JP2010153622A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2010153622A
JP2010153622A JP2008330661A JP2008330661A JP2010153622A JP 2010153622 A JP2010153622 A JP 2010153622A JP 2008330661 A JP2008330661 A JP 2008330661A JP 2008330661 A JP2008330661 A JP 2008330661A JP 2010153622 A JP2010153622 A JP 2010153622A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor
pillar
base layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008330661A
Other languages
Japanese (ja)
Inventor
Nana Hatano
菜名 羽田野
Wataru Saito
渉 齋藤
Shotaro Ono
昇太郎 小野
Hiroshi Ota
浩史 大田
Yoshio Watanabe
美穂 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008330661A priority Critical patent/JP2010153622A/en
Publication of JP2010153622A publication Critical patent/JP2010153622A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase a high breakdown voltage and decrease an on-state resistance for a semiconductor device having superjunction structure, even when a lateral pitch is narrow. <P>SOLUTION: In a power MOSFET 70, a p-type pillar layer 2 and an n-type pillar layer 5 are periodically and alternately formed on an n<SP>+</SP>-type substrate 1, and a pillar layer used as a superjunction structure is prepared. On the p-type pillar layer 2 and at top side face of the n-type pillar layer 5 in contact with the p-type pillar layer 2, a p-type base layer 3 with a depth of 3 μm and a region having a constant impurity concentration up to 90% in the depth direction is prepared, using the silicon epitaxial method. Since elevated temperature thermal diffusion is not used for formation of the p-type base layer 3 for the power MOSFET 70, deterioration in the effective pillar density is suppressed. Thereby, the power MOSFET 70 has a region with an effective pillar density of 50% or more up to a diffusion length of 2 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体素子に係り、特にドリフト層にp型ピラー層とn型ピラー層が横方向に交互に設けられたスーパージャンクション構造を有する半導体素子に関する。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device having a super junction structure in which p-type pillar layers and n-type pillar layers are alternately provided in a lateral direction on a drift layer.

縦型パワーMOSFETのオン抵抗は、伝導層としてのドリフト層部分の電気抵抗に大きく依存する。このドリフト層の電気抵抗は、その不純物濃度で決定され、不純物濃度を高くすればオン抵抗を下げることができる。しかし、不純物濃度が高くなるとドリフト層とベース層から形成されるPN接合の耐圧が低下するので、不純物濃度は耐圧に応じて決定する限界以上に上げることができない。このため、素子耐圧とオン抵抗との間にはトレードオフの関係が存在する。このトレードオフの関係を解決するMOSFETの一例として、ドリフト層にスーパージャンクション構造と呼称されるp型ピラー層とn型ピラー層を半導体基板上の横方向に交互に埋め込んだ構造が知られている。スーパージャンクション構造は、p型ピラー層とn型ピラー層に含まれるチャージ量(不純物量)を同じにすることにより、擬似的にノンドープ層を作り出し、高耐圧を保持しながら高ドープされたn型ピラー層を通して電流を流すことで材料限界を超えた低オン抵抗を実現している(例えば、特許文献1参照。)。   The on-resistance of the vertical power MOSFET greatly depends on the electric resistance of the drift layer portion as the conductive layer. The electrical resistance of the drift layer is determined by the impurity concentration, and the on-resistance can be lowered by increasing the impurity concentration. However, since the breakdown voltage of the PN junction formed from the drift layer and the base layer decreases as the impurity concentration increases, the impurity concentration cannot be increased beyond the limit determined according to the breakdown voltage. For this reason, there is a trade-off relationship between element breakdown voltage and on-resistance. As an example of a MOSFET that solves this trade-off relationship, a structure is known in which a p-type pillar layer and an n-type pillar layer called a super junction structure are alternately embedded in a drift layer in a lateral direction on a semiconductor substrate. . The super junction structure creates a pseudo non-doped layer by making the charge amount (impurity amount) contained in the p-type pillar layer and the n-type pillar layer the same, and highly doped n-type while maintaining a high breakdown voltage. A low on-resistance exceeding the material limit is realized by passing a current through the pillar layer (see, for example, Patent Document 1).

特許文献1などに記載される縦型パワーMOSFETでは、横方向のピッチを縮小化した場合、ベース層形成に必要な高温度で、且つ長時間の熱拡散によりp型ピラー層とn型ピラー層の濃度の打ち消しあいが発生し、実効的に不純物濃度が低下してオン抵抗が増加するという問題点がある。
特開2007−19146号公報
In the vertical power MOSFET described in Patent Document 1 or the like, when the pitch in the horizontal direction is reduced, the p-type pillar layer and the n-type pillar layer are formed at a high temperature necessary for base layer formation and by long-time thermal diffusion. There is a problem that the concentration of each other cancels out, the impurity concentration is effectively lowered, and the on-resistance is increased.
JP 2007-19146 A

本発明は、横方向のピッチが狭い場合でも耐圧が高く、且つオン抵抗を低くすることができるスーパージャンクション構造を有する半導体素子を提供する。   The present invention provides a semiconductor element having a super junction structure that has high breakdown voltage and low on-resistance even when the lateral pitch is narrow.

本発明の一態様の半導体素子は、第1導電型の半導体基板と、前記半導体基板上に設けられ、断面が短冊状の第1導電型の第1半導体ピラー層と第2導電型の第2半導体ピラー層とが前記半導体基板の表面に沿って横方向に交互に形成されるピラー層と、前記半導体基板に電気的に接続される第1の主電極と、前記第2半導体ピラー層の表面に設けられる第2導電型の半導体ベース層と、前記半導体ベース層の表面に設けられる第1導電型の半導体層と、前記半導体ベース層と前記半導体層に接するように設けられる第2の主電極と、前記半導体層と前記第1半導体ピラー層に亘る領域にゲート絶縁膜を介して設けられる制御電極とを具備し、前記半導体ベース層は横方向及び縦方向の不純物プロファイルが一定な領域を有することを特徴とする。   A semiconductor element of one embodiment of the present invention includes a first conductivity type semiconductor substrate, a first conductivity type first semiconductor pillar layer having a strip-shaped cross section, and a second conductivity type second substrate provided on the semiconductor substrate. Pillar layers in which semiconductor pillar layers are alternately formed in the lateral direction along the surface of the semiconductor substrate, a first main electrode electrically connected to the semiconductor substrate, and a surface of the second semiconductor pillar layer A second conductive type semiconductor base layer provided on the semiconductor base layer, a first conductive type semiconductor layer provided on a surface of the semiconductor base layer, and a second main electrode provided in contact with the semiconductor base layer and the semiconductor layer And a control electrode provided through a gate insulating film in a region extending between the semiconductor layer and the first semiconductor pillar layer, and the semiconductor base layer has a region having a constant lateral and vertical impurity profile. With features That.

本発明によれば、横方向のピッチが狭い場合でも耐圧が高く、且つオン抵抗を低くすることができるスーパージャンクション構造を有する半導体素子を提供することができる。   According to the present invention, it is possible to provide a semiconductor element having a super junction structure that has high breakdown voltage and low on-resistance even when the lateral pitch is narrow.

以下本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず、本発明の実施例1に係る半導体素子について、図面を参照して説明する。図1は半導体素子としてのパワーMOSFETを示す断面図である。本実施例では、横方向に交互に設けられたp型ピラー層とn型ピラー層において、横方向及び縦方向の不純物プロファイルが一定な領域を設けている。p型ピラー層上には、エピタキシャル法により不純物プロファイルが一定な領域を有するp型ベース層を設けている。   First, a semiconductor element according to Example 1 of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a power MOSFET as a semiconductor element. In this embodiment, regions having constant impurity profiles in the horizontal direction and the vertical direction are provided in the p-type pillar layer and the n-type pillar layer alternately provided in the horizontal direction. A p-type base layer having a region having a constant impurity profile is provided on the p-type pillar layer by an epitaxial method.

図1に示すように、縦型パワーMOSFETであるパワーMOSFET70は、p型ピラー層(第2半導体ピラー層)2とn型ピラー層(第1半導体ピラー層)5がドレイン層としてのn型基板1上の図中横方向に交互に周期的に形成されるピラー層を有する(スーパージャンクション構造)。ここでは、ピラー層を図中直交方向に延びるストライプ状に形成しているが、代わりに格子状或いは千鳥状に形成してもよい。 As shown in FIG. 1, a power MOSFET 70, which is a vertical power MOSFET, has an n + type in which a p-type pillar layer (second semiconductor pillar layer) 2 and an n-type pillar layer (first semiconductor pillar layer) 5 serve as drain layers. The substrate 1 has pillar layers alternately and periodically formed in the horizontal direction in the drawing (super junction structure). Here, the pillar layer is formed in a stripe shape extending in the orthogonal direction in the figure, but may alternatively be formed in a lattice shape or a staggered shape.

ピラー層が設けられるドレイン層としてのn型基板1の第1主面と相対向するn型基板1の第2主面には、n型基板1と電気的に接続される第1の主電極としてのドレイン電極6が設けられる。 A first main surface electrically connected to the n + type substrate 1 is connected to a second main surface of the n + type substrate 1 opposite to the first main surface of the n + type substrate 1 as a drain layer provided with a pillar layer. A drain electrode 6 is provided as a main electrode.

p型ピラー層2上と、p型ピラー層2と接するn型ピラー層5の上側面部分にはp型ベース層(半導体ベース層)3が設けられる。n型ピラー層5及びn型ピラー層5と接するp型ベース層3上には、ゲート絶縁膜8を介して制御電極としてのゲート電極9が設けられる。ゲート電極9は、側面及び上面部分が絶縁膜10により分離される。   A p-type base layer (semiconductor base layer) 3 is provided on the p-type pillar layer 2 and on the upper surface portion of the n-type pillar layer 5 in contact with the p-type pillar layer 2. On the n-type pillar layer 5 and the p-type base layer 3 in contact with the n-type pillar layer 5, a gate electrode 9 as a control electrode is provided via a gate insulating film 8. The gate electrode 9 has a side surface and an upper surface portion separated by an insulating film 10.

ゲート電極9の両端部直下のp型ベース層3の表面には、n型ソース層4が設けられる。n型ソース層4と隣接配置される他のゲート電極9に設けられるn型ソース層4の間には、p型ベース層3が残置される。p型ベース層3、n型ソース層4、及び絶縁膜10上には、p型ベース層3及びn型ソース層4と電気的に接続される第2電極としてのソース電極7が設けられる。   An n-type source layer 4 is provided on the surface of the p-type base layer 3 immediately below both ends of the gate electrode 9. The p-type base layer 3 is left between the n-type source layer 4 provided in the other gate electrode 9 disposed adjacent to the n-type source layer 4. On the p-type base layer 3, the n-type source layer 4, and the insulating film 10, a source electrode 7 as a second electrode that is electrically connected to the p-type base layer 3 and the n-type source layer 4 is provided.

次に、パワーMOSFETの製造方法について図2乃至9を参照して説明する。図2乃至9はパワーMOSFETの製造工程を示す断面図である。   Next, a method for manufacturing a power MOSFET will be described with reference to FIGS. 2 to 9 are cross-sectional views showing the manufacturing process of the power MOSFET.

図2に示すように、まず、N型不純物が高濃度にドープされたシリコン基板であるn型基板1上に、シリコンエピタキシャル成長法によりp型ピラー層2を形成する。ここで、エピタキシャル成長には、n型基板1中の高濃度の不純物がオートドーピングしにくい比較的低温度の条件を用いるのが好ましい。オートドーピングが発生するとn型基板1側のp型ピラー層2の不純物濃度が低下する。 As shown in FIG. 2, first, a p-type pillar layer 2 is formed on an n + -type substrate 1 which is a silicon substrate doped with an N-type impurity at a high concentration by a silicon epitaxial growth method. Here, for the epitaxial growth, it is preferable to use a relatively low temperature condition in which high-concentration impurities in the n + -type substrate 1 are difficult to be auto-doped. When auto-doping occurs, the impurity concentration of the p-type pillar layer 2 on the n + -type substrate 1 side decreases.

次に、図3に示すように、n型基板1表面が露呈するまでp型ピラー層2をエッチングして断面が矩形型形状を有する複数の溝11を形成する。ここで、ピッチが同一になるように複数の溝11が形成される。溝11の形成は、例えばRIE(Reactive Ion Etching)法を用いる。その場合、p型ピラー層2とn型基板1に発生するダメージや表面汚染を除去する目的でRIE後処理が行われる。 Next, as shown in FIG. 3, the p-type pillar layer 2 is etched until the surface of the n + -type substrate 1 is exposed to form a plurality of grooves 11 having a rectangular cross section. Here, the plurality of grooves 11 are formed so as to have the same pitch. For example, the RIE (Reactive Ion Etching) method is used to form the groove 11. In that case, RIE post-processing is performed for the purpose of removing damage and surface contamination occurring in the p-type pillar layer 2 and the n + -type substrate 1.

続いて、図4に示すように、シリコンエピタキシャル成長法により、溝11の部分にn型ピラー層5を埋設する。n型ピラー層5の形成は、p型ピラー層2上に絶縁膜を形成し、例えば、UHV−CVD法を用いて選択エピタキシャル成長(SEG:Selective Epitaxial Growth)により形成する。選択エピタキシャル成長は、n型基板1中の高濃度の不純物がオートドーピングしにくい比較的低温度のエピタキシャル成長条件を用いるのが好ましい。その後、絶縁膜、p型ピラー層2、及びn型ピラー層5を、例えばCMP(Chemical Mechanical Polishing)法を用いて研磨し、平坦化する。 Subsequently, as shown in FIG. 4, an n-type pillar layer 5 is buried in the groove 11 by a silicon epitaxial growth method. The n-type pillar layer 5 is formed by forming an insulating film on the p-type pillar layer 2 and performing, for example, selective epitaxial growth (SEG) using UHV-CVD. For selective epitaxial growth, it is preferable to use relatively low temperature epitaxial growth conditions in which high-concentration impurities in the n + -type substrate 1 are difficult to be auto-doped. Thereafter, the insulating film, the p-type pillar layer 2 and the n-type pillar layer 5 are polished and planarized by using, for example, a CMP (Chemical Mechanical Polishing) method.

ここで、p型ピラー層2及びn型ピラー層5の不純物濃度は、例えば1×1015/cm〜1×1016/cmの範囲に設定される。ピラーのピッチは、例えば8μm〜12μmの範囲に設定される。ここでは、p型ピラー層2を形成してからn型ピラー層5を形成しているが、n型ピラー層5を形成してからp型ピラー層2を形成してもよい。 Here, the impurity concentration of the p-type pillar layer 2 and the n-type pillar layer 5 is set in a range of, for example, 1 × 10 15 / cm 3 to 1 × 10 16 / cm 3 . The pitch of the pillar is set in the range of 8 μm to 12 μm, for example. Here, the n-type pillar layer 2 is formed after the p-type pillar layer 2 is formed, but the p-type pillar layer 2 may be formed after the n-type pillar layer 5 is formed.

そして、図5に示すように、p型ピラー層2の上部と、p型ピラー層2と接するn型ピラー層5の側面部をエッチングして断面が矩形型形状を有する複数の溝12を形成する。ここで、ピッチが同一になるように複数の溝12が形成される。溝12の形成は、例えばRIE(Reactive Ion Etching)法を用いる。その場合、p型ピラー層2とn型ピラー層5に発生するダメージや表面汚染を除去する目的でRIE後処理が行われる。   Then, as shown in FIG. 5, the upper part of the p-type pillar layer 2 and the side surface portion of the n-type pillar layer 5 in contact with the p-type pillar layer 2 are etched to form a plurality of grooves 12 having a rectangular cross section. To do. Here, the plurality of grooves 12 are formed so as to have the same pitch. For example, the RIE (Reactive Ion Etching) method is used to form the groove 12. In that case, RIE post-treatment is performed for the purpose of removing damage and surface contamination occurring in the p-type pillar layer 2 and the n-type pillar layer 5.

次に、図6に示すように、選択エピタキシャル成長(SEG:Selective Epitaxial Growth)により、溝12の部分にp型ベース層3を埋設する。n型ピラー層5の形成は、n型ピラー層5上に絶縁膜を形成し、例えば、選択エピタキシャル成長(SEG:Selective Epitaxial Growth)により形成する。その後、絶縁膜、n型ピラー層5、及びp型ベース層3を、例えばCMP(Chemical Mechanical Polishing)法を用いて研磨し、平坦化する。ここで、p型ベース層3の不純物濃度は、例えば5×1016/cm〜1×1017/cmの範囲に設定される。ここでは、p型ベース層3の幅をp型ピラー層2の幅よりも広く形成しているが、同じ幅或いは狭く形成してもよい。 Next, as shown in FIG. 6, the p-type base layer 3 is buried in the groove 12 by selective epitaxial growth (SEG). The n-type pillar layer 5 is formed by forming an insulating film on the n-type pillar layer 5, for example, by selective epitaxial growth (SEG). Thereafter, the insulating film, the n-type pillar layer 5 and the p-type base layer 3 are polished and planarized by using, for example, a CMP (Chemical Mechanical Polishing) method. Here, the impurity concentration of the p-type base layer 3 is set in a range of, for example, 5 × 10 16 / cm 3 to 1 × 10 17 / cm 3 . Here, although the width of the p-type base layer 3 is formed wider than the width of the p-type pillar layer 2, it may be formed to be the same width or narrower.

続いて、図7に示すように、n型ピラー層5及びp型ベース層3上にゲート絶縁膜8とゲート電極9を積層形成し、周知のリソグラフィー法を用いて形成された図示しないレジスト膜をマスクとして、例えばRIE(Reactive Ion Etching)法によりゲート電極9とゲート絶縁膜8をエッチングする。その後、レジスト膜の除去及びRIE後処理する。   Subsequently, as shown in FIG. 7, a gate insulating film 8 and a gate electrode 9 are laminated on the n-type pillar layer 5 and the p-type base layer 3, and a resist film (not shown) formed by using a well-known lithography method. As a mask, the gate electrode 9 and the gate insulating film 8 are etched by, for example, RIE (Reactive Ion Etching). Thereafter, the resist film is removed and post-RIE processing is performed.

そして、図8に示すように、周知のリソグラフィー法を用いて形成された図示しないレジスト膜をマスクとして、p型ベース層3の表面にn型不純物をイオン注入する。レジスト膜を除去後、このイオン注入層を熱処理により活性化させてn型ソース層4を形成する。   Then, as shown in FIG. 8, n-type impurities are ion-implanted into the surface of the p-type base layer 3 using a resist film (not shown) formed using a known lithography method as a mask. After removing the resist film, the ion-implanted layer is activated by heat treatment to form the n-type source layer 4.

次に、図9に示すように、p型ベース層3、n型ソース層4、及びゲート電極9上に絶縁膜10を形成し、絶縁膜10をエッチングしてソース開口部を形成する。ソース開口部を覆うように、p型ベース層3及びn型ソース層4と電気的に接続される第2の主電極としてのソース電極7を形成する。ソース電極7形成後、n型基板1の裏面にn型基板1と電気的に接続される第1の主電極としてのドレイン電極6を形成し、パワーMOSFET70が完成する。 Next, as shown in FIG. 9, an insulating film 10 is formed on the p-type base layer 3, the n-type source layer 4, and the gate electrode 9, and the insulating film 10 is etched to form a source opening. A source electrode 7 as a second main electrode electrically connected to the p-type base layer 3 and the n-type source layer 4 is formed so as to cover the source opening. After the source electrode 7 formed, to form a drain electrode 6 as a first main electrode connected to the back surface of the n + -type substrate 1 n + -type substrate 1 and electrically, power MOSFET70 is completed.

次に、パワーMOSFETの特性について図10乃至12を参照して説明する。図10はパワーMOSFETのベース層の不純物プロファイルを示す図、図11は実効ピラー濃度と拡散長の関係を示す図、図12は高加速イオン注入法を用いた場合のベース層の不純物プロファイルを示す図である。   Next, the characteristics of the power MOSFET will be described with reference to FIGS. 10 is a diagram showing the impurity profile of the base layer of the power MOSFET, FIG. 11 is a diagram showing the relationship between the effective pillar concentration and the diffusion length, and FIG. 12 shows the impurity profile of the base layer when the high acceleration ion implantation method is used. FIG.

なお、図10は図1のA1−A2線に沿うベース層の不純物プロファイルを示す図、図11は図1のB1−B2線に沿う実効ピラー濃度と拡散長の関係を示す図である。図11は、p型ピラー層2の中央部からn型ピラー層5との境界部に向かう方向の距離(拡散長と表記)に対する実効ピラー濃度を示す図である。ピラー濃度とは、p型ピラー層2とn型ピラー層5の不純物濃度の打ち消しあいが起こった後でのp型ピラー層2とn型ピラー層5の不純物濃度である。図11では、打ち消しあいが起こった後でのp型ピラー層2の不純物濃度を実効ピラー濃度と表記している。実効ピラー濃度が100%というのは、p型ピラー層2とn型ピラー層5の不純物濃度の打ち消しあいが発生しない場合の不純物濃度である。   10 is a diagram showing the impurity profile of the base layer along the line A1-A2 in FIG. 1, and FIG. 11 is a diagram showing the relationship between the effective pillar concentration and the diffusion length along the line B1-B2 in FIG. FIG. 11 is a diagram showing the effective pillar concentration with respect to the distance (denoted as the diffusion length) in the direction from the center of the p-type pillar layer 2 toward the boundary with the n-type pillar layer 5. The pillar concentration is the impurity concentration of the p-type pillar layer 2 and the n-type pillar layer 5 after the cancellation of the impurity concentration of the p-type pillar layer 2 and the n-type pillar layer 5 occurs. In FIG. 11, the impurity concentration of the p-type pillar layer 2 after cancellation has been expressed as an effective pillar concentration. The effective pillar concentration of 100% is the impurity concentration when the impurity concentrations of the p-type pillar layer 2 and the n-type pillar layer 5 do not cancel each other.

図10に示すように、本実施例では、シリコンエピタキシャル法を用いて、例えば、深さが3μmで、深さ方向の不純物濃度が一定(ここでは、深さ方向の90%までの領域が一定な不純物濃度1×1017/cm)のp型ベース層3を形成している。しかも比較的低温度のシリコンエピタキシャル法を用いてp型ベース層3を形成している。 As shown in FIG. 10, in this embodiment, the silicon epitaxial method is used, for example, the depth is 3 μm and the impurity concentration in the depth direction is constant (here, the region up to 90% in the depth direction is constant). forming a p-type base layer 3 of an impurity concentration 1 × 10 17 / cm 3) . Moreover, the p-type base layer 3 is formed using a relatively low temperature silicon epitaxial method.

このため、p型ピラー層2とn型ピラー層5の不純物濃度の打ち消しあいによる実効的な不純物濃度の低下が抑制され、オン抵抗を低減することができる。また、実効的な不純物濃度の低下が抑制されるので、予め不純物濃度の打ち消しあいを考慮してp型ピラー層2とn型ピラー層5の不純物濃度を上げておく必要がない。この結果、スーパージャンクション構造を構成するp型ピラー層2とn型ピラー層5のバラツキが抑制され、高耐圧化を図りやすくなる。p型ベース層3を浅く形成してもトータルドーパント量を維持することができ、p型ベース層3の横方向の幅を溝12の幅で任意に調整することができ、表面のチャネル部の抵抗を低減することができる。   For this reason, a decrease in effective impurity concentration due to cancellation of impurity concentrations of the p-type pillar layer 2 and the n-type pillar layer 5 is suppressed, and the on-resistance can be reduced. In addition, since the effective decrease in the impurity concentration is suppressed, it is not necessary to increase the impurity concentrations of the p-type pillar layer 2 and the n-type pillar layer 5 in advance in consideration of the cancellation of the impurity concentration. As a result, variations in the p-type pillar layer 2 and the n-type pillar layer 5 constituting the super junction structure are suppressed, and a high breakdown voltage can be easily achieved. Even if the p-type base layer 3 is formed shallowly, the total dopant amount can be maintained, the lateral width of the p-type base layer 3 can be arbitrarily adjusted by the width of the groove 12, and the surface channel portion can be adjusted. Resistance can be reduced.

一方、イオン注入法と高温処理(高温熱拡散)を用いてp型ベース層3を形成した比較例では、p型ベース層3の深さが本実施例よりも深く(4μm)、深さ方向の不純物濃度が一定ではない(表面不純物濃度が最も高く、深さ方向で徐々に不純物濃度が低下する)。しかもピラー層形成後に、比較的高温度の熱処理が行われる。   On the other hand, in the comparative example in which the p-type base layer 3 is formed using the ion implantation method and the high-temperature treatment (high-temperature thermal diffusion), the depth of the p-type base layer 3 is deeper than that of the present embodiment (4 μm), and the depth direction. The impurity concentration is not constant (the surface impurity concentration is the highest, and the impurity concentration gradually decreases in the depth direction). In addition, a relatively high temperature heat treatment is performed after the pillar layer is formed.

このため、p型ピラー層2とn型ピラー層5の不純物濃度の打ち消しあいによる実効的な不純物濃度の低下が発生し、オン抵抗を低減することが困難となる(特に横方向のピッチが縮小化された場合、より顕著となる)。また、実効的な不純物濃度の低下が発生するので、予め不純物濃度の打ち消しあいを考慮してp型ピラー層2とn型ピラー層5の不純物濃度を上げておく必要がある。この結果、スーパージャンクション構造を構成するp型ピラー層2とn型ピラー層5のバラツキが発生し、高耐圧化を図りにくくなる(特に横方向のピッチが縮小化された場合、より顕著となる)。   For this reason, the effective impurity concentration is lowered due to the cancellation of the impurity concentrations of the p-type pillar layer 2 and the n-type pillar layer 5, and it becomes difficult to reduce the on-resistance (particularly, the lateral pitch is reduced). It becomes more prominent if Further, since the effective impurity concentration is lowered, it is necessary to increase the impurity concentrations of the p-type pillar layer 2 and the n-type pillar layer 5 in advance in consideration of the cancellation of the impurity concentration. As a result, the p-type pillar layer 2 and the n-type pillar layer 5 constituting the super junction structure vary, making it difficult to achieve a high breakdown voltage (particularly when the lateral pitch is reduced). ).

図10に示すように、本実施例では高温熱拡散を行っていないことにより、p型ベース層3の表面から深さの(2/3)である2μmまでの不純物濃度が表面不純物濃度の90%以上ある。また、図11に示すように、本実施例では、高温熱拡散による実効ピラー濃度の低下が抑制され、p型ピラー層2の中央部から拡散長2μmまで実効ピラー濃度が50%以上となる領域を確保することができる。図示していないがn型ピラー層5でも同様に実効ピラー濃度が50%以上となる領域を確保することができる。   As shown in FIG. 10, in this embodiment, since high-temperature thermal diffusion is not performed, the impurity concentration from the surface of the p-type base layer 3 to 2 μm, which is (2/3) of the depth, is 90% of the surface impurity concentration. % Or more. Further, as shown in FIG. 11, in this embodiment, a reduction in effective pillar concentration due to high-temperature thermal diffusion is suppressed, and the effective pillar concentration is 50% or more from the central portion of the p-type pillar layer 2 to the diffusion length of 2 μm. Can be secured. Although not shown, the n-type pillar layer 5 can also ensure a region where the effective pillar concentration is 50% or more.

図12に示すように、p型ベース層の形成をシリコンエピタキシャル法の代わりに、加速電圧を可変し、深さ方向に複数のピークを有するイオン注入層を形成し、比較的低温度の熱処理によりこのイオン注入層を活性化させる方法によりp型ベース層を形成してもよい。   As shown in FIG. 12, instead of the silicon epitaxial method, the p-type base layer is formed by changing the acceleration voltage, forming an ion implantation layer having a plurality of peaks in the depth direction, and performing heat treatment at a relatively low temperature. The p-type base layer may be formed by a method of activating this ion implantation layer.

ここでは、深さ方向で互いにピークが異なる4つのプロファイルが有するp型ベース層が形成される。このプロファイルの形成には、p型の不純物(ボロン等)のイオン注入の加速電圧を、例えば数十KeVから数MeVの範囲の条件を適宜選択することにより達成できる。p型ベース層の不純物濃度は、ピーク間のバレー濃度がピーク濃度の10%以上に設定するのが好ましい。具体的には、p型ベース層の不純物濃度を5×1016/cm〜1×1017/cmの範囲に設定し、ピラー濃度を1×1015/cm〜1×1016/cmの範囲に設定する。ここで、バレー濃度とは、ピークとピークの間の底部の不純物濃度を言う。 Here, a p-type base layer having four profiles having different peaks in the depth direction is formed. Formation of this profile can be achieved by appropriately selecting the acceleration voltage for ion implantation of p-type impurities (boron or the like), for example, in the range of several tens KeV to several MeV. The impurity concentration of the p-type base layer is preferably set so that the valley concentration between peaks is 10% or more of the peak concentration. Specifically, the impurity concentration of the p-type base layer is set in a range of 5 × 10 16 / cm 3 to 1 × 10 17 / cm 3 , and the pillar concentration is 1 × 10 15 / cm 3 to 1 × 10 16 / Set in the range of cm 3 . Here, the valley concentration refers to the impurity concentration at the bottom between the peaks.

このような設定により、シリコンエピタキシャル法と同様に、p型ベース層3の表面から深さの(2/3)である2μmまでの不純物濃度が表面不純物濃度の90%以上を確保でき、シリコンエピタキシャル法を用いて形成されたp型ベース層3の場合(図11に示す)と同様に、拡散長2μmまで実効ピラー濃度が50%以上となる領域を確保することができる。   With this setting, as in the silicon epitaxial method, the impurity concentration from the surface of the p-type base layer 3 to 2 μm, which is (2/3) of the depth, can ensure 90% or more of the surface impurity concentration. Similar to the case of the p-type base layer 3 formed by the method (shown in FIG. 11), a region where the effective pillar concentration is 50% or more can be secured up to a diffusion length of 2 μm.

ピーク間のバレー濃度がピーク濃度の10%以下に設定した場合、バレー濃度が5×1015/cm〜1×1016/cmの範囲以下となりピラー濃度と同等となる。この結果、高電圧を印加した場合にp型ベース層のバレー部分が空乏化してしまうという問題点が発生するので好ましくない。 When the valley concentration between the peaks is set to 10% or less of the peak concentration, the valley concentration is equal to or less than the range of 5 × 10 15 / cm 3 to 1 × 10 16 / cm 3 and the pillar concentration. As a result, when a high voltage is applied, the valley portion of the p-type base layer is depleted, which is not preferable.

次に、パワーMOSFETの終端部について図13を参照して説明する。図13はパワーMOSFETの終端部を示す断面図である。   Next, the termination portion of the power MOSFET will be described with reference to FIG. FIG. 13 is a cross-sectional view showing a termination portion of the power MOSFET.

図13に示すように、パワーMOSFET70の終端部には、n層21の表面にp型ベース層3と離間し、終端のp型ベース層3の外周を囲うように複数のp型ガードリング層22が設けられる。p型ガードリング層22上には、絶縁膜23をエッチングした開口部を覆うように、p型ガードリング層22と電気的に接続されるガードリング電極24が設けられる。 As shown in FIG. 13, the power MOSFET 70 has a terminal portion with a plurality of p-type guard rings spaced from the p-type base layer 3 on the surface of the n layer 21 and surrounding the outer periphery of the terminal p-type base layer 3. A layer 22 is provided. A guard ring electrode 24 electrically connected to the p type guard ring layer 22 is provided on the p type guard ring layer 22 so as to cover the opening obtained by etching the insulating film 23.

次に、パワーMOSFETの終端部の製造方法について図14を参照して説明する。   Next, a method for manufacturing the terminal portion of the power MOSFET will be described with reference to FIG.

図14に示すように、p型ガードリング層22は、p型ベース層3の形成と同じ工程で行われる。具体的には、p型ピラー層2の上部と、p型ピラー層2と接するn型ピラー層5の側面部、及びn層21の上部をエッチングして断面が矩形型形状を有する複数の溝12を形成する。なお、これ以降の工程については、図示及び説明を省略する。 As shown in FIG. 14, the p-type guard ring layer 22 is performed in the same process as the formation of the p-type base layer 3. Specifically, the upper part of the p-type pillar layer 2, the side surface part of the n-type pillar layer 5 in contact with the p-type pillar layer 2, and the upper part of the n layer 21 are etched to have a plurality of cross sections having a rectangular shape. A groove 12 is formed. In addition, illustration and description are abbreviate | omitted about the process after this.

上述したように、本実施例の半導体素子では、p型ピラー層2とn型ピラー層5がn型基板1上に交互に周期的に形成され、スーパージャンクション構造となるピラー層が設けられる。p型ピラー層2上と、p型ピラー層2と接するn型ピラー層5の上側面部分には、シリコンエピタキシャル法により、深さが3μmで、深さ方向の90%までの領域が一定な不純物濃度を有するp型ベース層3が設けられる。n型ピラー層5及びn型ピラー層5と接するp型ベース層3上には、ゲート絶縁膜8を介してゲート電極9が設けられる。ゲート電極9は、側面及び上面部分が絶縁膜10により分離される。ゲート電極9の両端部直下のp型ベース層3の表面には、n型ソース層4が設けられる。 As described above, in the semiconductor element of this embodiment, the p-type pillar layer 2 and the n-type pillar layer 5 are alternately and periodically formed on the n + -type substrate 1 to provide a pillar layer having a super junction structure. . On the p-type pillar layer 2 and on the upper side surface portion of the n-type pillar layer 5 in contact with the p-type pillar layer 2, a depth of 3 μm and a region up to 90% in the depth direction are constant by silicon epitaxial method. A p-type base layer 3 having an impurity concentration is provided. A gate electrode 9 is provided on the n-type pillar layer 5 and the p-type base layer 3 in contact with the n-type pillar layer 5 with a gate insulating film 8 interposed therebetween. The gate electrode 9 has a side surface and an upper surface portion separated by an insulating film 10. An n-type source layer 4 is provided on the surface of the p-type base layer 3 immediately below both ends of the gate electrode 9.

このため、パワーMOSFET70では、横方向のピッチを縮小化した場合でも、高温熱拡散によって発生するp型ピラー層2とn型ピラー層5の不純物濃度の打ち消しあいによる実効ピラー濃度の低下が抑制され、拡散長2μmまで実効ピラー濃度が50%以上となる領域を確保することができる。p型ベース層3と同様にp型ピラー層2とn型ピラー層5の不純物は拡散が抑制されているので、p型ピラー層2とn型ピラー層5の中心部では不純物濃度が変化せず、一定である。したがって、実効的な不純物濃度の低下を抑制でき、パワーMOSFET70の高耐圧化を図りながら、低オン抵抗化を達成することができる。   For this reason, in the power MOSFET 70, even when the lateral pitch is reduced, a reduction in effective pillar concentration due to cancellation of impurity concentrations of the p-type pillar layer 2 and the n-type pillar layer 5 caused by high-temperature thermal diffusion is suppressed. A region where the effective pillar concentration is 50% or more can be secured up to a diffusion length of 2 μm. Similar to the p-type base layer 3, since the diffusion of impurities in the p-type pillar layer 2 and the n-type pillar layer 5 is suppressed, the impurity concentration changes at the center of the p-type pillar layer 2 and the n-type pillar layer 5. It is constant. Therefore, it is possible to suppress a decrease in effective impurity concentration, and it is possible to achieve a low on-resistance while increasing the breakdown voltage of the power MOSFET 70.

なお、本実施例では、Nch型のスーパージャンクション構造を有するパワーMOSFET70に適用しているが、Pch型のスーパージャンクション構造を有するパワーMOSFETにも適用することができる。   In this embodiment, the present invention is applied to the power MOSFET 70 having the Nch type super junction structure, but can also be applied to the power MOSFET having the Pch type super junction structure.

次に、本発明の実施例2に係る半導体素子について、図面を参照して説明する。図15は半導体素子としてのパワーMOSFETを示す断面図である。本実施例では、パワーMOSFETをトレンチ形状にしている。   Next, a semiconductor element according to Example 2 of the present invention will be described with reference to the drawings. FIG. 15 is a cross-sectional view showing a power MOSFET as a semiconductor element. In this embodiment, the power MOSFET has a trench shape.

以下、実施例1と同一構成部分には、同一符号を付してその部分の説明を省略し、異なる部分のみ説明する。   In the following, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted, and only different portions are described.

図15に示すように、パワーMOSFET71は、ゲートが基板に埋設されたトレンチ形状を有する縦型パワーMOSFETである。   As shown in FIG. 15, the power MOSFET 71 is a vertical power MOSFET having a trench shape with a gate embedded in a substrate.

p型ピラー層2上には、p型ベース層3が形成される。n型ピラー層5上とp型ベース層3の側面には、ゲート絶縁膜8を介してゲート電極9が基板に埋設される。p型ベース層3の両側の上端部には、ゲート絶縁膜8と接するようにn型ソース層4が設けられる。   A p-type base layer 3 is formed on the p-type pillar layer 2. A gate electrode 9 is embedded in the substrate via a gate insulating film 8 on the n-type pillar layer 5 and the side surface of the p-type base layer 3. An n-type source layer 4 is provided on the upper ends on both sides of the p-type base layer 3 so as to be in contact with the gate insulating film 8.

ゲート絶縁膜8及びゲート電極9の上部には、絶縁膜10が設けられ、ゲート電極9を周囲から電気的に分離している。p型ベース層3、n型ソース層4、及び絶縁膜10上には、p型ベース層3及びn型ソース層4と電気的に接続される第2電極としてのソース電極7が設けられる。   An insulating film 10 is provided on the gate insulating film 8 and the gate electrode 9 to electrically isolate the gate electrode 9 from the surroundings. On the p-type base layer 3, the n-type source layer 4, and the insulating film 10, a source electrode 7 as a second electrode that is electrically connected to the p-type base layer 3 and the n-type source layer 4 is provided.

次に、パワーMOSFETの製造方法について図16及び図17を参照して説明する。図16及び図17はパワーMOSFETの製造工程を示す断面図である。   Next, a method for manufacturing a power MOSFET will be described with reference to FIGS. 16 and 17 are cross-sectional views showing the manufacturing process of the power MOSFET.

図16に示すように、p型ピラー層2及びn型ピラー層5を形成後、シリコンエピタキシャル法により、p型ピラー層2及びn型ピラー層5上にp型ベース層3を形成する。   As shown in FIG. 16, after forming the p-type pillar layer 2 and the n-type pillar layer 5, the p-type base layer 3 is formed on the p-type pillar layer 2 and the n-type pillar layer 5 by silicon epitaxial method.

次に、図17に示すように、n型ピラー層5まで達するように断面が矩形型形状を有する複数の溝13を形成する。ここで、ピッチが同一になるように複数の溝13が形成される。溝13の形成は、例えばRIE(Reactive Ion Etching)法を用いる。その場合、p型ピラー層2とn型ピラー層5に発生するダメージや表面汚染を除去する目的でRIE後処理が行われる。ここでは、トレンチゲートの横幅となる溝13の幅をn型ピラー層5の横幅と等しく形成しているが、溝13の幅をn型ピラー層5の横幅よりも広く、或いは狭く形成してもよい。   Next, as shown in FIG. 17, a plurality of grooves 13 having a rectangular cross section are formed so as to reach the n-type pillar layer 5. Here, the plurality of grooves 13 are formed so as to have the same pitch. For example, the RIE (Reactive Ion Etching) method is used to form the groove 13. In that case, RIE post-treatment is performed for the purpose of removing damage and surface contamination occurring in the p-type pillar layer 2 and the n-type pillar layer 5. Here, the width of the trench 13 which is the lateral width of the trench gate is formed to be equal to the lateral width of the n-type pillar layer 5, but the width of the trench 13 is formed to be wider or narrower than the lateral width of the n-type pillar layer 5. Also good.

なお、これ以降、周知の技術を用いてトレンチゲート形成、n型ソース形成、層間膜形成、電極形成などが行われパワーMOSFET71が完成する。   Thereafter, trench gate formation, n-type source formation, interlayer film formation, electrode formation, and the like are performed using well-known techniques to complete the power MOSFET 71.

ここで、本実施例のトレンチゲートパワーMOSFET71と実施例1のプレーナ型パワーMOSFET70を比較すると、パワーMOSFET71ではp型ベース層3とゲート電極9の位置合わせズレが発生しない。このため、チャネル長のバラツキを抑制することができる。また、p型ベース層3を浅く形成することが可能となり、チャネル長を短くし、チャネル抵抗を小さくすることができる。   Here, when the trench gate power MOSFET 71 of the present embodiment is compared with the planar power MOSFET 70 of the first embodiment, there is no misalignment between the p-type base layer 3 and the gate electrode 9 in the power MOSFET 71. For this reason, variation in channel length can be suppressed. Further, the p-type base layer 3 can be formed shallowly, the channel length can be shortened, and the channel resistance can be reduced.

上述したように、本実施例の半導体素子では、p型ピラー層2とn型ピラー層5がn型基板1上に交互に周期的に形成され、スーパージャンクション構造となるピラー層が設けられる。p型ピラー層2上には、シリコンエピタキシャル法により、深さ方向の90%までの領域が一定な不純物濃度を有するp型ベース層3が設けられる。nピラー層5上と、p型ベース層3の側面とには、ゲート絶縁膜8を介してゲート電極9が基板に埋設される。p型ベース層3の上部の両側面部には、n型ソース層4が設けられる。 As described above, in the semiconductor element of this embodiment, the p-type pillar layer 2 and the n-type pillar layer 5 are alternately and periodically formed on the n + -type substrate 1 to provide a pillar layer having a super junction structure. . On the p-type pillar layer 2, a p-type base layer 3 having a constant impurity concentration in a region up to 90% in the depth direction is provided by a silicon epitaxial method. A gate electrode 9 is embedded in the substrate via the gate insulating film 8 on the n pillar layer 5 and the side surface of the p-type base layer 3. An n-type source layer 4 is provided on both side surfaces of the upper portion of the p-type base layer 3.

このため、パワーMOSFET71では、横方向のピッチを縮小化した場合でも、高温熱拡散によって発生するp型ピラー層2とn型ピラー層5の不純物濃度の打ち消しあいによる実効ピラー濃度の低下が抑制される。したがって、実効的な不純物濃度の低下を抑制でき、パワーMOSFET71の高耐圧化を図りながら、オン抵抗の低下を達成することができる。また、p型ベース層3とゲート電極9の位置合わせズレが発生しないのでチャネル長のバラツキを抑制することができる。更に、p型ベース層3を浅く形成することが可能となり、チャネル長を短くし、チャネル抵抗を小さくすることができる。   Therefore, in the power MOSFET 71, even when the lateral pitch is reduced, a reduction in effective pillar concentration due to cancellation of impurity concentrations of the p-type pillar layer 2 and the n-type pillar layer 5 caused by high-temperature thermal diffusion is suppressed. The Therefore, it is possible to suppress a reduction in effective impurity concentration, and to achieve a reduction in on-resistance while increasing the breakdown voltage of the power MOSFET 71. Further, since there is no misalignment between the p-type base layer 3 and the gate electrode 9, variations in channel length can be suppressed. Furthermore, the p-type base layer 3 can be formed shallowly, the channel length can be shortened, and the channel resistance can be reduced.

なお、本実施例では、Nch型のスーパージャンクション構造を有するトレンチゲートパワーMOSFET70に適用しているが、Pch型のスーパージャンクション構造を有するトレンチゲートパワーMOSFETにも適用することができる。また、ゲート電極9の上部をp型ベース層3よりも高く形成しているが、ゲート電極9の上端をp型ベース層3と同じ高さに形成、或いはゲート電極をp型ベース層3よりも低く形成してもよい。   In this embodiment, the present invention is applied to the trench gate power MOSFET 70 having an Nch type super junction structure, but can also be applied to a trench gate power MOSFET having a Pch type super junction structure. Moreover, although the upper part of the gate electrode 9 is formed higher than the p-type base layer 3, the upper end of the gate electrode 9 is formed at the same height as the p-type base layer 3, or the gate electrode is formed higher than the p-type base layer 3. May be formed low.

次に、本発明の実施例3に係る半導体素子について、図面を参照して説明する。図18は半導体素子としてのパワーMOSFETを示す断面図である。本実施例では、パワーMOSFETのベース層、ソース層、及びドリフト層を高不純物濃度化している。   Next, a semiconductor element according to Example 3 of the present invention will be described with reference to the drawings. FIG. 18 is a cross-sectional view showing a power MOSFET as a semiconductor element. In this embodiment, the base layer, the source layer, and the drift layer of the power MOSFET are increased in impurity concentration.

以下、実施例1と同一構成部分には、同一符号を付してその部分の説明を省略し、異なる部分のみ説明する。   In the following, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted, and only different portions are described.

図18に示すように、縦型パワーMOSFETであるパワーMOSFET72は、p型ピラー層2とn型ピラー層5がドレイン層としてのn型基板1上の図中横方向に交互に周期的に形成されるピラー層を有する(スーパージャンクション構造)。また、ベース層、ソース層、及びドリフト層を高不純物濃度化している。 As shown in FIG. 18, a power MOSFET 72 which is a vertical power MOSFET has a p-type pillar layer 2 and an n-type pillar layer 5 alternately and periodically in the horizontal direction in the figure on an n + -type substrate 1 as a drain layer. It has a pillar layer to be formed (super junction structure). In addition, the impurity concentration of the base layer, the source layer, and the drift layer is increased.

p型ピラー層2上と、p型ピラー層2と接するn型ピラー層5の上端部上にはp型ベース層31が設けられる。n型ピラー層5の上部の中央部上には、nドリフト層32が設けられる。nドリフト層32上と、nドリフト層32に隣接するp型ベース層31の上端部上には、ゲート絶縁膜8を介して制御電極としてのゲート電極9が設けられる。ゲート電極9は、側面及び上面部分が絶縁膜10により分離される。ゲート電極9の両端部直下のp型ベース層31の表面には、n型ソース層33が設けられる。n型ソース層33と隣接配置される他のゲート電極9に設けられるn型ソース層33の間には、p型ベース層31が残置される。p型ベース層31、n型ソース層33、及び絶縁膜10上には、p型ベース層31及びn型ソース層33と電気的に接続される第2電極としてのソース電極7が設けられる。 A p + -type base layer 31 is provided on the p-type pillar layer 2 and on the upper end portion of the n-type pillar layer 5 in contact with the p-type pillar layer 2. An n + drift layer 32 is provided on the central portion of the upper part of the n-type pillar layer 5. n + a drift layer 32 above the upper end portion of the p + -type base layer 31 adjacent to the n + drift layer 32, the gate electrode 9 as a control electrode via a gate insulating film 8 is provided. The gate electrode 9 has a side surface and an upper surface portion separated by an insulating film 10. An n + -type source layer 33 is provided on the surface of the p + -type base layer 31 immediately below both ends of the gate electrode 9. Between the n + -type source layer 33 and is provided in addition to the gate electrode 9 disposed adjacent n + -type source layer 33, p + -type base layer 31 is left. On the p + type base layer 31, the n + type source layer 33, and the insulating film 10, a source electrode 7 as a second electrode that is electrically connected to the p + type base layer 31 and the n + type source layer 33. Is provided.

ここで、p型ベース層31は実施例1のp型ベース層3よりもp型不純物が高濃度にドープされる。nドリフト層32は実施例1のn型ピラー層5の上部領域に相当し、n型不純物がn型ピラー層5よりも高濃度にドープされる。n型ソース層33は実施例1のn型ソース層4よりもn型不純物が高濃度にドープされる。 Here, the p + type base layer 31 is doped with a higher concentration of p type impurities than the p type base layer 3 of the first embodiment. The n + drift layer 32 corresponds to the upper region of the n-type pillar layer 5 of the first embodiment, and the n-type impurity is doped at a higher concentration than the n-type pillar layer 5. The n + type source layer 33 is doped with an n type impurity at a higher concentration than the n type source layer 4 of the first embodiment.

次に、パワーMOSFETの製造方法について図19乃至図21を参照して説明する。図19乃至図21はパワーMOSFETの製造工程を示す断面図である。   Next, a method for manufacturing a power MOSFET will be described with reference to FIGS. 19 to 21 are cross-sectional views showing the manufacturing process of the power MOSFET.

図19に示すように、シリコンエピタキシャル成長法により、p型ピラー層2及びn型ピラー層5上にnドリフト層32を形成する。ここで、nドリフト層32の形成は、nドリフト層32中の高濃度の不純物がp型ピラー層2及びn型ピラー層5に拡散されにくい比較的低温度のエピタキシャル成長条件を用いるのが好ましい。 As shown in FIG. 19, an n + drift layer 32 is formed on the p-type pillar layer 2 and the n-type pillar layer 5 by a silicon epitaxial growth method. Here, formation of the n + drift layer 32, a high concentration of impurities in n + drift layer 32 is to use epitaxial growth conditions of a relatively low temperature less likely to be diffused into the p-type pillar layer 2 and the n-type pillar layer 5 preferable.

次に、図20に示すように、p型ピラー層2上部のnドリフト層32と、n型ピラー層5の上端部のnドリフト層32とをエッチングして断面が矩形型形状を有する複数の溝14を形成する。ここで、ピッチが同一になるように複数の溝14が形成される。溝14の形成は、例えばRIE(Reactive Ion Etching)法を用いる。その場合、p型ピラー層2、n型ピラー層5、及びnドリフト層32に発生するダメージや表面汚染を除去する目的でRIE後処理が行われる。 Next, as shown in FIG. 20, the p-type pillar layer 2 the upper portion of the n + drift layer 32, is etched and n + drift layer 32 of the upper portion of the n-type pillar layer 5 is cross-sectional has a rectangular shape A plurality of grooves 14 are formed. Here, the plurality of grooves 14 are formed so as to have the same pitch. For example, the RIE (Reactive Ion Etching) method is used to form the groove 14. In that case, RIE post-treatment is performed for the purpose of removing damage and surface contamination generated in the p-type pillar layer 2, the n-type pillar layer 5, and the n + drift layer 32.

続いて、図21に示すように、選択エピタキシャル成長(SEG:Selective Epitaxial Growth)により、溝14の部分にp型ベース層31を埋設する。p型ベース層31の形成は、nドリフト層32上に絶縁膜を形成し、例えば、選択エピタキシャル成長(SEG:Selective Epitaxial Growth)により形成する。その後、絶縁膜、nドリフト層32、及びp型ベース層31を、例えばCMP(Chemical Mechanical Polishing)法を用いて研磨し、平坦化する。 Subsequently, as shown in FIG. 21, a p + -type base layer 31 is embedded in the groove 14 by selective epitaxial growth (SEG). The p + -type base layer 31 is formed by forming an insulating film on the n + drift layer 32, for example, by selective epitaxial growth (SEG). Thereafter, the insulating film, the n + drift layer 32, and the p + type base layer 31 are polished and planarized using, for example, a CMP (Chemical Mechanical Polishing) method.

そして、p型ベース層31及びnドリフト層32上にゲート絶縁膜8とゲート電極9を積層形成し、レジスト膜をマスクとして、例えばRIE(Reactive Ion Etching)法によりゲート電極9とゲート絶縁膜8をエッチングする。その後、レジスト膜の除去及びRIE後処理する。 Then, the gate insulating film 8 and the gate electrode 9 are laminated on the p + type base layer 31 and the n + drift layer 32, and the gate electrode 9 and the gate insulating film are insulated by, for example, RIE (Reactive Ion Etching) using the resist film as a mask. The film 8 is etched. Thereafter, the resist film is removed and post-RIE processing is performed.

続いて、レジスト膜をマスクとして、p型ベース層31の表面にn型不純物をイオン注入する。レジスト膜を除去後、このイオン注入層を熱処理により活性化させてn型ソース層33を形成する。 Subsequently, n-type impurities are ion-implanted into the surface of the p + -type base layer 31 using the resist film as a mask. After removing the resist film, the ion-implanted layer is activated by heat treatment to form the n + -type source layer 33.

なお、これ以降、周知の技術を用いて層間膜形成、電極形成などが行われパワーMOSFET72が完成する。   Thereafter, interlayer film formation, electrode formation, and the like are performed using well-known techniques, and the power MOSFET 72 is completed.

上述したように、本実施例の半導体素子では、p型ピラー層2とn型ピラー層5がn型基板1上に交互に周期的に形成され、スーパージャンクション構造となるピラー層が設けられる。p型ピラー層2上と、p型ピラー層2と接するn型ピラー層5の上側面部分には、シリコンエピタキシャル法により、深さ方向の90%までの領域が一定な不純物濃度を有するp型ベース層31が設けられる。n型ピラー層5の中央部上には、シリコンエピタキシャル法により、n型ドリフト層32が設けられる。p型ベース層31とn型ドリフト層32上には、ゲート絶縁膜8を介してゲート電極9が設けられる。ゲート電極9は、側面及び上面部分が絶縁膜10により分離される。ゲート電極9の両端部直下のp型ベース層31の表面には、n型ソース層33が設けられる。 As described above, in the semiconductor element of this embodiment, the p-type pillar layer 2 and the n-type pillar layer 5 are alternately and periodically formed on the n + -type substrate 1 to provide a pillar layer having a super junction structure. . On the p-type pillar layer 2 and the upper side surface portion of the n-type pillar layer 5 in contact with the p-type pillar layer 2, p + having a constant impurity concentration in a region up to 90% in the depth direction by silicon epitaxial method. A mold base layer 31 is provided. On the central portion of the n-type pillar layer 5, an n + -type drift layer 32 is provided by a silicon epitaxial method. A gate electrode 9 is provided on the p + type base layer 31 and the n + type drift layer 32 with a gate insulating film 8 interposed therebetween. The gate electrode 9 has a side surface and an upper surface portion separated by an insulating film 10. An n + -type source layer 33 is provided on the surface of the p + -type base layer 31 immediately below both ends of the gate electrode 9.

このため、実施例1と同様な効果を有する。したがって、実効的な不純物濃度の低下を抑制でき、パワーMOSFET72の高耐圧化を図りながら、低オン抵抗化を達成することができる。   For this reason, it has the same effect as Example 1. Therefore, a reduction in effective impurity concentration can be suppressed, and a low on-resistance can be achieved while increasing the breakdown voltage of the power MOSFET 72.

次に、本発明の実施例4に係る半導体素子について、図面を参照して説明する。図22は半導体素子としてのパワーMOSFETを示す断面図である。本実施例では、パワーMOSFETの終端部にp型ガードリング層及びp型リサーフ層を設けている。   Next, a semiconductor element according to Example 4 of the present invention will be described with reference to the drawings. FIG. 22 is a cross-sectional view showing a power MOSFET as a semiconductor element. In this embodiment, a p-type guard ring layer and a p-type RESURF layer are provided at the terminal portion of the power MOSFET.

以下、実施例1と同一構成部分には、同一符号を付してその部分の説明を省略し、異なる部分のみ説明する。   In the following, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted, and only different portions are described.

図22に示すように、縦型パワーMOSFETであるパワーMOSFET73の終端部には、n層21上に、p型ベース層3の側面及びp型ピラー層2の上部側面と接し、p型ベース層3よりも深いp型ガードリング層41がp型ベース層3の最外周端に沿って設けられる。p型ガードリング層41の外周には、n層21上に、p型ガードリング層41の側面と接し、p型ガードリング層41よりも浅く、幅広なp型リサーフ層42が設けられる。p型リサーフ層42はソース電極7と電気的に接続される。p型ガードリング層41は、p型ピラー層2及びn型ピラー層5よりも先に形成される。 As shown in FIG. 22, the end portion of the power MOSFET 73 that is a vertical power MOSFET is in contact with the side surface of the p-type base layer 3 and the upper side surface of the p-type pillar layer 2 on the n layer 21. A p-type guard ring layer 41 deeper than the layer 3 is provided along the outermost peripheral edge of the p-type base layer 3. On the outer periphery of the p-type guard ring layer 41, a wide p-type RESURF layer 42 that is in contact with the side surface of the p-type guard ring layer 41 and shallower than the p-type guard ring layer 41 is provided on the n layer 21. The p-type RESURF layer 42 is electrically connected to the source electrode 7. The p-type guard ring layer 41 is formed before the p-type pillar layer 2 and the n-type pillar layer 5.

ここで、p型ガードリング層41及びp型リサーフ層42を設けることにより、横方向に空乏層が伸び、p型ベース層3の端部での電界集中が緩和され、高耐圧のパワーMOSFETを実現することができる。なお、p型ガードリング層41及びp型リサーフ層42の直下部分と、p型リサーフ層42よりも外周部のn層21部とをp型ピラー層2及びn型ピラー層5が交互に繰り返し形成されるスーパージャンクション構造にしてもよい。 Here, by providing the p-type guard ring layer 41 and the p-type RESURF layer 42, the depletion layer extends in the lateral direction, the electric field concentration at the end of the p-type base layer 3 is reduced, and a high breakdown voltage power MOSFET is formed. Can be realized. In addition, the p-type pillar layer 2 and the n-type pillar layer 5 are alternately arranged between the portion immediately below the p-type guard ring layer 41 and the p-type RESURF layer 42 and the n layer 21 portion at the outer peripheral portion than the p-type RESURF layer 42. A super junction structure formed repeatedly may be used.

上述したように、本実施例の半導体素子では、終端部のn層21上に、p型ベース層3の側面及びp型ピラー層2の上部側面と接し、p型ベース層3よりも深いp型ガードリング層41がp型ベース層3の最外周端に沿って設けられる。p型ガードリング層41の外周には、n層21上に、p型ガードリング層41の側面と接し、p型ガードリング層41よりも浅く、幅広なp型リサーフ層42が設けられる。 As described above, in the semiconductor element of this example, the side surface of the p-type base layer 3 and the upper side surface of the p-type pillar layer 2 are in contact with the upper surface of the p-type base layer 3 on the n layer 21 at the termination portion. A p-type guard ring layer 41 is provided along the outermost periphery of the p-type base layer 3. On the outer periphery of the p-type guard ring layer 41, a wide p-type RESURF layer 42 that is in contact with the side surface of the p-type guard ring layer 41 and shallower than the p-type guard ring layer 41 is provided on the n layer 21.

このため、p型ガードリング層41及びp型リサーフ層42により、横方向に空乏層が伸び、p型ベース層3の端部での電界集中が緩和され、低オン抵抗を有する高耐圧のパワーMOSFET73を実現することができる。   For this reason, the p-type guard ring layer 41 and the p-type RESURF layer 42 extend the depletion layer in the lateral direction, the electric field concentration at the end of the p-type base layer 3 is relaxed, and a high withstand voltage power having a low on-resistance. MOSFET 73 can be realized.

本発明は、上記実施例に限定されるものではなく、発明の趣旨を逸脱しない範囲で、種々、変更してもよい。   The present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the spirit of the invention.

例えば、実施例ではシリコン(Si)を用いたMOSFETに適用しているが、シリコンカーバイド(SiC)や窒化ガリウム(GaN)などの化合物半導体、或いはダイヤモンドなどのワイドバンドギャップを有する半導体に適用することができる。また、スーパージャンクション構造を有するSBD、SIT、IGBTなどにも適用することができる。   For example, although the embodiment is applied to a MOSFET using silicon (Si), it is applied to a compound semiconductor such as silicon carbide (SiC) or gallium nitride (GaN), or a semiconductor having a wide band gap such as diamond. Can do. Further, the present invention can also be applied to SBD, SIT, IGBT and the like having a super junction structure.

本発明は、以下の付記に記載されているような構成が考えられる。
(付記1) 第1導電型の半導体基板と、前記半導体基板上に設けられ、断面が短冊状の第1導電型の第1半導体ピラー層と第2導電型の第2半導体ピラー層とが前記半導体基板の表面に沿って横方向に交互に形成されるピラー層と、前記半導体基板に電気的に接続される第1の主電極と、前記第2半導体ピラー層の表面に設けられる第2導電型の半導体ベース層と、前記半導体ベース層の表面に設けられる第1導電型の半導体層と、前記半導体ベース層と前記半導体層に接するように設けられる第2の主電極と、前記半導体層と前記第1半導体ピラー層に亘る領域にゲート絶縁膜を介して設けられる制御電極とを具備し、前記半導体層と前記第1半導体ピラー層の間に縦方向にチャネルが形成され、前記半導体ベース層は横方向及び縦方向の不純物プロファイルが一定な領域を有することを特徴とする半導体素子。
The present invention can be configured as described in the following supplementary notes.
(Supplementary Note 1) A first conductivity type semiconductor substrate, a first conductivity type first semiconductor pillar layer and a second conductivity type second semiconductor pillar layer which are provided on the semiconductor substrate and have a strip-like cross section. Pillar layers alternately formed in the lateral direction along the surface of the semiconductor substrate, a first main electrode electrically connected to the semiconductor substrate, and a second conductive provided on the surface of the second semiconductor pillar layer Type semiconductor base layer, a first conductive type semiconductor layer provided on the surface of the semiconductor base layer, a second main electrode provided in contact with the semiconductor base layer and the semiconductor layer, and the semiconductor layer, A control electrode provided through a gate insulating film in a region extending over the first semiconductor pillar layer, wherein a channel is formed in a vertical direction between the semiconductor layer and the first semiconductor pillar layer, and the semiconductor base layer Is horizontal and vertical A semiconductor element having a region having a constant impurity profile.

(付記2) 前記半導体ベース層のプロファイルは複数のピークを有し、前記半導体ベース層の表面から深さの(1/2)までの間でのピーク濃度が前記半導体ベース層表面の濃度の90%以上である付記1に記載の半導体素子。 (Supplementary Note 2) The profile of the semiconductor base layer has a plurality of peaks, and the peak concentration from the surface of the semiconductor base layer to (1/2) of the depth is 90% of the concentration of the surface of the semiconductor base layer. The semiconductor element according to appendix 1, which is at least%.

(付記3) バレー濃度がピーク濃度の10%以上である付記2に記載の半導体素子。 (Additional remark 3) The semiconductor element of Additional remark 2 whose valley concentration is 10% or more of peak concentration.

(付記4) 前記半導体ベース層の深さは、前記半導体ベース層に隣接配置される素子終端部のガードリング層の深さよりも浅い付記1乃至3のいずれかに記載の半導体素子。 (Additional remark 4) The semiconductor element in any one of additional remark 1 thru | or 3 with which the depth of the said semiconductor base layer is shallower than the depth of the guard ring layer of the element termination part arrange | positioned adjacent to the said semiconductor base layer.

本発明の実施例1に係るパワーMOSFETを示す断面図。Sectional drawing which shows power MOSFET which concerns on Example 1 of this invention. 本発明の実施例1に係るパワーMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of power MOSFET which concerns on Example 1 of this invention. 本発明の実施例1に係るパワーMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of power MOSFET which concerns on Example 1 of this invention. 本発明の実施例1に係るパワーMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of power MOSFET which concerns on Example 1 of this invention. 本発明の実施例1に係るパワーMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of power MOSFET which concerns on Example 1 of this invention. 本発明の実施例1に係るパワーMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of power MOSFET which concerns on Example 1 of this invention. 本発明の実施例1に係るパワーMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of power MOSFET which concerns on Example 1 of this invention. 本発明の実施例1に係るパワーMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of power MOSFET which concerns on Example 1 of this invention. 本発明の実施例1に係るパワーMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of power MOSFET which concerns on Example 1 of this invention. 本発明の実施例1に係るパワーMOSFETのベース層の不純物プロファイルを示す図。The figure which shows the impurity profile of the base layer of power MOSFET which concerns on Example 1 of this invention. 本発明の実施例1に係る実効ピラー濃度と拡散長の関係を示す図。The figure which shows the relationship between the effective pillar density | concentration and diffusion length which concern on Example 1 of this invention. 本発明の実施例1に係る高加速イオン注入法を用いた場合のベース層の不純物プロファイルを示す図。The figure which shows the impurity profile of the base layer at the time of using the high acceleration ion implantation method which concerns on Example 1 of this invention. 本発明の実施例1に係るパワーMOSFETの終端部を示す断面図。Sectional drawing which shows the termination | terminus part of power MOSFET which concerns on Example 1 of this invention. 本発明の実施例1に係るパワーMOSFETの終端部の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the termination | terminus part of power MOSFET which concerns on Example 1 of this invention. 本発明の実施例2に係るパワーMOSFETを示す断面図。Sectional drawing which shows power MOSFET which concerns on Example 2 of this invention. 本発明の実施例2に係るパワーMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of power MOSFET which concerns on Example 2 of this invention. 本発明の実施例2に係るパワーMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of power MOSFET which concerns on Example 2 of this invention. 本発明の実施例3に係るパワーMOSFETを示す断面図。Sectional drawing which shows power MOSFET which concerns on Example 3 of this invention. 本発明の実施例3に係るパワーMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of power MOSFET which concerns on Example 3 of this invention. 本発明の実施例3に係るパワーMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of power MOSFET which concerns on Example 3 of this invention. 本発明の実施例3に係るパワーMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of power MOSFET which concerns on Example 3 of this invention. 本発明の実施例4に係るパワーMOSFETを示す断面図。Sectional drawing which shows power MOSFET which concerns on Example 4 of this invention.

符号の説明Explanation of symbols

1 n型基板
2 p型ピラー層
3 p型ベース層
4 n型ソース層
5 n型ピラー層
6 ドレイン電極
7 ソース電極
8 ゲート絶縁膜
9 ゲート電極
10、23 絶縁膜
11〜14 溝
21 n
22 p型ガードリング層
24 ガードリング電極
31 p型ベース層
32 n型ドリフト層
33 n型ソース層
41 p型ガードリング層
42 p型リサーフ層
70〜73 パワーMOSFET
1 n + type substrate 2 p-type pillar layer 3 p-type base layer 4 n-type source layer 5 n-type pillar layer 6 drain electrode 7 source electrode 8 gate insulating film 9 gate electrodes 10 and 23 insulating films 11 to 14 groove 21 n Layer 22 p-type guard ring layer 24 guard ring electrode 31 p + -type base layer 32 n + -type drift layer 33 n + -type source layer 41 p-type guard ring layer 42 p-type resurf layers 70 to 73 Power MOSFET

Claims (5)

第1導電型の半導体基板と、
前記半導体基板上に設けられ、断面が短冊状の第1導電型の第1半導体ピラー層と第2導電型の第2半導体ピラー層とが前記半導体基板の表面に沿って横方向に交互に形成されるピラー層と、
前記半導体基板に電気的に接続される第1の主電極と、
前記第2半導体ピラー層の表面に設けられる第2導電型の半導体ベース層と、
前記半導体ベース層の表面に設けられる第1導電型の半導体層と、
前記半導体ベース層と前記半導体層に接するように設けられる第2の主電極と、
前記半導体層と前記第1半導体ピラー層に亘る領域にゲート絶縁膜を介して設けられる制御電極と、
を具備し、前記半導体ベース層は横方向及び縦方向の不純物プロファイルが一定な領域を有することを特徴とする半導体素子。
A first conductivity type semiconductor substrate;
A first conductive type first semiconductor pillar layer and a second conductive type second semiconductor pillar layer which are provided on the semiconductor substrate and have a strip-like cross section are alternately formed in the lateral direction along the surface of the semiconductor substrate. With pillar layer
A first main electrode electrically connected to the semiconductor substrate;
A second conductivity type semiconductor base layer provided on a surface of the second semiconductor pillar layer;
A first conductivity type semiconductor layer provided on a surface of the semiconductor base layer;
A second main electrode provided in contact with the semiconductor base layer and the semiconductor layer;
A control electrode provided via a gate insulating film in a region extending between the semiconductor layer and the first semiconductor pillar layer;
The semiconductor base layer has a region having a constant impurity profile in the horizontal direction and the vertical direction.
前記第1半導体ピラー層の濃度と前記第2半導体ピラー層の濃度に対して、実効ピラー濃度が50%以上となる領域が前記第1半導体ピラー層及び前記第2半導体ピラー層に設けられることを特徴とする請求項1に記載の半導体素子。   A region having an effective pillar concentration of 50% or more with respect to the concentration of the first semiconductor pillar layer and the concentration of the second semiconductor pillar layer is provided in the first semiconductor pillar layer and the second semiconductor pillar layer. The semiconductor device according to claim 1, wherein 前記半導体ベース層の表面から深さの(1/2)までの濃度が、前記半導体ベース表面の濃度の90%以上であることを特徴とする請求項1又は2に記載の半導体素子。   3. The semiconductor element according to claim 1, wherein a concentration from a surface of the semiconductor base layer to (1/2) of a depth is 90% or more of a concentration of the surface of the semiconductor base. 前記半導体ベース層は、互いに異なるピークを有するプロファイルが複数設けられることを特徴とする請求項1乃至3のいずれか1項に記載の半導体素子。   4. The semiconductor device according to claim 1, wherein the semiconductor base layer is provided with a plurality of profiles having different peaks. 5. 前記半導体ベース層の表面から深さの(1/2)までの間での複数のピーク濃度が、それぞれ前記半導体ベース層表面の濃度の90%以上であることを特徴とする請求項4に記載の半導体素子。   The plurality of peak concentrations from the surface of the semiconductor base layer to (1/2) of the depth are 90% or more of the concentration of the surface of the semiconductor base layer, respectively. Semiconductor element.
JP2008330661A 2008-12-25 2008-12-25 Semiconductor device Pending JP2010153622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008330661A JP2010153622A (en) 2008-12-25 2008-12-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008330661A JP2010153622A (en) 2008-12-25 2008-12-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2010153622A true JP2010153622A (en) 2010-07-08

Family

ID=42572395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008330661A Pending JP2010153622A (en) 2008-12-25 2008-12-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2010153622A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103227113A (en) * 2012-01-25 2013-07-31 瑞萨电子株式会社 Method of manufacturing vertical planar power MOSFET and method of manufacturing trench-gate power MOSFET
CN103474465A (en) * 2013-09-06 2013-12-25 无锡新洁能股份有限公司 Super-junction MOSFET device and manufacturing method thereof
US20140099762A1 (en) * 2011-12-16 2014-04-10 Anpec Electronics Corporation Manufacturing method of trench type power transistor device with super junction
WO2014087600A1 (en) * 2012-12-04 2014-06-12 株式会社デンソー Semiconductor device and method for manufacturing same
JP2014132637A (en) * 2012-12-04 2014-07-17 Denso Corp Semiconductor device and manufacturing method of the same
JP2014132636A (en) * 2012-12-04 2014-07-17 Denso Corp Semiconductor device and manufacturing method of the same
JP2017063182A (en) * 2015-08-06 2017-03-30 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Wide bandgap semiconductor device
JP2018022851A (en) * 2016-08-05 2018-02-08 富士電機株式会社 Semiconductor device and manufacturing method of the same
JP2021040041A (en) * 2019-09-03 2021-03-11 富士電機株式会社 Superjunction semiconductor device and manufacturing method thereof
CN112864219A (en) * 2019-11-12 2021-05-28 南通尚阳通集成电路有限公司 Super junction device and manufacturing method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140099762A1 (en) * 2011-12-16 2014-04-10 Anpec Electronics Corporation Manufacturing method of trench type power transistor device with super junction
US8940607B2 (en) * 2011-12-16 2015-01-27 Anpec Electronics Corporation Manufacturing method of trench type power transistor device with super junction
US8928070B2 (en) 2011-12-16 2015-01-06 Anpec Electronics Corporation Trench type power transistor device with super junction
CN103227113B (en) * 2012-01-25 2018-05-18 瑞萨电子株式会社 Manufacture the method for vertical plane power MOSFET and the method for manufacture groove gate power MOSFET
JP2013153056A (en) * 2012-01-25 2013-08-08 Renesas Electronics Corp Vertical type planar power mosfet manufacturing method and trench gate type power mosfet manufacturing method
CN103227113A (en) * 2012-01-25 2013-07-31 瑞萨电子株式会社 Method of manufacturing vertical planar power MOSFET and method of manufacturing trench-gate power MOSFET
WO2014087600A1 (en) * 2012-12-04 2014-06-12 株式会社デンソー Semiconductor device and method for manufacturing same
JP2014132637A (en) * 2012-12-04 2014-07-17 Denso Corp Semiconductor device and manufacturing method of the same
JP2014132636A (en) * 2012-12-04 2014-07-17 Denso Corp Semiconductor device and manufacturing method of the same
US9536944B2 (en) 2012-12-04 2017-01-03 Denso Corporation Semiconductor device and method of manufacturing same
CN103474465A (en) * 2013-09-06 2013-12-25 无锡新洁能股份有限公司 Super-junction MOSFET device and manufacturing method thereof
JP2017063182A (en) * 2015-08-06 2017-03-30 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Wide bandgap semiconductor device
JP2018022851A (en) * 2016-08-05 2018-02-08 富士電機株式会社 Semiconductor device and manufacturing method of the same
JP2021040041A (en) * 2019-09-03 2021-03-11 富士電機株式会社 Superjunction semiconductor device and manufacturing method thereof
JP7508764B2 (en) 2019-09-03 2024-07-02 富士電機株式会社 Super-junction silicon carbide semiconductor device and method for manufacturing the super-junction silicon carbide semiconductor device
CN112864219A (en) * 2019-11-12 2021-05-28 南通尚阳通集成电路有限公司 Super junction device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4825424B2 (en) Power semiconductor device
JP5188037B2 (en) Semiconductor device
JP4744958B2 (en) Semiconductor device and manufacturing method thereof
JP5586887B2 (en) Semiconductor device and manufacturing method thereof
JP4635067B2 (en) Semiconductor device and manufacturing method thereof
JP6048317B2 (en) Silicon carbide semiconductor device
JP2010153622A (en) Semiconductor device
JP5812029B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP3634830B2 (en) Power semiconductor device
JP5449094B2 (en) Semiconductor device
JP2008182054A (en) Semiconductor device
JP2006278826A (en) Semiconductor device and manufacturing method thereof
JP2008124346A (en) Power semiconductor element
JP2006269720A (en) Semiconductor device and its fabrication process
JP2006179598A (en) Power semiconductor device
US9698217B1 (en) Semiconductor device
JP2007281034A (en) Power semiconductor element
JP2007036213A (en) Semiconductor element
JP2019519938A (en) Short channel trench type power MOSFET
US20200020775A1 (en) Semiconductor device and manufacturing method of the same
JP2007019146A (en) Semiconductor device
JP2018041853A (en) Semiconductor device and semiconductor device manufacturing method
JP2010232355A (en) Semiconductor device
JP5201307B2 (en) Semiconductor device
JP2008078282A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205