JP2010152090A - Reflecting mirror system - Google Patents

Reflecting mirror system Download PDF

Info

Publication number
JP2010152090A
JP2010152090A JP2008330325A JP2008330325A JP2010152090A JP 2010152090 A JP2010152090 A JP 2010152090A JP 2008330325 A JP2008330325 A JP 2008330325A JP 2008330325 A JP2008330325 A JP 2008330325A JP 2010152090 A JP2010152090 A JP 2010152090A
Authority
JP
Japan
Prior art keywords
mirror
support part
submirror
primary
primary mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008330325A
Other languages
Japanese (ja)
Inventor
Masasane Kume
将実 久米
Takeshi Ozaki
毅志 尾崎
Hajime Takeya
元 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008330325A priority Critical patent/JP2010152090A/en
Publication of JP2010152090A publication Critical patent/JP2010152090A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Telescopes (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflecting mirror system capable of holding geometrical position relation between a main mirror and a submirror at fixed relation even when an arbitrary temperature change or temperature distribution is generated in the reflecting mirror system, capable of minimizing a change in stress at a connection portion of members and capable of suppressing a deviation of an optical axis and reduction in reliability. <P>SOLUTION: The reflecting mirror system includes: a main mirror 1; a main mirror support part 2 for fixing the main mirror 1; a submirror 3; a submirror support part 4 for fixing the submirror 3; and a connection frame 5 for connecting the submirror support part 4 with the main mirror support part 2. In the system, configuration members of the main mirror 1, the submirror 3, the main mirror support part 2, the submirror support part 4, and the connection frame 5 are composed of materials having the same linear thermal expansion coefficient, a reflection surface of the main mirror 1 and a reflection surface of the submirror 3 are oppositely arranged on a common optical axis, and a main mirror connecting position 6 where the connection frame 5 is connected to the main mirror support part 2 and a submirror connecting position 7 where the connection frame 5 is connected to the submirror support part 4 are arranged point-symmetrically about the optical axis. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、熱的な環境変化が厳しい、例えば宇宙空間で用いる望遠鏡や光アンテナに関するものである。   The present invention relates to a telescope or an optical antenna used in space, for example, where thermal environmental changes are severe.

衛星等で使用する光学系システムの場合、宇宙環境での光学系システム全体の温度変化が非常に大きい。このため、光学系システムが熱変形を生じ、光学系システム全体の構成部材の相対的位置が変化すると、焦点の移動などが発生して画像の劣化原因となるため、構成部材の相対的位置変化を補正するための調整機構が必要となる。従来の反射鏡システムにおいては、主鏡と副鏡との幾何学的位置関係を保持するために、主鏡を支持すると共にこの主鏡の光軸中心に対して放射方向に延在する複数の脚部材を有する第1の支持手段と、副鏡を支持すると共に第1の支持手段の脚部の先端に連結する複数のフレームを備えた第2の支持手段とを備え、第1、第2の支持手段の線膨張係数を異なるように構成し、温度変化が生じても、主鏡と副鏡との幾何学的位置関係が一定になるように部材寸法が選定されている(例えば、特許文献1参照)。   In the case of an optical system used in a satellite or the like, the temperature change of the entire optical system in the space environment is very large. For this reason, if the optical system is thermally deformed and the relative position of the constituent members of the entire optical system changes, the movement of the focal point or the like may cause deterioration of the image. An adjustment mechanism for correcting the above is required. In the conventional reflector system, in order to maintain the geometric positional relationship between the primary mirror and the secondary mirror, a plurality of mirrors that support the primary mirror and extend in the radial direction with respect to the optical axis center of the primary mirror are provided. A first support means having a leg member; and a second support means having a plurality of frames for supporting the secondary mirror and connected to the distal ends of the legs of the first support means. The support member is constructed so that the linear expansion coefficient is different, and the member dimensions are selected so that the geometrical positional relationship between the primary mirror and the secondary mirror is constant even if the temperature changes (for example, patents) Reference 1).

特開2001−318301号公報(2頁、図1)JP 2001-318301 A (page 2, FIG. 1)

従来の反射鏡システムでは、主鏡の光軸に対称な部分に温度分布が生じた場合には主鏡と副鏡との幾何学的位置関係を一定に保つことができる。しかしながら、衛星などで使用する場合、太陽光は常に光軸に対称な部分のみに照射されるわけではなく、温度分布が主鏡の光軸に非対称な部分に生じた場合は、第1の支持手段の線膨張係数と第2の支持手段の線膨張係数とを異なるように構成しているので、鏡と副鏡との幾何学的位置関係を一定に保つことは困難である。また、線膨張係数の異なる部材で構成されているので、それらの部材を接続している部分では温度変化に伴う応力の変化が大きく、光軸のずれが発生したり、反射鏡の信頼性が低下したりするという問題があった。   In the conventional reflecting mirror system, when a temperature distribution is generated in a portion symmetrical to the optical axis of the primary mirror, the geometric positional relationship between the primary mirror and the secondary mirror can be kept constant. However, when used in a satellite or the like, sunlight is not always applied only to a portion that is symmetric with respect to the optical axis. If the temperature distribution occurs in a portion that is asymmetric with respect to the optical axis of the primary mirror, the first support is provided. Since the linear expansion coefficient of the means and the linear expansion coefficient of the second support means are different, it is difficult to keep the geometric positional relationship between the mirror and the secondary mirror constant. In addition, because it is made up of members with different linear expansion coefficients, the change in stress associated with temperature changes is large at the part where these members are connected, the optical axis shifts, and the reliability of the reflector is low. There was a problem of being lowered.

この発明は上述のような課題を解決するためになされたもので、反射鏡システムに任意の温度変化や温度分布が生じても、主鏡と副鏡との幾何学的位置関係を一定に保つと共に、部材の接続部での応力の変化を最小に押さえ、光軸のずれや信頼性の低下を抑制することができる。   The present invention has been made to solve the above-described problems. Even if any temperature change or temperature distribution occurs in the reflecting mirror system, the geometric positional relationship between the primary mirror and the secondary mirror is kept constant. At the same time, a change in stress at the connecting portion of the member can be suppressed to a minimum, and a shift of the optical axis and a decrease in reliability can be suppressed.

この発明に係る反射鏡システムにおいては、主鏡およびこの主鏡が固定された主鏡支持部と、副鏡およびこの副鏡が固定された副鏡支持部と、この副鏡支持部と主鏡支持部とを連結する連結フレームとを備えた反射鏡システムであって、主鏡、副鏡、主鏡支持部、副鏡支持部および連結フレームの構成部材を同一の線熱膨張係数をもつ材料で構成し、主鏡の反射面と副鏡の反射面とは共通の光軸で対向して配置し、主鏡支持部に連結フレームが接続された主鏡接続位置と、副鏡支持部に連結フレームが接続された副鏡接続位置とを光軸に対して点対称の位置としたものである。   In the reflecting mirror system according to the present invention, the primary mirror, the primary mirror support portion to which the primary mirror is fixed, the secondary mirror, the secondary mirror support portion to which the secondary mirror is fixed, the secondary mirror support portion and the primary mirror A reflecting mirror system comprising a connecting frame for connecting a support part, and a material having the same linear thermal expansion coefficient for the main mirror, sub mirror, main mirror support part, sub mirror support part and connecting frame constituent members The reflective surface of the primary mirror and the reflective surface of the secondary mirror are arranged facing each other with a common optical axis, and the primary mirror connection position where the coupling frame is connected to the primary mirror support portion, and the secondary mirror support portion The secondary mirror connection position to which the connecting frame is connected is a point-symmetrical position with respect to the optical axis.

この発明は、構成部材を同一の線熱膨張係数をもつ材料で構成し、主鏡支持部に連結フレームが接続された主鏡接続位置と、副鏡支持部に連結フレームが接続された副鏡接続位置とを光軸に対して点対称の位置にすることにより、反射鏡に任意の温度変化や温度分布が生じても、主鏡と副鏡との幾何学的位置関係を一定に保つことができると共に、部材の接続部での応力の変化を最小に押さえ、光軸のずれや信頼性の低下を抑制することができる。   In the present invention, the constituent members are made of a material having the same linear thermal expansion coefficient, and the primary mirror connection position where the coupling frame is connected to the primary mirror support part, and the secondary mirror where the coupling frame is connected to the secondary mirror support part By making the connection position point-symmetric with respect to the optical axis, the geometric positional relationship between the primary and secondary mirrors is kept constant even if any temperature change or temperature distribution occurs in the reflector. In addition, the change in stress at the connecting portion of the member can be suppressed to the minimum, and the shift of the optical axis and the decrease in reliability can be suppressed.

実施の形態1.
図1は、この発明を実施するための実施の形態1における反射鏡システムの模式図ある。図1において、主鏡1は主鏡支持部2に固定されており、副鏡3は副鏡支持部4に固定されている。主鏡1と副鏡3とは共通の光軸で対向して配置されている。主鏡支持部2は略三角形の形をしており、3つの頂点の近くの主鏡接続部6で連結フレーム5と接続されている。副鏡支持部4は、副鏡3よりもよりも大きな円形の形をしており、3本の連結フレーム5とは側面の副鏡接続部7で接続されている。連結フレーム5は、複数の節部で屈曲した螺旋状に曲がった構造である。主鏡接続部6と副鏡接続部7とは、光軸に対して点対称、つまり光軸を中心に180度回転した位置となるように構成されている。このような位置関係を逆位相の位置関係と表現する。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram of a reflector system according to Embodiment 1 for carrying out the present invention. In FIG. 1, the primary mirror 1 is fixed to the primary mirror support 2, and the secondary mirror 3 is fixed to the secondary mirror support 4. The primary mirror 1 and the secondary mirror 3 are arranged to face each other with a common optical axis. The primary mirror support portion 2 has a substantially triangular shape, and is connected to the connecting frame 5 by a primary mirror connection portion 6 near three vertices. The secondary mirror support part 4 has a larger circular shape than the secondary mirror 3 and is connected to the three connecting frames 5 by the secondary mirror connection part 7 on the side surface. The connection frame 5 has a spiral bent structure that is bent at a plurality of nodes. The primary mirror connecting portion 6 and the secondary mirror connecting portion 7 are configured so as to be point-symmetric with respect to the optical axis, that is, a position rotated by 180 degrees around the optical axis. Such a positional relationship is expressed as an antiphase positional relationship.

本実施の形態の反射鏡システムをさらに詳細に述べる。主鏡1は、外形が250mmで中央部に内径が70mmの開口部があり、焦点距離が250mmの凹面鏡である。副鏡3は、外形が75mmで焦点距離が500mmの凸面鏡である。主鏡接続部6と副鏡接続部7とは逆位相の位置にあるため、連結フレーム5が直線状の形状であった場合、3本の連結フレームは、中央部で交差してしまうため、反射鏡システムの主鏡と副鏡との間の光路を遮ることになり、集光効率を低下させたり、画像の一部を欠落させたりする原因となる。そのため、連結フレーム5が主鏡と副鏡との間の光路を遮蔽しないように光路の外側を通過するように迂回する螺旋形状とすることで、主鏡支持部と副鏡支持部を180度ずらした逆位相の接続位置で連結することが可能となる。   The reflector system of the present embodiment will be described in further detail. The primary mirror 1 is a concave mirror having an outer diameter of 250 mm, an opening having an inner diameter of 70 mm in the center, and a focal length of 250 mm. The secondary mirror 3 is a convex mirror having an outer shape of 75 mm and a focal length of 500 mm. Since the primary mirror connecting portion 6 and the secondary mirror connecting portion 7 are in opposite phase positions, when the connecting frame 5 has a linear shape, the three connecting frames intersect at the center, This obstructs the optical path between the primary mirror and the secondary mirror of the reflecting mirror system, resulting in a decrease in light collection efficiency and a loss of part of the image. Therefore, the main mirror support part and the secondary mirror support part are 180 degrees by making the connection frame 5 have a spiral shape that bypasses the outside of the optical path so as not to block the optical path between the primary mirror and the secondary mirror. It is possible to connect at a shifted connection position of opposite phase.

本実施の形態においては、主鏡、副鏡、主鏡支持部、副鏡支持部および連結フレームの構成部材は、同一の線熱膨張係数をもつ材料、例えば炭素繊維強化炭化珪素複合材(C/SiC)で構成されている。   In the present embodiment, the constituent members of the primary mirror, secondary mirror, primary mirror support portion, secondary mirror support portion, and connecting frame are made of a material having the same linear thermal expansion coefficient, for example, a carbon fiber reinforced silicon carbide composite material (C / SiC).

次に本実施の形態における反射鏡システムが衛星に搭載された場合の反射鏡システムの動作について説明する。   Next, the operation of the reflecting mirror system when the reflecting mirror system in the present embodiment is mounted on a satellite will be described.

反射鏡システムが搭載された衛星においては、反射鏡システムは太陽光からの強い放射光を遮蔽するために、観測光の入射を妨げない範囲で周囲は遮蔽されている。天体を観測する場合、観測しようする星からの光が反射鏡システムの主鏡に入射するように反射鏡システムの方向が制御される。この場合、反射鏡システムそが小型で衛星本体から独立して方向が制御できる構造であれば反射鏡システム単独で方向が制御され、反射鏡システム大型で衛星本体と一体の場合は、衛星本体の姿勢制御により、所望の方向へ制御される。観測対称からの光は主鏡1で反射され、この反射された光は副鏡3へ進み、副鏡3で反射された光は主鏡1の開口部を通過して、主鏡1背面の開口部に対応した配置されている受光部(図示せず)に結像される。受光部に結像された情報はデジタル信号に変換され、衛星の通信装置を介して地上に転送される。地上に転送されたデジタル信号は画像処理など、各種情報分析に用いられる。   In a satellite equipped with a reflector system, the reflector system is shielded in the range that does not prevent the incidence of observation light in order to shield strong radiation from sunlight. When observing a celestial body, the direction of the reflector system is controlled so that light from the star to be observed enters the main mirror of the reflector system. In this case, if the reflector system is small and the direction can be controlled independently from the satellite body, the direction is controlled by the reflector system alone. If the reflector system is large and integrated with the satellite body, It is controlled in a desired direction by posture control. The light from the observation symmetry is reflected by the primary mirror 1, and the reflected light travels to the secondary mirror 3, and the light reflected by the secondary mirror 3 passes through the opening of the primary mirror 1 and passes through the back of the primary mirror 1. An image is formed on a light receiving portion (not shown) arranged corresponding to the opening. The information imaged on the light receiving unit is converted into a digital signal and transferred to the ground via a satellite communication device. The digital signal transferred to the ground is used for various kinds of information analysis such as image processing.

次に、本実施の形態における反射鏡システムに温度分布が生じた場合の作用について説明する。主鏡、副鏡、主鏡支持部、副鏡支持部および連結フレームの構成部材は、同一の線熱膨張係数をもつ材料で構成されているので、反射鏡システム全体の温度が等しく変化した場合は、相似変形を起こすので、主鏡と副鏡との幾何学的位置関係は一定に保たれると共に、部材の接続部での応力はほとんど変化せず、光軸のずれや信頼性の低下を抑制することができる。   Next, an operation when temperature distribution occurs in the reflecting mirror system in the present embodiment will be described. The primary mirror, secondary mirror, primary mirror support, secondary mirror support, and connecting frame components are made of materials with the same linear thermal expansion coefficient, so the temperature of the entire reflector system changes equally. Causes similar deformation, the geometrical positional relationship between the primary and secondary mirrors is kept constant, and the stress at the joints of the members hardly changes, and the optical axis shifts and reliability decreases. Can be suppressed.

また、反射鏡システムに温度分布が生じた場合、連結フレームが主鏡支持部と副鏡指示部とを逆位相で連結するように構成されているため、それぞれの連結フレームが温度分布に対し、伸び縮みを起こし変形量が相殺され、連結フレームの長さが等しくなる。このため、主鏡支持部と副鏡支持部の位置関係は平行状態が保持されるので、主鏡と副鏡との幾何学的位置関係は一定に保たれ光軸のずれを抑制することができる。   In addition, when the temperature distribution occurs in the reflector system, the connection frame is configured to connect the primary mirror support unit and the secondary mirror instruction unit in opposite phases. Expansion and contraction are caused and the amount of deformation is offset, so that the lengths of the connecting frames become equal. For this reason, the positional relationship between the primary mirror support portion and the secondary mirror support portion is maintained in a parallel state, so that the geometrical positional relationship between the primary mirror and the secondary mirror is kept constant, and the shift of the optical axis can be suppressed. it can.

上述のように、本実施の形態においては、構成部材を同一の線熱膨張係数をもつ材料で構成することにより、部材の接続部での応力の変化を最小に押さえることができると共に、主鏡支持部に連結フレームが接続された主鏡接続位置と、副鏡支持部に連結フレームが接続された副鏡接続位置と逆位相の位置とすることにより、反射鏡に任意の温度変化や温度分布が生じても、補正機構なしで主鏡と副鏡との幾何学的位置関係を一定に保つことができる。その結果、反射鏡システムに温度変化や温度分布が生じた場合でも、光軸のずれや信頼性の低下を抑制することができる。   As described above, in this embodiment, the constituent members are made of a material having the same linear thermal expansion coefficient, so that the change in stress at the connecting portion of the members can be minimized and the primary mirror can be suppressed. Arbitrary temperature change and temperature distribution in the reflector by setting the primary mirror connection position where the coupling frame is connected to the support part and the secondary mirror connection position where the coupling frame is connected to the secondary mirror support part. Even if this occurs, the geometric positional relationship between the primary mirror and the secondary mirror can be kept constant without a correction mechanism. As a result, even when a temperature change or a temperature distribution occurs in the reflecting mirror system, it is possible to suppress a deviation of the optical axis and a decrease in reliability.

また、本実施の形態においては、構成部材に炭素繊維強化炭化珪素複合材(C/SiC)を用いた例を示したが、この複合材は軽量で線膨張係数が小さいので衛星などで使用する場合に適した材料である。しかしながら、この材料以外を用いてもよく、例えば低熱膨張ガラス材やインバー材やベリリウム合金等を用いることもできる。   In this embodiment, an example in which a carbon fiber reinforced silicon carbide composite material (C / SiC) is used as a constituent member has been shown. However, since this composite material is lightweight and has a small linear expansion coefficient, it is used in a satellite or the like. It is a material suitable for the case. However, materials other than this material may be used. For example, a low thermal expansion glass material, an invar material, a beryllium alloy, or the like may be used.

実施の形態2.
実施の形態2は、実施の形態1で説明した反射鏡システムにおいて、温度分布と光学特性との関係を評価したものである。図2は、本実施の形態における反射鏡システムの光学特性を評価するときの配置図である。図2において、反射鏡システム8の主鏡の副鏡と反対の位置に光学干渉計9を配置し、副鏡の光学干渉計9と反対の位置に基準ミラー10を配置する。光学干渉計9としては、例えばザイゴ社製のGPI−XPレーザ干渉計式形状測定器を用いることができる。光学干渉計9と基準ミラー10とに位置関係は、温度環境に係らず一定となるように構成する。光学干渉計9から出射されるレーザ光は、主鏡1の中央部の開口部9を通過して副鏡3で主鏡1側へ反射され、さらに主鏡1で反射されて基準ミラー10に照射される。基準ミラー10に照射されたレーザ光は、基準ミラー10で反射されて光路を逆に辿って光学干渉計9に戻される。この基準ミラー10から反射されて戻ってきたレーザ光と光学干渉計9から出射されたレーザ光との干渉縞から主鏡1および副鏡3の形状を測定することができる。図2において、反射鏡システム8は、温度特性を評価するために全体の温度を一定に調整できるように恒温槽内(図示せず)に配置されている。また、主鏡1を支持する主鏡支持部の対向する2つの端部P1、P2とし、副鏡3を支持する副鏡支持部の対向する2つの端部をP3、P4とする。これらの4つの端部には、ヒータと熱電対とが取付けられており、これら4つの端部の温度を独立に変化させることができる。
Embodiment 2. FIG.
The second embodiment evaluates the relationship between the temperature distribution and the optical characteristics in the reflector system described in the first embodiment. FIG. 2 is a layout diagram for evaluating the optical characteristics of the reflecting mirror system in the present embodiment. In FIG. 2, an optical interferometer 9 is disposed at a position opposite to the secondary mirror of the primary mirror of the reflector system 8, and a reference mirror 10 is disposed at a position opposite to the optical interferometer 9 of the secondary mirror. As the optical interferometer 9, for example, a GPI-XP laser interferometer type shape measuring device manufactured by Zygo Corporation can be used. The positional relationship between the optical interferometer 9 and the reference mirror 10 is configured to be constant regardless of the temperature environment. Laser light emitted from the optical interferometer 9 passes through the opening 9 at the center of the primary mirror 1, is reflected by the secondary mirror 3 toward the primary mirror 1, and is further reflected by the primary mirror 1 to the reference mirror 10. Irradiated. The laser light applied to the reference mirror 10 is reflected by the reference mirror 10, traces the optical path in the reverse direction, and returns to the optical interferometer 9. The shapes of the primary mirror 1 and the secondary mirror 3 can be measured from the interference fringes between the laser light reflected and returned from the reference mirror 10 and the laser light emitted from the optical interferometer 9. In FIG. 2, the reflector system 8 is arranged in a constant temperature bath (not shown) so that the entire temperature can be adjusted to be constant in order to evaluate temperature characteristics. In addition, two opposing end portions P1 and P2 of the primary mirror support portion that supports the primary mirror 1 are defined, and two opposing end portions of the secondary mirror support portion that supports the secondary mirror 3 are denoted as P3 and P4. A heater and a thermocouple are attached to these four ends, and the temperature of these four ends can be changed independently.

まず始めに、反射鏡システム8の全体の温度を23℃の一定として、光学干渉計9を用いて波面収差を測定した結果、波面収差は0.230λ(rms)であった。ここで、波面収差とは、光学系を通過した同心球面波面の乱れのことであり、本実施の形態においては、反射鏡システムで収束した同心球面波面と理想波面との偏差の標準偏差で定義される。ここで、λは、光学干渉計9のレーザ光の波長であり、例えば光学干渉計9の光源がHe−Neレーザであれば、λ=632.8nmである。波面収差がレイリー限界(1/4λ)以下であれば、理想像と大きな差がないと判断される。次に、反射鏡システム8の全体の温度を10℃としたときの波面収差は0.231λ(rms)、反射鏡システム8の全体の温度を35℃としたときの波面収差は0.230λ(rms)であった。このことから、反射鏡システム全体が一定の温度であれば、反射鏡システムの主鏡と副鏡との幾何学的位置関係は変化しないことがわかる。   First, the wavefront aberration was 0.230λ (rms) as a result of measuring the wavefront aberration using the optical interferometer 9 while keeping the temperature of the entire reflector system 8 constant at 23 ° C. Here, the wavefront aberration is a disturbance of the concentric spherical wavefront that has passed through the optical system. Is done. Here, λ is the wavelength of the laser light of the optical interferometer 9, and for example, if the light source of the optical interferometer 9 is a He—Ne laser, λ = 632.8 nm. If the wavefront aberration is less than the Rayleigh limit (1 / 4λ), it is determined that there is no significant difference from the ideal image. Next, the wavefront aberration when the overall temperature of the reflector system 8 is 10 ° C. is 0.231λ (rms), and the wavefront aberration when the overall temperature of the reflector system 8 is 35 ° C. is 0.230λ ( rms). From this, it can be understood that the geometric positional relationship between the primary mirror and the secondary mirror of the reflecting mirror system does not change if the temperature of the entire reflecting mirror system is constant.

次に、反射鏡システムに温度分布が発生したときの波面収差について説明する。主鏡および副鏡の端部、P1、P2、P3およびP4の温度を変化させて波面収差を測定した。各端部の温度と波面収差との関係を表1に示す。なお、表1には、上述の反射鏡システム全体の温度を一定としたときの波面収差も併せて示している。   Next, wavefront aberration when temperature distribution occurs in the reflecting mirror system will be described. Wavefront aberration was measured by changing the temperatures of the ends of the primary and secondary mirrors, P1, P2, P3, and P4. Table 1 shows the relationship between the temperature at each end and the wavefront aberration. Table 1 also shows the wavefront aberration when the temperature of the entire reflecting mirror system is constant.

Figure 2010152090
Figure 2010152090

表1において、主鏡支持部が30℃で副鏡支持部が20℃の場合の波面収差は0.231λ(rms)となり、主鏡と副鏡との幾何学的位置関係は反射鏡システム全体が一定の温度の場合とほとんど変化がないことがわかる。さらには、主鏡支持部および副鏡支持部の一方の端部が15℃で他方の端部が25℃のように、光軸に対して対称ではない温度分布が生じた場合でも、波面収差は0.231λ(rms)となり、主鏡と副鏡との幾何学的位置関係は反射鏡システム全体が一定の温度の場合とほとんど変化がないことがわかる。   In Table 1, when the primary mirror support is 30 ° C. and the secondary mirror support is 20 ° C., the wavefront aberration is 0.231 λ (rms), and the geometric positional relationship between the primary mirror and the secondary mirror is the entire reflector system. It can be seen that there is almost no change from when the temperature is constant. Further, even when a temperature distribution that is not symmetrical with respect to the optical axis occurs, such as one end of the primary mirror support and the secondary mirror support is 15 ° C. and the other end is 25 ° C., the wavefront aberration Is 0.231λ (rms), and it can be seen that the geometrical positional relationship between the primary mirror and the secondary mirror is almost the same as when the temperature of the entire reflecting mirror system is constant.

本実施の形態で説明したように、反射鏡システムに温度分布が発生せず全体の温度が一定に変化した場合は、反射鏡システムの構成部材が同一の線熱膨張係数をもつ材料で構成されているので反射鏡システム全体が相似形で変形するため、主鏡と副鏡との幾何学的位置関係は一定に保たれる。また、反射鏡システムに温度分布が発生した場合は、連結フレームの主鏡接続位置と副鏡接続位置とが逆位相の位置で構成されているので、主鏡から見て副鏡は傾くことがなく、主鏡と副鏡との幾何学的位置関係は一定に保たれる。   As described in the present embodiment, when the temperature distribution does not occur in the reflector system and the entire temperature changes constantly, the constituent members of the reflector system are made of a material having the same linear thermal expansion coefficient. Therefore, since the entire reflecting mirror system is deformed in a similar shape, the geometric positional relationship between the primary mirror and the secondary mirror is kept constant. Also, when temperature distribution occurs in the reflector system, the primary mirror connection position and secondary mirror connection position of the connecting frame are configured in opposite phases, so the secondary mirror can tilt when viewed from the primary mirror. In addition, the geometric positional relationship between the primary mirror and the secondary mirror is kept constant.

上述のように、本実施の形態においては、構成部材を同一の線熱膨張係数をもつ材料で構成することにより、部材の接続部での応力の変化を最小に押さえることができると共に、主鏡支持部に連結フレームが接続された主鏡接続位置と、副鏡支持部に連結フレームが接続された副鏡接続位置と逆位相の位置とすることにより、それぞれの連結フレームが温度分布に対し、伸び縮みを起こし変形量が相殺され、連結フレームの長さが等しくなる。そのため、反射鏡に任意の温度変化や温度分布が生じても、補正機構なしで主鏡と副鏡との幾何学的位置関係を一定に保つことができると共に、部材の接続部での応力の変化を最小に押さえ、光軸のずれや信頼性の低下を抑制することができる。   As described above, in this embodiment, the constituent members are made of a material having the same linear thermal expansion coefficient, so that the change in stress at the connecting portion of the members can be minimized and the primary mirror can be suppressed. By setting the primary mirror connection position where the connection frame is connected to the support part and the sub mirror connection position where the connection frame is connected to the secondary mirror support part to a position opposite in phase to each other, Expansion and contraction are caused and the amount of deformation is offset, so that the lengths of the connecting frames become equal. Therefore, even if an arbitrary temperature change or temperature distribution occurs in the reflecting mirror, the geometrical positional relationship between the primary mirror and the secondary mirror can be kept constant without a correction mechanism, and stress at the connecting portion of the member can be maintained. The change can be suppressed to the minimum, and the shift of the optical axis and the decrease in reliability can be suppressed.

この発明の実施の形態1における反射鏡システムの模式図ある。It is a schematic diagram of the reflecting mirror system in Embodiment 1 of this invention. この発明の実施の形態1における反射鏡システムの光学特性を評価するときの配置図である。It is an arrangement plan when evaluating the optical characteristic of the reflecting mirror system in Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 主鏡
2 主鏡支持部
3 副鏡
4 副鏡支持部
5 連結フレーム
6 主鏡接続部
7 副鏡接続部
8 反射鏡システム
9 光学干渉計
10 基準ミラー
11 開口部
DESCRIPTION OF SYMBOLS 1 Primary mirror 2 Primary mirror support part 3 Secondary mirror 4 Secondary mirror support part 5 Connection frame 6 Primary mirror connection part 7 Secondary mirror connection part 8 Reflective mirror system 9 Optical interferometer 10 Reference mirror 11 Opening part

Claims (2)

主鏡およびこの主鏡が固定された主鏡支持部と、
副鏡およびこの副鏡が固定された副鏡支持部と、
この副鏡支持部と前記主鏡支持部とを連結する連結フレームとを備えた反射鏡システムであって、
前記主鏡、前記副鏡、前記主鏡支持部、前記副鏡支持部および前記連結フレームの構成部材が同一の線熱膨張係数をもつ材料で構成されており、
前記主鏡の反射面と前記副鏡の反射面とは共通の光軸で対向して配置されており、
前記主鏡支持部に前記連結フレームが接続された主鏡接続位置と、
前記副鏡支持部に前記連結フレームが接続された副鏡接続位置と
は前記光軸に対して点対称の位置であることを特徴とする反射鏡システム。
A primary mirror and a primary mirror support to which the primary mirror is fixed;
A secondary mirror and a secondary mirror support to which the secondary mirror is fixed;
A reflecting mirror system comprising a connecting frame for connecting the sub mirror support part and the primary mirror support part,
The primary mirror, the secondary mirror, the primary mirror support part, the secondary mirror support part, and the constituent members of the connection frame are made of a material having the same linear thermal expansion coefficient,
The reflective surface of the primary mirror and the reflective surface of the secondary mirror are arranged to face each other with a common optical axis,
A primary mirror connection position where the coupling frame is connected to the primary mirror support;
The secondary mirror connection position where the coupling frame is connected to the secondary mirror support is a point-symmetrical position with respect to the optical axis.
構成部材が、炭素繊維強化炭化珪素複合材であることを特徴とする請求項2記載の反射鏡システム。 3. The reflector system according to claim 2, wherein the constituent member is a carbon fiber reinforced silicon carbide composite material.
JP2008330325A 2008-12-25 2008-12-25 Reflecting mirror system Pending JP2010152090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008330325A JP2010152090A (en) 2008-12-25 2008-12-25 Reflecting mirror system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008330325A JP2010152090A (en) 2008-12-25 2008-12-25 Reflecting mirror system

Publications (1)

Publication Number Publication Date
JP2010152090A true JP2010152090A (en) 2010-07-08

Family

ID=42571259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008330325A Pending JP2010152090A (en) 2008-12-25 2008-12-25 Reflecting mirror system

Country Status (1)

Country Link
JP (1) JP2010152090A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144935A (en) * 2017-06-16 2017-09-08 中国科学院西安光学精密机械研究所 A kind of primary and secondary mirror support of the high resonant frequency of Light deformation
JP2021504755A (en) * 2017-11-30 2021-02-15 レイセオン カンパニー Multi-material mirror system
US11327208B2 (en) 2018-05-30 2022-05-10 Raytheon Company Method of manufacture for a lightweight, high-precision silicon carbide mirror assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144935A (en) * 2017-06-16 2017-09-08 中国科学院西安光学精密机械研究所 A kind of primary and secondary mirror support of the high resonant frequency of Light deformation
CN107144935B (en) * 2017-06-16 2022-12-23 中国科学院西安光学精密机械研究所 Primary and secondary mirror support of high resonant frequency of micro-deformation
JP2021504755A (en) * 2017-11-30 2021-02-15 レイセオン カンパニー Multi-material mirror system
US11314041B2 (en) 2017-11-30 2022-04-26 Raytheon Company Multi-material mirror system
US11327208B2 (en) 2018-05-30 2022-05-10 Raytheon Company Method of manufacture for a lightweight, high-precision silicon carbide mirror assembly

Similar Documents

Publication Publication Date Title
JP5862484B2 (en) Mirror support structure
CA2671442C (en) Device for correcting optical defects of a telescope mirror
KR20150022718A (en) Optical subassembly with a mount with connection units of directed flexibility
JP2010152090A (en) Reflecting mirror system
US11314041B2 (en) Multi-material mirror system
Kaneda et al. Cryogenic optical performance of the ASTRO-F SiC telescope
JP2009302682A (en) Delay interferometer
JP2000235151A (en) Method for correcting optical wave aberration in optical system, and optical system and microscope manufactured based on it
JPH11326742A (en) Active mirror
JP2001318301A (en) Optical member supporting device
US10862189B1 (en) Near earth and deep space communications system
JP2010190958A (en) Reflecting telescope
JP7102802B2 (en) Optical system support mechanism
JP4056703B2 (en) Optical device
JP4935884B2 (en) Optical reflector
JP2018031938A (en) Reflection optical system
US20220413259A1 (en) Thermally actuated adaptive optics
JP4447694B2 (en) Optical member support structure
JP2795181B2 (en) Light reflection telescope for satellite
JPH05288908A (en) Optical system
Bittner et al. Image quality prediction for the SOFIA Telescope using actual mirror data
JP2018031937A (en) Reflection optical system
Melugin et al. Infrared Telescope Design: Implications From Cryogenic Tests Of Fused-Silica Mirrors
Yang et al. Development of Cassegrain type 0.9-m collimator
Marchiori et al. Scaling ALMA antenna to 50m and beyond: challenges and solutions