JP2010155214A - System for treating contaminated earth and sand - Google Patents

System for treating contaminated earth and sand Download PDF

Info

Publication number
JP2010155214A
JP2010155214A JP2008334946A JP2008334946A JP2010155214A JP 2010155214 A JP2010155214 A JP 2010155214A JP 2008334946 A JP2008334946 A JP 2008334946A JP 2008334946 A JP2008334946 A JP 2008334946A JP 2010155214 A JP2010155214 A JP 2010155214A
Authority
JP
Japan
Prior art keywords
earth
sand
carbon dioxide
exhaust gas
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008334946A
Other languages
Japanese (ja)
Inventor
Wataru Minami
亘 南
Hikari Yamamoto
光 山本
Yuuki Nakagawa
勇樹 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2008334946A priority Critical patent/JP2010155214A/en
Publication of JP2010155214A publication Critical patent/JP2010155214A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for treating contaminated earth and sand which efficiently utilizes carbon dioxide generated in an actual site for cleaning of contaminated earth and sand. <P>SOLUTION: The system for cleaning earth and sand containing volatile materials and oil as contaminants includes an earth and sand receiving part 22, an additive agent feed part 23 feeding an additive agent containing at least one of slaked lime and quick lime, a mixing part 24 mixing the earth and sand from the earth and sand receiving part 22 with the additive agent from the additive agent feed part 23, a discharge part 25 discharging the earth and sand from the mixing part 24, a power device 26 having an engine 27, a moving body 1 supporting the earth and sand receiving part 22, the additive agent feed part 23, the mixing part 24 the discharge part 25 and the power device 26, a concentrator 30 enriching the concentration of carbon dioxide of exhaust gas from the power device 26, a reaction vessel 51 making the earth and sand loaded with the additive agent react to the exhaust gas enriched in the carbon dioxide concentration in the concentrator 30, and an exhaust gas feed pipe 3 feeding the exhaust gas to the reaction vessel 51 from the concentrator 30. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、揮発性物質又は油類の少なくとも一方を汚染物質として含有する土砂を浄化処理する汚染土砂処理システムに関する。   The present invention relates to a contaminated earth and sand treatment system for purifying earth and sand containing at least one of volatile substances and oils as a contaminant.

有害物質を含有する汚染土砂を浄化する場合、汚染土砂を加熱することによって汚染物質の蒸気圧の上昇、粘性の低下、土砂中の微生物の活性化の作用が得られる。汚染土砂に熱を加える方法の一つとして、汚染土砂に生石灰(CaO)を加え、土砂に含まれる水分又は添加した水分と生石灰との反応熱を汚染物質に与えて汚染物質を揮発させる工法(ホットソイル工法)が知られている(特許文献1等参照)。また、添加した、又は生石灰の水和反応後に生成される消石灰(Ca(OH)))と二酸化炭素を反応させ、炭酸化反応に伴う熱をさらに加えることで、処理の促進を図る方法もある(特許文献2等参照)。 When purifying contaminated earth and sand containing harmful substances, heating the contaminated earth and sand can increase the vapor pressure of the contaminant, lower the viscosity, and activate microorganisms in the earth and sand. As a method of applying heat to the contaminated earth and sand, quick lime (CaO) is added to the contaminated earth and sand, or the reaction heat between the moisture contained in the earth or sand and the added water and quick lime is given to the pollutant to volatilize the pollutant ( (Hot soil method) is known (see Patent Document 1). In addition, there is a method of promoting treatment by reacting slaked lime (Ca (OH) 2 )) that has been added or generated after the hydration reaction of quicklime and carbon dioxide, and further adding heat associated with the carbonation reaction. Yes (see Patent Document 2 etc.).

特許第2589002号公報Japanese Patent No. 2589002 特開2005−144307号公報JP-A-2005-144307

一方、汚染土砂の浄化処理を施工する多くの現場では、汚染土砂に添加材を混合するのに土質改良機やこれに土砂を供給する重機等が稼動する。これらの現場で稼動する機械には化石燃料を燃焼するエンジンが搭載され、エンジンの排気ガスには二酸化炭素が含まれる。このエンジン排気ガスに含まれる二酸化炭素を消石灰の炭酸化反応に有効利用することができれば、更なる処理効率の向上とともに処理現場からの二酸化炭素排出量の削減の効果も期待できる。   On the other hand, in many sites where purification treatment of contaminated earth and sand is performed, a soil conditioner and a heavy machine for supplying earth and sand are operated to mix additives with the contaminated earth and sand. These on-site machines are equipped with engines that burn fossil fuels, and the engine exhaust gas contains carbon dioxide. If the carbon dioxide contained in the engine exhaust gas can be effectively used for the carbonation reaction of slaked lime, further improvement in processing efficiency and reduction of carbon dioxide emissions from the processing site can be expected.

しかしながら、エンジン排気ガスに含まれる二酸化炭素は1−15%程度であり、排気ガスをそのまま汚染土砂に供給しても、消石灰の炭酸化に伴う反応熱は排気ガスの大部分を占める二酸化炭素以外の気体成分(窒素等)にも伝導してしまい、目的の汚染土砂に有効に熱が伝わらない問題がある。   However, the carbon dioxide contained in the engine exhaust gas is about 1-15%, and even if the exhaust gas is supplied as it is to the contaminated earth and sand, the reaction heat accompanying carbonation of slaked lime is other than carbon dioxide, which accounts for the majority of the exhaust gas. There is also a problem that heat is not effectively transmitted to the target contaminated soil and sand.

本発明はこのことに鑑みなされたもので、現場で発生する二酸化炭素を汚染土砂の浄化処理促進に有効利用することができる汚染土砂処理システムを提供することを目的とする。   The present invention has been made in view of this, and an object of the present invention is to provide a contaminated earth and sand treatment system capable of effectively utilizing carbon dioxide generated in the field for promoting the purification treatment of the contaminated earth and sand.

(1)上記目的を達成するために、本発明は、揮発性物質又は油類の少なくとも一方を汚染物質として含有する土砂を浄化処理する汚染土砂処理システムにおいて、処理対象の土砂を受け入れる土砂受入部と、消石灰又は生石灰の少なくとも一方を含む添加材を供給する添加材供給部と、前記土砂受入部からの土砂と前記添加材供給部からの添加材とを混合処理する混合部と、前記混合部からの土砂を排出する排出部と、エンジンを内蔵する動力装置と、前記土砂受入部、前記添加材供給部、前記混合部、前記排出部及び前記動力装置を支持する走行体と、前記動力装置からの排気ガスの二酸化炭素濃度を高める濃縮手段と、添加材を添加した土砂と前記濃縮手段で二酸化炭素濃度を高めた排気ガスとを反応させる反応容器と、前記濃縮手段で二酸化炭素濃度を高めた排気ガスを前記反応容器に供給する排気ガス供給管路とを備えたことを特徴とする。   (1) In order to achieve the above object, the present invention provides a sediment receiving unit for receiving sediment to be treated in a contaminated sediment treatment system for purifying sediment containing at least one of a volatile substance or oil as a contaminant. An additive supply unit that supplies an additive containing at least one of slaked lime or quicklime, a mixing unit that mixes the earth and sand from the earth and sand receiving unit and the additive from the additive supply unit, and the mixing unit A discharge unit that discharges earth and sand from the vehicle, a power unit incorporating an engine, the earth and sand receiving unit, the additive supply unit, the mixing unit, the discharge unit, and a traveling body that supports the power unit, and the power unit Concentration means for increasing the carbon dioxide concentration of the exhaust gas from, a reaction vessel for reacting the earth and sand to which the additive has been added, and the exhaust gas whose carbon dioxide concentration has been increased by the concentration means, and the concentration means The exhaust gas having an increased carbon dioxide concentration, characterized in that an exhaust gas supply pipe for supplying into the reaction vessel.

(2)上記(1)において、好ましくは、前記濃縮手段は、前記排気ガスを高濃度二酸化炭素含有気体及び低濃度二酸化炭素含有気体に分離する高分子中空子膜を有し、該高分子中空子膜によって低濃度二酸化炭素含有気体と分離することで排気ガスの二酸化炭素濃度を上げることを特徴とする。   (2) In the above (1), preferably, the concentrating means has a polymer hollow membrane for separating the exhaust gas into a high-concentration carbon dioxide-containing gas and a low-concentration carbon dioxide-containing gas, It is characterized by increasing the carbon dioxide concentration of the exhaust gas by separating it from the low-concentration carbon dioxide-containing gas with a vacancy membrane.

(3)上記(2)において、好ましくは、前記高分子中空子膜の上流に排気ガスを土砂と熱交換する熱交換器を備え、該熱交換器によって処理対象の土砂を加熱する一方で前記高分子中空子膜に供給される排気ガスを冷却することを特徴とする。   (3) In the above (2), preferably, a heat exchanger for exchanging exhaust gas with earth and sand is provided upstream of the polymer hollow core membrane, and the earth and sand to be treated are heated by the heat exchanger while The exhaust gas supplied to the polymer hollow membrane is cooled.

(4)上記(1)において、好ましくは、前記濃縮手段は、排気ガス中の二酸化炭素を吸収する溶液を貯留した吸収塔と、二酸化炭素を吸収した吸収塔からの溶液を加熱する再生塔とを有し、吸収塔を通過した低濃度二酸化炭素含有気体と、再生塔で加熱されて溶液から脱離された高濃度二酸化炭素含有気体とに排気ガスを分離することを特徴とする。   (4) In the above (1), preferably, the concentration means includes an absorption tower storing a solution that absorbs carbon dioxide in exhaust gas, and a regeneration tower that heats the solution from the absorption tower that absorbed carbon dioxide. The exhaust gas is separated into a low-concentration carbon dioxide-containing gas that has passed through the absorption tower and a high-concentration carbon dioxide-containing gas that has been heated in the regeneration tower and desorbed from the solution.

(5)上記(2)−(4)のいずれかにおいて、好ましくは、前記反応容器からの排気を通す第1排気管路と、前記濃縮手段から前記低濃度二酸化炭素含有気体を通す第2排気管路と、前記第1及び第2排気管路が接続し、前記反応容器からの排気と前記低濃度二酸化炭素含有気体とが合流する合流器と、この合流器で混合されたガスを大気放出する排気塔とを備えたことを特徴とする。   (5) In any one of the above (2) to (4), preferably, a first exhaust pipe through which exhaust from the reaction vessel passes and a second exhaust through which the low-concentration carbon dioxide-containing gas passes from the concentrating means A pipe line and the first and second exhaust pipe lines are connected, and a merger in which the exhaust from the reaction vessel and the low-concentration carbon dioxide-containing gas are merged, and the gas mixed in the merger is released into the atmosphere An exhaust tower is provided.

(6)上記目的を達成するために、また本発明は、揮発性物質又は油類の少なくとも一方を汚染物質として含有する土砂を浄化処理する汚染土砂処理システムにおいて、処理対象の土砂を受け入れる土砂受入部と、消石灰又は生石灰の少なくとも一方を含む添加材を供給する添加材供給部と、前記土砂受入部からの土砂と前記添加材供給部からの添加材とを混合処理する混合部と、前記混合部からの土砂を排出する排出部と、エンジンを内蔵する動力装置と、前記土砂受入部、前記添加材供給部、前記混合部、前記排出部及び前記動力装置を支持する走行体と、前記動力装置からの排気ガスを流通する排気管路と、この排気管路からの排気ガスの二酸化炭素を溶解させる液体を貯留するタンクと、このタンクからの二酸化炭素溶解液を土砂に供給する溶液供給管路とを備えたことを特徴とする。   (6) In order to achieve the above-mentioned object, the present invention also provides an earth and sand receiving system for receiving earth and sand to be treated in a contaminated earth and sand treatment system for purifying earth and sand containing at least one of a volatile substance or oil as a pollutant. A mixing part for mixing and processing the additive material supply part for supplying an additive containing at least one of slaked lime or quick lime, the earth and sand from the earth and sand receiving part and the additive material from the additive material supply part, and the mixing A discharge unit that discharges the earth and sand from the unit, a power unit incorporating an engine, the earth and sand receiving unit, the additive supply unit, the mixing unit, the discharge unit, and a traveling body that supports the power unit, and the power An exhaust pipe for circulating the exhaust gas from the apparatus, a tank for storing a liquid for dissolving carbon dioxide in the exhaust gas from the exhaust pipe, and a carbon dioxide solution from the tank to the earth and sand Characterized in that a feed to the solution supply line.

(7)上記(1)−(6)のいずれかにおいて、好ましくは、混合前の土砂もしくは添加材、又は添加材と混合中もしくは混合後の土砂を、前記動力装置の排熱及び排気ガスの少なくとも一方で加熱する手段をさらに備えたことを特徴とする。   (7) In any one of the above (1) to (6), preferably, the earth and sand before mixing, or the earth and sand being mixed with or after mixing with the additive are used as exhaust heat and exhaust gas of the power unit. It is further characterized by further comprising means for heating at least one of them.

(8)上記(1)−(7)のいずれかにおいて、好ましくは、処理対象の土砂を前記土砂受入部に投入する投入重機と、この投入重機の動力装置からの排気ガスを前記濃縮手段に供給する管路とをさらに備えたことを特徴とする。   (8) In any one of the above (1) to (7), preferably, an input heavy machine that inputs the earth and sand to be treated into the earth and sand receiving part, and an exhaust gas from a power device of the input heavy machine are supplied to the concentration means. And a supply pipe.

本発明によれば、現場で発生する二酸化炭素を汚染土砂の浄化処理促進に有効利用することができる。   According to the present invention, carbon dioxide generated in the field can be effectively used for promoting purification treatment of contaminated earth and sand.

以下に図面を用いて本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

<第1の実施の形態>
本発明の汚染土砂処理システムは、揮発性物質(揮発性有機化合物等)又は油類の少なくとも一方を汚染物質として含有する土砂を浄化処理するものであって、本実施の形態では、添加材として消石灰を主成分とする粉末又は消石灰である添加材を自走式土質改良機によって汚染土砂に混合し、この自走式土質改良機のエンジン排気に含まれる二酸化炭素を濃縮して、添加材と混合した汚染土砂に供給する。添加材には生石灰が含まれていても良い。
<First Embodiment>
The contaminated earth and sand treatment system of the present invention purifies earth and sand containing at least one of a volatile substance (such as a volatile organic compound) or oil as a contaminant, and in this embodiment, as an additive Powdered slaked lime as a main component or additive material that is slaked lime is mixed with contaminated earth and sand by a self-propelled soil improvement machine, carbon dioxide contained in the engine exhaust of this self-propelled soil improvement machine is concentrated, Supply to mixed contaminated soil. The additive may contain quicklime.

また、土砂と混合して二酸化炭素と反応させる消石灰(Ca(OH))は、粒径ができるだけ小さく比表面積が大きなものを用いることが望ましい。消石灰粒子(塊)は、外側から順に二酸化炭素と反応し炭酸カルシウム(CaCO)へと変化する。生成した炭酸カルシウムは難水溶性であることから、消石灰粒子(塊)の外表面が早期に炭酸カルシウムで被覆されることによって粒子の中心部に未反応の消石灰が取り残されてしまう。このように反応に供されない消石灰をできるだけ少なくし、消石灰の利用効率を上げて効率的に土砂を加熱するためにも、土砂に添加する消石灰の粒径はできるだけ小さいことが望ましい。 Moreover, it is desirable to use slaked lime (Ca (OH) 2 ) having a particle size as small as possible and a large specific surface area to be mixed with earth and sand and reacted with carbon dioxide. The slaked lime particles (lumps) react with carbon dioxide sequentially from the outside and change into calcium carbonate (CaCO 3 ). Since the produced calcium carbonate is poorly water-soluble, the outer surface of the slaked lime particles (lumps) is coated with calcium carbonate at an early stage, leaving unreacted slaked lime at the center of the particles. In order to reduce the amount of slaked lime not subjected to the reaction as much as possible and increase the utilization efficiency of the slaked lime to efficiently heat the earth and sand, it is desirable that the particle size of the slaked lime added to the earth and sand is as small as possible.

全体構成
図1は本発明の第1の実施の形態に係る汚染土砂処理システムの要部構成を表す概念図である。
Overall Configuration FIG. 1 is a conceptual diagram showing a main configuration of a contaminated earth and sand treatment system according to a first embodiment of the present invention.

図1に示す汚染土砂処理システムは、汚染土砂に添加材を混合する自走式土質改良機20と、自走式土質改良機20の排気ガスの二酸化炭素濃度を高める濃縮器30と、自走式土質改良機20で添加材と混合された土砂を二酸化炭素と反応させる反応装置50と、処理対象の土砂を自走式土質改良機20に投入する油圧ショベル等の投入重機(図示せず)とを備えている。濃縮器30や反応装置50は、自走式土質改良機20とは別構成としているが、自走式土質改良機20に搭載しても良い。   The contaminated earth and sand treatment system shown in FIG. 1 includes a self-propelled soil improvement machine 20 that mixes an additive with the contaminated earth and sand, a concentrator 30 that increases the carbon dioxide concentration of exhaust gas from the self-propelled earth improvement machine 20, and a self-propelled machine. Reactor 50 for reacting the earth and sand mixed with the additive with carbon dioxide in the soil type soil conditioner 20 and a loading heavy machine (not shown) such as a hydraulic excavator for throwing the soil to be treated into the self-propelled soil conditioner 20 And. The concentrator 30 and the reaction device 50 are configured separately from the self-propelled soil improvement machine 20, but may be mounted on the self-propelled soil improvement machine 20.

このシステムの土砂及び排気ガスの流れを概説すると、自走式土質改良機20のエンジン27(後の図2参照)から排出された排気ガスは、排気管路1を介して濃縮器30に導かれる。その際、排気管路1の途中に設けた分流器2を介して自走式土質改良機20の排気ガスの一部は大気放出される。分流器2による分流量は調節可能で、排気ガスの大気放出量を調節可能(大気放出側の遮断も可能)とすることが望ましい。自走式土質改良機20の排気ガスに加えて投入重機のエンジンからの排気ガスを濃縮器30に導く場合、投入重機の排気筒を分流器2に別途ホース等で接続し、分流器2を介して投入重機側の排気ガスを排気管路1に合流させる構成とすることができる。   The flow of sediment and exhaust gas in this system will be outlined. Exhaust gas discharged from the engine 27 of the self-propelled soil conditioner 20 (see FIG. 2 below) is led to the concentrator 30 via the exhaust pipe 1. It is burned. At that time, a part of the exhaust gas of the self-propelled soil conditioner 20 is released into the atmosphere through the flow divider 2 provided in the middle of the exhaust pipe 1. It is desirable that the flow rate divided by the flow divider 2 can be adjusted, and the amount of exhaust gas released to the atmosphere can be adjusted (the air emission side can also be shut off). When the exhaust gas from the engine of the input heavy machine is led to the concentrator 30 in addition to the exhaust gas of the self-propelled soil improvement machine 20, the exhaust pipe of the input heavy machine is connected to the flow divider 2 with a separate hose or the like. Thus, the exhaust gas on the input heavy machine side can be joined to the exhaust pipe 1.

濃縮器30では後述するように排気ガスが高濃度二酸化炭素含有気体と低濃度二酸化炭素含有気体とに分離され、前者は排気ガス供給管路3を介して反応装置50に、後者は排気管路4を介して合流器5にそれぞれ導かれる。この合流器5には、排気管路4の他、反応装置50からの排気管路8が接続している。排気ガス供給管路3の途中には合流器6が設けられており、必要な場合にはこの合流器6に二酸化炭素のボンベ7を接続して排気ガス供給管路3に二酸化炭素を追加供給することができる。二酸化炭素を追加供給する場合、ボンベ7の代わりにドライアイスを貯蔵した容器を設け、容器内で昇華した二酸化炭素を合流器6に供給する構成とすることもできる。   In the concentrator 30, as will be described later, the exhaust gas is separated into a high-concentration carbon dioxide-containing gas and a low-concentration carbon dioxide-containing gas. The former is sent to the reactor 50 via the exhaust gas supply pipe 3, and the latter is the exhaust pipe. 4 to the merger 5. In addition to the exhaust pipe 4, an exhaust pipe 8 from the reaction device 50 is connected to the merger 5. A merger 6 is provided in the middle of the exhaust gas supply line 3. When necessary, a carbon dioxide cylinder 7 is connected to the merger 6 and carbon dioxide is additionally supplied to the exhaust gas supply line 3. can do. In the case where carbon dioxide is additionally supplied, a container storing dry ice may be provided instead of the cylinder 7 and the carbon dioxide sublimated in the container may be supplied to the merger 6.

一方、自走式土質改良機20で添加材と混合されて排出された土砂は、反応装置50に供給され、排気ガス供給管路3から導かれた高濃度二酸化炭素含有気体(二酸化炭素濃度が高められた排気ガス)と反応後に排出される。反応装置50の排気は排気管路8を介して合流器5に導かれる。排気管路8には、上流側からブロワ9及び吸着槽10が設けられており、ブロワ9によって反応装置50内の雰囲気を引きて排気管路8の流れを生じさせ、活性炭を有する吸着槽10を通すことで排気管路8を流れる排気中の有害物質を吸着、除去された後、合流器5に送り込む。   On the other hand, the earth and sand discharged by mixing with the additive in the self-propelled soil improvement machine 20 is supplied to the reactor 50, and the high-concentration carbon dioxide-containing gas (carbon dioxide concentration is led from the exhaust gas supply pipe 3). Elevated exhaust gas) and exhausted after reaction. The exhaust gas from the reactor 50 is guided to the merger 5 via the exhaust pipe 8. The exhaust pipe 8 is provided with a blower 9 and an adsorption tank 10 from the upstream side, and the blower 9 draws the atmosphere in the reaction apparatus 50 to generate a flow of the exhaust pipe 8, and the adsorption tank 10 having activated carbon. The harmful substances in the exhaust gas flowing through the exhaust pipe line 8 are adsorbed and removed by passing the gas through the exhaust pipe 8 and then sent to the merger 5.

そして、排気管路8を流通する反応容器51からの排気は、排気管路4を流通する濃縮器30からの低濃度二酸化炭素含有気体と合流器5で合流した後、排気筒11を介して大気に放出される。高濃度二酸化炭素含有気体及び低濃度二酸化炭素含有気体は排気ガス由来で酸素量が少ないので、そのまま大気に放出するとシステム周辺の作業者の酸欠の要因にもなり得るが、このように高濃度二酸化炭素含有気体を最終的に低濃度二酸化炭素含有気体と十分に混合して大気に放出する構成を採ることによって酸欠の発生の可能性は軽減される。   The exhaust gas from the reaction vessel 51 flowing through the exhaust pipe line 8 joins the low-concentration carbon dioxide-containing gas from the concentrator 30 flowing through the exhaust pipe line 4 in the merger 5 and then passes through the exhaust pipe 11. Released into the atmosphere. Since high-concentration carbon dioxide-containing gas and low-concentration carbon dioxide-containing gas are derived from exhaust gas and have a small amount of oxygen, if released into the atmosphere as it is, it may cause oxygen deficiency for workers around the system. The possibility of oxygen deficiency is reduced by adopting a configuration in which the carbon dioxide-containing gas is finally thoroughly mixed with the low-concentration carbon dioxide-containing gas and released to the atmosphere.

続いてシステムを構成する主だった機器の概略構成を順次説明していく。   Next, the schematic configuration of the main devices that make up the system will be described sequentially.

自走式土質改良機20
自走式土質改良機20は、走行体21と、処理対象の土砂を受け入れる土砂受入部22と、土砂に添加材を供給する添加材供給部23と、土砂受入部22からの土砂と添加材供給部23からの添加材とを混合処理する混合部24と、混合部24からの土砂を排出する排出部25と、エンジン27(図2参照)を内蔵する動力装置26とを備えている。
Self-propelled soil improvement machine 20
The self-propelled soil improvement machine 20 includes a traveling body 21, a sediment receiving unit 22 that receives sediment to be treated, an additive supply unit 23 that supplies additive to the sediment, and earth and sand and additive from the sediment receiving unit 22. A mixing unit 24 that mixes the additive from the supply unit 23, a discharge unit 25 that discharges earth and sand from the mixing unit 24, and a power unit 26 that incorporates an engine 27 (see FIG. 2) are provided.

走行体21は、詳細には図示していないが、トラックフレームと、このトラックフレームの一方側(例えば図1中の左側)に設けた従動輪と、トラックフレームの他方側(例えば図1中の右側)に設けた駆動輪と、従動輪及び駆動輪に掛け回した履帯と、トラックフレーム上に設けた本体フレームとを備えている。上記の土砂受入部22、添加材供給部23、混合部24、排出部25及び動力装置26は走行体21の本体フレームによって支持されている。   Although not shown in detail, the traveling body 21 includes a track frame, a driven wheel provided on one side of the track frame (for example, the left side in FIG. 1), and the other side of the track frame (for example, in FIG. 1). A driving wheel provided on the right side), a crawler belt hung around the driven wheel and the driving wheel, and a main body frame provided on the track frame. The earth and sand receiving part 22, the additive supply part 23, the mixing part 24, the discharge part 25 and the power unit 26 are supported by the main body frame of the traveling body 21.

土砂受入部22は、本体フレームの長手方向一方側(例えば図1中の左側)に設けた土砂ホッパと、土砂ホッパの下方から混合部24の土砂の入口まで延在する搬送コンベヤとを備えている。土砂ホッパの上部に土砂から異物を除去する篩装置を設ける場合もある。   The earth and sand receiving unit 22 includes an earth and sand hopper provided on one side in the longitudinal direction of the main body frame (for example, the left side in FIG. 1), and a transport conveyor that extends from the lower side of the earth and sand hopper to the entrance to the earth and sand of the mixing unit 24. Yes. In some cases, a sieving device for removing foreign substances from the earth and sand is provided on the upper part of the earth and sand hopper.

添加材供給部23は、混合部24の上方に配置された添加材ホッパと、添加材ホッパの下部に設けたフィーダとを備えている。添加材ホッパに貯留された添加材がフィーダによって所定量ずつ排出され、土砂受入部22の搬送コンベヤ上の土砂又は混合部24内の土砂に供給される。フィーダには、いわゆるロータリフィーダ(ロータリバルブ)やスクリューフィーダ等が用いられる。ロータリフィーダは、回転軸に複数の隔壁を設けたロータを回転させて隔壁間の各部屋に導入された添加材を落下させるもので、スクリューフィーダは、オーガを回転させて添加材の出口に搬送し排出するものである。スクリューフィーダは、大量の添加材を供給するときに、指令値に対する実際の添加材供給量の誤差がロータリフィーダに比べて少なくなるメリットがある。   The additive supply unit 23 includes an additive hopper disposed above the mixing unit 24 and a feeder provided at a lower portion of the additive hopper. The additive material stored in the additive material hopper is discharged by a predetermined amount by the feeder and supplied to the earth and sand in the transport conveyor of the earth and sand receiving unit 22 or the earth and sand in the mixing unit 24. A so-called rotary feeder (rotary valve), a screw feeder, or the like is used as the feeder. The rotary feeder rotates the rotor with a plurality of partition walls on the rotating shaft to drop the additive material introduced into each room between the partition walls. The screw feeder rotates the auger and conveys it to the outlet of the additive material It will be discharged. The screw feeder has an advantage that, when a large amount of additive material is supplied, the error of the actual additive material supply amount with respect to the command value is smaller than that of the rotary feeder.

混合部24は、回転軸に複数のパドルと取り付けたパドルミキサを有するいわゆるミキシング方式の混合装置で、本体フレームの長手方向の中央部上に設けられている。土砂の入口から導入された土砂と添加材とをパドルミキサで混合しつつパドルミキサの軸方向に移送し、出口から排出する。この混合部は、高速回転するカッタや打撃子で落下中の土砂を添加材とともに解砕し混合するいわゆる解砕方式の混合装置を用いることもできる。   The mixing unit 24 is a so-called mixing-type mixing device having a paddle mixer attached to a rotating shaft with a plurality of paddles, and is provided on a central portion in the longitudinal direction of the main body frame. The earth and sand introduced from the inlet of the earth and sand are mixed in the paddle mixer while being mixed by the paddle mixer and transferred in the axial direction and discharged from the outlet. This mixing unit can also use a so-called crushing type mixing device that crushes and mixes the falling earth and sand together with the additive with a cutter or striker rotating at high speed.

排出部25は、混合部24の出口から排出された土砂を搬送し機外に排出するコンベアで、混合部24の出口の下から先端に向かって上り傾斜を持つように配設されている。本実施の形態では排出部25から排出される土砂は反応装置50に供給される。   The discharge unit 25 is a conveyor that conveys the earth and sand discharged from the outlet of the mixing unit 24 and discharges it to the outside of the machine. The discharge unit 25 is arranged to have an upward slope from below the outlet of the mixing unit 24 toward the tip. In the present embodiment, the earth and sand discharged from the discharge unit 25 is supplied to the reactor 50.

動力装置26は、動力源であるエンジン27(図2、図3参照)の他、エンジン27によって駆動されるポンプや、ポンプから吐出される圧油を機体各部の油圧アクチュエータに切換え供給するコントロールバルブユニット等を内蔵している。   In addition to the engine 27 (see FIGS. 2 and 3) as a power source, the power unit 26 is a control valve that supplies a pump driven by the engine 27 and pressure oil discharged from the pump to a hydraulic actuator in each part of the machine body. Built-in unit.

反応装置50
反応装置50は、自走式土質改良機20で添加材を添加した土砂と濃縮器30で二酸化炭素濃度を高めた排気ガスとを反応させる反応容器51と、排気ガスと反応した土砂を反応容器51外へ排出する排出コンベヤ52とを備えている。反応容器51内の下部には土砂を撹拌する撹拌手段53が設けられている。この撹拌手段53には各種の撹拌装置を用いることができるが、本実施の形態では自走式土質改良機20の混合部24で用いたのと同様のパドルミキサを用いるものとする。パドルミキサの場合、反応容器51内の土砂の下層と上層の天地換えの作用を伴うため、反応容器51内の二酸化炭素との接触効率が良い。
Reactor 50
The reactor 50 includes a reaction vessel 51 for reacting the earth and sand added with the additive in the self-propelled soil improvement machine 20 and the exhaust gas having a higher carbon dioxide concentration in the concentrator 30, and the earth and sand reacted with the exhaust gas in the reaction vessel. 51, and a discharge conveyor 52 for discharging outside. A stirring means 53 for stirring the earth and sand is provided in the lower part of the reaction vessel 51. Various stirring devices can be used for the stirring means 53. In this embodiment, the same paddle mixer as that used in the mixing unit 24 of the self-propelled soil improvement machine 20 is used. In the case of a paddle mixer, the effect of contact with carbon dioxide in the reaction vessel 51 is good because it involves the action of changing the upper and lower layers of the earth and sand in the reaction vessel 51.

反応容器51は、自走式土質改良機20の排出部25、排気ガス供給管路3及び排気管路8の各接続部、並びに土砂の出口を除いて所望の気密性が確保された箱型又は筒型の容器である。排気ガス供給管路3の接続部は、反応容器51のなるべく下方が好ましく、反応容器51内に堆積する土砂の表層よりも低位置が良い。この場合、排気ガス供給管路3を反応容器51の適当な位置に直接接続して反応容器51に排気ガスを送り込む構成とすることもできるし、撹拌手段53の回転軸を外周面に複数の噴気孔を穿設した中空パイプを使用することで、撹拌手段53の回転軸に排気ガス供給管路3を接続し撹拌手段53を介して反応容器51に排気ガスを送り込む構成とすることもできる。前者は反応容器51の側壁に排気ガスの噴き出し穴が設けられるため噴き出し穴が土砂で閉塞し難く、後者は撹拌中の土砂の流れの中に効率的に排気ガスを供給できるのがメリットである。撹拌手段51の回転軸に噴気孔を設ける場合、回転軸内への土砂の浸入を防止するフィルタを噴気孔に設けることもできる。また、本実施の形態では、このように撹拌手段53や排出コンベヤ52を備えた反応容器51を例示しているが、例えば流動層反応器で代替することもできる。   The reaction vessel 51 has a box shape in which desired airtightness is ensured except for the discharge portion 25 of the self-propelled soil improvement machine 20, each connection portion of the exhaust gas supply pipe line 3 and the exhaust pipe line 8, and the outlet of the earth and sand. Or it is a cylindrical container. The connection part of the exhaust gas supply line 3 is preferably as low as possible in the reaction vessel 51, and is preferably positioned lower than the surface layer of earth and sand deposited in the reaction vessel 51. In this case, the exhaust gas supply pipe 3 can be directly connected to an appropriate position of the reaction vessel 51 to send the exhaust gas to the reaction vessel 51, or the rotation shaft of the stirring means 53 can be arranged on the outer peripheral surface. By using a hollow pipe having a blow hole, it is possible to connect the exhaust gas supply pipe 3 to the rotating shaft of the stirring means 53 and send the exhaust gas into the reaction vessel 51 through the stirring means 53. . The former is provided with a discharge hole for exhaust gas on the side wall of the reaction vessel 51, so that the discharge hole is difficult to block with earth and sand, and the latter has an advantage that exhaust gas can be efficiently supplied into the flow of earth and sand during stirring. . When providing the fumarole hole on the rotating shaft of the agitating means 51, a filter for preventing infiltration of earth and sand into the rotating shaft can be provided on the fumarole hole. Moreover, in this Embodiment, although the reaction container 51 provided with the stirring means 53 and the discharge conveyor 52 is illustrated in this way, it can also replace with a fluidized bed reactor, for example.

排出コンベヤ52は、反応容器51の下部に設けられ、反応容器51に堆積する土砂を順次又は一定時間置きに排出する。この排出コンベヤ52の反応容器51との取り合い構造については、反応容器51の下部を開放し反応容器51内の土砂を排出コンベヤ52で受ける構成の他、反応容器51と排出コンベヤ52を別構成にして撹拌手段53から排出された土砂を排出コンベヤ52で受けて搬送する構成が可能である。また、排出コンベヤ52にはベルトコンベヤやスクリュコンベヤを用いることができるが、反応容器51内の土砂を排出コンベヤ52で受ける構成とした場合、ベルトコンベヤに比べてスクリュコンベヤの方が反応容器51の気密性を向上させる上有利であり、スクリュによる撹拌効果が十分な場合には撹拌手段53を省略することもできる。反応容器51内の土砂をスクリュコンベヤで搬送する構成の場合、スクリュコンベヤの回転軸に排気ガス供給管路3を接続し、スクリュコンベヤの回転軸経由で反応容器51内に排気ガスを供給する構成とすることもできる。   The discharge conveyor 52 is provided in the lower part of the reaction container 51, and discharges the sediment deposited in the reaction container 51 sequentially or at regular intervals. As for the structure of the discharge conveyor 52 and the reaction container 51, the lower part of the reaction container 51 is opened and the sediment in the reaction container 51 is received by the discharge conveyor 52, and the reaction container 51 and the discharge conveyor 52 are configured separately. Therefore, it is possible to receive the earth and sand discharged from the stirring means 53 by the discharge conveyor 52 and convey it. In addition, a belt conveyor or a screw conveyor can be used as the discharge conveyor 52, but when the earth and sand in the reaction vessel 51 are received by the discharge conveyor 52, the screw conveyor is more suitable for the reaction vessel 51 than the belt conveyor. This is advantageous for improving airtightness, and the stirring means 53 can be omitted when the stirring effect by the screw is sufficient. In the case where the earth and sand in the reaction vessel 51 are transported by a screw conveyor, the exhaust gas supply pipe 3 is connected to the rotating shaft of the screw conveyor, and the exhaust gas is supplied into the reaction vessel 51 via the rotating shaft of the screw conveyor. It can also be.

濃縮器30
図2は濃縮器30の一構成例の概略構成図である。
Concentrator 30
FIG. 2 is a schematic configuration diagram of a configuration example of the concentrator 30.

本構成例は、膜分離方式を用いて動力装置26からの排気ガスの二酸化炭素濃度を高める例である。この図では排気ガス供給管路3中の合流器6及びブロワ9は図示省略してある。   This configuration example is an example in which the carbon dioxide concentration of the exhaust gas from the power unit 26 is increased using a membrane separation system. In this figure, the merger 6 and the blower 9 in the exhaust gas supply line 3 are not shown.

図2に示した濃縮器30は、自走式土質改良機20からの排気ガス中の塵埃を除去するパーティクルフィルタ31と、排気ガスを圧縮するコンプレッサ32と、圧縮後の排気ガス中の塵埃を更に除去するパーティクルフィルタ33と、排気ガスを乾燥させ排気ガス中の水分を除去するドライヤ34と、排気ガスを高濃度二酸化炭素含有気体及び低濃度二酸化炭素含有気体に分離する高分子中空子膜35とを、排気ガスの流れ方向の上流側からこの順で備えている。   The concentrator 30 shown in FIG. 2 has a particle filter 31 that removes dust in the exhaust gas from the self-propelled soil conditioner 20, a compressor 32 that compresses the exhaust gas, and dust in the compressed exhaust gas. Further, a particle filter 33 to be removed, a dryer 34 for drying the exhaust gas to remove moisture in the exhaust gas, and a polymer hollow membrane 35 for separating the exhaust gas into a high-concentration carbon dioxide-containing gas and a low-concentration carbon dioxide-containing gas. Are provided in this order from the upstream side in the flow direction of the exhaust gas.

高分子中空子膜35で分離された高濃度二酸化炭素含有気体は、二酸化炭素(CO)と酸素(O)が主成分で、排気ガス供給管路3に送られる。高濃度二酸化炭素含有気体の二酸化炭素濃度は後段の消石灰の炭酸化処理の効率を考慮すれば高い程良いが、例えば50%程度でも十分な効果が期待できる。一方の低濃度二酸化炭素含有気体は窒素(N)が主成分で、排気管路4に送られる。また、後段のパーティクルフィルタ33は、前段のパーティクルフィルタ31と同じものでも良いが、パーティクルフィルタ31で除去しきれなかった塵埃を除去するため、本実施の形態ではパーティクルフィルタ31よりも目の小さなものを用いている。 The high-concentration carbon dioxide-containing gas separated by the polymer hollow membrane 35 contains carbon dioxide (CO 2 ) and oxygen (O 2 ) as main components and is sent to the exhaust gas supply pipe 3. The higher the concentration of carbon dioxide in the high-concentration carbon dioxide-containing gas, the better as the efficiency of carbonation treatment of slaked lime in the latter stage is considered. However, for example, a sufficient effect can be expected even at about 50%. One of the low-concentration carbon dioxide-containing gases is mainly composed of nitrogen (N 2 ) and is sent to the exhaust pipe 4. Further, the latter particle filter 33 may be the same as the previous particle filter 31, but in order to remove dust that could not be removed by the particle filter 31, the particle filter 33 having a smaller mesh size than the particle filter 31 in the present embodiment. Is used.

また、図2のように分離膜方式の濃縮器30を用いる場合、自走式土質改良機20の処理系内の土砂又は自走式土質改良機20に投入される前の土砂と接触するように熱交換器36を設け、この熱交換器36を経由して自走式土質改良機20から濃縮器30への排気管路1を配管することが好ましい。自走式処理系内の土砂には、土砂受入部22のホッパ内の土砂、土砂受入部22の搬送コンベヤ上の土砂、混合部24内の土砂、及び排出部25上の土砂が含まれるが、添加材との反応前の低温の土砂が好ましく、その意味では土砂受入部22のホッパ内又は搬送コンベヤ上の土砂が良い。   In addition, when the separation membrane type concentrator 30 is used as shown in FIG. 2, it comes into contact with the earth and sand in the processing system of the self-propelled soil improvement machine 20 or the sand before being put into the self-propelled soil improvement machine 20. It is preferable to provide a heat exchanger 36 and to connect the exhaust pipe 1 from the self-propelled soil conditioner 20 to the concentrator 30 via the heat exchanger 36. The earth and sand in the self-propelled processing system includes earth and sand in the hopper of the earth and sand receiving unit 22, earth and sand on the transport conveyor of the earth and sand receiving unit 22, earth and sand in the mixing unit 24, and earth and sand on the discharge unit 25. The low-temperature earth and sand before the reaction with the additive is preferable. In that sense, the earth and sand in the hopper of the earth-and-sand receiving unit 22 or on the conveyor is good.

このように高分子中空子膜35の上流に排気ガスを土砂と熱交換する熱交換器36を備えることで、処理対象の土砂を加熱(予熱)して汚染物質の浄化効率を高める一方で、高分子中空子膜35に供給される排気ガスを冷却し高分子中空子膜35を熱から保護することができる。   By providing the heat exchanger 36 for exchanging the exhaust gas with the earth and sand upstream of the polymer hollow core membrane 35 in this way, while heating (preheating) the earth and sand to be treated, The exhaust gas supplied to the polymer hollow core membrane 35 can be cooled to protect the polymer hollow core membrane 35 from heat.

図2において、自走式土質改良機20のエンジン27の排気ガスは熱交換器36で土砂によって冷却された後、分流器2を介して全部又は一部が濃縮器30に導入される。濃縮器30に導入された排気ガスは、パーティクルフィルタ31で塵埃を除去されコンプレッサ32で圧縮されて高圧化された後、パーティクルフィルタ33で再度塵埃を除去されてドライヤ34で水分除去される。これらの工程を経た排気ガスは、高分子中空子膜35に高圧で送り込まれ、高分子中空子膜35の分子篩い効果によって高濃度二酸化炭素含有気体と低濃度二酸化炭素含有気体に分けられる。   In FIG. 2, the exhaust gas of the engine 27 of the self-propelled soil improvement machine 20 is cooled by the earth and sand in the heat exchanger 36, and then entirely or partially introduced into the concentrator 30 through the flow divider 2. The exhaust gas introduced into the concentrator 30 is dust-removed by the particle filter 31 and compressed by the compressor 32 to be increased in pressure, and then dust is removed again by the particle filter 33 and water is removed by the dryer 34. The exhaust gas that has undergone these steps is sent to the polymer hollow membrane 35 at a high pressure, and is divided into a high-concentration carbon dioxide-containing gas and a low-concentration carbon dioxide-containing gas by the molecular sieving effect of the polymer hollow membrane 35.

つまり、図2の濃縮器30は、高分子中空子膜35によって排気ガスを低濃度二酸化炭素含有気体と分離することで、排気ガスの二酸化炭素濃度を上げる仕組みである。   That is, the concentrator 30 in FIG. 2 is a mechanism that increases the carbon dioxide concentration of the exhaust gas by separating the exhaust gas from the low-concentration carbon dioxide-containing gas by the polymer hollow membrane 35.

図3は濃縮器30の他の構成例の概略構成図である。   FIG. 3 is a schematic configuration diagram of another configuration example of the concentrator 30.

本構成例は、酸化炭素吸収剤を用いて動力装置26からの排気ガスの二酸化炭素濃度を高める例である。この図では排気ガス供給管路3中の合流器6及びブロワ9は図示省略してある。   This configuration example is an example in which the carbon dioxide concentration of exhaust gas from the power unit 26 is increased using a carbon oxide absorbent. In this figure, the merger 6 and the blower 9 in the exhaust gas supply line 3 are not shown.

図3に示した濃縮器30は、自走式土質改良機20のエンジン27からの排気ガスを冷却する熱交換器37と、排気ガス中の二酸化炭素を吸収する溶液(例えばアミン水溶液)を貯留した吸収塔38と、二酸化炭素を吸収した吸収塔38からの二酸化炭素高含有溶液を加熱する再生塔39と、再生塔39を加熱するヒータ40と、吸収塔38からの二酸化炭素高含有溶液と再生塔39からの二酸化炭素低含有溶液を熱交換する熱交換器41とを備えている。   The concentrator 30 shown in FIG. 3 stores a heat exchanger 37 that cools the exhaust gas from the engine 27 of the self-propelled soil improvement machine 20 and a solution that absorbs carbon dioxide in the exhaust gas (for example, an aqueous amine solution). An absorption tower 38, a regeneration tower 39 for heating a carbon dioxide-rich solution from the absorption tower 38 that has absorbed carbon dioxide, a heater 40 for heating the regeneration tower 39, and a carbon dioxide-rich solution from the absorption tower 38. And a heat exchanger 41 for exchanging heat from the low carbon dioxide content solution from the regeneration tower 39.

図3において、自走式土質改良機20のエンジン27からの排気は、ブロワ42によって排気管路1を流通し、分流器2を介して全部又は一部が濃縮器30に送られる。濃縮器30に供給された排気ガスは、熱交換器37を流通し再生塔39のヒータ40と熱交換して熱を下げた後、吸収塔38に送られてアミン水溶液に二酸化炭素が吸収される。吸収塔38を通過した排気ガスは低濃度二酸化炭素含有気体として排気管路4に送り込まれ、吸収塔38で二酸化炭素を吸収した二酸化炭素高含有溶液は、熱交換器41を通って予熱されて再生塔39に流入する。再生塔39に流入した二酸化炭素高含有溶液はヒータ40によって所望の温度(例えば110−130℃程度)に加熱され、これによって溶液から二酸化炭素を始めとする気体が脱離する。脱離した二酸化炭素を多く含むガスは、高濃度二酸化炭素含有気体として排気ガス供給管路3に送り込まれ、再生塔39で二酸化炭素が脱離された二酸化炭素低含有溶液は、熱交換器41で吸収塔38からの二酸化炭素高含有溶液に熱を与えて吸収塔38に戻る。   In FIG. 3, the exhaust from the engine 27 of the self-propelled soil conditioner 20 is circulated through the exhaust pipe 1 by the blower 42, and all or part of the exhaust is sent to the concentrator 30 via the flow divider 2. The exhaust gas supplied to the concentrator 30 flows through the heat exchanger 37 and exchanges heat with the heater 40 of the regeneration tower 39 to lower the heat, and is then sent to the absorption tower 38 where carbon dioxide is absorbed by the aqueous amine solution. The The exhaust gas that has passed through the absorption tower 38 is sent to the exhaust pipe 4 as a low-concentration carbon dioxide-containing gas, and the carbon dioxide-rich solution that has absorbed carbon dioxide in the absorption tower 38 is preheated through the heat exchanger 41. It flows into the regeneration tower 39. The high carbon dioxide-containing solution that has flowed into the regeneration tower 39 is heated to a desired temperature (for example, about 110 to 130 ° C.) by the heater 40, whereby gas such as carbon dioxide is desorbed from the solution. The gas containing a large amount of desorbed carbon dioxide is fed into the exhaust gas supply pipe 3 as a high-concentration carbon dioxide-containing gas, and the low carbon dioxide-containing solution from which carbon dioxide has been desorbed in the regeneration tower 39 is converted into a heat exchanger 41. Then, heat is applied to the carbon dioxide-rich solution from the absorption tower 38 to return to the absorption tower 38.

つまり、図3の濃縮器30は、吸収塔38を通過した低濃度二酸化炭素含有気体と、再生塔39で加熱されて二酸化炭素高含有溶液から脱離された高濃度二酸化炭素含有気体とに排気ガスを分離する仕組みである。図3では図示省略しているが、図3の濃縮器30からの高濃度二酸化炭素含有気体は排気ガス供給管路3に、低濃度二酸化炭素含有気体は排気管路4にそれぞれ送り込まれ、図2の濃縮器30と同様に流通し最終的に合流して大気放出される。   That is, the concentrator 30 in FIG. 3 exhausts the low-concentration carbon dioxide-containing gas that has passed through the absorption tower 38 and the high-concentration carbon dioxide-containing gas that has been heated in the regeneration tower 39 and desorbed from the high-carbon dioxide content solution. This is a mechanism for separating gases. Although not shown in FIG. 3, the high-concentration carbon dioxide-containing gas from the concentrator 30 in FIG. 3 is sent to the exhaust gas supply pipe 3, and the low-concentration carbon dioxide-containing gas is sent to the exhaust pipe 4. 2 circulates in the same manner as the concentrator 30 and finally joins and is released into the atmosphere.

動作説明
投入重機によって自動式土質改良機20の土砂受入部22のホッパに処理対象の土砂を投入すると、土砂は搬送コンベヤによって混合部24に供給される。その際、土砂には添加材供給装置23から添加材が供給され、混合部24には土砂とともに添加材が供給される。混合部24で添加材と十分に混合された土砂は、排出部25によって搬送され反応装置50の反応容器51に供給される。
Description of Operation When the earth and sand to be treated is introduced into the hopper of the earth and sand receiving unit 22 of the automatic soil improvement machine 20 by the input heavy machine, the earth and sand are supplied to the mixing unit 24 by the transport conveyor. At that time, the additive is supplied from the additive supply device 23 to the earth and sand, and the additive is supplied to the mixing unit 24 together with the earth and sand. The earth and sand sufficiently mixed with the additive in the mixing unit 24 is conveyed by the discharge unit 25 and supplied to the reaction vessel 51 of the reaction apparatus 50.

一方、自走式土質改良機20と投入重機のうち、少なくとも自走式土質改良機20のエンジン27の排気ガスの全部又は一部は、排気管路1を介して濃縮器30に導入され、高濃度二酸化炭素含有気体と低濃度二酸化炭素含有気体に分離する。高濃度二酸化炭素含有気体は、二酸化炭素供給管路3を流通し、必要な場合にはボンベ7からの二酸化炭素と合流した上で反応装置50の反応容器51に供給される。   On the other hand, at least all or part of the exhaust gas of the engine 27 of the self-propelled soil improvement machine 20 among the self-propelled soil improvement machine 20 and the input heavy machine is introduced into the concentrator 30 via the exhaust pipe 1. Separated into high-concentration carbon dioxide-containing gas and low-concentration carbon dioxide-containing gas. The high-concentration carbon dioxide-containing gas flows through the carbon dioxide supply pipe 3 and is supplied to the reaction vessel 51 of the reaction apparatus 50 after merging with carbon dioxide from the cylinder 7 if necessary.

反応容器51では、自走式土質改良機20で添加材と混合された土砂は撹拌手段53でさらに撹拌され、濃縮器30で二酸化炭素濃度が高められた排気ガスと接触して排出コンベヤ52によって反応装置50の外部に排出される。排出された土砂は、所定の場所に集積されて養生される。   In the reaction vessel 51, the earth and sand mixed with the additive in the self-propelled soil conditioner 20 are further stirred by the stirring means 53, and contacted with the exhaust gas whose carbon dioxide concentration is increased by the concentrator 30, and are discharged by the discharge conveyor 52. It is discharged outside the reactor 50. The discharged earth and sand are accumulated and cured at a predetermined place.

反応容器51からの排気は、吸着槽10で有害物質を除去された上で合流器5に導かれ、そこで排気管路4経由で導かれる濃縮器30からの低濃度二酸化炭素含有気体と十分に混合されて大気に放出される。   Exhaust gas from the reaction vessel 51 is guided to the merging device 5 after removing harmful substances in the adsorption tank 10, and is sufficiently supplied with the low-concentration carbon dioxide-containing gas from the concentrator 30 guided through the exhaust pipe 4 there. Mixed and released into the atmosphere.

上記のように、本実施の形態では、浄化対象の汚染物質を含有した土砂が添加材と十分に混合された後、二酸化炭素の濃度の高められた排気ガスと反応する。   As described above, in the present embodiment, after the earth and sand containing the contaminant to be purified is sufficiently mixed with the additive, it reacts with the exhaust gas having an increased concentration of carbon dioxide.

このとき、排気ガス中の二酸化炭素と添加材の消石灰が接触することによって下記の(式1)で表される反応が起こり、反応熱によって土砂の温度が上昇し土砂中の揮発性の汚染物質が土砂から脱離される。
Ca(OH)+CO→CaCO+HO+68.63kj/mol・・・(式1)
反応容器51に導入された二酸化炭素は、(式1)で生成された水に溶解されることもある。
At this time, the carbon dioxide in the exhaust gas comes into contact with the slaked lime of the additive, and the reaction expressed by the following (Equation 1) occurs, the temperature of the earth and sand rises due to the reaction heat, and the volatile pollutants in the earth and sand Is detached from the earth and sand.
Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O + 68.63 kj / mol (Formula 1)
Carbon dioxide introduced into the reaction vessel 51 may be dissolved in the water generated in (Equation 1).

作用効果
自走式土質改良機20や投入重機のエンジン排気ガスの二酸化炭素濃度は1〜15%程度であり、排気ガスの大部分は窒素等の二酸化炭素以外の気体が占めている。そのため、エンジン排気ガスをそのまま消石灰と反応させても、消石灰と二酸化炭素との反応自体は進行するが、反応熱の多くが二酸化炭素以外の気体に伝導し、汚染物質に伝わることなく反応容器外に排出されてしまう恐れがある。
Action Effect The carbon dioxide concentration of the engine exhaust gas of the self-propelled soil improvement machine 20 and the input heavy machine is about 1 to 15%, and most of the exhaust gas is occupied by a gas other than carbon dioxide such as nitrogen. Therefore, even if the engine exhaust gas is allowed to react with slaked lime as it is, the reaction between slaked lime and carbon dioxide proceeds, but most of the reaction heat is transferred to a gas other than carbon dioxide and is not transferred to pollutants. May be discharged.

そこで、本実施の形態では、反応容器51に供給する前に排気ガスの二酸化炭素濃度を上げ、排気ガス中の二酸化炭素以外の成分を減少させておくことで、土砂中の汚染物質に伝導する反応熱の割合を上昇させることができる。このように現場で稼動する機械のエンジン排気ガスに含まれる二酸化炭素を消石灰と反応させ、その反応熱を効率的に汚染土砂に伝導させることで、土砂中の汚染物質の蒸気圧の上昇、粘性の低下、土砂中の微生物活性の効果を得て、土砂から汚染物質を脱離、減少させることができる。   Therefore, in the present embodiment, the carbon dioxide concentration of the exhaust gas is increased before being supplied to the reaction vessel 51, and components other than carbon dioxide in the exhaust gas are reduced, so that they are conducted to pollutants in the earth and sand. The rate of heat of reaction can be increased. In this way, carbon dioxide contained in the engine exhaust gas of machines operating on site reacts with slaked lime, and the reaction heat is efficiently conducted to the contaminated earth and sand, increasing the vapor pressure and viscosity of the pollutants in the earth and sand. The effect of microbial activity in the earth and sand can be obtained, and contaminants can be desorbed and reduced from the earth and sand.

また、エンジン排気ガスに含まれていた二酸化炭素が消石灰と反応することによって固定化されて土砂中に留まるため、大気への二酸化炭素放出量を減少させることができる。したがって、上記のように現場で発生する二酸化炭素を汚染土砂の浄化処理促進に有効利用することができるのみならず、地球温暖化対策としても高い効果が期待できる。   Further, carbon dioxide contained in the engine exhaust gas is fixed by reacting with slaked lime and remains in the earth and sand, so that the amount of carbon dioxide released to the atmosphere can be reduced. Therefore, the carbon dioxide generated in the field as described above can be effectively used for promoting the purification treatment of contaminated earth and sand, and a high effect can be expected as a countermeasure against global warming.

また、自走式土砂改良機20等からの排気ガスの持つ熱で、処理対象の土砂を予熱することで汚染物質の揮発処理を促進することができる。自走式の土質改良機の場合、固定プラント型の土質改良機と比較して、自力走行を可能とするために土砂の受入部、添加材の供給部、混合処理部、混合後の土砂の排出部、及び自己の動力源等を走行体上に搭載しなければならず、各機器は走行体上に密に配置され狭い空間内に土砂及び添加材の流れが生じる。そのため、自走式の土質改良機に本発明を適用することにより、排気ガス等を通す配管経路は短くて良く、排気ガス等の熱を効率的に汚染土砂の浄化処理に役立てることができる。   Moreover, the volatilization process of a pollutant can be accelerated | stimulated by preheating the earth and sand to be processed with the heat which the exhaust gas from self-propelled earth and sand improvement machine 20 grade | etc., Has. In the case of a self-propelled soil conditioner, compared to a fixed plant type soil conditioner, the soil receiving part, the additive supply part, the mixing process part, The discharge unit, its own power source, and the like must be mounted on the traveling body, and each device is densely arranged on the traveling body, and the flow of earth and sand and additive material is generated in a narrow space. Therefore, by applying the present invention to a self-propelled soil improvement machine, the piping path through which the exhaust gas or the like passes may be short, and the heat of the exhaust gas or the like can be effectively used for the purification treatment of the contaminated earth and sand.

さらには、自走式土質改良機20や投入重機は適宜稼動場所を移すため、その排気ガスの熱を有効に利用したり、排気ガスに含まれる二酸化炭素を利用・固定化したりすることはできていなかった。それに対し、本実施の形態では、汚染物質に添加材を混合し炭酸化する作業に適用し、汚染土砂の汚染物質の揮発促進のための熱源として排気ガスを利用することで、移動排出源から排出される熱の利用、二酸化炭素の利用・固定化を同時に行うことができる。また、炭酸化に必要な二酸化炭素の発生源を別途設ける必要がなく、必要な二酸化炭素をシステム内で製造することができるので、システムのコンパクト化の効果も得られる。   Furthermore, since the self-propelled soil improvement machine 20 and the input heavy equipment are moved from time to time, the heat of the exhaust gas can be used effectively, and the carbon dioxide contained in the exhaust gas can be used and fixed. It wasn't. On the other hand, in the present embodiment, it is applied to the work of mixing and carbonating the additive with the pollutant, and by using the exhaust gas as a heat source for promoting the volatilization of the pollutant in the contaminated earth and sand, Utilization of exhausted heat and utilization / immobilization of carbon dioxide can be performed simultaneously. Further, it is not necessary to separately provide a source of carbon dioxide necessary for carbonation, and the necessary carbon dioxide can be produced in the system, so that the effect of making the system compact can also be obtained.

また、図2に示したように排気ガスの二酸化炭素濃度を高めるために高分子中空子膜を利用する場合、排気ガスを高温のまま高分子中空子膜に導入すると高分子中空子膜への熱的影響が懸念される。そのため、高分子中空子膜に導く前に排気ガス等をある程度冷却する必要があるが、高分子中空子膜に導く前の排気ガス等を土砂等と熱交換することによって処理対象土砂の加熱と排気ガス等の冷却を兼ねることができ、排気ガス等の持つ熱を捨てることなく有効に利用することができる。   Also, as shown in FIG. 2, when a polymer hollow membrane is used to increase the carbon dioxide concentration of the exhaust gas, if the exhaust gas is introduced into the polymer hollow membrane at a high temperature, There is concern about thermal effects. Therefore, it is necessary to cool the exhaust gas etc. to some extent before being led to the polymer hollow core membrane, but it is possible to heat the soil to be treated by exchanging heat with the sand etc. before exhausting the polymer hollow core membrane. The exhaust gas can also be cooled and can be used effectively without throwing away the heat of the exhaust gas.

また、反応容器51からの排気には、汚染物質の他に高濃度の二酸化炭素が含まれる可能性がある。汚染物質は吸着槽10で吸着除去されるが、吸着槽10を通過した排気をそのまま大気に放出する場合、システム周辺の酸素濃度が低下することもあり得る。そこで、窒素等が大部分を占める濃縮器30からの低濃度二酸化炭素含有気体と十分に混合した上で反応後の排気を大気に放出することで、この点に対処することができる。   In addition, the exhaust from the reaction vessel 51 may contain a high concentration of carbon dioxide in addition to contaminants. Contaminants are adsorbed and removed in the adsorption tank 10, but if the exhaust gas that has passed through the adsorption tank 10 is released to the atmosphere as it is, the oxygen concentration around the system may be lowered. Therefore, this point can be addressed by thoroughly mixing with the low-concentration carbon dioxide-containing gas from the concentrator 30 in which nitrogen or the like is the majority and then releasing the exhaust gas after the reaction into the atmosphere.

さらに、消石灰と二酸化炭素の反応は、次の(式2)で表される生石灰の水和反応と同程度の発熱量が得られる。
CaO+HO→Ca(OH)+65.15kj/mol・・・(式2)
(式2)の反応熱を汚染土砂の加熱に用いる場合、(式2)の反応を完結させるために生石灰の投入量に対して十分な水が土砂中に存在しないときには、土砂に水を別途供給する必要がある。その結果、(式2)の反応は進行するが、水和反応熱が多量の供給水に伝導してしまい、効率的に土砂が加熱されないことがあった。
Furthermore, the calorific value of the reaction between slaked lime and carbon dioxide is equivalent to the hydration reaction of quick lime represented by the following (Formula 2).
CaO + H 2 O → Ca (OH) 2 +65.15 kj / mol (Formula 2)
When the reaction heat of (Equation 2) is used for heating the contaminated earth and sand, when there is not enough water in the earth and sand for the input of quick lime to complete the reaction of (Equation 2), water is separately added to the earth and sand. It is necessary to supply. As a result, the reaction of (Formula 2) proceeds, but the heat of hydration reaction is conducted to a large amount of feed water, and the earth and sand may not be efficiently heated.

それに対し、上記の(式1)の反応では土砂に加水する必要がないので、反応後の土砂の含水量を抑えることができ、水に奪われる反応熱も少なく抑えることができる。上記の(式1)の反応促進のために極少量の水分が必要な場合もあるが、それは土砂に元々含まれる水分で足りる程度であり、土砂に加水する必要はない。   On the other hand, since it is not necessary to add water to the earth and sand in the reaction of the above (formula 1), the water content of the earth and sand after the reaction can be suppressed, and the reaction heat taken away by the water can be reduced. There may be a case where a very small amount of water is necessary for promoting the reaction of the above (Formula 1), but it is sufficient to have water originally contained in the earth and sand, and it is not necessary to add water to the earth and sand.

<第2の実施の形態>
図4は本発明の第2の実施の形態に係る汚染土砂処理システムの要部構成を表す概念図である。
<Second Embodiment>
FIG. 4 is a conceptual diagram showing the main configuration of a contaminated earth and sand treatment system according to the second embodiment of the present invention.

本実施の形態は、土砂に混合する添加材として生石灰の粉末又は生石灰を主成分とする粉末を用い、生石灰の水和反応によって生じる消石灰を二酸化炭素との反応に利用する例である。添加材には消石灰が含まれていても良い。本実施の形態でも添加材の粒径は小さいほど良い。   This embodiment is an example in which quick lime powder or powder containing quick lime as a main component is used as an additive to be mixed with earth and sand and slaked lime generated by quick lime hydration is used for reaction with carbon dioxide. The additive may contain slaked lime. Also in this embodiment, the smaller the particle size of the additive is, the better.

本実施の形態では、生石灰の添加量に対して土砂中の水分量が少ない場合、加水手段28を適宜設けて水和反応を完結させるために必要な量の水分を添加材又は土砂に加える。加水手段28は、例えば貯水タンクの水を重力又はポンプ等を利用して搬送し散水する構成とすることができる。散水する箇所は土砂受入部22の土砂ホッパ、混合部24の土砂の入口、場合によっては添加材供給装置23の添加材ホッパ等が挙げられるが、本実施の形態では加水手段28を用いて混合部24の入口から土砂に散水する場合を図示している。その他の構成は第1の実施の形態の汚染土砂処理システムと同様であり、土砂、添加材及び排気ガスの流れも第1の実施の形態と同様である。   In the present embodiment, when the amount of water in the earth and sand is small relative to the amount of quicklime added, a water amount 28 is appropriately provided to add an amount of water necessary for completing the hydration reaction to the additive or the earth and sand. The hydration means 28 can be configured, for example, to transport and spray water from a water storage tank using gravity or a pump. Examples of the locations where water is sprayed include the earth and sand hopper of the earth and sand receiving unit 22, the earth and sand inlet of the mixing unit 24, and the additive hopper of the additive material supply device 23 in some cases. The case where water is sprayed from the entrance of the section 24 to the earth and sand is illustrated. Other configurations are the same as those of the contaminated earth and sand treatment system of the first embodiment, and the flows of earth and sand, additives, and exhaust gas are also the same as those of the first embodiment.

本実施の形態の場合、生石灰を土砂と混合することで、土砂中の水分又は加水手段28によって加えた水分と生石灰との水和反応が起こり、上記の(式2)に示したように水和反応熱とともに消石灰が逐次生成される。したがって、添加材と混合した土砂に排気ガスを供給すると、水和反応で生じた消石灰と二酸化炭素とが反応し、上記の(式1)に示したように炭酸カルシウムとともに反応熱が生じる。   In the case of the present embodiment, by mixing quick lime with earth and sand, the hydration reaction between the moisture in earth and sand or the moisture added by the hydration means 28 and quick lime occurs, and water as shown in (Equation 2) above. Slaked lime is produced sequentially with the heat of reaction. Therefore, when exhaust gas is supplied to the earth and sand mixed with the additive, slaked lime generated by the hydration reaction and carbon dioxide react with each other, and reaction heat is generated together with calcium carbonate as shown in the above (Equation 1).

本実施の形態でも、土砂に供給する排気ガスの二酸化炭素濃度を高めておくことによって、二酸化炭素と消石灰の反応熱を効率的に土砂に伝導させることができ、第1の実施の形態と同様の効果を得ることができる。また、生石灰の水和反応熱のみによって汚染土砂を加熱する従来方式の浄化処理に比べ、本実施の形態では二酸化炭素を供給することによって上記の(式1)のように水和反応熱と同等の反応熱をさらに得ることができるので、トータルで同じ発熱量を得るのに必要な生石灰の添加量を削減することができる。また、本実施の形態では生石灰の水和反応熱のみの場合と生成する消石灰の量は同じだが、消石灰から炭酸カルシウムが生成するため、処理後の土砂のpHが高くならないという利点もある。   Also in this embodiment, by increasing the carbon dioxide concentration of the exhaust gas supplied to the earth and sand, the reaction heat of carbon dioxide and slaked lime can be efficiently conducted to the earth and sand, as in the first embodiment. The effect of can be obtained. In addition, compared with the conventional purification process in which the contaminated sediment is heated only by the hydration reaction heat of quicklime, in this embodiment, by supplying carbon dioxide, it is equivalent to the hydration reaction heat as described above (Formula 1). Thus, the amount of quicklime added to obtain the same calorific value in total can be reduced. In the present embodiment, the amount of slaked lime produced is the same as that of only the hydration heat of quick lime, but since calcium carbonate is produced from slaked lime, there is also an advantage that the pH of the soil after the treatment does not increase.

<第3の実施の形態>
図5は本発明の第3の実施の形態に係る汚染土砂処理システムの要部構成を表す概念図である。既述した実施の形態と同様の部分には、既出図面と同符号を付して説明を省略する。
<Third Embodiment>
FIG. 5 is a conceptual diagram showing a main configuration of a contaminated sediment treatment system according to the third embodiment of the present invention. Parts similar to those of the above-described embodiment are denoted by the same reference numerals as those of the above-described drawings, and description thereof is omitted.

本実施の形態は、水等の液体に二酸化炭素を溶解させ、二酸化炭素が濃縮された溶解液を土砂に混合する例である。   The present embodiment is an example in which carbon dioxide is dissolved in a liquid such as water, and a solution in which carbon dioxide is concentrated is mixed with earth and sand.

自走式土質改良機20と、自走式土質改良機20の動力装置26内のエンジン27からの排気ガスを流通する排気管路60と、この排気管路60からの排気ガスの二酸化炭素を溶解させる液体(水等)を貯留するタンク61と、このタンク61からの二酸化炭素溶解液を土砂に供給する溶液供給管路62とを備えている。   The self-propelled soil improvement machine 20, the exhaust pipe 60 that distributes the exhaust gas from the engine 27 in the power unit 26 of the self-propelled soil improvement machine 20, and the carbon dioxide of the exhaust gas from the exhaust pipe 60 A tank 61 for storing a liquid to be dissolved (water or the like) and a solution supply pipe 62 for supplying the carbon dioxide solution from the tank 61 to the earth and sand are provided.

溶液供給管路62は、例えばタンク61の二酸化炭素溶解液を重力搬送し散水する構成とすれば足りるが、必要であればポンプ等でタンク61からの二酸化炭素溶解液を搬送する構成としても良い。二酸化炭素溶解液を散布する箇所は土砂受入部22の土砂ホッパ、混合部24の土砂の入口、場合によっては添加材供給装置23の添加材ホッパ等が挙げられるが、本実施の形態では混合部24の入口から土砂に二酸化炭素溶解液を散布する場合を図示している。また、本実施の形態では、二酸化炭素の濃縮工程で低濃度二酸化炭素含有気体が生じないので、タンク61からの排気管路8の合流器5は省略している。その他の構成は第1又は第2の実施の形態の汚染土砂処理システムと同様である。   For example, the solution supply pipe 62 may be configured such that the carbon dioxide solution in the tank 61 is gravity transported and sprinkled, but if necessary, the carbon dioxide solution from the tank 61 may be transported by a pump or the like. . Locations where the carbon dioxide solution is sprayed include the earth and sand hopper of the earth and sand receiving unit 22, the inlet of earth and sand of the mixing unit 24, and in some cases, the additive hopper of the additive supply device 23 and the like. The case where a carbon dioxide solution is sprayed on earth and sand from 24 entrances is illustrated. In the present embodiment, since the low-concentration carbon dioxide-containing gas is not generated in the carbon dioxide concentration step, the merger 5 in the exhaust pipe line 8 from the tank 61 is omitted. Other configurations are the same as those of the contaminated earth and sand treatment system of the first or second embodiment.

本実施の形態では、土砂に消石灰又は生石灰の少なくともいずれかを含む添加材を汚染土砂に混合する一方で、エンジン27からの排気ガスをタンク61に送り込み、タンク61内の液体に排気ガスの二酸化炭素を溶解させ、二酸化炭素溶解液を土砂に散布する。土砂は添加材及び二酸化炭素溶解液と混合部24で十分に混合され、添加材中の消石灰または生石灰の水和反応により生じた消石灰と二酸化炭素溶解液中の二酸化炭素とが反応し、上記の(式1)の反応熱によって土砂の汚染物質が除去される。添加材に生石灰が含まれていれば、タンク61の液体に水を用いることで、この水を生石灰の水和反応に利用することもできる。   In the present embodiment, the additive containing at least one of slaked lime or quick lime is mixed with the contaminated earth and sand while the exhaust gas from the engine 27 is sent to the tank 61 and the liquid in the tank 61 is discharged with the dioxide dioxide of the exhaust gas. Dissolve carbon and spray carbon dioxide solution on the earth and sand. The earth and sand are sufficiently mixed with the additive and the carbon dioxide solution in the mixing section 24, and the slaked lime in the additive and the slaked lime produced by the hydration reaction of quick lime react with the carbon dioxide in the carbon dioxide solution, Soil contaminants are removed by the reaction heat of (Formula 1). If quick lime is contained in the additive, this water can be used for the hydration reaction of quick lime by using water for the liquid in the tank 61.

本実施の形態によっても、液体に二酸化炭素を溶解させ、二酸化炭素が濃縮された溶液を土砂に供給することで、第1及び第2の実施の形態と同様の効果を得ることができる。また、図2や図3の濃縮器30を用いる場合に比べてシステムを簡略化することができる。   Also according to this embodiment, carbon dioxide is dissolved in a liquid, and the same effect as that of the first and second embodiments can be obtained by supplying a solution in which carbon dioxide is concentrated to earth and sand. Further, the system can be simplified as compared with the case of using the concentrator 30 of FIG. 2 or FIG.

<第4の実施の形態>
図6は本発明の第4の実施の形態に係る汚染土砂処理システムの要部構成を表す概念図である。既述した実施の形態と同様の部分には、既出図面と同符号を付して説明を省略する。
<Fourth embodiment>
FIG. 6 is a conceptual diagram showing the main configuration of a contaminated earth and sand treatment system according to the fourth embodiment of the present invention. Parts similar to those of the above-described embodiment are denoted by the same reference numerals as those of the above-described drawings, and description thereof is omitted.

本実施の形態は、エンジン27の排気ガスを二酸化炭素濃縮前に汚染土砂の加熱源として利用する例である。エンジン27の排熱によって暖められた動力装置26内の雰囲気を排気ガスとともに加熱源として利用することもできる。また、エンジン27の排熱を送る管路を排気ガスの管路と別系統とし、排気ガスはエンジン27からそのまま濃縮器30に送り込み、排熱のみを土砂の加熱に用いることもできる。   The present embodiment is an example in which the exhaust gas of the engine 27 is used as a heating source for contaminated earth and sand before carbon dioxide concentration. The atmosphere in the power unit 26 heated by the exhaust heat of the engine 27 can be used as a heating source together with the exhaust gas. Alternatively, the exhaust pipe of the engine 27 may be sent separately from the exhaust gas pipe, and the exhaust gas may be sent directly from the engine 27 to the concentrator 30 to use only the exhaust heat for heating the earth and sand.

本実施の形態では、土砂受入部22(例えばホッパ内部やホッパ外壁面、又は搬送コンベヤのコンベヤベルトの内側)に設けた熱交換器71と、動力装置26から延びて熱交換器71を通る排気管路1aと、排出部25(例えばコンベヤベルトの内側)に設けた熱交換器72と、動力装置26から延びて熱交換器72を通る排気管路1aと、排気管路1a,1bが合流する合流器73と、合流器73から分流器2を経て濃縮器30に接続する排気管路1cとを備え、第1又は第2の実施の形態の排気管路1を省略した構成である。熱交換器71,72の設置場所は適宜変更可能であり、例えば混合部24のケーシングの中又は外壁面、或いは混合部24のパドルミキサの内部に排気管を通しても良い。その他の構成は第1又は第2の実施の形態と同様であり、エンジン27の排気ガスを液体に溶解させて二酸化炭素を濃縮し消石灰と反応させることで、既述の実施の形態と同様の効果を得ることができる。   In the present embodiment, a heat exchanger 71 provided in the earth and sand receiving unit 22 (for example, inside the hopper, the outer wall surface of the hopper, or the inside of the conveyor belt of the conveyor), and the exhaust gas extending from the power unit 26 and passing through the heat exchanger 71. The pipe 1a, the heat exchanger 72 provided in the discharge unit 25 (for example, the inside of the conveyor belt), the exhaust pipe 1a extending from the power unit 26 and passing through the heat exchanger 72, and the exhaust pipes 1a and 1b merge. And the exhaust pipe 1c connected to the concentrator 30 from the junction 73 via the shunt 2, and the exhaust pipe 1 of the first or second embodiment is omitted. The installation locations of the heat exchangers 71 and 72 can be changed as appropriate. For example, the exhaust pipe may be passed through the inside or outer wall surface of the casing of the mixing unit 24 or inside the paddle mixer of the mixing unit 24. Other configurations are the same as those in the first or second embodiment, and the exhaust gas of the engine 27 is dissolved in a liquid to concentrate carbon dioxide and react with slaked lime, which is the same as in the above-described embodiment. An effect can be obtained.

本実施の形態では、エンジン27の排熱及び排気ガスの少なくとも一方を、混合前の土砂もしくは添加材、又は添加材と混合中もしくは混合後の土砂と熱交換し、それら土砂又は添加材を加熱し、汚染物質の浄化処理をさらに促進する。このようにエンジン27から出た直後の高温の熱を土砂又は添加材に伝導することにより、高効率で土砂又は添加材を加熱することができる。本実施の形態の熱交換器71,72は図2の熱交換器36に相当するが、図3の濃縮器30を用いた場合にも本実施の形態は適用可能である。   In the present embodiment, at least one of the exhaust heat and exhaust gas of the engine 27 is heat-exchanged with the earth or sand before mixing, or the earth or sand during or after mixing with the additive, to heat the earth or additive. And further promote the purification process of pollutants. Thus, by transferring high-temperature heat immediately after exiting the engine 27 to the earth or sand or additive, the earth or sand or additive can be heated with high efficiency. The heat exchangers 71 and 72 of the present embodiment correspond to the heat exchanger 36 of FIG. 2, but the present embodiment can also be applied when the concentrator 30 of FIG. 3 is used.

また、構成をより簡略化する場合、排気管路1a,1bを配管する代わりに、濃縮器30に供給する排気ガス等から一部を分流して汚染土砂又は添加材に直接吹き付ける構成としても良い。また、排気ガス等を添加材ホッパ内の添加材や混合部24内の土砂等、容器内にある状態の土砂又は添加材に直接吹き付けた後、濃縮器30に導く構成とすることもできる。土砂に排気ガス等を吹き付けた後で濃縮器30に導く場合、土砂から脱離した汚染物質が排気ガス等とともに濃縮器30に送り込まれる可能性がある。この場合、汚染物質の濃度が高いと濃縮器30に影響を及ぼす可能性があるため、排気ガス等に混入した汚染物質を何らかの方法(例えば活性炭吸着)によって除去する必要がある。   Further, when the configuration is further simplified, instead of piping the exhaust pipes 1a and 1b, a part of the exhaust gas supplied to the concentrator 30 may be diverted and directly sprayed onto the contaminated earth or additive. . Alternatively, the exhaust gas or the like may be directly blown to the sand or additive in the container such as the additive in the additive hopper or the earth and sand in the mixing unit 24, and then guided to the concentrator 30. When the exhaust gas or the like is blown onto the earth and sand and then guided to the concentrator 30, there is a possibility that contaminants desorbed from the earth and sand are sent into the concentrator 30 together with the exhaust gas and the like. In this case, since the concentration of the pollutant may affect the concentrator 30, it is necessary to remove the pollutant mixed in the exhaust gas or the like by some method (for example, activated carbon adsorption).

<第5の実施の形態>
図7は本発明の第5の実施の形態に係る汚染土砂処理システムの要部構成を表す概念図である。既述した実施の形態と同様の部分には、既出図面と同符号を付して説明を省略する。
<Fifth embodiment>
FIG. 7: is a conceptual diagram showing the principal part structure of the contaminated earth and sand processing system which concerns on the 5th Embodiment of this invention. Parts similar to those of the above-described embodiment are denoted by the same reference numerals as those of the above-described drawings, and description thereof is omitted.

本実施の形態は、第4の実施の形態の概念を第3の実施の形態に組み合わせたもので、エンジン27の排気ガス等をタンク61に供給する前に土砂又は添加材の加熱源として利用する例である。   This embodiment is a combination of the concept of the fourth embodiment and the third embodiment, and is used as a heating source for earth and sand or additives before supplying the exhaust gas of the engine 27 to the tank 61. This is an example.

排気ガス等で加熱する土砂又は添加材は第4の実施の形態と同様、混合前の土砂もしくは添加材、又は添加材と混合中もしくは混合後の土砂のいずれでも良いが、本実施の形態では添加材と混合した後の土砂を排気ガス等で加熱する場合を例示している。すなわち、本実施の形態では、排出部25(例えばコンベヤベルトの内側)に熱交換器75を設け、熱交換器75を経由してタンク61に排気管路60を接続している。その他の構成は第3の実施の形態と同様であり、エンジン27の排気ガスを液体に溶解させて二酸化炭素を濃縮し消石灰と反応させることで、既述の実施の形態と同様の効果を得ることができる。   As in the fourth embodiment, the earth or sand to be heated with exhaust gas or the like may be either earth or sand before mixing, or earth or sand during or after mixing with the additive. The case where the earth and sand after mixing with an additive material is heated with exhaust gas etc. is illustrated. That is, in the present embodiment, the heat exchanger 75 is provided in the discharge unit 25 (for example, inside the conveyor belt), and the exhaust pipe 60 is connected to the tank 61 via the heat exchanger 75. The other configuration is the same as that of the third embodiment, and the same effect as that of the above-described embodiment is obtained by dissolving the exhaust gas of the engine 27 in a liquid to concentrate carbon dioxide and react with slaked lime. be able to.

また、本実施の形態のように、二酸化炭素をタンク61の液体に溶解させて消石灰と反応させる機構では、タンク61に供給する前に排気ガス等を土砂又は添加材と熱交換することで、排気ガス等の熱を高効率で土砂又は添加材に与えることができることに加え、排気ガス等の温度を下げることで液体に溶解させられる二酸化炭素量を増やすことができる。消石灰と二酸化炭素の反応では液体が少ない方が液体に奪われる反応熱が小さくなり、また液体の二酸化炭素濃度が高いほど反応効率が上がるので、液体の二酸化炭素溶解量が増加すれば、それだけ二酸化炭素溶解液を消石灰と混合して土砂を加熱するにあたって有利に作用する。   Further, as in the present embodiment, in the mechanism in which carbon dioxide is dissolved in the liquid in the tank 61 and reacted with slaked lime, the exhaust gas or the like is exchanged with the earth or sand or the additive before being supplied to the tank 61. In addition to being able to apply heat such as exhaust gas to the earth or sand or additive with high efficiency, the amount of carbon dioxide dissolved in the liquid can be increased by lowering the temperature of the exhaust gas or the like. In the reaction between slaked lime and carbon dioxide, the reaction heat absorbed by the liquid decreases with less liquid, and the higher the carbon dioxide concentration in the liquid, the higher the reaction efficiency. It works favorably in heating the earth and sand by mixing the carbon solution with slaked lime.

なお、液体の二酸化炭素溶解度は低温の方が高いことから、二酸化炭素溶解液を土砂に供給する時点では土砂の温度が高いと液体の二酸化炭素溶解量が減少してしまいかねない。したがって、添加材に生石灰が含まれる場合には、混合前の土砂又は添加材を避けて、本実施の形態のように添加材と混合中又は混合後の土砂を排気ガス等で加熱することで、排気ガス等で加熱することによる液体中の二酸化炭素溶解量の低下を抑制することができ、効果的に反応効率を向上させることができる。   Since the solubility of liquid carbon dioxide is higher at low temperatures, the amount of carbon dioxide dissolved in the liquid may decrease if the temperature of the earth and sand is high when the carbon dioxide solution is supplied to the earth and sand. Therefore, when quick lime is included in the additive, avoid the earth or sand before mixing or the earth and sand during or after mixing with the additive as in the present embodiment by heating with exhaust gas or the like. Moreover, the fall of the carbon dioxide dissolution amount in the liquid by heating with exhaust gas etc. can be suppressed, and reaction efficiency can be improved effectively.

本発明の第1の実施の形態に係る汚染土砂処理システムの要部構成を表す概念図である。It is a conceptual diagram showing the principal part structure of the contaminated earth and sand processing system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る汚染土砂処理システムに備えられた濃縮器の一構成例の概略構成図である。It is a schematic block diagram of one structural example of the concentrator with which the contaminated earth and sand treatment system which concerns on the 1st Embodiment of this invention was equipped. 本発明の第1の実施の形態に係る汚染土砂処理システムに備えられた濃縮器の他の構成例の概略構成図である。It is a schematic block diagram of the other structural example of the concentrator with which the contaminated earth and sand treatment system which concerns on the 1st Embodiment of this invention was equipped. 本発明の第2の実施の形態に係る汚染土砂処理システムの要部構成を表す概念図である。It is a conceptual diagram showing the principal part structure of the contaminated earth-and-sand processing system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る汚染土砂処理システムの要部構成を表す概念図である。It is a conceptual diagram showing the principal part structure of the contaminated earth-and-sand processing system which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る汚染土砂処理システムの要部構成を表す概念図である。It is a conceptual diagram showing the principal part structure of the contaminated earth-and-sand processing system which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る汚染土砂処理システムの要部構成を表す概念図である。It is a conceptual diagram showing the principal part structure of the contaminated earth-and-sand processing system which concerns on the 5th Embodiment of this invention.

符号の説明Explanation of symbols

1,1a−c 排気管路
3 排気ガス供給管路
4 排気管路
5 合流器
8 排気管路
11 排気塔
20 自走式土質改良機
21 走行体
22 土砂受入部
23 添加材供給部
24 混合部
25 排出部
26 動力装置
30 濃縮器
35 高分子中空子膜
36 熱交換器
38 吸収塔
39 再生塔
50 反応装置
51 反応容器
60 排気管路
61 タンク
62 溶液供給管路
71,72,75 熱交換器
1, 1a-c Exhaust pipe line 3 Exhaust gas supply line 4 Exhaust line 5 Merger 8 Exhaust line 11 Exhaust tower 20 Self-propelled soil improvement machine 21 Traveling body 22 Sediment receiving part 23 Additive supply part 24 Mixing part 25 Exhaust part 26 Power unit 30 Concentrator 35 Polymer hollow core membrane 36 Heat exchanger 38 Absorption tower 39 Regeneration tower 50 Reactor 51 Reaction vessel 60 Exhaust line 61 Tank 62 Solution supply lines 71, 72, 75 Heat exchanger

Claims (8)

揮発性物質又は油類の少なくとも一方を汚染物質として含有する土砂を浄化処理する汚染土砂処理システムにおいて、
処理対象の土砂を受け入れる土砂受入部と、
消石灰又は生石灰の少なくとも一方を含む添加材を供給する添加材供給部と、
前記土砂受入部からの土砂と前記添加材供給部からの添加材とを混合処理する混合部と、
前記混合部からの土砂を排出する排出部と、
エンジンを内蔵する動力装置と、
前記土砂受入部、前記添加材供給部、前記混合部、前記排出部及び前記動力装置を支持する走行体と、
前記動力装置からの排気ガスの二酸化炭素濃度を高める濃縮手段と、
添加材を添加した土砂と前記濃縮手段で二酸化炭素濃度を高めた排気ガスとを反応させる反応容器と、
前記濃縮手段で二酸化炭素濃度を高めた排気ガスを前記反応容器に供給する排気ガス供給管路と
を備えたことを特徴とする汚染土砂処理システム。
In a contaminated earth and sand treatment system for purifying earth and sand containing at least one of volatile substances or oils as a contaminant,
A sediment receiving section for receiving the sediment to be treated;
An additive supply unit for supplying an additive containing at least one of slaked lime or quicklime;
A mixing unit for mixing and processing the earth and sand from the earth and sand receiving unit and the additive from the additive supply unit;
A discharge unit for discharging earth and sand from the mixing unit;
A power unit with a built-in engine;
A traveling body that supports the earth and sand receiving unit, the additive supply unit, the mixing unit, the discharge unit, and the power unit;
A concentration means for increasing the carbon dioxide concentration of the exhaust gas from the power unit;
A reaction vessel for reacting earth and sand to which an additive has been added and exhaust gas having a carbon dioxide concentration increased by the concentration means;
A polluted earth and sand treatment system, comprising: an exhaust gas supply pipe for supplying exhaust gas whose carbon dioxide concentration is increased by the concentration means to the reaction vessel.
請求項1の汚染土砂処理システムにおいて、前記濃縮手段は、前記排気ガスを高濃度二酸化炭素含有気体及び低濃度二酸化炭素含有気体に分離する高分子中空子膜を有し、該高分子中空子膜によって低濃度二酸化炭素含有気体と分離することで排気ガスの二酸化炭素濃度を上げることを特徴とする汚染土砂処理システム。   2. The contaminated sediment treatment system according to claim 1, wherein the concentrating means includes a polymer hollow membrane that separates the exhaust gas into a high-concentration carbon dioxide-containing gas and a low-concentration carbon dioxide-containing gas. The polluted earth and sand treatment system is characterized by increasing the carbon dioxide concentration of exhaust gas by separating it from gas containing low concentration carbon dioxide. 請求項2の汚染土砂処理システムにおいて、前記高分子中空子膜の上流に排気ガスを土砂と熱交換する熱交換器を備え、該熱交換器によって処理対象の土砂を加熱する一方で前記高分子中空子膜に供給される排気ガスを冷却することを特徴とする汚染土砂処理システム。   The contaminated earth and sand treatment system according to claim 2, further comprising a heat exchanger for exchanging exhaust gas with earth and sand upstream of the polymer hollow core membrane, and heating the earth and sand to be treated by the heat exchanger. A polluted earth and sand treatment system characterized by cooling exhaust gas supplied to a hollow core membrane. 請求項1の汚染土砂処理システムにおいて、
前記濃縮手段は、排気ガス中の二酸化炭素を吸収する溶液を貯留した吸収塔と、二酸化炭素を吸収した吸収塔からの溶液を加熱する再生塔とを有し、吸収塔を通過した低濃度二酸化炭素含有気体と、再生塔で加熱されて溶液から脱離された高濃度二酸化炭素含有気体とに排気ガスを分離することを特徴とする汚染土砂処理システム。
The contaminated sediment treatment system according to claim 1,
The concentration means includes an absorption tower storing a solution that absorbs carbon dioxide in exhaust gas, and a regeneration tower that heats the solution from the absorption tower that absorbs carbon dioxide, and the low-concentration dioxide that has passed through the absorption tower. A polluted earth and sand treatment system characterized in that exhaust gas is separated into a carbon-containing gas and a high-concentration carbon dioxide-containing gas heated in a regeneration tower and desorbed from a solution.
請求項2−4のいずれかの汚染土砂処理システムにおいて、
前記反応容器からの排気を通す第1排気管路と、
前記濃縮手段から前記低濃度二酸化炭素含有気体を通す第2排気管路と、
前記第1及び第2排気管路が接続し、前記反応容器からの排気と前記低濃度二酸化炭素含有気体とが合流する合流器と、
この合流器で混合されたガスを大気放出する排気塔と
を備えたことを特徴とする汚染土砂処理システム。
In the contaminated earth and sand treatment system in any one of Claims 2-4,
A first exhaust line for passing exhaust from the reaction vessel;
A second exhaust pipe for passing the low-concentration carbon dioxide-containing gas from the concentration means;
A merger in which the first and second exhaust pipes are connected, and the exhaust from the reaction vessel and the low-concentration carbon dioxide-containing gas merge;
A polluted earth and sand treatment system comprising an exhaust tower for discharging the gas mixed in the merger to the atmosphere.
揮発性物質又は油類の少なくとも一方を汚染物質として含有する土砂を浄化処理する汚染土砂処理システムにおいて、
処理対象の土砂を受け入れる土砂受入部と、
消石灰又は生石灰の少なくとも一方を含む添加材を供給する添加材供給部と、
前記土砂受入部からの土砂と前記添加材供給部からの添加材とを混合処理する混合部と、
前記混合部からの土砂を排出する排出部と、
エンジンを内蔵する動力装置と、
前記土砂受入部、前記添加材供給部、前記混合部、前記排出部及び前記動力装置を支持する走行体と、
前記動力装置からの排気ガスを流通する排気管路と、
この排気管路からの排気ガスの二酸化炭素を溶解させる液体を貯留するタンクと、
このタンクからの二酸化炭素溶解液を土砂に供給する溶液供給管路と
を備えたことを特徴とする汚染土砂処理システム。
In a contaminated earth and sand treatment system for purifying earth and sand containing at least one of volatile substances or oils as a contaminant,
A sediment receiving section for receiving the sediment to be treated;
An additive supply unit for supplying an additive containing at least one of slaked lime or quicklime;
A mixing unit for mixing and processing the earth and sand from the earth and sand receiving unit and the additive from the additive supply unit;
A discharge unit for discharging earth and sand from the mixing unit;
A power unit with a built-in engine;
A traveling body that supports the earth and sand receiving unit, the additive supply unit, the mixing unit, the discharge unit, and the power unit;
An exhaust pipe through which exhaust gas from the power unit flows;
A tank for storing a liquid that dissolves carbon dioxide in the exhaust gas from the exhaust pipe;
A contaminated sediment treatment system comprising a solution supply pipe for supplying carbon dioxide solution from the tank to the sediment.
請求項1−6のいずれかの汚染土砂処理システムにおいて、混合前の土砂もしくは添加材、又は添加材と混合中もしくは混合後の土砂を、前記動力装置の排熱及び排気ガスの少なくとも一方で加熱する手段をさらに備えたことを特徴とする汚染土砂処理システム。   The contaminated earth and sand treatment system according to any one of claims 1 to 6, wherein the earth or sand before mixing or the earth and sand during or after mixing with the additive is heated by at least one of exhaust heat and exhaust gas of the power unit. Contaminated earth and sand treatment system, further comprising means for 請求項1−7のいずれかの汚染土砂処理システムにおいて、
処理対象の土砂を前記土砂受入部に投入する投入重機と、
この投入重機の動力装置からの排気ガスを前記濃縮手段に供給する管路と
をさらに備えたことを特徴とする汚染土砂処理システム。
In the contaminated earth and sand treatment system in any one of Claims 1-7,
An input heavy machine that inputs the earth and sand to be treated into the earth and sand receiving part;
A polluted earth and sand treatment system, further comprising a pipe for supplying exhaust gas from the power unit of the input heavy machine to the concentrating means.
JP2008334946A 2008-12-26 2008-12-26 System for treating contaminated earth and sand Pending JP2010155214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008334946A JP2010155214A (en) 2008-12-26 2008-12-26 System for treating contaminated earth and sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008334946A JP2010155214A (en) 2008-12-26 2008-12-26 System for treating contaminated earth and sand

Publications (1)

Publication Number Publication Date
JP2010155214A true JP2010155214A (en) 2010-07-15

Family

ID=42573521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008334946A Pending JP2010155214A (en) 2008-12-26 2008-12-26 System for treating contaminated earth and sand

Country Status (1)

Country Link
JP (1) JP2010155214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200030507A (en) * 2017-07-19 2020-03-20 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 Use of type V adsorbents and gas concentrations for CO2 adsorption and capture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200030507A (en) * 2017-07-19 2020-03-20 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 Use of type V adsorbents and gas concentrations for CO2 adsorption and capture
KR102524769B1 (en) 2017-07-19 2023-04-25 엑손모빌 테크놀로지 앤드 엔지니어링 컴퍼니 Uses of Type V adsorbents and gas concentrators for CO2 adsorption and capture

Similar Documents

Publication Publication Date Title
JP7005166B2 (en) Equipment and methods for evaporating wastewater and reducing acid gas emissions
JP6852958B2 (en) Devices and methods for evaporating wastewater and reducing acidic gas emissions
ES2608671T3 (en) Exhaust gas treatment system and exhaust gas treatment method
CN103429317B (en) NO in reduction wet flue gasxequipment and system
ES2466349T3 (en) Procedure to reduce the formaldehyde content of a gas
CN107617317A (en) A kind of ultra-clean cleaning system of flue gas
CN105080332A (en) Resource utilization system for pellet sintering waste gas and method
CN104736224B (en) Exhaust gas processing device and exhaust gas processing method
EP3514219B1 (en) Coal ash treatment system and method
CN107530622A (en) The processing of exhaust from clinker production
JP2007039296A (en) Method and system for treating exhaust gas in cement manufacturing plant
CN107954565A (en) A kind of chemical-industrial emissions total system
SU1729278A3 (en) Device for catalytic-gas refining of furnace installations of @@@ in presence of @@@
JP3477577B2 (en) Method and apparatus for removing harmful substances, especially dioxins
CN204952658U (en) Sintering pelletizing flue gas resource system
JP2010155214A (en) System for treating contaminated earth and sand
CN104180376B (en) A kind of incineration treatment of garbage technique
US7854789B1 (en) System and process for controlling pollutant emissions in a cement production facility
CN111112320A (en) Vehicle-mounted ectopic direct thermal desorption system and application method thereof
CN103747851A (en) Method and system for nox reduction in flue gas
JP2011036801A (en) Gas treatment apparatus
CN111217511B (en) Sludge drying device
JP2005296870A (en) Detoxification method of contaminant of dioxins
CN104353340B (en) Gas cleaning after a kind of sludge incineration and reuse method and equipment thereof
JP4431025B2 (en) Organohalogen compound processing apparatus and processing method thereof