JP2010153649A - Cyclosiloxane composition and thin film - Google Patents

Cyclosiloxane composition and thin film Download PDF

Info

Publication number
JP2010153649A
JP2010153649A JP2008331171A JP2008331171A JP2010153649A JP 2010153649 A JP2010153649 A JP 2010153649A JP 2008331171 A JP2008331171 A JP 2008331171A JP 2008331171 A JP2008331171 A JP 2008331171A JP 2010153649 A JP2010153649 A JP 2010153649A
Authority
JP
Japan
Prior art keywords
film
film formation
polymerization
composition
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008331171A
Other languages
Japanese (ja)
Inventor
Kazuhisa Kono
和久 河野
Teppei Hayakawa
哲平 早川
Kensho Oshima
憲昭 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008331171A priority Critical patent/JP2010153649A/en
Publication of JP2010153649A publication Critical patent/JP2010153649A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition with which stable film formation can be performed by adding a suitable polymerization inhibitor or polymerization retarder to a precursor which is used for a pore-in-molecule precursor process and to which a polymerization group is bonded, especially, a vinyl group bonded type cyclotrisiloxane. <P>SOLUTION: A thin film is formed by a PECVD method etc., using, as a raw material, a cyclosiloxane composition comprising a cyclosiloxane compound expressed by general formula (1) (where R represents an alkyl group of a straight chain or branch chain with C1-3, and (n) represents 3 or 4) and a nitrone derivative or nitroxide radical derivative. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、環状シロキサン組成物およびそれから製造される薄膜に関するものである。   The present invention relates to cyclic siloxane compositions and thin films made therefrom.

近年の半導体素子の高集積化に伴い、LSI配線として従来のAlから低抵抗でマイグレーション耐性に優れるCuが用いられるようになり、一方で層間絶縁膜としては従来の酸化シリコン膜(SiO膜)から、より低誘電率の層関絶縁膜(Low−k膜)が検討されている。 With the recent high integration of semiconductor elements, Cu, which has low resistance and excellent migration resistance, has been used as an LSI wiring from conventional Al, while a conventional silicon oxide film (SiO 2 film) is used as an interlayer insulating film. Therefore, a layered dielectric film (Low-k film) having a lower dielectric constant has been studied.

現在層間絶縁膜の形成方法としては、プラズマ化学気相成長法(PECVD法)が主に用いられているが、組成制御が容易で低k値が実現できることから塗布法も盛んに検討されている。しかし、塗布法は成膜工程において基本的に多工程を要し、PECVD法が基本的に1工程なのに比べて工程が長く、生産性に劣ることから依然としてPECVD法が主流である。   Currently, the plasma chemical vapor deposition method (PECVD method) is mainly used as a method for forming an interlayer insulating film. However, since the composition control is easy and a low k value can be realized, a coating method is also actively studied. . However, the coating method basically requires multiple steps in the film forming step, and the PECVD method is still mainstream because the PECVD method is basically one step and the process is long and inferior in productivity.

低k値実現に向けた取り組みとして、ポロジェンと呼ばれる低分子量有機化合物を成膜前駆体(プレカーサー)と混合した材料を用いて成膜し、後処理でポロジェンを除去することにより膜中に空孔(ポア)を形成する方法(ポロジェンプロセス)と、分子内ポアを有するプレカーサーを用いてPECVD成膜する方法(分子内ポア前駆体プロセス)が主に検討されている。ポロジェンプロセスは多工程を必要とし、生産性の面で不利なだけでなく、形成されるポアに起因する吸湿性の問題がある。一方、分子内ポア前駆体プロセスは工程が短いだけでなく、分子内ポアは水分子よりも小さいことから吸湿性に優れている点で優位であると考えられる。分子内にポアを有するプレカーサーはポアを構成する為に骨組みとなる原子を多く必要とすることから比較的大きな分子量となり、テトラエトキシシラン(TEOS)などに比べて蒸気圧が低くなった結果、成膜速度が低下するという欠点があった。これまでに環状シロキサンを分子内ポア前駆体として用いて低k値成膜の検討がなされているが、蒸気圧が低い環状シロキサン化合物に重合基であるビニル基を結合させることで成膜速度を速くすることに成功している(例えば特許文献1参照)。   As an effort to achieve a low k value, film formation is performed using a material in which a low-molecular-weight organic compound called porogen is mixed with a film-forming precursor (precursor), and pores are removed in the film by removing the porogen in post-processing. A method of forming (pores) (a porogen process) and a method of forming a PECVD film using a precursor having an intramolecular pore (intramolecular pore precursor process) are mainly studied. The porogen process requires multiple steps and is not only disadvantageous in terms of productivity, but also has a problem of hygroscopicity due to the pores formed. On the other hand, it is considered that the intramolecular pore precursor process is advantageous not only in that the process is short, but also because the intramolecular pore is smaller than the water molecule and is excellent in hygroscopicity. Precursors having pores in the molecule require a relatively large molecular weight because they require a large number of atoms that form a framework to form the pores. As a result, the vapor pressure is lower than that of tetraethoxysilane (TEOS). There was a drawback that the film speed decreased. So far, low-k film formation has been studied using cyclic siloxane as an intramolecular pore precursor, but the film formation speed can be increased by bonding a vinyl group which is a polymer group to a cyclic siloxane compound having a low vapor pressure. It has succeeded in speeding up (for example, refer patent document 1).

特開2005−51192号公報JP 2005-51192 A

分子内ポア前駆体プロセスでは重合基などを用いて成膜速度を速くする必要性がある。ビニル基などの重合基は成膜速度が速くなるという利点がある一方で、保存条件下において徐々に重合して高分子量の重合物を生成し、プレカーサーが経時変化するとともに安定した成膜が出来ず、また成膜装置ラインが閉塞するなどの可能性があり、重合を抑制するための工夫が待ち望まれていた。本発明は分子内ポア前駆体プロセスに用いられる、重合基の結合したプレカーサーにおいて、適切な重合禁止剤または重合抑制剤を添加することにより、安定した成膜を可能にする組成物を提供することを目的とする。   In the intramolecular pore precursor process, it is necessary to increase the film formation rate using a polymerized group or the like. While polymerized groups such as vinyl groups have the advantage of increasing the film formation rate, they gradually polymerize under storage conditions to produce high molecular weight polymers, and stable film formation is possible as the precursor changes over time. In addition, there is a possibility that the film forming apparatus line is blocked, and a device for suppressing polymerization has been desired. The present invention provides a composition that enables stable film formation by adding an appropriate polymerization inhibitor or polymerization inhibitor to a precursor having a polymerized group, which is used in an intramolecular pore precursor process. With the goal.

本発明者らは先の課題を解決すべく鋭意検討を重ねた結果、ビニル基の結合した環状シロキサン化合物に対してニトロン誘導体またはニトロキシドラジカル誘導体を添加することにより、成膜特性に影響することなく上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have added a nitrone derivative or a nitroxide radical derivative to a cyclic siloxane compound having a vinyl group bonded thereto, without affecting the film forming characteristics. The present inventors have found that the above problems can be solved and have completed the present invention.

すなわち本発明は、一般式(1)   That is, the present invention relates to the general formula (1)

Figure 2010153649
(式中、Rは炭素数1〜3の直鎖または分岐鎖のアルキル基を示し、nは3または4を示す)で表される環状シロキサン化合物、およびニトロン誘導体またはニトロキシドラジカル誘導体から成ることを特徴とする、環状シロキサン組成物である。また本発明は、この組成物を原料として製造されることを特徴とする薄膜である。以下、本発明をさらに詳細に説明する。
Figure 2010153649
(Wherein R represents a linear or branched alkyl group having 1 to 3 carbon atoms, and n represents 3 or 4), and a nitrone derivative or a nitroxide radical derivative. A cyclic siloxane composition is characterized. Moreover, this invention is a thin film characterized by being manufactured using this composition as a raw material. Hereinafter, the present invention will be described in more detail.

本発明中、一般式(1)で表される環状シロキサン化合物において、Rは炭素数1〜3の直鎖または分岐鎖のアルキル基を示し、具体的にはメチル基、エチル基、ノルマルプロピル基、イソプロピル基を示す。また、一般式(1)におけるnは3または4を示す。nが2の化合物は置換基Rを大きくした合成例があるものの、熱安定性が極端に悪くなることから材料として不適であることから本発明の範囲外である。また、nが5以上になると分子量の上昇に伴い蒸気圧が低下して、結果的に成膜速度が減少することから本発明の範囲外である。本発明において、一般式(1)で表される環状シロキサン化合物としては、好ましくはR=メチル基かつn=3または4で表される化合物、またはR=イソプロピル基かつn=3で表される化合物である。   In the present invention, in the cyclic siloxane compound represented by the general formula (1), R represents a linear or branched alkyl group having 1 to 3 carbon atoms, specifically a methyl group, an ethyl group, or a normal propyl group. Represents an isopropyl group. In the general formula (1), n represents 3 or 4. A compound in which n is 2 is outside the scope of the present invention because it has a synthesis example in which the substituent R is increased, but is unsuitable as a material due to extremely poor thermal stability. On the other hand, when n is 5 or more, the vapor pressure decreases as the molecular weight increases, and as a result, the film formation rate decreases, which is outside the scope of the present invention. In the present invention, the cyclic siloxane compound represented by the general formula (1) is preferably a compound represented by R = methyl group and n = 3 or 4, or R = isopropyl group and n = 3. A compound.

重合禁止剤としてはフェノール誘導体、ニトロン誘導体、ニトロキシドラジカル誘導体、その他各種金属塩が考えられるが、金属塩は低誘電率層間絶縁膜を成膜する上で誘電率の上昇やリーク電流の原因となるため本発明には好ましくない。また本発明においてはプレカーサーおよび重合禁止剤は不活性雰囲気下で使用されることから、酸素共存下で効力が増進されるフェノール系も好ましくない。そのため本発明で重合禁止剤として用いられるのは、ニトロン誘導体またはニトロキシドラジカル誘導体である。   As polymerization inhibitors, phenol derivatives, nitrone derivatives, nitroxide radical derivatives, and various other metal salts can be considered, but metal salts cause an increase in dielectric constant and leakage current in forming a low dielectric constant interlayer insulating film. Therefore, it is not preferable for the present invention. In the present invention, since the precursor and the polymerization inhibitor are used in an inert atmosphere, a phenolic system whose efficacy is enhanced in the presence of oxygen is also not preferable. Therefore, a nitrone derivative or a nitroxide radical derivative is used as a polymerization inhibitor in the present invention.

ニトロン誘導体の具体的な例としては、ニトロメタン、2−メチル−2−ニトロソプロパン、α−フェニル(ターシャリブチル)ニトロン、5,5−ジメチル−1−ピロリン−1−オキシド、N−ニトロソ−N−フェニルヒドロキシルアミンアンモニウム塩等を挙げることが出来るが特に限定するものではない。本発明で重合禁止剤として用いられるニトロキシドラジカル誘導体としては2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカル、1,1,3,3−テトラメチルイソインドリン−N−オキシル等をあげることが出来るが特に限定するものではない。この中でも、特に2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカルまたは1,1,3,3−テトラメチルイソインドリン−N−オキシルが好ましい。重合禁止剤の濃度としては特に規定しないが、1ppmでも効果があり、濃度の上昇と伴に重合抑制の効果が増大していく。濃度が高すぎると成膜後の膜特性に影響がでることが懸念されるが、100ppmにおいても比誘電率等の膜特性に悪影響は認められなかった。このため重合禁止剤の濃度は0.01−10000ppmが好ましく、重合禁止剤の効果と成膜時の影響を考慮すると0.1−1000ppmがさらに好ましい。   Specific examples of nitrone derivatives include nitromethane, 2-methyl-2-nitrosopropane, α-phenyl (tertiarybutyl) nitrone, 5,5-dimethyl-1-pyrroline-1-oxide, and N-nitroso-N. -Phenylhydroxylamine ammonium salt etc. can be mentioned, However It does not specifically limit. Nitroxide radical derivatives used as polymerization inhibitors in the present invention include 2,2,6,6-tetramethyl-1-piperidinyloxy radical, 1,1,3,3-tetramethylisoindoline-N-oxyl, etc. There is no particular limitation. Among these, 2,2,6,6-tetramethyl-1-piperidinyloxy radical or 1,1,3,3-tetramethylisoindoline-N-oxyl is particularly preferable. The concentration of the polymerization inhibitor is not particularly defined, but even 1 ppm is effective, and as the concentration increases, the polymerization suppression effect increases. If the concentration is too high, there is a concern that the film characteristics after film formation will be affected, but no adverse effect was observed on the film characteristics such as the relative dielectric constant even at 100 ppm. For this reason, the concentration of the polymerization inhibitor is preferably from 0.01 to 10000 ppm, and more preferably from 0.1 to 1000 ppm in consideration of the effect of the polymerization inhibitor and the influence during film formation.

本発明の組成物を原料とすることにより薄膜を製造することができる。このときの成膜法には特に限定はないが、例えば塗布法、PECVD法などがあげられるが、特にPECVD法が好ましい。得られた薄膜は低誘電率を示す誘電体薄膜として利用することができる。   A thin film can be produced by using the composition of the present invention as a raw material. The film forming method at this time is not particularly limited, and examples thereof include a coating method and a PECVD method, but the PECVD method is particularly preferable. The obtained thin film can be used as a dielectric thin film exhibiting a low dielectric constant.

本発明は、上述のように一般式(1)で表される環状シロキサン化合物にニトロン誘導体またはニトロキシドラジカル誘導体を共存させることにより、当該環状シロキサン化合物の安定性を向上させるものである。従って本発明の組成物を用いて成膜を行う場合には、重合基を有するプレカーサーの安定性を向上させることができる。また、工業生産での成膜を行うに際して本発明の組成物を用いることにより、プレカーサーを安定して供給することが可能となり、生産性が著しく向上する効果がある。また本発明の組成物を原料として製造された薄膜には膜特性に悪影響は認められず、低誘電率を示す誘電体薄膜として利用することができる。   In the present invention, the stability of the cyclic siloxane compound is improved by allowing the cyclic siloxane compound represented by the general formula (1) to coexist with a nitrone derivative or a nitroxide radical derivative as described above. Therefore, when film formation is performed using the composition of the present invention, the stability of the precursor having a polymerization group can be improved. In addition, by using the composition of the present invention at the time of film formation in industrial production, it becomes possible to stably supply a precursor, and there is an effect that productivity is remarkably improved. In addition, the thin film produced using the composition of the present invention as a raw material has no adverse effect on the film properties, and can be used as a dielectric thin film exhibiting a low dielectric constant.

以下、本発明を実施例によりさらに詳細に説明する。ただし、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1) 2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカルを100ppm添加した2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンの加速重合
2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカルを100ppm添加した2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサン2.0gをナスフラスコに量り取り、アルゴン雰囲気下、190℃6時間、160℃12時間、140℃24時間でそれぞれ加熱攪拌し、加速重合サンプルとした。熱重量分析にて重量減少を測定した。2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンは加熱により気化するが、重合すると気化せず容器に残存する。そのため2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンの気化分を未重合分(%)とし、未気化分を重合分(%)とした。結果を表1に示す。
(Example 1) Accelerated polymerization of 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane added with 100 ppm of 2,2,6,6-tetramethyl-1-piperidinyloxy radical Weigh 2.0 g of 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane added with 100 ppm of 2,2,6,6-tetramethyl-1-piperidinyloxy radical into an eggplant flask. The sample was heated and stirred in an argon atmosphere at 190 ° C. for 6 hours, 160 ° C. for 12 hours, and 140 ° C. for 24 hours to obtain an accelerated polymerization sample. Weight loss was measured by thermogravimetric analysis. 2,4,6-Triisopropyl-2,4,6-trivinylcyclotrisiloxane is vaporized by heating, but does not vaporize when polymerized and remains in the container. Therefore, the vaporized content of 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane was defined as unpolymerized content (%), and the unvaporized content was defined as polymerized content (%). The results are shown in Table 1.

Figure 2010153649
(実施例2) 2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカルを10ppm添加した2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンの加速重合
2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカルを10ppm添加した2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサン2.0gをナスフラスコに量り取り、アルゴン雰囲気下、190℃2時間、170℃5時間、140℃18時間でそれぞれ加熱攪拌し、加速重合サンプルとした。熱重量分析にて重量減少を測定し、2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンの気化分を未重合分(%)とし、未気化分を重合分(%)とした。結果を表2に示す。
Figure 2010153649
Example 2 Accelerated polymerization of 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane to which 10 ppm of 2,2,6,6-tetramethyl-1-piperidinyloxy radical was added Weigh 2.0 g of 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane added with 10 ppm of 2,2,6,6-tetramethyl-1-piperidinyloxy radical into an eggplant flask. The sample was heated and stirred in an argon atmosphere at 190 ° C. for 2 hours, 170 ° C. for 5 hours, and 140 ° C. for 18 hours to obtain an accelerated polymerization sample. The weight loss was measured by thermogravimetric analysis, and the vaporized content of 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane was defined as the unpolymerized content (%), and the unvaporized content was determined as the polymerized content ( %). The results are shown in Table 2.

Figure 2010153649
(実施例3) 2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカルを1ppm添加した2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンの加速重合
2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカルを1ppm添加した2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサン2.0gをナスフラスコに量り取り、アルゴン雰囲気下、190℃2時間、150℃4時間、130℃18時間、110℃24時間でそれぞれ加熱攪拌し、加速重合サンプルとした。熱重量分析にて重量減少を測定し、2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンの気化分を未重合分(%)とし、未気化分を重合分(%)とした。結果を表3に示す。
Figure 2010153649
(Example 3) Accelerated polymerization of 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane added with 1 ppm of 2,2,6,6-tetramethyl-1-piperidinyloxy radical Weigh 2.0 g of 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane added with 1 ppm of 2,2,6,6-tetramethyl-1-piperidinyloxy radical into an eggplant flask. The sample was heated and stirred at 190 ° C. for 2 hours, 150 ° C. for 4 hours, 130 ° C. for 18 hours, and 110 ° C. for 24 hours to obtain an accelerated polymerization sample. The weight loss was measured by thermogravimetric analysis, and the vaporized content of 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane was defined as the unpolymerized content (%), and the unvaporized content was determined as the polymerized content ( %). The results are shown in Table 3.

Figure 2010153649
(比較例1) 重合禁止剤を添加しない場合の2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンの加速重合
重合禁止剤を添加していない2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサン2.0gをナスフラスコに量り取り、アルゴン雰囲気下、180℃2時間、160℃2時間、140℃4時間、120℃6時間、100℃24時間でそれぞれ加熱攪拌し、加速重合サンプルとした。熱重量分析にて重量減少を測定し、2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンの気化分を未重合分(%)とし、未気化分を重合分(%)とした。結果を表4に示す。
Figure 2010153649
(Comparative Example 1) Accelerated polymerization of 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane without addition of polymerization inhibitor 2,4,6-without addition of polymerization inhibitor 2.0 g of triisopropyl-2,4,6-trivinylcyclotrisiloxane was weighed into an eggplant flask, 180 ° C. 2 hours, 160 ° C. 2 hours, 140 ° C. 4 hours, 120 ° C. 6 hours, 100 ° C. in an argon atmosphere. Each sample was heated and stirred for 24 hours to obtain an accelerated polymerization sample. The weight loss was measured by thermogravimetric analysis, and the vaporized content of 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane was defined as the unpolymerized content (%), and the unvaporized content was determined as the polymerized content ( %). The results are shown in Table 4.

Figure 2010153649
(実施例4) 2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカルを100ppm添加した2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンを原料として用いたPECVD成膜
図1に示す、平行平板容量結合型PECVD装置を用い、チャンバー内に原料を設置して真空ポンプで減圧し、原料の蒸気圧のみで原料を供給する簡易な方法で成膜を検討した。2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカルを100ppm添加した、2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンを原料として室温で成膜を行った。原料圧力12.5Pa、RF電源周波数13.56MHz、RF電源出力30W、成膜時間34分、成膜を行った結果、膜厚1965nm、成膜速度57.8nm/minで得られた膜の比誘電率(k値)は3.31であった。
Figure 2010153649
Example 4 Using 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane added with 100 ppm of 2,2,6,6-tetramethyl-1-piperidinyloxy radical as a raw material Using PECVD film formation as shown in Fig. 1, using a parallel plate capacitively coupled PECVD apparatus, a raw material is placed in a chamber, depressurized by a vacuum pump, and formed by a simple method of supplying the raw material only by the vapor pressure of the raw material. It was investigated. Film formation at room temperature using 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane with 100 ppm 2,2,6,6-tetramethyl-1-piperidinyloxy radical added Went. Ratio of films obtained at a film thickness of 1965 nm and a film formation speed of 57.8 nm / min as a result of film formation at a source pressure of 12.5 Pa, an RF power frequency of 13.56 MHz, an RF power output of 30 W, and a film formation time of 34 minutes. The dielectric constant (k value) was 3.31.

(比較例2) 重合禁止剤を添加しない場合の2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンを原料として用いたPECVD成膜
図1に示す、平行平板容量結合型PECVD装置を用い、チャンバー内に原料を設置して真空ポンプで減圧し、原料の蒸気圧のみで原料を供給する簡易な方法で成膜を検討した。重合禁止剤を添加していない2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンを原料として室温で成膜を行った。原料圧力14Pa、RF電源周波数13.56MHz、RF電源出力30W、成膜時間43分、成膜を行った結果、膜厚2212nm、成膜速度51.4nm/minで得られた膜の比誘電率(k値)は3.37であった。
(Comparative Example 2) PECVD film formation using 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane as a raw material when no polymerization inhibitor is added Parallel plate capacitive coupling shown in FIG. Using a PECVD apparatus, the raw material was placed in a chamber, depressurized with a vacuum pump, and film formation was studied by a simple method of supplying the raw material only by the vapor pressure of the raw material. Film formation was performed at room temperature using 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane without addition of a polymerization inhibitor as a raw material. The relative dielectric constant of the film obtained at a film thickness of 2212 nm and a film formation speed of 51.4 nm / min as a result of film formation with a raw material pressure of 14 Pa, an RF power supply frequency of 13.56 MHz, an RF power output of 30 W, and a film formation time of 43 minutes. The (k value) was 3.37.

実施例4、比較例2で用いたPECVD成膜装置の概略図である。It is the schematic of the PECVD film-forming apparatus used in Example 4 and Comparative Example 2.

符号の説明Explanation of symbols

1.PECVDチャンバー
2.基板
3.上部電極
4.下部電極
5.原料ガラス容器
6.原料
7.真空ポンプ
8.マッチング回路
9.RF電源
10.アース
1. PECVD chamber Substrate 3. Upper electrode 4. Lower electrode 5. Raw material glass container 6. Raw material 7. Vacuum pump 8. 8. Matching circuit RF power supply 10. Earth

Claims (2)

一般式(1)
Figure 2010153649
(式中、Rは炭素数1〜3の直鎖または分岐鎖のアルキル基を示し、nは3または4を示す)で表される環状シロキサン化合物、およびニトロン誘導体またはニトロキシドラジカル誘導体から成ることを特徴とする、環状シロキサン組成物。
General formula (1)
Figure 2010153649
(Wherein R represents a linear or branched alkyl group having 1 to 3 carbon atoms, and n represents 3 or 4), and a nitrone derivative or a nitroxide radical derivative. A cyclic siloxane composition, characterized.
請求項1に記載の組成物を原料として製造されることを特徴とする薄膜。 A thin film produced using the composition according to claim 1 as a raw material.
JP2008331171A 2008-12-25 2008-12-25 Cyclosiloxane composition and thin film Pending JP2010153649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008331171A JP2010153649A (en) 2008-12-25 2008-12-25 Cyclosiloxane composition and thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008331171A JP2010153649A (en) 2008-12-25 2008-12-25 Cyclosiloxane composition and thin film

Publications (1)

Publication Number Publication Date
JP2010153649A true JP2010153649A (en) 2010-07-08

Family

ID=42572416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008331171A Pending JP2010153649A (en) 2008-12-25 2008-12-25 Cyclosiloxane composition and thin film

Country Status (1)

Country Link
JP (1) JP2010153649A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011088787A1 (en) 2011-12-16 2013-06-20 Evonik Industries Ag Siloxan lemon and its application
WO2013157643A1 (en) * 2012-04-20 2013-10-24 旭化成イーマテリアルズ株式会社 Polysiloxane composition having radical-crosslinkable group

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314787A (en) * 1986-07-08 1988-01-21 Shin Etsu Chem Co Ltd 2,4,6,8-tetramethyl-4,6,8-trivinyl-2-(3-methacryloxypropyl) cyclotetrasiloxane
JPH07324090A (en) * 1994-05-31 1995-12-12 Shin Etsu Chem Co Ltd Cyclotrisiloxane and production thereof
JP2005089448A (en) * 2003-06-23 2005-04-07 Air Products & Chemicals Inc Method for stabilizing cyclotetrasiloxane against polymerization and composition for the same
JP2006052283A (en) * 2004-08-11 2006-02-23 Kansai Paint Co Ltd Method for producing aqueous dispersion of organopolysiloxane
JP2008141137A (en) * 2006-12-05 2008-06-19 Asahi Kasei Electronics Co Ltd Insulating film for semiconductor devices
JP2008181600A (en) * 2007-01-25 2008-08-07 Fujifilm Corp Magnetic recording medium
JP2008274365A (en) * 2007-05-01 2008-11-13 Shin Etsu Chem Co Ltd MATERIAL FOR FORMING Si-CONTAINING FILM, Si-CONTAINING FILM, MANUFACTURING METHOD THEREFOR, AND SEMICONDUCTOR DEVICE
WO2008143286A1 (en) * 2007-05-21 2008-11-27 Kuraray Co., Ltd. Crosslinkable polyvinyl acetal porous powder, method for producing the same, and use of the same
WO2008147374A2 (en) * 2006-06-30 2008-12-04 Johnson & Johnson Vision Care, Inc. Acryloyl materials for molded plastics
JP2009126887A (en) * 2007-11-20 2009-06-11 Fujifilm Corp Method for producing silicone resin

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314787A (en) * 1986-07-08 1988-01-21 Shin Etsu Chem Co Ltd 2,4,6,8-tetramethyl-4,6,8-trivinyl-2-(3-methacryloxypropyl) cyclotetrasiloxane
JPH07324090A (en) * 1994-05-31 1995-12-12 Shin Etsu Chem Co Ltd Cyclotrisiloxane and production thereof
JP2005089448A (en) * 2003-06-23 2005-04-07 Air Products & Chemicals Inc Method for stabilizing cyclotetrasiloxane against polymerization and composition for the same
JP2006052283A (en) * 2004-08-11 2006-02-23 Kansai Paint Co Ltd Method for producing aqueous dispersion of organopolysiloxane
WO2008147374A2 (en) * 2006-06-30 2008-12-04 Johnson & Johnson Vision Care, Inc. Acryloyl materials for molded plastics
JP2008141137A (en) * 2006-12-05 2008-06-19 Asahi Kasei Electronics Co Ltd Insulating film for semiconductor devices
JP2008181600A (en) * 2007-01-25 2008-08-07 Fujifilm Corp Magnetic recording medium
JP2008274365A (en) * 2007-05-01 2008-11-13 Shin Etsu Chem Co Ltd MATERIAL FOR FORMING Si-CONTAINING FILM, Si-CONTAINING FILM, MANUFACTURING METHOD THEREFOR, AND SEMICONDUCTOR DEVICE
WO2008143286A1 (en) * 2007-05-21 2008-11-27 Kuraray Co., Ltd. Crosslinkable polyvinyl acetal porous powder, method for producing the same, and use of the same
JP2009126887A (en) * 2007-11-20 2009-06-11 Fujifilm Corp Method for producing silicone resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011088787A1 (en) 2011-12-16 2013-06-20 Evonik Industries Ag Siloxan lemon and its application
EP2607437A1 (en) 2011-12-16 2013-06-26 Evonik Industries AG Siloxane nitrones and their application
US8722836B2 (en) 2011-12-16 2014-05-13 Evonik Industries Ag Siloxane nitrones and use thereof
WO2013157643A1 (en) * 2012-04-20 2013-10-24 旭化成イーマテリアルズ株式会社 Polysiloxane composition having radical-crosslinkable group
JPWO2013157643A1 (en) * 2012-04-20 2015-12-21 旭化成イーマテリアルズ株式会社 Polysiloxane composition having radically crosslinkable groups

Similar Documents

Publication Publication Date Title
JP7152576B2 (en) Compositions and methods of using same for deposition of silicon-containing films
CN109207151B (en) Etching composition and etching method using same
US20020132408A1 (en) Asymmetric organocyclosiloxanes and their use for making organosilicon polymer low-k dielectric film
TWI649445B (en) Anthracycline compound and film deposition method using same
JP2021093540A (en) Composition for accumulating silicon-containing film and method using the same
JP5312588B2 (en) Novel silicon precursor for making ultra-low K films with high mechanical properties by plasma enhanced chemical vapor deposition
US8932674B2 (en) Vapor deposition methods of SiCOH low-k films
WO2006016672A1 (en) Siliceous film with smaller flat band shift and method for producing same
KR101779401B1 (en) Silylated polyarylenes
US9663547B2 (en) Silicon- and Zirconium-containing compositions for vapor deposition of Zirconium-containing films
TW201231513A (en) Composition for forming silica based insulating layer and method for manufacturing the same, silica based insulating layer and method for manufacturing the same
JP5170445B2 (en) Silicon-containing film forming material, silicon-containing insulating film and method for forming the same
US20160176718A1 (en) Composition for forming a silica based layer, silica based layer, and electronic device
TW202012419A (en) Silicon compounds and methods for depositing films using same
WO2009009267A1 (en) Novel silicon precursors to make ultra low-k films with high mechanical properties by plasma enhanced chemical vapor deposition
KR20160000392A (en) Composition for forming thin film
JP2010153649A (en) Cyclosiloxane composition and thin film
TW201139572A (en) Silica-based film forming material for formation of air gaps, and method for forming air gaps
JP2010067810A (en) Method for forming si-containing film, insulator film, and semiconductor device
TW200536014A (en) SiN film selective etching solution and etching method
JP2020532867A (en) Alkoxy-sila cyclic or acyloxysila cyclic compounds and methods for depositing films using them.
JP4414949B2 (en) Insulation film
KR102409869B1 (en) Silicon compounds and methods for depositing films using same
JP6993394B2 (en) Silicon compounds and methods of depositing films using silicon compounds
TWI747023B (en) Silicon compounds and methods for depositing films using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A131 Notification of reasons for refusal

Effective date: 20120529

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

A02 Decision of refusal

Effective date: 20121002

Free format text: JAPANESE INTERMEDIATE CODE: A02