三次元形状に賦形する、植物系材料の流動成形体の作製方法及び該方法により得られる成形体に関するものである。本発明は、再生産可能な資源として、その活用が高く期待されている、木材や竹等の植物系材料を、簡便な装置、及び穏やかな処理条件により、三次元形状の成形体に賦形する植物系材料の流動成形体の作製方法及びその製品を提供するものである。   The present invention relates to a method for producing a fluid molded body of a plant-based material, and more specifically, a plant-based material into which a solvent having a small self-aggregation force and a hydrogen bonding ability is injected is put into a mold, The present invention relates to a method for producing a fluid molded body of a plant-based material, which is formed by pressurizing and deforming to flow-fill in a mold, and compacting by applying a compression force to form a three-dimensional shape, and a molded body obtained by the method. Is. The present invention forms a plant material such as wood or bamboo, which is expected to be highly utilized as a reproducible resource, into a three-dimensional shaped molded body with a simple apparatus and mild processing conditions. The present invention provides a method for producing a fluid molded body of a plant material and a product thereof.

木材や、竹、草木、農業廃棄物等の植物系材料は、再生産が可能であり、埋蔵資源である石油を原料として作られるプラスチックに替わる材料として、最近注目されている材料である。該植物系材料を、所望する三次元形状に成形するために、従来技術として、板状の木材を金型で加圧して成形する方法(特許文献1)や、棒状の木材を金型で加圧して成形する方法(特許文献2)が提案されている。   Plant-based materials such as wood, bamboo, vegetation, and agricultural waste are reproducible materials and have recently attracted attention as materials that replace plastics that are made from petroleum, which is a buried resource. In order to form the plant-based material into a desired three-dimensional shape, as a conventional technique, a method in which plate-shaped wood is pressed with a mold (Patent Document 1), or a rod-shaped wood is added with a mold. A method of forming by pressing (Patent Document 2) has been proposed.

また、他の先行技術として、粉末化した木材に、樹脂を混入して、流動性を持たせ、これを、金型に流し込み、冷却・固化させる方法(特許文献3)が提案されている。これらの棒状や板状の木材を金型で加圧し、成形する方法では、材料を構成する細胞が、加圧により圧縮されることを利用して変形させるため、圧縮による変形量に制約があり、製作可能な形状が限定される。また、上記した木材の粉末を原料とする方法では、木材の粉末化に、多大な時間とエネルギーを要する。   As another prior art, there has been proposed a method (Patent Document 3) in which a resin is mixed into powdered wood so as to have fluidity, which is poured into a mold, and cooled and solidified. In the method of pressing and molding these rod-like or plate-like wood with a mold, the cells constituting the material are deformed by being compressed by the pressurization, so the amount of deformation due to compression is limited. The shape that can be manufactured is limited. In addition, in the above-described method using wood powder as a raw material, much time and energy are required for pulverizing wood.

そこで、本発明者らは、先に、植物系材料に対して、構成細胞の相互位置関係を変化させることにより、変形させる植物系材料の成形方法(特許文献4)を提案した。この手法では、材料を粉末化する必要がなく、プレス機等の簡便な装置によって成形することが可能であるという利点がある。該手法で、構成細胞を相互移動させるには、細胞間に存在する細胞間層を破壊し、また、この細胞間層の破壊に、細胞間層への一定量以上の吸着水分の存在、及び、100℃を超える温度条件が必要とされる。   Therefore, the present inventors have previously proposed a method for forming a plant-based material that is deformed by changing the mutual positional relationship of constituent cells with respect to the plant-based material (Patent Document 4). This method has the advantage that the material does not need to be powdered and can be formed by a simple device such as a press. In order to move the constituent cells to each other by this method, the intercellular layer existing between the cells is destroyed, and the destruction of the intercellular layer includes the presence of a certain amount of adsorbed moisture on the intercellular layer, and A temperature condition exceeding 100 ° C. is required.

しかし、上記の手法では、成形の途中において、蒸発した水分が、金型のクリアランスから放散し、流動条件が変化する可能性があり、また、蒸発による水分の変化を抑制するための過剰な水分の投入は、パンク等の材料内部の圧力の異常な上昇を引き起こし、成形不良や、金型の破壊を引き起こす可能性があることから、当技術分野においては、それらを解決することが技術的課題となっていた。   However, in the above method, in the middle of molding, the evaporated water may be dissipated from the mold clearance and the flow conditions may change, and excessive moisture to suppress the change of moisture due to evaporation. Since the injection of pressure may cause an abnormal increase in pressure inside the material such as puncture, which may cause molding defects and mold breakage, it is a technical problem to solve them in this technical field. It was.

特開2006−076055号公報JP 2006-076055 A 特開2004−009567号公報JP 2004009567 A 特開2002−146195号公報JP 2002-146195 A 特開2008−036941号公報JP 2008-036941 A

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術の諸問題を確実に解決し得るとともに、植物系材料から、簡便な装置及び工程で、効率よく成形することを可能とする新しい成形技術を開発することを目標として鋭意研究を積み重ねた。   Under such circumstances, the present inventors can reliably solve the problems of the prior art in view of the prior art, and efficiently form the plant-based material with simple equipment and processes. We have earnestly researched with the goal of developing new molding technology that makes it possible.

その結果、本発明者らは、自己凝集力、すなわち凝集エネルギー密度が小さく、かつ水素結合能を持つ溶媒を、植物系材料に含浸させることにより、水を用いた成形方法と比較して、構成細胞の相互位置関係を変化させて材料を流動及び変形させることが可能となること、それにより、成形の温度及び圧力の大幅な減少が可能となることを見出し、本発明を完成するに至った。   As a result, the present inventors have compared the molding method using water by impregnating a plant-based material with a solvent having a low self-aggregation force, that is, a cohesive energy density and a hydrogen bonding ability. The present inventors have found that it is possible to change the mutual positional relationship of cells to flow and deform the material, and thereby to greatly reduce the molding temperature and pressure, and to complete the present invention. .

本発明は、再生産可能な資源として、その活用が高く期待されている、木材や竹等の植物系材料を、簡便な装置、及び穏やかな処理条件により、三次元形状の成形体に賦形する植物系材料の流動成形体の作製方法及びその製品を提供することを目的とするものである。   The present invention forms a plant material such as wood or bamboo, which is expected to be highly utilized as a reproducible resource, into a three-dimensional shaped molded body with a simple apparatus and mild processing conditions. An object of the present invention is to provide a method for producing a fluid molded body of a plant material and a product thereof.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)自己凝集力が小さく、かつ水素結合能を持つ溶媒を含浸させた植物系材料を、型内に投入し、常温又は加熱下で圧力を加えることにより、構成細胞の相互位置関係を変化させて材料を流動及び変形させることで型内に流動充填させ、圧縮力を加えて圧密成形することにより三次元形状の成形体に賦形することを特徴とする植物系材料の流動成形体の作製方法。
(2)自己凝集力が小さく、かつ、水素結合能を持つ溶媒が、ジメチルスルホキシド(DMSO)、又はジメチルフォルムアミドである、前記(1)に記載の植物系材料の流動成形体の作製方法。
(3)植物系材料を、型内に投入し、材料を流動及び変形させ、型内に流動及び充填させることで、10MPa〜300MPa程度の圧縮力を加えて圧密成形し、三次元形状の成形体に賦形する、前記(1)又は(2)に記載の植物系材料の流動成形体の作製方法。
(4)成形前の植物系材料を、バルクとして、単一又は複数に分離して、型内に投入する、前記(1)から(3)のいずれかに記載の植物系材料の流動成形体の作製方法。
(5)成形前の植物系材料の、型内における配置を調整することにより、得られる成形体の繊維配向を制御する、前記(1)から(4)のいずれかに記載の植物系材料の流動成形体の作製方法。
(6)成形過程における、成形の温度、及び/又は成形の圧力を制御して、成形体の熱分解を抑え、原材料の風合いを成形体に反映させる、前記(1)から(5)のいずれかに記載の植物系材料の流動成形体の作製方法。
(7)植物系材料が、木材、タケ、草木、又は農業用廃棄物である、前記(1)から(6)のいずれかに記載の植物系材料の流動成形体の作製方法。
(8)前記(1)から(7)のいずれかに記載の方法で作製された深底形状の成形体であって、1)ジメチルスルホキシド(DMSO)又はジメチルフォルムアミド含浸木材の圧縮成形体であり、2)原料の風合いが成形体に反映されていて、3)カップ状の深底構造を有している、ことを特徴とする植物系材料の流動成形体。
The present invention for solving the above-described problems comprises the following technical means.
(1) A plant material impregnated with a solvent having a small self-aggregation force and a hydrogen bonding ability is placed in a mold, and pressure is applied at room temperature or under heating, thereby changing the mutual positional relationship between constituent cells. A flow molding body of a plant-based material, characterized in that the material is flow-filled into the mold by flowing and deforming, and formed into a three-dimensional shaped body by compacting by applying a compressive force. Manufacturing method.
(2) The method for producing a fluid molded body of a plant material according to the above (1), wherein the solvent having a small self-aggregating force and having a hydrogen bonding ability is dimethyl sulfoxide (DMSO) or dimethylformamide.
(3) A plant-based material is put into a mold, the material is flowed and deformed, and the mold is flowed and filled to apply a compressive force of about 10 MPa to 300 MPa to form a three-dimensional shape. The manufacturing method of the fluid molded object of the plant-type material as described in said (1) or (2) shaped to a body.
(4) The fluidized molded body of the plant-based material according to any one of (1) to (3), wherein the plant-based material before molding is separated into a single or a plurality as a bulk and is put into a mold. Manufacturing method.
(5) The plant-based material according to any one of (1) to (4), wherein the fiber orientation of the obtained molded body is controlled by adjusting the arrangement of the plant-based material before molding in the mold. A method for producing a fluid molded body.
(6) Any of (1) to (5) above, wherein the molding temperature and / or the molding pressure in the molding process is controlled to suppress thermal decomposition of the molded body and reflect the texture of the raw material on the molded body. A method for producing a fluid molded body of a plant material according to claim 1.
(7) The method for producing a fluid molded body of a plant material according to any one of (1) to (6), wherein the plant material is wood, bamboo, vegetation, or agricultural waste.
(8) A deep-bottom shaped molded body produced by the method according to any one of (1) to (7), wherein: 1) a compression molded body of dimethylsulfoxide (DMSO) or dimethylformamide-impregnated wood Yes, 2) The texture of the raw material is reflected in the molded body, and 3) a fluid molded body of plant material characterized by having a cup-like deep bottom structure.

次に、本発明について更に詳細に説明する。
本発明は、自己凝集力が小さく、かつ水素結合能を持つ溶媒を含浸させた植物系材料を、型内に投入し、常温又は加熱下で圧力を加えることにより、構成細胞の相互位置関係を変化させて材料を流動及び変形させることで型内に流動充填させ、圧縮力を加えて圧密成形することにより三次元形状の成形体に賦形することを特徴とするものである。
Next, the present invention will be described in more detail.
In the present invention, a plant-based material impregnated with a solvent having a small self-aggregation force and a hydrogen bonding ability is placed in a mold, and pressure is applied at room temperature or under heating, thereby reciprocal positional relationship between constituent cells. It is characterized in that the material is fluidized and deformed by being changed and fluidized and filled in a mold, and compacted by applying a compressive force and shaped into a three-dimensional shaped product.

本発明において、自己凝集力が小さい、すなわち凝集エネルギー密度が小さく、水素結合能を有する溶媒とは、極性が高く、木材のOH基と水素結合はするが、凝集エネルギー密度の低い、すなわち、プロトン受容力あるいは供与力のどちらか一方が低い、ジメチルスルホキシド、ジメチルフォルムアミド等の有機・無機液体を意味するものとして定義される。   In the present invention, a solvent having a small self-cohesion force, that is, a cohesive energy density is small and has a hydrogen bonding ability is high in polarity and hydrogen bonds with an OH group of wood, but has a low cohesive energy density, that is, a proton. Defined as meaning organic / inorganic liquids such as dimethyl sulfoxide, dimethylformamide, etc., which have low accepting power or donating power.

本発明で用いる自己凝集力が小さく、かつ水素結合能を持つ溶媒について、更に詳しく説明すると、本発明で用いる溶媒は、水素結合能が1cm−1以上であり、凝集エネルギーが50kJ/mol以下のものとして定義される。ここで、水素結合能とは、重水素メタノールの希薄ベンゼン溶液中における−ODの伸縮振動の赤外線吸収帯の波長(波数)と対象液体の希薄溶液中での吸収帯波長(波数)との差を示す。このシフト量は、対象液体のプロトン受容力の大きさを示す指標になる。また、アセトフェノンのC=O伸縮振動の赤外線吸収帯波長のベンゼン溶液からのシフト量については、プロトン供与力を示す。 The solvent having a small self-cohesion force used in the present invention and having a hydrogen bonding ability will be described in more detail. The solvent used in the present invention has a hydrogen bonding ability of 1 cm −1 or more and an aggregation energy of 50 kJ / mol or less. Defined as a thing. Here, the hydrogen bonding ability is the difference between the wavelength (wave number) of the infrared absorption band of -OD stretching vibration in a dilute benzene solution of deuterium methanol and the absorption band wavelength (wave number) of the target liquid in a dilute solution. Indicates. This shift amount becomes an index indicating the magnitude of the proton accepting power of the target liquid. The amount of shift from the benzene solution of the infrared absorption band wavelength of C = O stretching vibration of acetophenone indicates proton donating power.

ただし、どちらのシフト量についても、ベンゼン中での−ODの吸収波長帯を基準としているため、ベンゼンのπ電子は、ある程度のプロトン受容性を示すことから、シフト量が負を示す場合も存在する。しかし、本発明では、わずかな受容・供与力の液体を範囲に入れないため、この値を採用したものである[文献:Kagiya,T,Sumida,Y,Inoue,T,Bull.Chem.Soc.Jap.,41,767−773(1968)、Crowly,JD,Teague,GS,Lowe,JW,J.Paint Technol.,38,269−280(1966)]。凝集エネルギーは、凝集エネルギー密度(1cmの液体を蒸発させるのに必要なエネルギー)から導いたものである[文献:Hansen,CM,J.Paint Technil.,39:505,104−117(1967)]。 However, since both shift amounts are based on the absorption wavelength band of -OD in benzene, the π electrons of benzene show a certain degree of proton acceptability, so the shift amount may be negative. To do. However, in the present invention, this value is adopted because a liquid with a slight accepting / donating power is not included in the range [Document: Kagiya, T, Sumida, Y, Inoue, T, Bull. Chem. Soc. Jap. , 41, 767-773 (1968), Crowly, JD, Teague, GS, Lowe, JW, J. et al. Paint Technol. , 38, 269-280 (1966)]. The cohesive energy is derived from the cohesive energy density (energy required to evaporate a 1 cm 3 liquid) [literature: Hansen, CM, J. et al. Paint Technil. 39: 505, 104-117 (1967)].

また、本発明において、植物系材料とは、太陽エネルギーと、水、土、及び空気を使って植物が合成した、再生可能な有機性資源を意味する。本発明の流動成型体の原料である植物系材料は、特に限定されるものではなく、本発明は、細胞壁を有する植物系材料全般に対して適用可能である。具体的には、例えば、木材、タケ、草本、農業廃棄物が、特に好適な材料として例示される。   In the present invention, the plant-based material means a renewable organic resource synthesized by a plant using solar energy, water, soil, and air. The plant material which is a raw material of the fluid molded body of the present invention is not particularly limited, and the present invention can be applied to all plant materials having cell walls. Specifically, for example, wood, bamboo, herbs, and agricultural waste are exemplified as particularly suitable materials.

本発明の流動成形体の作製方法による場合、植物系材料を構成する細胞の相互位置関係を変化させ、前提形状を大きく変形させるため、原料は、金型等の型内に投入できる大きさであれば、その形状は、特に制限されない。また、成形前の植物系材料が、バルクとして、複数に分離していても、成形過程で、材料が細胞レベルで乖離し、これらが成形後には一体化するため、成形前の植物系材料が、バルクとして、単一である場合も、複数に分離している場合も、本発明の流動成形体の作製方法は、同様に適用可能である。   In the case of the method for producing a fluid molded body of the present invention, the raw material is of a size that can be put into a mold such as a mold in order to change the mutual positional relationship between cells constituting the plant-based material and greatly deform the premise shape. If there is, the shape is not particularly limited. In addition, even if the plant-based material before molding is separated into a plurality as a bulk, the material is separated at the cellular level in the molding process, and these are integrated after molding. The method for producing a fluid molded body of the present invention can be applied in the same manner whether the bulk is single or plural.

本発明の流動成形体の作製方法を、繊維構造を持つ植物系材料に適用した場合、成形過程で、繊維がほとんど破壊することがないため、成形体に、そのまま、繊維構造を持たせることが可能である。また、成形前の植物系材料の金型等の型内における配置が、成形後の繊維配向に影響を与えるため、成形前の植物系材料配置により、成形体の繊維配向を制御することができる。   When the method for producing a fluid molded body of the present invention is applied to a plant-based material having a fiber structure, the fiber is hardly broken during the molding process. Therefore, the molded body may have a fiber structure as it is. Is possible. Moreover, since the arrangement of the plant-based material before molding in a mold such as a mold affects the fiber orientation after molding, the fiber orientation of the molded body can be controlled by the plant-based material arrangement before molding. .

次に、本発明における植物系材料の成形過程について説明する。本発明では、前述の溶媒を含浸した植物系材料を、型内に投入し、常温又は加熱下で、圧力を加えることにより、構成細胞の相互位置関係を変化させて、材料を流動及び変形させることで、型内に流動充填させ、圧縮力を加えて圧密成形し、三次元形状の成形体に賦形することを最大の特徴としている。   Next, the molding process of the plant material in the present invention will be described. In the present invention, the plant-based material impregnated with the above-described solvent is put into a mold, and pressure is applied at room temperature or under heating to change the mutual positional relationship of the constituent cells, thereby causing the material to flow and deform. Thus, the greatest feature is that it is fluidly filled into a mold, compacted by applying a compressive force, and shaped into a three-dimensional shaped product.

本発明の流動成形体の作製方法による場合、植物系材料の変形は、細胞の圧縮に加え、細胞が移動することによっても引き起こされるため、従来、板状の木材、棒状の木材で行われていた、細胞の圧縮のみを利用した成形に比べ、細胞の圧縮と、細胞の移動により、非常に大きな変形が可能となる。   According to the method for producing a fluid molded body of the present invention, the deformation of the plant material is caused not only by the compression of the cells but also by the movement of the cells. Compared to molding using only cell compression, the cell compression and cell movement enable a very large deformation.

成形を行う具体的方法として、例えば、前述の溶媒を含浸させたタケを、200℃程度に加熱した金型に投入し、1MPa〜500MPa、好ましくは10MPa〜300MPa、より好ましくは200MPa程度で加圧する。圧力を受けたタケは、構成細胞の相互位置関係を変化させて変形し、金型内に流動充填される。流動充填が完了したら、解圧して、成形体を取り出す。図1に、本発明の成形過程における成形方法の一例を示す。   As a specific method for molding, for example, the bamboo impregnated with the above-mentioned solvent is put into a mold heated to about 200 ° C. and pressurized at about 1 MPa to 500 MPa, preferably 10 MPa to 300 MPa, more preferably about 200 MPa. . The bamboo under pressure is deformed by changing the mutual positional relationship between the constituent cells, and is fluidly filled into the mold. When fluid filling is completed, the pressure is released and the molded body is taken out. FIG. 1 shows an example of a molding method in the molding process of the present invention.

図2に、全乾、飽水状態、及びDMSO(ジメチルスルホキシド)に含浸した状態の各木材試料の圧縮試験結果を示す。DMSO試料は、圧密が完了していないにもかかわらず、すでに流動が始まっており、飽水試料と比較して、より小さな変位・圧力によって、流動させることが可能であることが分かる。また、DMSO試料は、流動後の繊維細胞は、図3〜図5に示すように、細胞間層で破壊しており、細胞長は、短くなりにくいことが伺える。従って、DMSO試料では、強度特性や靭性に優れた成形体が得られる。   FIG. 2 shows the compression test results of each wood sample in a completely dry state, a saturated water state, and a state of being impregnated with DMSO (dimethyl sulfoxide). It can be seen that the DMSO sample has already started to flow even though the consolidation has not been completed, and can be made to flow with a smaller displacement and pressure than the saturated sample. Moreover, as for the DMSO sample, the fiber cell after a flow has destroyed in the intercellular layer, as shown in FIGS. 3-5, and it can be said that a cell length does not become short easily. Therefore, a DMSO sample can provide a molded article having excellent strength characteristics and toughness.

本発明の流動成形体の作製方法は、用いる溶媒の種類、成形の温度、成形の圧力、原料の含水率、成形の時間を適宜所定の条件に設定することにより、得られる成形体の性状等を高精度に制御することができる。例えば、温度、圧力及び時間を設定して、低温、高荷重、短時間の成形では、成形体の熱分解を抑え、原材料の風合いを成形体に反映させることができる。一方、高温での成形では、材料を、ある程度熱分解させることにより、材料を軟化させ、成形に必要な荷重を低減することが可能となる。   The method for producing a fluid molded body of the present invention includes the type of solvent to be used, the molding temperature, the molding pressure, the moisture content of the raw material, and the properties of the molded body obtained by appropriately setting the molding time to predetermined conditions. Can be controlled with high accuracy. For example, by setting the temperature, pressure and time, and molding at low temperature, high load, and short time, the thermal decomposition of the molded body can be suppressed and the texture of the raw material can be reflected in the molded body. On the other hand, in molding at a high temperature, the material is thermally decomposed to some extent, so that the material can be softened and the load necessary for molding can be reduced.

本発明により、次のような効果が奏される。
(1)植物系材料を原料として、簡便な手法で、効率よく流動成形体を作製する方法を提供することができる。
(2)成形前の植物系材料が、バルクとして、単一であっても、複数に分離していても、成形過程で一体化させることができる。
(3)成形前の植物系材料の型内における配置により、得られる成形体の繊維配向を制御することができる。
(4)植物系材料の流動に際して、厳密な水分調整が必要とされない。
(5)本発明の植物系材料の流動成形体の製造方法は、循環型資源である植物系材料を原料としているため、資源問題や、廃棄物問題に対する根本的な解決策となり得るものとして有用である。
The present invention has the following effects.
(1) It is possible to provide a method for efficiently producing a fluid molded body using a plant-based material as a raw material by a simple method.
(2) Whether the plant-based material before molding is a single bulk or separated into a plurality, it can be integrated in the molding process.
(3) The fiber orientation of the obtained molded product can be controlled by the arrangement of the plant-based material before molding in the mold.
(4) Strict moisture adjustment is not required when the plant material flows.
(5) Since the method for producing a fluid molded body of a plant material of the present invention uses a plant material that is a recyclable resource as a raw material, it is useful as a fundamental solution to resource problems and waste problems. It is.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

スギ辺材部から、直径29mm、厚さ約15mmの材料を切り出して、これを、DMSO(ジメチルスルホキシド)に含浸後、実験に供した。成形には、段付ポンチ、シリンダー、及びスペーサーから構成される金型による、後方押し出し成形法を用いた。図1に、後方押し出し成形法による成形方法の一例を示す。シリンダー内に、材料1個を投入し、段付ポンチにより、30MPaで加圧し、変形させた。その後、金型より成形体を取り出して、カップ状の成形体を得た。なお、成形に要した時間は、約1分であった。得られた成形体は、ほとんど変色せず、スギの風合いを保っていた。   A material having a diameter of 29 mm and a thickness of about 15 mm was cut out from the cedar sapwood part, and this was impregnated with DMSO (dimethyl sulfoxide) and then subjected to an experiment. For molding, a backward extrusion molding method using a mold composed of a stepped punch, a cylinder, and a spacer was used. In FIG. 1, an example of the shaping | molding method by back extrusion method is shown. One material was put into the cylinder, and it was deformed by pressurizing at 30 MPa with a stepped punch. Thereafter, the molded body was taken out from the mold to obtain a cup-shaped molded body. The time required for molding was about 1 minute. The obtained molded body was hardly discolored and kept the texture of cedar.

実施例1と同じ試料を、実験に供した。成形には、段付ポンチ、シリンダー、及びスペーサーから構成される金型による、後方押し出し成形法を用いた(図1)。シリンダー内に、材料2個を重ねて投入し、段付ポンチにより、30MPaで加圧し、変形させた。その後、金型から成形体を取り出した。2個の材料は、一体化し、カップ状の成形体を得た。なお、成形に要した時間は、約1分であった。得られた成形体は、ほとんど変色せず、スギの風合いを保っていた。   The same sample as in Example 1 was used for the experiment. For the molding, a backward extrusion molding method using a mold composed of a stepped punch, a cylinder, and a spacer was used (FIG. 1). Two materials were put in the cylinder in a stacked manner, and were pressed and deformed by a stepped punch at 30 MPa. Thereafter, the molded body was taken out from the mold. The two materials were integrated to obtain a cup-shaped molded body. The time required for molding was about 1 minute. The obtained molded body was hardly discolored and kept the texture of cedar.

スギ辺材部から、30mm角の材料を切り出して、全乾、飽水状態、及びDMSO(ジメチルスルホキシド)に含浸した状態の木材試料を、粉末化することなく、繊維直角方向に、圧縮試験を行った。飽水状態の木材試料は、変位が15mmになるまでは、低いプレス圧であったが、変位が20mm近辺で、急激な圧力の立ち上がりが生じた。また、その値は、全乾状態のそれに近づいていた。   A 30 mm square material was cut out from the cedar sapwood part, and a compression test was performed in the direction perpendicular to the fiber without pulverizing a wood sample that was completely dry, saturated, and impregnated with DMSO (dimethyl sulfoxide). went. The saturated wood sample had a low press pressure until the displacement reached 15 mm, but a sudden rise in pressure occurred when the displacement was around 20 mm. Also, the value was close to that of the completely dry state.

これは、20mmまでは、細胞が圧縮されるのみで、低い反力であったためと考えられる。圧縮が終了する20mmを超えて、更に変位が進むと、飽水状態の試料の圧力は下がる。この時に、初めて、飽水状態の試料は、流動を始める。一方、DMSO試料は、変位が12mmの時点で、すでに圧力が上がり始めている。これは、圧密が完了していないにもかかわらず、すでに流動が始まり、試料と金型との接触面積が増加したため、圧力が増加したことによる。   This is considered to be due to the low reaction force only by compressing the cells up to 20 mm. If the displacement further proceeds beyond 20 mm when the compression is completed, the pressure of the saturated sample decreases. At this time, for the first time, the saturated sample begins to flow. On the other hand, the pressure of the DMSO sample has already started to increase when the displacement is 12 mm. This is because the pressure has increased because the flow has already started and the contact area between the sample and the mold has increased even though the consolidation has not been completed.

DMSOを含浸した試料は、飽水状態の試料と比較して、より小さな変位・圧力によって、流動を始めた。図2に、全乾状態、飽水状態、ジメチルスルホキシド(DMSO)含浸状態のヒノキ材を繊維と直角方向に圧縮したときの圧力−変位曲線を示す。一方、エタノールは、水よりも高い圧力を示し、飽水状態の試料と同じように、変位が20mm近辺から流動を始めた。図3に、図2加えて、アセトン、エタノールの結果を加えた圧力−変位曲線を示す。また、アセトンは、流動することなく、割裂破壊を起こした(図3)。   The sample impregnated with DMSO started to flow with a smaller displacement and pressure compared to the saturated sample. FIG. 2 shows a pressure-displacement curve when a cypress material in a completely dry state, a saturated water state, and a dimethyl sulfoxide (DMSO) impregnated state is compressed in a direction perpendicular to the fiber. On the other hand, ethanol showed a higher pressure than water, and started to flow when the displacement was around 20 mm, as in the saturated sample. FIG. 3 shows a pressure-displacement curve obtained by adding the results of acetone and ethanol in addition to FIG. In addition, acetone caused splitting fracture without flowing (FIG. 3).

流動が終了後、破断面をSEM観察した。図4に、流動後の破断面のSEM画像を示す。全乾状態の試料は、圧密により繊維細胞が完全に圧縮されており、細胞がむしり割れたような形で破壊したように見える。また、アセトンの場合も、更に圧縮されたように見える。一方、DMSO含浸試料については、細胞の圧縮は進んでおらず、また、細胞間をつなぐピットが、はっきりと確認される。これは、破壊が細胞間で生じたことを示すものである。   After the end of flow, the fracture surface was observed by SEM. In FIG. 4, the SEM image of the torn surface after a flow is shown. In the sample in the completely dry state, the fiber cells are completely compressed by the compaction, and the cells appear to be broken in a form of tearing. Acetone also appears to be further compressed. On the other hand, in the DMSO-impregnated sample, cell compression has not progressed, and pits connecting the cells are clearly confirmed. This indicates that destruction has occurred between cells.

以上詳述したように、本発明は、植物系材料の流動成形体の作製方法及びその流動成形体に係るものであり、本発明により、水素結合能を持つ溶媒を添加、含浸させた植物系材料を、型内に充填し、加圧して変形させることで型内に流動充填させ、圧縮力を加えて圧密成形し、複雑な三次元形状を賦形した成形体を作製し、提供することができる。本発明は、石油を原料として作られるプラスチック製品を、環境・資源問題に対応できる植物系材料の流動成形体で代替することを可能とする植物系材料の流動成形体の作製方法及びその製品を提供するものとして有用である。   As described above in detail, the present invention relates to a method for producing a fluid molded body of a plant material and the fluid molded body. According to the present invention, a plant system to which a solvent having hydrogen bonding ability is added and impregnated is provided. To fill and mold the material, pressurize and deform it to flow-fill into the mold, apply compressive force to compact the material, and create and provide a molded body with a complicated three-dimensional shape Can do. The present invention relates to a method for producing a fluid molded body of a plant-based material that can replace a plastic product made from petroleum as a raw material with a fluid molded body of a plant-based material that can cope with environmental and resource problems, and a product thereof. Useful for providing.

本発明における成形過程の成形方法の一例を示す。An example of the shaping | molding method of the shaping | molding process in this invention is shown. 全乾状態、飽水状態、ジメチルスルホキシド(DMSO)含浸状態のヒノキ材を繊維と直角方向に圧縮したときの圧力−変位曲線を示す。The pressure-displacement curve when a cypress material in a completely dry state, a saturated water state, and a dimethyl sulfoxide (DMSO) impregnated state is compressed in a direction perpendicular to the fiber is shown. 図2のヒノキ材に加えて、アセトン、エタノールの結果を加えた圧力−変位曲線を示す。The pressure-displacement curve which added the result of acetone and ethanol in addition to the cypress material of FIG. 2 is shown. 流動後の破断面であり、全乾状態のヒノキを流動させた後のSEM画像を示す。It is a fracture surface after flowing, and shows an SEM image after flowing cypress in a completely dry state. 流動後の破断面であり、アセトンにより膨潤したヒノキを流動させた後のSEM画像を示す。It is a fracture surface after flowing, and shows an SEM image after flowing cypress swollen with acetone. 流動後の破断面であり、ジメチルスルホキシドにより膨潤したヒノキを流動させた後のSEM画像を示す。It is a fracture surface after flowing, and shows an SEM image after flowing cypress swollen with dimethyl sulfoxide.

Claims (8)

自己凝集力が小さく、かつ水素結合能を持つ溶媒を含浸させた植物系材料を、型内に投入し、常温又は加熱下で圧力を加えることにより、構成細胞の相互位置関係を変化させて材料を流動及び変形させることで型内に流動充填させ、圧縮力を加えて圧密成形することにより三次元形状の成形体に賦形することを特徴とする植物系材料の流動成形体の作製方法。   A plant-based material impregnated with a solvent having a small self-aggregation force and a hydrogen-bonding ability is placed in a mold, and pressure is applied at room temperature or under heating to change the mutual positional relationship of the constituent cells. A method for producing a fluid molded body of a plant-based material, characterized by forming a three-dimensional molded body by fluidly filling and molding it in a mold and applying compression to form a compact. 自己凝集力が小さく、かつ、水素結合能を持つ溶媒が、ジメチルスルホキシド(DMSO)、又はジメチルフォルムアミドである、請求項1に記載の植物系材料の流動成形体の作製方法。   The method for producing a fluid molded body of a plant material according to claim 1, wherein the solvent having a small self-cohesive force and having a hydrogen bonding ability is dimethyl sulfoxide (DMSO) or dimethylformamide. 植物系材料を、型内に投入し、材料を流動及び変形させ、型内に流動及び充填させることで、10MPa〜300MPa程度の圧縮力を加えて圧密成形し、三次元形状の成形体に賦形する、請求項1又は2に記載の植物系材料の流動成形体の作製方法。   Plant material is put into a mold, the material is flowed and deformed, and the mold is flowed and filled, so that it is compacted by applying a compressive force of about 10 MPa to 300 MPa, and applied to a three-dimensional shaped compact. A method for producing a fluid molded body of a plant-based material according to claim 1 or 2, which is shaped. 成形前の植物系材料を、バルクとして、単一又は複数に分離して、型内に投入する、請求項1から3のいずれかに記載の植物系材料の流動成形体の作製方法。   The method for producing a fluid molded body of plant-based material according to any one of claims 1 to 3, wherein the plant-based material before molding is separated into a single or a plurality as a bulk and charged into a mold. 成形前の植物系材料の、型内における配置を調整することにより、得られる成形体の繊維配向を制御する、請求項1から4のいずれかに記載の植物系材料の流動成形体の作製方法。   The method for producing a fluid molded body of a plant material according to any one of claims 1 to 4, wherein the fiber orientation of the resulting molded body is controlled by adjusting the arrangement of the plant material before molding in the mold. . 成形過程における、成形の温度、及び/又は成形の圧力を制御して、成形体の熱分解を抑え、原材料の風合いを成形体に反映させる、請求項1から5のいずれかに記載の植物系材料の流動成形体の作製方法。   The plant system according to any one of claims 1 to 5, wherein in the molding process, the molding temperature and / or the molding pressure is controlled to suppress thermal decomposition of the molded body and reflect the texture of the raw material in the molded body. A method for producing a fluid molded body of material. 植物系材料が、木材、タケ、草木、又は農業用廃棄物である、請求項1から6のいずれかに記載の植物系材料の流動成形体の作製方法。   The method for producing a fluid molded body of a plant material according to any one of claims 1 to 6, wherein the plant material is wood, bamboo, vegetation, or agricultural waste. 請求項1から7のいずれかに記載の方法で作製された深底形状の成形体であって、1)ジメチルスルホキシド(DMSO)又はジメチルフォルムアミド含浸木材の圧縮成形体であり、2)原料の風合いが成形体に反映されていて、3)カップ状の深底構造を有している、ことを特徴とする植物系材料の流動成形体。   A molded product having a deep bottom shape produced by the method according to any one of claims 1 to 7, wherein the molded product is a compression molded product of 1) dimethyl sulfoxide (DMSO) or dimethylformamide-impregnated wood. A fluid molded body of a plant-based material, wherein the texture is reflected in the molded body, and 3) has a cup-like deep bottom structure.
JP2008335353A 2008-12-26 2008-12-26 Fluid molding of wood using solvents. Expired - Fee Related JP5327790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335353A JP5327790B2 (en) 2008-12-26 2008-12-26 Fluid molding of wood using solvents.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335353A JP5327790B2 (en) 2008-12-26 2008-12-26 Fluid molding of wood using solvents.

Publications (2)

Publication Number Publication Date
JP2010155393A true JP2010155393A (en) 2010-07-15
JP5327790B2 JP5327790B2 (en) 2013-10-30

Family

ID=42573660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335353A Expired - Fee Related JP5327790B2 (en) 2008-12-26 2008-12-26 Fluid molding of wood using solvents.

Country Status (1)

Country Link
JP (1) JP5327790B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161932A (en) * 2011-02-03 2012-08-30 Tokai Rika Co Ltd Method for manufacturing molding of vegetable material, and molding of vegetable material
JP2012161933A (en) * 2011-02-03 2012-08-30 Tokai Rika Co Ltd Apparatus for manufacturing molding of vegetable material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235279A (en) * 1975-09-13 1977-03-17 Matsushita Electric Works Ltd Process for manufacturing particleboard
JPS6351104A (en) * 1986-08-20 1988-03-04 松下電工株式会社 Manufacture of improved wood
JP2008036941A (en) * 2006-08-04 2008-02-21 National Institute Of Advanced Industrial & Technology Method of molding vegetable material and its molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235279A (en) * 1975-09-13 1977-03-17 Matsushita Electric Works Ltd Process for manufacturing particleboard
JPS6351104A (en) * 1986-08-20 1988-03-04 松下電工株式会社 Manufacture of improved wood
JP2008036941A (en) * 2006-08-04 2008-02-21 National Institute Of Advanced Industrial & Technology Method of molding vegetable material and its molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161932A (en) * 2011-02-03 2012-08-30 Tokai Rika Co Ltd Method for manufacturing molding of vegetable material, and molding of vegetable material
JP2012161933A (en) * 2011-02-03 2012-08-30 Tokai Rika Co Ltd Apparatus for manufacturing molding of vegetable material

Also Published As

Publication number Publication date
JP5327790B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP4849609B2 (en) Plant material molding method and molded body thereof
Jiang et al. Bioresin infused then cured mycelium-based sandwich-structure biocomposites: Resin transfer molding (RTM) process, flexural properties, and simulation
JP5327791B2 (en) Method for producing molded body of plant material and molded body obtained by the method
MY163461A (en) Method for producing wood fibre-plastics composite products
JP4502848B2 (en) Plant-based hot-press molding material having fibers and method for producing the same
Xia et al. High pressure-assisted magnesium carbonate impregnated natural fiber-reinforced composites
JP5327790B2 (en) Fluid molding of wood using solvents.
JP5500541B2 (en) Method for producing molded body of plant material and molded body thereof
CN101906741B (en) Wood fiber-unsaturated polyester crosslinking type wood-plastic composite material and preparation method thereof
CN105377522B (en) Method for being sealed to porous foams surface
JP2012116104A (en) Press forming device of lumber and method for form-machining lumber in three-dimensional shape
CN107399090B (en) Fiber-reinforced foamed composite material and manufacturing method thereof
Song et al. Bamboo–Alginate Composite as a Sustainable Structural Material
JP5629863B2 (en) Heat-pressed wood and method for producing the same
KR102142936B1 (en) Controlled formation of cellular material and apparatus
JP2012161933A (en) Apparatus for manufacturing molding of vegetable material
JP5550080B2 (en) Method for producing molded body of plant material and molded body of plant material
JP2009269389A (en) Method of manufacturing functional lumber by heating decompression and vibration
JP6183824B2 (en) Method for producing thermoplastic wood material and thermoplastic wood material produced thereby
JP4898750B2 (en) Fluidity improver for biomass powder, molded body using fluidity improver, and method for producing molded body
FI20185787A1 (en) Method of manufacturing moulded articles
RU2400358C1 (en) Wood-particle composite material and method for its manufacturing
CN105084791A (en) Device and method for producing semi-hydrated gypsum nanometer material for 3D printing
JP2010201899A (en) Method for manufacturing laminated material and laminated material
WO2017130957A1 (en) Method for molding plant-based material, and molded body

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130717

R150 Certificate of patent or registration of utility model

Ref document number: 5327790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees